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Principles of OBJ2!

Kokichi Fut:ﬂ.sugig. Joseph A. Goguen, Jean-Pierre Jonannaud®, and José Meseguer

ERI International, Menlo Park CA 04025
and
Center for the Study of Language and Information, Stanford University 94305

1 Introduction

OBJ2 1s a functional programming language with an underlying formal semantics that is
based upon equational Jogie, and an operational semantics that is based upon rewrite rules.
Four classes of design principles for OBJ2 are discussed briefly in this introduetion, and then in
more detail below: (1) modularization and parameterization; (2) subsorts; (3) implementation
techniques; and (1) interaction and flexibility. We also trace OBJ history, current status, and
future plans, and give a fairly complete 0BJ bibliography. Most example code has actually been

run on our current OBJ2 interpreter.

1.1 Modules and Generies

A key OBJ2 principle is the systematic use of parameterized (generic) modules.
Encapsulating related code makes it more reusable, and generics are even more reusable, since
they can be "tuned® for a variety of applications by choosing different parameter values;
moreover, debugging, maintenance, readability and portability are all enhanced. The interface
declarations of OBJ2 generics are not purely syntactie, like Ada's: instead, they may contain
semantic requirements that actual medules must satisfy before they can be meaningfully
substituted. This can prevent many subtle bugs. An unusual feature of OBJ2 is the commands
that it provides for modifving and combining program modules; thus, (a form of} program
transformation is provided within the language itsell. A key principle here is the systematic use

of module expressions for describing and creating complex combinations of modules; see
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Section 2.5. This provides a level above that of conventional programming languages, in which

previously written code 18 deseribed by theories, and also is mapipulated by module expressions

to produce new code.

1.2 Subsorts

ORJ2 is stropgly t}'pndb. As in many other languages, users can introduce their own sorts
and operations, thus supporting user defined ADTs. However, OBJe also permits users to
declare that some soris contain {or are contained in) others. This supports 8 simple vet
powerful form of polymorphism, as well as exception (error] definition and handling (recov ery),
partially defined operations, and multiple inheritance {in {he sense of object-oriented
prngramming}; cee Section 3. In addition, it permits us 1o write very simple and elegant code
for standard ADTs like Lists, Gtacks and Tables, as shown below.

1.3 Implementation Techniques

The current implementation is a Maclisp interpreter emploving several novel technigues for
officient term rewriting, including forms of tail recursion, hash-coded structure sharing (see
Seetion 4.4), and user d efined built-ins (see Section 4.5). The task of implementing OBJ2 has
been greatly eased by our Command Interpreter Generator (CIG), essentially 2 powerful
application generator for interactive menu-driven systems; see Section 4.1. The CIG allows a
strict separation of OBJ2's high level interactive syntax from the funetions that actually do the
work, and also helps bring up protolypes Very rapidly, facilitating experiments with OBJ2's
syptax and cemantics without having to reimplement & complex interactive system. An
interesting methodological point is our use of OBJ to design the new implementation. We
specified the database and the rewrite rule engine in both oBN and 0BJ2, and we also specified
the interface between thesc two major components (but not in ORJZ), It was instructive to
debug our 0BJ2 design on 2 real example. It seems doubtful that we could have implemented

such a complex and novel system in one vear without using such techniques.

Dyyerealter we generally use the word *sort® instead of *type®, trying 1o avoid confusion among the many
different ways that "type” has been used [major exceptions are use af the word "typechecking” and of the phrase
"hstract data type®, abhreviated ADT)



1.4 Interaction and Flexibility

OBJ2 s highly interactive and flexible. Program entry is driven by structured menu choice,
rather than by keyword entry and subsequent parsing. All syutactic and many semantic errors
are detected at program entry time, the user is then given a diagnostic message and a chance to
trv again. The OBJ2 interpreter provides much more help than most compilers even attempt.
Implementing this principle is greatly aided by the CIG.

Users can define their own abstractions, with anv desired syntax, and then use these
absiractions as if they were built in: in fact, users can even give efficient implementations in the
underlving Lisp. 0OBJ's *mixfix* (or *distfix®) svntax permits prefix, postfix, nfix, "outfix* (as
in{ x Yor{ A |), and most generally, distributed fix operations with keywords and
arguments in any desired order {1f then else fi is non-trivially mixfix). In addition to
efficient implementation, user definable built-ins can also provide sophisticated I/O packages,
such as window management, if the underlying hardware supports it. (Section 4.5 gives more
detall on huilt-ins.)

2 Modules and Generies

The only top level OBI2 entities are modules (which are either objects or theories) and
views (which relate theories to modules, see Section 2.4); objects contain executable code,
while theories contain nonexecutable assertions. Thus, executable code and nonexecutable
asgertions are both modularized, and are closely integrated with each other. Moreover, the
mathematical semantics of theorics and objects is elegantly unified since both are data
theories in the sense of [Goguen & Burstall 24]; there is not space for details bere, but the
essential intuition is that the notion of theory generalizes to permit regarding certain
subtheories as objeets {i.e., they have initial interpretations) while others may have any

interpretation.

2.1 Objects: Syntax and Semantics

OBJ2's basic entity is the object, which is a module {possibly parameterized) encapsulating
execulable code; objects generally introduce new sorts of data and new operations upon that
data. An object has three main parts: (1) a header, containing its name, parameters, interface
requirements, and imported module list; (2) a signature, declaring its new sorts, subsort
relationships, and cperations; and (3) a body, containing its code, consisting of equations and
sort constraints (these are described in Section 3.1). The following BITS object introduces two
new sorts Bit and Bite ([for Bit lists) with some relevant operations; these lists have a S-

expression-like syntax with . and 2il. OBJ2 kevwords and keyvsymbols are in ifalics.



obj BITS 15

ertending NAT .

sorts Bit Bits .

ops 0 1 1 -=> Bit .

op mnil ;-> Bite .

op _._ < Bt Bite -> Bite .

op length - Bite -> Nat .

pvar B : Bit .

var § : Bite .

eg ; length pil = 0 .

eq: length B . 8§ = inc length § .

endo

Each line in this example begins with an onJ2 keyword. The first line with keyword obj gives
the name BITS of the object. The second line indicates that the built-in object NAT (for natural
numbers) is imported by BITS. The keyword "ertending® indicates that a certain static check
is performed (see Section 2.2 for more detail]. The ops line declares the two Bit constants, the
next op line declares the empty string mil, the next a »cons® operation (it adds a Bit to some
Bits) with *dot® syntax, and the next a length operation using the sort Nat from NAT. An
operalion declaration in OBJ2 consists of- a form, indicating the distribution of keywords and
arguments (underbars indicate argument places}); an arity, which lists argument sorts; and a
coarity, which is the output sort. Finally, variables of sorts Bit and Bite are declared and

used in equations which give semantics for the length function.

ORJ2's basie user-level naming conventions are as follows: modules must have globally
unique names; sort names must be unique within their module, and may be qualified by 2
module name for disambiguation; an operation name consists of its form, arity and coarity, and
(in a future jmplementation) may be qualified by a module name; note that sort names used in

arity and coarity can be qualified by module.

oRJ2 code is executed by interpreting prquations as rewrite rules: the lefthand side is
regarded as a pattern to be matched within an expression {variables can match any
subexpression of appropriate sort); when a match occurs, the subexpression matching the
lefthand is rewritten to the corresponding substitution instance of the righthand side. This
process continues until there are no more matches; then the expression is said to be reduced or
in normal form. Writing

eval length 329 , 666 . nil ende
at OBJ2's top level causes caleulation of the reduced form 2 using the rules io BITS.



5

The Church-Rosser and termination properties imply that expressions will always have
untque reduced forms; we have found that experienced programmers usually write rules that
satisly these properties. Term rewriting may seem a specialized computational paradigm, but
i fact it is completely general: any computable function over any computable data types can
be so realized [Bergstra & Tucker 80a, Bergstra & Tucker 80b]. This generalizes to operations
that are associative, commutative, idempotent and /or have an identity [Jouannaud & Kirchper

#4]: then implementation is by matching modulo the given operation attributes.

ORJZ's mathematical semantics is so-called initial algebra semantics (IAS) [Goguen, Thatcher
& Wagner 78|, IAS provides a standard interpretation characterized by the properties of: (1)
having *no junk®, meaning that all data values are denoted by terms in the available operation
symbols; and (2) having "o confusion®, meaning that twe terms denote the same data value if
and only if they can be proved equal (with standard equational reasoning) from the given

cquations [Burstall & Gognen #2].

2.2 Hierarchy of Modules

0BJ2 modules can import other modules in three different ways, ®using®, *profecting® and
*erlending®. These define three different restrictions on preserved properties of imported
modules, and thus define three corresponding partial orders (i.c., hierarchies) among modules.
The using hierarchy is the most general, and embeds the other two.

An importation may fail to preserve the "no confusion® property for the data elements of
the imported module. For example, if we define the integers modulo 3 by importing the
integers (defined with 0 and successor €] by adding the equation s 8 8 0 = 0, then the
integer data elements become confused. Similarly, the *no junk® property may be violated by
cperations that create new data elements of imported sorts. For example, a Bool-valued
operation p can create *Boolean junk® like p(97) if 2 user gives incomplete equations for p.
*Prolecting® is the most restrictive relation, indicating that both the *no confusion® and *no
junk*® properties are preserved, and thus the imported module remains unchanged.
*Lrtending® is an easy-to-check sufficient condition for "no confusion®, requiring that the
operations deflined in an imported module do not oceur as topmest symbols on the lefthand side
of a new equation; it can only be used for objects; and it supports separate compilation, since a
given operation is deflined onee and for all by the module that declares it. and can therefore be
computed from just the information in that module. *using® does not guarantee anything, it

Just copies the imperted module.



2.3 Parameterized Objects and Theories

Madules gronp together the data and operations used for partieular problems such as
sorting, matrix manipulation, or graphics. Parameterized modules maximize reusability by
permitting *tuning® to fit a variety of applications. For example, using (italicized) square
brackets to separate the module name from parameters, SORTING X/ might sort lists aver any
ordered set X, and MATRIXfa, R/ might provide the usual nxn matrix operations for scalars from
R. The parameter X of SORTING ranges over (partially) ordered sets, i.e., sets with an irreflexive
(i.e.. X € Xis false) trapsitive relation. The parameter o of MATRIX ranges over natural
numbers, while R ranges over rirllgsE . Thus. OBJ2 supports semantic interface requirements,
whereas Ada's purely syntactic interfaces cannot exclude actuals that would produce
unexpected or bizarre behavior. An 0BJ2 module interface is described by a requirement
theory, giving both syntax and axioms for the interface, with an object being an admissible
actual only if it satisfies the axioms. The requirement theory for SORTING is given by

th POSET is

protecting BOOL .

gorf E1t .

op ¢ :Elt Elt -> Bool .

pars E E* E**  E1t .

eq: E < E = false .

ceq: E < E'? = true if (E < E* ard E* < E'")

endth
(oBJ2 code for SORTING is given in Section 2.5 below.} More simply, bere is the requirement
theory for an interface that only requires designating a sort from an actual (with no axioms]):

th TRIV 1s

sort E1t .

endth
A paramelerized object may have one or more requirement theories; these are given In
(italicized) square brackets after its name. Since more than one parameter may be subject to
the same requirements, different instances of the same theory may be needed. For example, the
following TABLE object has two TRIV requirement theories, INDEX and VAL, with E1t. INDEX and
F1t VAL their corresponding sorts, thus illustrating OBJ2's qualified sort name convention:

obj TABLE[INDEX :: TRIV, VAL = TRIV/ is

protecting BOOL .

ﬁ‘v"a]ues with addition, difference, multiplication, and constants 0, 1, such that addition aod multiplication are
associative and commutative with identities 0, 1 respectively, dilference is inverse 10 addition, and multiplication
distributes over addition.



sorts Table ErrVal .

subsorts E14 . VAL < ErrVal .

op empty . ->> Table .

op put  E1v. VAL E1t.IKDEX Table -2 Table .

op _[_1 : Table E1t,INDEX -> ErrVal .

op undef - El1t.INDEX -> ErrVal .

vars I I* : E1t.INDEX .

var ¥ E1t VAL .

var T : Table .

eg: put(V,I,TI[ I* ] = if I == I' then V else T [ I' ] fi .

eq. empty [ I 1] — undef(I)

Jho

In the first equation, "==" iz a built-in equality such that for two terms t. t' of the same sort, t
==t'is true if they have the same reduced form, and is false otherwise. == implements the
decision procedure for equality that is associated with every object, and if_then else fiisa
polymorphic conditional; both these are provided for every sort by the built-in BOOL object.
The supersort ErrVal of E1t. VAL accomodates error messages for lockups of an index where no
value is stored (Section 3 explains sub- and super- sorts). The form of the operation put has no
underbars, and therefore gets a standard parentheses-with-commas syntax, e.g.,

put(true,13,T1) for TABLE/INT,BOOL)/

2.4 Views

Instantiating a parameterized object means providing actual ebjects satisfying each of its
requirement theories’. In OBJ2, the actual objects are provided through views, which bind
required sorts and operations to those actually provided (ie., views map the sort and operation
symbols in the formal requirement theory to those in the actual object®) in such a way that all
axioms of the requirement theory are satisfied. For example,

view INT-DESC of INT as POSET is

sort E1t fo Int .
vara X Y : Elt .
op:X<Yio:Y <X

endview
views INT with descending order as a poset; in "op : X € Y fo: Y < X" the [irst *<* is the one
from POSET while the second *<* is from INT. Instantiating a parameterized object with a view

‘Parameterized objects can also be seen as "ohject generators,®

More generally, a view can map an operation in the formal to an expression in the actual, as illustrated in the
following example,
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i< indicated by replacing the parameter part with the view name. Thus, instantiating
SORTINGP - POSET/ to sort integers in descending order is indicated by EUR’TIHG{IHT—DESGJF.
Note that there can be more than one view from a theory to an actual; for example, anotber
stantiation of SORTING with INT uses a view that maps *<*® in POSET to the (irreflexive)
divisibility relation in INT.

Sometimes a view can be inferred from a partial description, using syntactic similarities
between the theory and the object. We call auch a view description an abbreviated view; it
i« a default view if abbreviated to nothing |Goguen 84j. For example, there is a defanlt view
of INT as POSET that maps E1t to INT and <_ : Elt Elt -> Bool to the nsual ordering oD
integers. To instantiate a parameterized object with a default view, it suffices to place the
actual in the parameter part. Thus SORTING[INT] sorts integers in ascending order; at the top
level of ORJ2, one might write

make SORTING-INT is SORTING[INT/ endm
to create SORTING-INT. Intuitively, applying a parameterized object corresponds to *editing"
its text according to a view; but this is highly diseiplined edit, with a formal semantics like that
of Clear [Burstall & Goguen 77, Burstall & Goguen 80]. In this semantics, views correspond to
theory morphisms, and pzmmet—crized objects have an associated theory inclusion from their
requirement theory to their body. The pushout of that theory inclusion alonz the view gives a
new theory whose initial algebra < the desired instantiation (see [Mac Lane 71] or {Goguen &
Burstall 84] for the definition of pushout and {Goguen & Burstall 84] fer more detail on

instantiating parameterized objects).

2.5 Module Expressions

Parameterized programming permits building complex modules frem simple ones by
applying parameterized objects to actuals that are themselves instantiations of other
parameterized objects and so on recursively; a similar approach using module construction
operations occurs in OBJT, 0Bt and the Hisp specification language [Futatsugl & Okada
g2, Futatsugi & Okada 80]. OBJ2 module expressions are like ordinary arithmetie
expressions, except that their arguments are modules rather than numbers. For example, if ID
is & built-in identifier object, and if our library contains LEX[X :: POSET/ providing lexicographic
ordering for lists of elements from an ordered set X, and also contains a parameterized sorting
object SORTING/P = POSET], then the module expression SORTING LEX[ID]] lexicographically
sorts lists of phrases (i.e., lists of licts of identifiers). This expression uses several default
conventions. In LEX/IDf, a default view maps the sort of LEX's requirement theory to the sort
1d and maps its ordering to the built-in ordering for identifiers. Another default view maps the
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sort E1t of SORTING's requirement theory to the List sort of LEX/ID/, and maps its ordering to
the lexicographic ordering from LEX/ID/. Here is the code for SORTING (the parameterized LIST
madule is given in Section 3.1):
obj SORTING jE..T F'IEISETj1 18
ertending LISTELT/ .
op sorted - List ->> Bool .
op sort ; List -» List .
vars E E* ; E1t .
var L L* L** : List .
ey . gorted(nil) = true .
eq - gorted(E) = true .
eq : sorted(E E’ L) = (E == E’ or E < E') and sorted(E’ L)
ceq: gert(L EL" E' L'} = mort(L E* L' EL*') ifE’' < E .
ceg @ sert(l) = L {f serted(L)
gho
(At the time of writing, OBJ2's module instantiation facility was not quite up to this and the
following example; but we expect it will be by the time the paper is presented.)

If Mis a module expression, then M * (. }is another, with sorts and operations renamed
according to (...} For example, we rename the operaticn sort of SORTING to lex-sort in the
module expression SORTINGLEX/ID/f # {op sort to lex-sort ) Module expressions alse seeur
in "deflinitions® inside of modules, with the effect of renaming the prineipal sort of the module
expression, as in

obj SYMBOLTABLE iy
ertending ID .
ertending INT .
dfn Env = STACK/TABLE/ID,INT/ * fsorl Int fo Lec, sort Table fo Layer)/.
jho
{(The principal sort of a module is the first new sort introduced in it; or if there is none, the
principal sort of its first imported module, and so on recursively.) Replacing the *dfn® by
*erlending® and renaming of sort Stack to Env would vield the same operational semantics

and hierarchy of modules.

3 Subsorts

One sort of dala is often contained in {or contains) another, e.g., the natural numbers are
contained in the integers, which are contained in the rationals; then the sort Nat is a snhsort
of Int, and Int is a subsort of Rat (or Int is a supersort of Nat, etc.), written Nat < Int <
Rat. Moreover, an operation may restrict to subsorts of its arity and coarity and still be *the
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same® operation. For example, each addition operation _+ . Rat Rat -> Rat,

+ - Int Int -> Imt, + : Nat Nat -> Natisa restriction of the preceding one. OBJ2's

very flexible subsort mechanism provides the following, all within the framework of an initial
algebra semantics:
1. Such overloaded operations provide a simple but powerful ]ml:.rInr.::-rl:rhifmagl {see Sections
3.2 and 4.2).
. Multiple inheritance in the sense of object-oriented programming permits one sort to be a

]

subsort of two (or more) others, each having various defined operations; then all these
operations are inherited by the subsort. For example, we might have RegisteredVehicle
< Vehicle and RegisteredVebicle < TaxedObject, with say a speed operation on
Vehicles and a tax-amount operation on TaxedObjects; both these aperations are
inherited by items of sort RegisteredVehicle.

2 The familiar difficulties for ADTs with operations that are *partial® (such as tail for
lists and push for bounded stacks) disappear by viewing the operations as total on the
right subsorts (see Sections 3.1 and 3.2).

4 Errors oan be treated in several siyles, without need for special syntactie or semantic

serror handling® mechanisms (see Sections 3.3 and 3.1).

3.1 Partial Operations and Sort Constraints

The following specification for & parameterized LIST object introduces a subsort NeList of
nonempty lists to make the (traditionally partial) head and tail operations total. Here ®"assoc*®

indicates that an operation is associative, and *fd: 2il® indicates that it has nil as an identity.

pbj LIST/X : TRIV/ 1s
sorfs Nelist List .
subsorts E1t < NelList < List .
op nil :-> List .
op __ : NeLipt NeList -> Nelist fassoc]
op _ _ :List List -> List fassoc id: nilf
op head : NelList -> Elt
op tail : NeList -> List
var L : NeList

rar E - E1t

eq: head(EL) = E .

eq: tail(EL) =L .
Jho

Sp.rameterized objects provide yet apother polymophism, since a generie object's vperations are available to all
its instapces.
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A more suhtle kind of partial operation is illustrated by *push® in a bounded stack. Unlike
LIST. where nonempty lists are generated by concatenation, the stacks for which *push® is ok
have no natural expression as a set generated by constructors (e.g., by puseh itsell); but they can
be characterized by the equational condition of having a length not exceeding the bound. Such
characterizations are called sort constraints in OBJ2 (the word *declarations® was used
in [Goguen 78] for the unconditional case) and have the general form

as <Sert>» - f(Xi,. .., Xn) if <Condition> .
An initial algebra semanties for sort constraints is given in [Goguen & Meseguer 84a] and an
operational semanties is given in [Goguen, Jousnnaud & Meseguer 85]. BOUNDED-STACK uses the

following requirement theory

th NAT# 1s

protecting NAT .

op bound .- Nat .
endth

NAT# is a somewhat subtle theory especially constructed so that giving an interpretation of it
corresponds exactly to giving a natural number as interpretation of the constant bound. Now

the example:

obj BOUNDED-STACKM - TRIV, Y .- NAT#/ is
sorls NeStack Stack ErrStack .
subsoris NeStack < Stack < ErrStack .
op empty - -> Stack .
op push ; Elt ErrStack ->> ErrStack .
op tep_ . NeStack -> Elt .
op pop_ . NeStack -> Stack .
op length . Stack -2 Nat .
var E : E1t .
rar 5 © Stack .
as NeStack & push(E.§) ¢f length(S) < bound .
eq © length (empty) = 0 .
eq  length (push(E,8)) == inc length(S)
eq ; top push(E,8) = E .
eg . pep push(E,§) = § .

jbo

(This example has not been run since sort constraints require subtleties in the parser that are

not vet implemented.) Overflow of such a stack during computation produces a runtime parse

error (see Section 3.3).



12

3.2 Logic of Subsorts

Although subsorls are very expressive, their logic is very simple, and indeed can be reduced
to standard equational logie [Goguen & Meseguer 84a, Goguen, Jouannaud & Meseguer 85].
This is both theoretically and practically important, since both standard algorithms for term
rewriting and theorem-proving (e.g., the Kouth-Bendix algorithm) and the large literature on
algebraic data types can be applied without modification. In the OBJ2 system, subsort potation
is available at the user level, but is translated into (lengthier) internal standard equational
forms. The key idea is to view a subsort pair s<s' as a unary operation ¢  r - s—s' called a
coercion from s to &, Appropriate equations ensure that ¢ o is injective and that the subsort
relation is transitive. Also, whenever an operation symbol {such as *+") is defined for both s
and ¢ with s<s', the following *morphism equation® expresses that the results must be the
same at both levels,

¢, glx) +¢ e l¥) = e, X +8 ¥) .

{*+s" and *+s'" are new operation symbols for the two levels.)

This defines a translation from OBJ2's varder-sorted algebra® notation [Goguen 78] to
standard equational notation. In partienlar, il E is a set of equations defining an OBJ2 object,
we obtain a translation E* to which the above equations have been added. There is an
equivalence between the class of order-sorted algebras satisfying E and the ¢lass of standard
algebras satisfying E* under which the initial algebras of each class correspond [Goguen &
Meseguer 84a]. Thus we can iranslate back and forth without losing information. This
translation involves mapping an overloaded operation in the order-sorted algebra (such as +
above) to one of its forms in the standard algebra (e.g., +8' or +8). This translation is done by
choosing the operation with the smallest coarity such that the resulting expression, called the
lowest parse, is well-formed. Simple syntactic conditions on signatures ensure uniqueness of

lowest parse Gognen, Jouannaud & Meseguer 85,

Assuming that the order-sorted equations in F are Church-Rosser, it turns out that new
equations may have to be added to E* in order to get an equivalent set of Church-Rosser
standard equations |Goguen, Jouannaud & Meseguer 85). Thus OBJ2 performs a specialized
Knuth-Bendix mmpletionm on the equations E*. Even when an operation has been declared
associative (or associative-commutative) for both 3 subsort s and a supersort ', we can still do
rewriting modulo associativity (or associativity-commutativity) with the completed E* using a

standard associative (or associative-commutative} matchine algorithm [Goguen, Jouannand &

1 T . . .
The usual problems of oricoting rules and of non-termination do not arise here.
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Meseguer 85]. However, the correctness of this last reduction is rather subtle, since the

assoclativity axioms at the two levels interact with morphism equations to generate additional

equations having an associative {lavour.

3.3 Error Handling and Recovery

It is widely admitted that handling erroneous and meaningless expressions in an algebraic

setting reduces to handling subsorts and partial aperations. However, quite a number of

different approaches have been taken, including the following:

1. Error Sorts - providing special sorts in which to put special error values:

a.

Error Algebras — our original approach [Goguen 77] involved disjeint *ok® and
“error® sorts for each standard sort; we bave abandoned this approach and do not
discuss it further here, except to note that it was implemented in OBJT and oBJ1.
Explicit Error Supersarts — this is one of several approaches supported by OBJ2; it
involves a new supersort of each standard sort; for example, List < ErrlList with
tail . List -> Errlist and tail(nil) = tailess where tailees is an error

message of sort ErrList not of sort List.

2. Partial Operations -- here operations are defined on only part of what is normally

considered their domain; for example, tail is only defined for non-empty lists:

a. Partial Algebras — here one attempts to generalize the theory of abstract data types

to alzebras involving partially defined operations; it has been found that the
mathematical theory is far more complex than one would like, and we will not
discuss this approach further bere,

Domain Subsorts - here one restricts operations to the domain on which they are
meaningful by defining a subsort for this domain; for example, in 0BJ2 we could
define NeList < List to be the sort of non-empty lists and then have

tail : Neliet -> Ligt; OBJ2 also has sort eonstraints.

Sort Constraints — these give the effect of partial cperations with domain defined by
a condilion. as in the BOUNDED-STACK example.

3. Recovery Operations -- these are aperations from a sort that may contalp errors to one

ihat doesn't:

a.

Retracts — these are left inverses to coercions, permitting contingent parsing of
expressions which would otherwise be ill-formed, as described below.

Ercor Handlers - more general recovery operations than retracts are possible in
OBJ2, but are not discussed here,

The choice among the options supported by 0BJ2 is largely a matter of style and taste;

moreover, certain of these choices are very closely related to one another. For example, OBJ2
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automatically provides hoth a coercion and a retract for every subsort pair; thus, both error
supersorts and domain subsorts have associated retracts. Oue consideration in making a choice

is what kind of explicit error messages are desired.

Let us now discuss retracts in more detail. Ill-formed terms of the order-sorted algebra are
translated to well-formed terms of an extended standard algebra having new operation symbols

LU called retracts thal are associated with each subsort pair s<s. The semantics of retracts
is given by new equations in E* expressing that coercions are right inverses of retracts. 1l-
formed order-sorted terms that "might* become well-formed after reduction get the benefit of
the doubt at parse time by using reiracts to fill gaps between actual sorts and required sorts.
For example, in the object TABLE[INT,BOOL/, the expression

put (put(true, 1,empty) [ 1 1.5, put{ialu,ﬂ,empty))
is temporarily accepted by the parser as the term

put(Fr oot E1t.Val (put(true,i,empty) [ 1 1), §,put(false,2,empty)) .
Doubt arises since put (vrue, 1, empty) [ 1 1 can be an ErrVal value that is not an E1t.Val,
but the expression is vindicated after reduction. On the other hand, the expression

put (put(true,1,empty) {2 1.6, put(falee,2, empty))
is also temporarily accepted by the parser as the term

Pt (Te a1 £1e yeyundef (2).5,put(false,2, empty))
but since this is already reduced, it is returned as is, with the retract operation serving as a
very informative error message. This kind of runtime typechecking, together with the
polymorphism provided by subsorts and parameterization, gives much of the syntactic

flexibility of untyped languages with all the advantages of strong typing.

4 Implementation Principles

In trving to make OBJ2 convenient to use, eusy to implement, and fairly efficient, we have
developed several new implementation teehnigues.

4.1 Command Interpreter Generator

Civen two files, one specilying command syntax and the other containing basic system
funetions, the Command Interpreter Generator (ClG) compiles a system interpreter. The
command specification is in effect a graph of menu choices, given as S-expressions that describe
the command hierarchy with nssociated funetion calls. Euch command has four parts: open
kev, bady, subcommand part, and close keyv, For the POSET theory in Section 2.3, the open key
»{h* starts the theory creation command, and *endth® closes it: its body is "POSET is%; and its
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subcommand part is a sequence of commands one level lower, given by the six lines starting
with "profecting BOOL ."®. For example, the [ourth of these lines defines a new operation, with
"op® us its open key and *_<_ ; E1t Elt -> Bool .* as its body; both its subcommand part
and its close key are empty. The top level of OBI2 can be seen as a single command whose
subeommand set contains object, theory, and view n:uunna.uds“; without using italics lor

keywords, this might look as follows:

;::0BJZ2 top level command specification

(0 ,open keys

0 ;close keys

Q ;body part

(tk-obj-viewhe) ;subcommand processing function
) ;exit function

...8ubcommand specification for top level

(th-obj-viewfic ;function name for subcommand
() ;init functiocn for subcommand
("prompt*®) ;prompt epec
{* ((th theory) ;open keys for th command
(endt endth ht) ;cloge keys for th command
(th-name’fc) ;theory name processing function
(th-partsfc +) ;subcommand processing function for theory command
(theoryfex)) ;exit fupcticn for th command
((obj ob object) ;open keys for obj command
(endo jbo bo endobj) :close keys for obj command
(obj-name-pmfec) ;obj name/parameter processing function
(cbj-partefic *) ;subcommand processing function for obj command
(objectfex)) ;exit function for obj command
((view vw) .open keys for view command

(endv endview wv endwv) ;close keys for view command
(view-name-partfic) .view name part processing function

(view-partsfc =) ;subcommand processing Iunction for view command
(viewhex))) ;exit function for view command
(3 :final function for subcommand

:.;:eubcommard epec for obj commands

{ok]-partsfc ;function name for this subcommand
0O
(*prompt") IPrompt &pec
(*
({sort sorts so) .cpen key for sort command

11 . . - ) . .
The real OB2 syntax is more complex, since communication with the reduction engine, f[ile system, editor
[Emacs), and Muelisp evaluater also occur at the top level,
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0O
22

((op operater operation) ;opel keys for op command
0
o)

((var vars) .open keys for var command
0

ce )
((eq equation) ;open keys for eq command
Q

-

ced

03

The first S-expression specifies the top level command, while subsequent S-expressions specily
ite subcommand parts. The CIG generates one Lisp function for each S-expression in this
sequence. The generated functions combine with the basic functions that process body parts to
give a highly interactive interpreter. The system gen erates an informative pmrnptm and the
user should then supply a body or keyword, At each point in the interaction, the menu of
possible commands 1s antomatically available. The CIG also supports inputing bodies through
«prompt/reply* interaction. (Unfortupately, there is not room here for a detailed explanation
of CIG syntax.)

The present OBJ2 eommand structure only requires choosing an arbitrary sequence of
suhcommands from the fixed subcommand set of each command., However, a C1G ecan in
principlc handle many other kinds of command-subcommand control; in particular, the present
CIG also supports choosing just one subcommand from the syhcommand set of a command.
Note that there are natural translations between the CIG's svntactic formalism and more
familiar BNF. The Appendix gives BNF syntax for OBJ2. Our CIG runs in Maclisp, but
Thierry Billoir has also implemented it on the Symbolies 3600, providing mouse-sensitive pop-

up menus for command choice.

2 .
l'omz prompts with the sequence of previous open keys.



4.2 Parser

The OBJ2 parser translates order-sorted expressions (the left- and right-hand sides and
conditicns of equations, sort expressions in sort constraints, intermediate terms from the
reduction engine, and user queries) into sorted expressions in standard tree form, more
specifically into S-expressions of internal operation symbels. For example, consider the
following

sorls Int Rat .

subsorls Int < Rat .

op _+ _: Int Int -> Int [assoc comm]

op * : Int Imt -> Int [assoc comm If

op = Int Int -> Int

op gcd0f_and  © Int Int -> Int

op _+ : Rat Rat -> Rat [1ssoc comm]

op * : Rat Rat -> Rat [assoc comm f

op / = Int Imt -> Rat

vars A B C D © Int

vars X ¥ I : Rat .
where comm in italic brackets indicates that the operation is commutative, and a number in
italic brackets gives the parsing precedence (operations without numbers have precedence 0).
The parser distinguishes + on Int from + on Rat by decorating the operation with the sort, and
we will write +1 and +r respectively [internal names for operations are a bit more complex in
the real implementation). The coercion from Int to Rat and the retract from Rat to Int are
represented by ¢\i\r and r\r\1i respectively; this retract permits parsing a term with an Int
operation applied to a Rat expression. Then we have the following sample lowest parses:

ILLA+B+C=>(+1A (+i B Q));

2+ Y+ Z = (+r X (+r Y I));

JA-B-C= (-A(-BC)or (- (-AB) Q,

a parse error since it is ambiguous;

4. A +B*C=> (+i A (*i B C));

5. A+ B+ X => (+r (c\i\r (+i A B)) X): and

G.gedOf A + B and C / D => (gedDf (+1 A B) (r\r\i (/ C D))).

A binary associative operation is parsed as right associative, whereas a similar
nonassoclative operation would have an ambiguous parse, e.g.. (1}, (2), {3); commutative
declarations have no effect on parsing; see [Goguen, Jouannaud & Meseguer 23] for more detail.
Operations of lowest precedence are tried first at the top level of an expression (see (4)), and the

parser gives expressions the lowest possible sort; thue A + Bis {+i A B) rather than (+r
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(c\i\r A) (e\i\r B)). Possible retracts must be considered in parsing expressions to be

reduced, e.g. () (see Section 3.2).

The parser uses recursive descent backtracking, since it may be necessary to try all
pessibilities in checking that there is exactly one meaningful lowest parse, thus, parsing can be
expensive for complex expressions. The parser stores partial results in tables to avold redoing
work. For example, in parsing A + B * A+B* A+ B theparseof B * A is stored and later
looked up. This has a large effect for expressions like A = A = A = A. The parser also stores
ambiguous expressions {those with several parses) and all their parses in a table; it can then
return a single result indicating ambiguity, such as (*error® A - A - A - A);thus, weget
(1) (verror* A - A - A - A with parses

(- A (*error* A - A - A)]

(- (- A A (AN

(- (+error* A - A - A) A)
(2) (serrors A - A - A) with parses

(- A (- AA))

(- (-AA N

4.3 Database and Module Expression Evaluator

The OBI? database has four kinds of identifiers: module (theory or object) and view
:dentifiers, sort identifiers, operation identifiers, and equ ation identifiers. Modules and views
are basic units manipulated by the OBJ2 language; but sorts, operations and equations cannot
be manipulated without affecting modules since every sort, operation and equation belongs to
come module. Sinee modnle and view names are unique (Section 2.1), they can he used as
identifiers in the database. A module’s parameter names arc local, and are identified by
internally created global names. Since the sort names given by users are also local, database
sort identifiers apnotate the user sort name with the module name. An operation identifier is
annotated by its form, its rank (the list of arity and coarity sorts), and its modunle. Eguation
identificrs are created from the top operation of the lefihand side and a key to distinguish
equations having the same such operation. All information that may he needed later is retained
in properties of thesc identifiers. For example, all operations belonging to a module are
retained as a property of the module identifier under *m'ops*, and the extend-hierarchy
structure of modules is retained in a list of module identifiers on *m'extends* and

*mlextended® properties.

The OBJ2 databuse supports reusability of modules. Thus, a parameterized module is reused

by instantiating its parameter theories with appropriate views, without affecting the original
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module. A new module can also be created by renaming, thus giving different names to sorts
and operations, and reusing most other parts of the old module. Evaluating a module
expression often requires creating new modules with different sort names, operation forms or
parameter values, This is implemented by representing modules as lambda expressions with
their sort names, operation forms, and parameter modules as arguments. By applving such
lambda expressions, new modules are efficiently created in the database. This method is also
used to store already eonstructed modules into files so that whole systems can [ater be reused.

4.4 Rewrite Hule Engine

OBJ2 uses equations as rewrite rules, assuming that thev terminate and are Chureh-Rosser.
Sipece rewriting can use any combination of assoeiative, commutative, identity and idempotent
pattern matching, the rewrite engine is parameterized by the kind of rewriting used, by
attaching properties to both sides of cach equation; then (for example) commutative matching is
vsed when a lefthand side has a commutative operation. When a righthand side is (for
example) associative, its instances are put in normal form, i.e., flattened. Eaeh property has
such a *pormalization,® svstematic use of which greatly speeds up the OBJ1 matching process
implemented by Plaisted. OBJ2 rewriting is also parameterized by the E-strategy of each
operation, a list of natural pumbers telling the order to try reductions. For example,
if then else fi has strategy (1 0); the initial 1 means first reduce the first sublerm; the

following 0 means reduce at the top as loeng as possible after that.

The rewrite engine’s top level funetion, Objval, determines if a given term is already
reduced by checking its representation, If it is not, Objval checks if another vccurrence of the
same term has already been computed and stored in a hash table {used for results of
computations with top symbol having the *saveruns® attribnte, which can be set by users). Of
course, there may be collisions in the hash table, in which case only the most recent
computation is retained. Finally, il the term must be computed from serateh, Reduce is called
by Objval with the Il-strategy of the top operation, and the starting term is overwritten by the
reduced one, to avoid recomputing shared subterms. Depending on the E-strategy, Reduce
splits into the following cases;

1. If the strategy is empty, then Reduee is called again with the remaining occurrences
where reductions must be performed, as indicated in 3.4, 1f there are no such
occurrences, then Eeduce returns that result.

2. For non-empty E-strategies, the first ocurrence of the strategy is processed and if it is not
0, then Objval is called with the corresponding subterm as argument before reducing the

whole term with the remaining part of the strategy.
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3. Finally, if the first occurrence is 0, then reduction starts at the top, and the following are
tried successively:

a. Coercion and retract-coercion rules, to keep terms ip normal form; e.g.. terms to be
reduced must he lowest parses of some opJ2 expression for the Church-Rosser
property io hold. These rules are not in the database, but the rewrite engine kKnows
their form and uses them. The rewritten term will be in nermal form because
coercions and retracts first reduce their arguments; hence, no recursive call is
pecded here.

b. Morphism rules, as discussed in Section 3.2, are also used to keep terms in normal
form, and are built into the rewrite engine. If one applies, theu Objval must be
called recursively, since a new operation is on top.

¢. Duilt-in operations, defined by equations whose righthand side is Maclisp code; see
Section 4.5. The result of a built-in operation is either a built-in constant or else an
OBJ2 expression that must be parsed and then svaluated recursively by Objval

d. Finally, standard rules are attempted according to their topmost lefthand side
operation. Actually, these rules are stored into two different data structures: those
that don’t change the top operation are tried first uptil none can be applied, using a
ring that is searched for new rules to apply as soon as the current rule fails. This
efficiently implements * tail recursive calls®; for example, the second rule of

eg: X+ 0 =X .

eg:X+8 Y = (X +Y
has + on top of both sides; so an expression with + on top is repeatedly matched
with the second rule until it fails, When the ring has been searched without finding
a tule that applies, the remaining rules are applied until one is found (or fails). If
there is a match, then a new operation is on top, and Objval is called again;
otherwise, the term cannct be reduced anyv more on top. However, reduction may
now be possible on some immediate subterms because of reductions by rules in the
ring: these are the new reductions that must be tried once the current strategy has

heen exhansted.

Let us emphasize some points:

1, E-strategies may lead to a complex cearch of the tree, very much like what bappens with
evaluation of parse trees by attribule grammars.

9. E-strategies need not be given by the ueer. but instead can be automatically generated at
parse time using simple beuristics that try to avoid useless computations: for exampie, + in

the above example has strategy (2 0 1), using the beuristic that a binary operation with
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no rules that look inside its first argument should begin by evaluating its second
argument, and then reduce at the top; the final 1 causes complete reduction of non-
ground terms with + remaining on top; note that left reducing a ground term with + oo
top is useless, since + is completely defined with respect to a set of constructors. On the
other hand, retracts, coercions and most built-in operations (the exception being control
structure built-ins like if then else fi) have a call-by-value strategy that reduces their
subterms before trying to reduce at the top.

3. E-strategies do not implement an optimal strategy, if one exists, but they are very
efficient in practice: the ratio hetween attempted matches and sucessful matches is usually
around 2/3, which is reallv impressive. In particular, use of E-strategies and the tail
recursion ring makes a much larger difference 1o the efficiency of term rewriting than does
the choice among data structures as discussed in [Hoffman & O'Donnell 84].

4. As an application of theory in [Goguen, Jovannaud & Meseguer 85]. we can reduce
expressions that are not well-formed at parse time but may have a well-formed normal
form. This oceurs, for example, if wetrvtonse s 8 8 8 0 / 8 8 0 as an integer {0 is
zero and 8 is the successor function) somewhere in a term. [t is apparently a rational, but
gince integers are a subsort of rationals, it mayv really be an integer after reduction. This
problem is handled by the retract operations mentioned in Section 3.3 as follows: a
retract from rationals to integers is put on top of the above subterm to indicate the
hoped-for sort. Then, at reduction time the subterm reduces to 8 a8 0 with a coercion to
the rationals since the result is supposed to be rational. Then a retract-coercion rule is
applied to delete these two extra operations, permitting the rest of the computation to
proceed. [Goguen, Jounannaud & Meseguer 85| proves soundness and completeness of this
technique: if the starting term cannot be parsed correctly but its equivalence class
contains a correct term, then the normal form will be computed. assuming that the initial
rules are Church-Hosser.

5. Last, but not least, all this was easy to implement and provides well-structured code, sinee

choice of the next subterm to reduce is not part of the rewrite engine itself.

4.5 Usger Defined Built-Ins

A difficult problem for logie programming is to maintaiu purity and vet provide efficiency
and input/output; most languages simply compromise purity. OBJ2 adopts an approach in
which logical purity can be maintained (at some cost in specification and theorem proving) or
can be compromised (if needed to satisly the practical requirements of a programming project).
This approach permits users to create new "huilt-in® functions or objects, by implementing

them in the underlying Lisp; they are also documented with OBJ2 syntax and (optionally, but
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encouraged) with equations. This approach provides 0BJ2's built-in objects for Booleans,
integers, natural numbers, identifiers, lists, arrays, etc. Thus, we get the efficiency of compiled
Lisp along with a precise mathematical description of what theee data types do. Although the
algebraic specification is not executed, it can be useful for doenmentation and theorem proving.
Built-ins are also useful for implementing 1/0, including graphics. Built-ins will later permit
*compiling® operations defined by equations into Lisp functions (as in Hope and ML) without
changing the rewrite engine, since these operations can be seen as "built-in® once their Lisp
code is generaled. INote that a built-in operation may produce a built-in eonstant or an OBJZ

expression. Thus, built-in definitions must combine OBJ2 and Lisp syntax.

In order to verify that a given Lisp implementation of a built-in does in fact satisly its
specification (a standard OBJ2 object), we need a precise notion of *implementation®. The
literature includes a number of these [Goguen, Thatcher & Wagner 78, Ehrich 82, and the
following seems adequate for the present purpose (it does not take account of states, for which
see [Meseguer & Goguen 84, Goguen & Meseguer 82a); however, the current OBJ2 does not have
ohjects with states). Let A and B be objects with signatures & and ¥, reachable over their
respective signatures. Then an implementation of A by B is a view v from the theory with
sienature I and no equations Lo the theory with signature ©' and no equations (in the general
sense mentioned previously, that maps E-operations to T'.expressions) such that there is a
(necessarily unique and surjeclive) T-homomorphism to A from the S-reachable part of B
viewed by v as o T-algebra; in symbols, re:—:f'hsiﬂ"']—»u\. It can be proved that implementations

in this sense compose.

5 Past, Present and Future

OBJ2 is a fruition of fifteen years research in algebraic semanties’”. In 1972, the basic
principle of ®initial algebra semanties® (IAS) was developed, and in 1973 applied to the
denotational (or ®attribute®) semantics of context-free languages [Goguen 74]; this was
later [Goguen, Thatcher, Wagner & Wright 77] related to abstract syntax, the Sentt-Strachey
approach, and struetural induction. Ly 1973 we realized that concrete data tvpes could

usefully be viewed as many-sorted algebras [Goguen 73]. In 1974, IAS was applied to ADTs by

r—

B This paragraph is not intended to survey all work related te OBJ or even all work contributing directly to
OEJ: instead, it only sketches the direct line of development. Apy survey of closely refated work would have to
include the important work of Zilles |Zilles 74] and Cuttag |Guttag 75 on ADTs, the work on Hope by Burstall,
MacQueen, Sanells and others [Burstall, MacGueen & Sanella 80}, the work of Hoffman and O'Donneli [Hoffman
& O'Donnell 82) on rewrite rule languages, and the survey of Huet and Oppen [Huet & Oppen 80] on rewrite rule
theory. [Meseguer & Goguen B4] surveys a good deal of relevant wark in algebraic semantics
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ADJ [Goguen, Thatcher & Wagner 78], Two awkward limitations of this first approach were
addresed by subsequent work: parameterization and errors (including partial operations). In
1977, the Clear specification language [Burstall & Goguen 77| was introduced as a way of
structuring complex specifications into simpler parts; a major principle here is the use of so-
called ®colimits® of specifications, following earlier work on structuring general

systems [Goguen 71, Goguen & Ginali 78]. Clear’s powerful and precise mechanism for
parameterized specifications inspired OBJ2's generic module mechanism. 1977 also saw the first
draft of OBJ, in connection with a proposed algebraie semantics for errors [Goguen 77). This
language was subsequently implemented by Joseph Tardo, [irst as OBJO and later as

OBJT |Goguen & Tardo 78]. The original motivation for this work was the cbservation that
alzehraic specifications published in the literature were very often wrong, so that some way of
testing them was needed. The theorem that links rewrite rules with equational ADT
specifications using TAS is that the normal forms of a sel of termninating Church-Rosser rewrite
rules give the initial algebra of the rules viewed as a set of equations; this resuli is the
theoretical basis for OBJ and appears for example in [Goguen 80]. David Plaisted’s

0B [Goguen, Meseguer & Plaisted 83] is a significant improvement of OBJT, including his
clever efficient implementation of associalive-commutative rewriting, apd many powerflul and
convenient intersctive features, such as a spelling ehecker. The eurrent OBJ2 implementation

has profited from all of this.

Two improvements of OBJ2 to be implemented soon are: a "universal® sort U -- this will give
a tremendous flexibility in programming style. since it supports arbitrary mixvtures of tvped and
untyvped code: and a new value # for E-strategies, indicating lazv evaluation -- this will support
infinite data structures and processes. A more distant improvement will permit states in

objects, fullowing the theory in [Goguen & Meseguer 82a].

Although we originally thought of ORI as a vehicle for testing algebraic ADT specifications,
we soon came to think of it as a general purpose executable specification language, suitable for
rapid prototyping |[Goguen & Meseguer 282b| and for programming language semantics [Goguen
& Parsaye-Ghomi 81|, However, our recent more efficient implementations and the expeeted
arrival of paralle]l machines lead us to regard OBJ as an ultra high level programmine lanzuage
that can be exccuted extremely rapidly on suitable architectures, and that is especially suitable
for *[ifth geoeration® applications {such as expert systems). ODJ is ¢ *logic programming®
language in the sense that its basic statements are equations, and the interpretation of those
equations {in algebras representing the underlving data types) agrees with the logie of equations

plus the initiality principle. Moreover, a basic assumption of the rewrite rule implementation
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(namely, the Church-Rosser property) implies that multiple processors can be set Lo work
concurrently, without the user having to explicitly sehedule them or their interactions, with the
final result guaranteed independent of the order of execulion: also any available nonoverlapping
rewrites can be carried out simultapeously. Hecent work [Goguen & Meseguer 84b] on Eqlog
explores combining the equational logic (and other powerful features) of OBJ with the Horn
clause logic (and other powerful features) of Prolog. Two other research directions that we
hope to pursue for rewrite rule languages are craphical programming methods and parallel

architectures,

Future work will also explore integration with the theorem proviog capabilities of the REVE
system [Lescanne 83], and compilation techniques for rewrite rule based languages. lntegration
with REVE will permit 0BJ2 to perform many validation checks on objects, including
completeness checks using Thiel’s alzorithm [Thiel 84] and consistency checks using the so-
called inductive completion algorithm [Huet & Hullot g2]. On the other hand, OBJ2 will provide
REVE with a powerful language for specifying complex hierarchical theories, supporting the
shierarchical inductive completion algorithm® of [Kirchner H. &4]. In turn, this algorithm will
permit checking OBJ2's prolecting property. These techniques can be used to prove that actuals
satisfy the requirement theories of pnrameterized modules. Thus, OBJ and REVE together
constitute a very powerful environment {hat integrates programming, specification and
verification!?, There is little doubt that this will raice interesting new issues in each of these

fields.
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7 Appendix: OBJ2 BNF

This appendix does not use italies for keywords, nor does it give syntax for evaluation, file

manipulation, etc.

Syntactic Conventions

<Name> nonterminal symbols
| alternative separator
eXp. . . ope oT more exXp’s
exp, ... one or moTe €Xp’B geparated by *."
{{exp}} zero oI one exp,
except that {{.}} indicates either period or <cr>
{e1,...,en} choice of exactly one of el,...,en
{ exp_ } exp in onme lime, i.e., mo <cr?
(exp) parentheses for syntactic grouping of expreggions
n(e ") parentheses as terminal symbols

--- text <cr> comment
Theory and Object Commands
¢ThCmd> ::= {th,theory} <ThName> is ¢ThPart>... {endt, endth ht}

¢ThPart? ::= <ProtectingCmd> | ¢ExtendingCmd> | <UsingCmd> | <DefineCmd>
| <SortsCmd> | <SubsortsCmd> | ¢«VariablesCmd> | ¢SortCongtrCmd>
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| <OpCmd> | <OpsCmd> | <EqCmd> | <CondEqCmd>

<0bjCmd> ::= {obj,ob,cbject} <ObjName> {{<ParameterDecl>}} is
<0bjPart>... {endo.jbo,bo,endobj}
<ParameterDecl> ::= [ (<ParameterKey» :: <ThName>),... ]

<ObjPart> ::= <ThPart> | <BuiltinEqCmd>

<ProtectingCnd> ::= {protecting,pr} <ModExp> .
<ExtendingCmd> ::= {extending,ex} <ModExp>

<UgingCmd> ::= {using,us} <ModExp>

<DefineCmd> ::= {df,dfn,define} <SortKey> := <ModExp>

-—- the principal sort of the module <McdExp> is renamed to <SortKey>, i.e.
—_— df SortKey := lodExp

=== ig eguivalent to

-——  extending <ModExp> * "(" sort <PrincipalSort> to <SortKey> ")

<SortsCmd> ::= {sort,scrts,so} { <SortKey>... } {{.}}
<SubsorteCmd> ::= {subsorts,ss} (<Sort>... <)... { <Sert>... } {{.}}
«Sort> ::= <SortKey> | <SortKey>.<ModName>

<ModName> ::= <ThName> | <QbjName>

<OpCmd> ::= {op,operater,operation} <OpForm> : {{<Arity>}} -> <sort> <DpClose>
¢OpsCmd> ::= {ops,coperators,operations} <OpForm>... : {{<Arity>}} ->
<gort> <0pClose>
<Arity> ::= <Sort>...
<OpClese> ::= . | {[,at,attr,attribute} <Attribute>...

{i.ta,enda,endat, rttal}

¢Attribute> ::= assoc | asscciative | comm | commutative
| identity: <0OpForm> | id: <OpForm>
| idmpt | idem | idempotent | <Strategy> | <Precedence>
| saveruns | sr

<strategy> ::= *(* <NatNum>... *)}*

<Precedence? :-:= <IntNum>

<NatNum» ::= --—- 0 1 2 3

<IptNum>» ::= ——— 01 -1 2 -2 3

<VariablesCmd> = {var,vars} <VarName>. .. : <Sert> {{.}}

<SortConstrlmd®> ::= as <Sort> @ <SortExp> if <Conditiomn>
<SortExp> ::= <SimpleTerm>

-=- <SimpleTerm» is an expression composed only

--- of cne operator symbol and variables (e.g.,

--- push Elm to Stack, add Elm to Set, etc.)

<Condition®> ::= <Term>



32

<EqCmd> ::= {eq,equation} {{<Sort>}} : <Lhe> = <Rhe> .

<BuiltinEqCmd> ::= {beq,bq.builtineq} {{<Sort>}} : <Lhs> = <Sexp> .
<CondEqCmd> @ := {cq.ceq,condeq} {{<Sort>}} : <Lhs> = <Rhs> if <Condition>
<Lhg> ::= <Term>

<Rhs?» ::= <Term?

¢MakeCmd> ::= {make,mk} <ObjName> is <odExp> {endm, endmk, km, ekam}

——- pake <ObjName> is <ModExp> endm
--- ig eguvalent to
--- obj <ObjName> is using <ModExp> . endo

'iew Commands

ViewCmd> ::= {vw,view} <ViewName> of <ObjName> as <ThName> ig <ViewPartCmd>...
{endv,endview, endvw, v}

<ViewPartCmd> ::= <SortPairCmd> | <VariablesCmd> | <OpExpCmd?
<SortPairCnmd> ::= {so,sort} <Sort> to <Sort>
<OpExPairCmd> ::= {ap,uperatnr,uperaticn} {{<Sert>}} : <0OpExp> to
{{<Sort>}} : «Term>
<DpExp> ::= <SimpleTerm?
Module Expressions

(ModExp> ::= <ModName> | <ModName> [ <MedExp>,... ]

| <MedExp> <Rename> | (<ModExp> +) ... <ModExp>
Repame> ::= * 9(* (<RemamePartCmd>{{,}})... o

——— M1 + M2 * (op T to g)
~—— gheuld be parsed as
——— M1 + (M2 * fop f To g))

<RenamePartCmzd> ::= <SortPairCmd> | <OpPairCmd>

<SortRenameCmd> ::= {so,sort} <Sert> io <SertKey>

«OpRenameCmd> :@:= {anaperator,nperatiun} <Operater> to *(*<OpForm>")*
<Operator> ::= * (*<DpForm>®}* | »(»# (*<OpForm>") " {{<ATity>}} -> <CoArity>*)"

== Note that the followiDng nonterminales are not defined here: <ThName>
-~ ¢{JpjName> <ViewName> <ParameterKey> <SortKey> <OpForm> <Term> <SimpleTerm>



