ICOT Technical Report: TR-094

TR-0%94

Formulation of induction Formulas

in Verification of Prolog Programs

Tadashi Kanamori and Hiroshi Fujita
{Mitsubishi Electric Corp.}

December, 1984

Mita Kokuesai Bldg, 21F (03] 456-3181--5
|(:D i 4-28 Mita 1-Chome Telex 1COT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Formulation of Induction Formulas
in Yerification of Prolog Programs

Tadashh KANAMORI Hiroshi FUJITA

Mitsubishi Electric Corporation
Central Ilesearch Laberatory
Tsukaguchi-Honmachi B-1-1
Amagasaki Hyogo JAPAN 661

Absiract

In thiz paper we describe how induction formulas are formulated in verification of
Prolog programs. The same problem {or well-founded induetion was investigated by Baoyer
and Moore in their verification system for terminating LISP programs (BMTP). The least
fixpoint semantice of Prolog provides an advantage that computatienal induetion is easily
applicable and penerates simpler induetion schemes. We investigale how the computational
induction is applied to a class of first order formulas called S-formulas, in which specifications
are described in our verification system. In addition, we show how an equivalence preserving
transformation can be utilized to merge induction schemes into simpler one when more than
two induction schemes are supeested,

Keywords : Program Verification Induction Prelog, Program Transformation.
Contents

1. Introduction
. Freliminaries
2.1. Polarity of Subformulas
2.2, 5-formulas and Goal Formulas
2.3, Manipulation of Geal Formulz=
3 Framework of Verfication of Prolog Programs
3.1. Programming Language
3.2, Specification Language
3.3. Framework of Verification
4. Generation of Computational Induction Schemes
4.1 Computational Induction
4.2 Inducible Definite Clause
4.3 Generation of Induction Schemes
4.4. Generalization
4.5 Examples of Induction Schemes
o Mermng of Computational Induction Schemes
1. Merpible Schemes
5.2, Tamaki-5ato’s Traptformation
5.3, Denivation of Merged Sehemes
6. Dicussions
7. Conclusions
Ackrowledgements
References

[3=

LEg

w

Appeadix. Cloesure of slom

1. Introduction

The intimacy of Prolog to first order logic is expected to bring advantages to first order
inference in verification ([11},{I7]). But how about induction, which plays an important
role in verification of programs? The least fixpoint semantics of Prolog suggests fixpoint
inductions. But hew can we find such induction schemes from theorems to be proved?! In
addition, when more than two different induction schemes are suggested, how can we manage
them?

In this paper we answer these questions. So far the same problem was investigated by
Boyer and Moore [3] in their verification system for terminating LISP programs (BMTP)
where they adopted quantifier-free formulas as specification: and applied well-founded in-
duction. The least fixpoint semantics of Prolog provides an advantage that computational
induction is applicable staying within first order logic and moreover it genmerates simpler
induction schemes [5]. Here we investigate how the computational induction is applied to
a class of first order formuias called S-formulas, in which specificativns are described in our
verification system. In addition,we show how the Tamaki-Sate’s Proleg program transfor-
mation can be utilized to merge computational induction schemes into more simpler one
when more then two induction schemes are suggested. Because the Tamaki-5ato’s trans-
formation preserves equivelence, justification of the manipulation of induction schemes is
immediate and easy to grasp the meaning.

After summarizing preliminary materials in section 2 and a framework of verification
in section 3, we deseribe in scction 4 how computational induction schemes are found frem
theoreme to be proved. In section 5, we thow how induclion schemes are merged into a more
appropriate one when more than two induction schemes are suggested. Lastly in scction 6
we discuss the relations to other works and our actueal verification system.

2. Preliminaries

In the followings, we assume familiarity with the baszie terminologies of first order logic
such as term,atom|atomic Tormula), formula, substitution, most general unifier (mgu) and so
on. We also assume knowledge about semantics of Prolog such as completion P, minimum
Herbrand model Mp and transformation T of Herbrand interpretations (see |1],15],[7],110]}.
We follow the syntax of DEC-10 Prolog [15]. Variables appearing in the head of a definite
clause are called head variables. Other variables are called internal varrables. As syntactical
variables, we use XY 7 for variables, 5, ¢ for terms, A, I for atoms and J7, G, ¥ for formulas
pessibly with primes and subseripts. In addition,we use o,7, u v for substitutions and
75, 6o Gal¥1, H2,.0 Xl Tor 8 replacement of an occurence of §; in 7 with ¥ for all
1<i<n. Av atom plXy, X2,. .., Xn) 15 said to be 1o general form when Xy, Xz, ..., X, are
distinet variables,

2.1. Puolarity of Subformulas

We generalize the distinetions of positive and negative subformulas. The positive and

pegative subformuls of a formula 7 is delined as follows (Murray [14]).

[a] 7 iz a positive subformula of 7.

(B} When =G is a positive (pegative) subformula of 7, then § is a pegative (positive)
subformula of 7,

(e} When AN or §W¥ is a positive (negative) subformula of 7, then § and ¥ are positive
{nepgative) subformuias of 7.

{d) When GON is 2 positive {negative) subformula of ¥, then § iz 3 negative (positive)
subformula of 7 and ¥ iz a positive {negative) subformula of 7.

(¢) When ¥X 53X G are positive (negative) subformulas of 7, then Gx(t) is a positive
(negative) subformula of 7.

Example 2.1: Let ¥ be
v A,B (reverse(A,B) —reverse(B,A)).
Then reverse(A, B)isa negative subformula of 7.

2.2, S-formulas and Goal Formulas

Let 7 be a closed first order formula. When VX § is a positive subformula or 3X G
is a pegative subformula of 7, X is called a free variable of 7. When V¥ ¥ iz a negative
eubformula or 3Y ¥ is a positive eubformula of 7,V is called an undecided variable of 7. In
other words, {ree variables are variables quantified universally and undecided variables are
those quantified existentially when F is converted to prenex normal form.

Example 2.2.1: Let ¥ be
¥ AYC {appandl{ﬁ,[‘-"j,C} =3B reverse(C,[VIB)).
Then A, V,C are all free variables, while B is an endecided variable.

A closed first order formula 5 is called an S-form ulz when

(a) Do free variable in S is gquantified in the scope of quantification of an undecided variable
in § and
{b) no undecided variable appears in pegative atoms of .

In other words, S-formulas are formulas convertible to prenex normal form VX1, Xz,..» Xn
3Y,,Ya,. ., Ym¥ and ne ¥y, Yz, ... Ym appears in negative atoms of 7. Note that S-formulas
include both universal formulas VX1, Xz,.. . Xnf and uzual execution goals v, Yz, o ¥m
(A, AAz A -NAR.

Example 2.2.2: Let S be

¥ AV,C {append{A,[V],C) D3B reverse(C,[VIBi))-
Then S is an S-formula, because free variables A,V are quantified putside 5B and B ap-
pears only inthe posilive atom reverse(C, [VIB]]. A universal formula VA, Blreverse{A, B)D
reverse(B, A)) and an execution goal JCappend([1,2],13],C) are alzo S-formulas,

AL

A formula G obtained from an g.formula § by replacing free variable X with X,
undecided variable ¥ witk 'Y and deleting all quantifications is called a goal formula of 5.
Mote that § cap be uniquely restorable from G. In the {ollowings, we use goal formulas in
etead of orizinal S-formulas with explicit guantifiers Goal formulas are denoted by F,G, H.

Example 2.2.3. An §-formula
¥ AVC {append(A,[V].C) 2B reverse{C,[VIB]])
is represented hy a goal formula
appeﬂdl{h,]‘v’],C}___‘}rewrse[ﬂ,:\"?ﬂﬂ.
A upiversal formula VA, Blreverse(A, B)Treverse(B, A)) and an execution goal 3Cappend([1, 2}, 131, C)
are represented by reversef A, Byoreverse(B, A) and append(]l, 2], 3], 7C) respectively.

2.1, Manipulation of Gonal Form ulas

Lastly we introduce two manipuiations of goal formulas. Ompe is an application of 2 class

2

of substitutions To avoid variable name's conflict, we introduce a class of substitutions. A
substitution ¢ is called a substitution away from A when ¢ instanciates each free variahle
X 1m A tot such that every variable in £ is a fresh free variable not in A,

Example 231: < A=[X|L] H&=M > is a substitution away from reverse(A, B) and
unifies it with reverse{!X|L], M), where X I and M are considered fresh free variables.
< C&|X|L], U«Y, Be[X|N] > is a substitution away from append(C, [U], B) and unifies
it with append([X L], [¥], |[XIN]) where X, L, Y and N are considered fresh free variables.

Anciher manipulation iz a reduction of gozl foermulas with logical constants érue and
false, The reduced form of a goal formula (,dencted by & [, is the normal form in the
reduction system defined as follows,

~true— false, —false—irue,
truesG—, falsenG—false,
Ghtrue—G, Ghfalse— false,
trueyG—irue, falsew GG,
(Gtrue—true, Gy false—G,
true 23 G—G, false DG—true,
G Dtrue—irue, GO false—G.

Example 2.3.2: Let 7y and G be falseDireverse(H, A) and true Dreverse(B, A). Then G, |
is true and Gg ! is reverse(B, A}

1. Framework of Verifleation of Prolog Programs
3.1, Programming Langunage

We iptroduce type construct into Prolog to separate definite ciauses defining data
struciures from others defining procedures.eg.,

¥y pe.

list{i]).

list((X[L]) - list{L}.
end.

The body of type is a conjunction of definite clauses whose head is with a unary predicate
defining a data structure. (Type predicates in our verifieation system are being corresponded
to shells in BMTP.} Procedures are defined by following the syntax of DEC-10 Prelog
(L5], e
L iE] E]

append(] [K K).

append{ | X|L| M, XIN]) - append(L .M N].
reversel! |, 1).

reversel X|L| M) - reverselL N append(N |[X] M)

Thronghout this paper, we study pure Prolog consisting of delinite clauses and consider
a foite sel of definite elauses P oas their conjunetion. We assume variabies in each definite

clause are renamed at each wse so that there occurs no variable name: conflict.

3.2. Bpecifleation Language

The main construct of our specification language 1s theorem to state a theorem Lo be
proved e g.,

theorem(halting-theorem-for-appe nd).
v Alist,B3C append(A B,C).
end.

The body of theorem must be 2 closed S-formula. Any variable X in guantification may be
followed by a type qualifier © p {e.g.,list above), WX : p7 and 31X : p7 are abreviations of
YX (p(X)D7) and IX (7 ApX)) respectively.

3.3. Framework of Verifieation

Let § be a specification in an S formula, Mg be the minimum Herbrand model of F
and P~ be the completion of P. We adopt a formulation that verification of 5 with respect
to P is to show Moi=S5 when model heoretically speaking and to prove S from P~ using
the first order inference and some induction when proof theoretically speaking.

The most important difference between our system and BMTP is that specifications
in BMTP are quantifier-free (i.e. universal) formulas while ours are general first order for-
mulas. Though we prove quantifier-free specifications of the form ¥X1,Xz,.., Xn [A1AA2
A AAm D Ag) in most cases, the consideration of existential guantifiers s ipevitable because
of the efects of internal variables in Prolog. For example, 5uppose we prove VX, Y (condition{X,Y)
Syp(X,Y)) with rezpect to a program pl X, Y) - qiX, Z),rlZ, Y). Then we must prove ¥.X, Y
(condition(X,Y)2 3Z(glX, ZAr(2,Y)) substantially.

4. Generation of Computational Induetion Schemes
4.1. Computational Induction

For pure Prolog, the traneformation T of Herbrand interpretations is always continuous
and there holds |7, T'(@) = Mo. This suggests use of fixpeint induction to prove MoF=v.
Here we explain it rather intuitively following Clark |5] p.75-T6.

Example 4.1.1: Let reverse be a relation defined by the previous definite clauses. The
reverse relation is the smallest set of pairs of terms that includes a pair ([],[]) apd thatfor
any term s,includes {lslty], t2) whenever 1t includes (t;,t) and {t,[s] 2} 151D the append
relation. Hence suppose Q(A, B) is a formuls with free variable A, B, For any Herbrand
interpretation, @A, B) will denote some binary relation over terms. 1§ this relation includes
(1) 1ie.

QL h
ie true,and if it includes {islt;], t2) whenever it includes (t,,t) and (8, ls] 22} 15 im append
relation, i.e.,

v AB.C U (QIACIA append{C,IU,. B} 2 ((UA]B))
is true,then the relation Q{A, B) ncludes all the pairs of terms in the reverse relation.In
other words,

v A D (reverse[h,ﬁ}DQ[h,E]]
is true of the reverse relation and such QA, B) Hence we get the following computational
induction scheme

eTIRAR) A B CU QA C)Aappend(C,[ULB) = QUIALT)

TAD (reverselAB) SQIAD)

4

This is a Prolog version of the de Bakker and Scott’s computational induction {2}
In arder to apply such an induction, we necd to kpnow (a) how we select the key atom
(reversel A, 1) above), (b) what conditions we have to observe for soundness and () how we
can make the generated induction schemes simple.

First of all, we introduce a concept “dominant atom®. An atom A in a geal formula &
is said 1o he dominant in ¢ when G is equivalent to a goal formula of the form ADH. Note
that 4 is dominant in G iff A is negative and G 4[false] | is true. Then H is Gatrue] |

Example 41.2: Let G be reverse(A, B) Dreverse(B, A). Then the left reverse(4 B) is
dominant in (3, but the right reverse(B, A) is not.

4.2, Inducible Deflnite Clause

A definite elause is said to be inducible to A when for any ground instance of the definite
clause such that the head is a ground instance of A, any recursive call in the body is also
a ground instance of A (Hence any nop-recursive definite clavse is alwaye inducibie. Any
defivite ciause with a head nonunifiable with A is also inducible.)

When every definite clause in P is inducible to A, A is said to be closed with respect lo
F. This means that the set of grovnd atoms in My of the form of instance of A is computable
by the instances of inducible definite clauses. Note that an atom p{Xy, X3,..., Xa) in general
form is always closed.

Example 4.2.1: Let the atom A be append(A, (U], C). Then A is closed. This means that
{append(ty, |ta], ta) | ty, t2 and ts are ground terms} [Mo 1s computable by some instances
of definite clauses i e,

append([J,[Y},[Y]).

append{[XIL],[YL[XIN]) - append(L,[Y],N).

The inducibility can be checked as follows,

(a) Check whether the head Hp iz unifiable with A by a substitution for A away from A
fsee 2.3} If it i3, decoTopose the mgu to @ « rp where o 1s the restriction to variables o
fy and rp i the restriction to variables in A, If it is not,the definite elauze 13 inducible
to A

(k) Check whether each tnstance of the recursive call in the body o(H,] i5 an instapce of A
and if it i1z compute the instanciation r. If it is not the definite clause is pot inducible

1o A,

The set of all instapces of definite clauses by o i called instapciated program for A.

Fxampie 4.2.2: Let the atom 4 be oppend{A, |[I7], C). Then the first bead append(| |, L, L}
is unifiable with append(A, [U],C) by < L&lY] > o < A=, UY,C=Y] >, The
second bead oppend([X|L], A, [X|N]) i3 unifiable with append(A, [U],C) by < M&[Y] >
e <L A= X L UsY Ce{X|N| and the instance append(L, [Y|, N) in the body is also an
tnstance of appendld [U], C) by < A=L UsY C=N >

4.3, Generation of Induction Schemes

Let & be a goal formula, A=p{t;, ta,. ., ¢,) be a dominant atom in G and @ be
Gatrue] | Let By = By, Ha,...,B." be a definite clause inducible to A. By o{By -

>

By, Bz, .. ., B,), (@) we denote 3 formula obtained by replacing o{B;) = plsy, €2, a) ID
o(BiABz M c ABm 2 Boj with r Q) when Hp 1s unifiable with A and true etherwise.

We generale an induction scheme as follows. Al free variables are guantified universally
al the outermost, which keeps the generated subgoals within S-formulas.

ﬂl{nlu - B]11B]-2:l- . 'rﬁlmt}F{Q}s FE{BZD - B?‘ rBEE,- . uBEm;]?‘:Q}r SR dk{B’-U - Bk‘ |Bt'2|- . 'iﬁtmh}F[Q}

[

Example 4.3.1: Suppose We prove a theorem

thtnrem[rcverse-reverae‘}.

YA B (reverse(A B} Sreverse(B,Al).

end.
Then reversel A, B) is dominant. Let @A, B) be {:rue:)reur:rar{ﬂ,.d}] |= reverse(B, A).
The induction scheme generated is the one in example 4.1,1.e.,

reverse([], 1) vA B,C,U (reverse(C,A) pappend(C,|U B} Sreverse(B,[UIA])
wvA B [revcrse[A,B} Sreverse(B,A))

4.4. Generalization

Must we alwaye give up applications of computational induction when some definite
clause is not inducible?

Example 44.1: Let A be reverse(A,V|Bl). Then “reverse(|X |1}, M) = reverse(L, N},
append(N, [X}, M)" is not inducible to A, because the instance of the recursive call by o in
the definition above may bave the form reverse(L, V) which is not necessarily an instance
of reverse(A, [VIB]).

A set of replacement M of occurrences of subterm ic A with fresh free variahbles is called
& geoeralization mask when no different subterm is replaced with a same fresh free variable.
Agp atem obtained from A by replacing the occurrence of t,, with afresh free variable X,, for
all <t =X »EMIs called geperahzation of A with respect to M and denoted by Am-
Then X, = ti A X, =t A, = L. is called the geperalization equatiou. (When
M=-0, Ag is A itsell and the generalization equation 18 frue)

Example 44.2. M={ |ViB} & B } is a generalization mask of reverseld, [VIB])in

¥ ANVE (reverse(A,[V|B]) —ymember(V,A)).
The generaiization of reverselA, ViB]) wrt. Mis reverselA, ') where H' iz a fresh free
variable. The generalization equation 18 p' = |V|B]. Intwtively this corrasponds to modify
the theorem to

v A VBB Eroverse[h,B']hE’=1\“|B] ~member[V,Al).

A defipite clause Bp - Bi,Bz,.... Bm it said to be inducible with M to A when it is
i.ndur.'lhle io Am.

Example 44.3: Let Abe reverse(d, [V H])and M be { (ViB| & B'}. Then “reverse([X (L], M)

- reverse(L, N, append(N, (X1, M) s inducible with M to A because the head reverse(| XL}, M)
is umfBable with reverselA B') by <= @ < .ﬂ:j)ﬁ';L],B‘:M * and ihe recursive call
reverse(L, N) in the body is also an instance of reverseld, ')

One naturally expect that Ay be the most specific one. An atom A is said to be 3

fi

clesure of A with rezpect Lo P when

{a) A is closed with respect to P,
(b} A s an instance of A and
{e] A is an instance of any ry satisfying (a} and [b).

The closure is unique up to revaming and A is closed if A = A modulo renaming. [See
appeadix for the proof of uniqueness and algorithm to compute the closure) A generalization
mask M cerrespending to A s called a computationsl ivduction mask. Examples in 4.1—3
arc cases with the mask @

Example 4.4.4; Let A be reverse(A, [V|B]} and M be {{V[H|=5"}. Then the first head
reverge(’ [il is umifiable with reverse(A B') by <> o < A=[], B'«<l] >. The second
definite clovze 1s inducible with M to A. Moreover reverse(A, B')isaclosure of reverze(A, [V1B))
and M is 8 comwputsational induction mask,

Then computational induction schemes are generated as are in 4.2 by replacing A with
Awm and @ with Gale] | where e is the generalizatiou equation.

Exampie 445 Let member be defined by the following programs.

member(X, i X(L]).

member(X,IY|L]) - member{X L),

Suppose we prove
theorem/(last-is-a-member),
YAV B [reversa(A [V|B]) Zmemeber{V A)).

end.

Nowe the domimant atom reversze{d, [V [B]}). Because § iz pol a computational induection
mask, we can't apply the induction immediately without geperalization. 'We need a non.
empty wask M={ V|B! = B'} and generated formulas are

VB I=IVIB Tmember(V,[1)),

VUV ABCDIC=[VIB] Zmember(V,A)) Aappend(C,[U,D) Z(D=[V|B| 2 member{V, [UJA])).
Note that the second subgoal remains within S-formulas. The frst goal is reduced to true
by the definition 7 = 2. The secopd goal is reduced to

v UVABC ({C=VIB! Dmember(V,A)) Aappend(C,|U],/VIB]) Dmember(V,[UA]}).
and it iz proved using the definition of append.

4.5. Examples of Induction Schemes
We show how computational iuductions are applied by several examples.

Lixample 4 5.1: We peed not to impose the termination condition, i.e. p(ty, tz,..., 1.} may
be neither true nor false for some ground terms t;,t2,...,t,. This means we can separate
Mg from other models of ' and show properties specific \o M. Let p and g be defined by
the following programs [Apt and van Emden [1]}.

pa} - piX)aiX).

plarX)! = piX}

qrb).

q{s{X)} - q{X})
The execution of *—pis(a}) pever terminates, while those of ?—pls?(8)) and *— g{s'{a)) fail
fiurtely. The mipimum {and the maximum) Herbrand model is Mg = {g{b), g(s(b)), qls(s[B))), ...},
But we can't infer —p(s*ia)) from the campletion P*. This is showen by existence of a non-

7

Herbrand model M. Let the domain of M be a set consisting of red nutural pumbers, green
natural pumbers and blue integers and the interpretation of symbols on M be one ipterpret-
ing & as red O, ¢ as green 0, s be a funclion mapping W we X + 1 in the usual arithmetic,
pli) is true iff ¢ s either red matural number or blue integer and glf) i true iff 7 i3 either
green natural pumber or blue integer. Then M is a model of P not isomorphic to Mg and
p(s*(a)) is valid in M (cf.Jafar el al |10]). Suppose we prove 3 theorem

theorem(p-does-not-hold).

wA —plA)

end.
which is valid in My but not valid in M, hence not provable by first order inference from
P*. Note the dominant atem p{A). Because each definite clause is inducible with @, we can
apply the induction immediately and two generated formulas are

v A (false AqfA) Dfalse)

false Tfalse.
Both of them are trivially true.

Example 45.2: When a theorem includes a dominaot atom with a type predicate, we have
the effect to perform the usual structural ipuction. Suppose we prove (ef Kowalski [13]
pp.221-222)

theorem({right-identity-of-ap pend).

v Aclist append(A,] [LA).

end.
Mote the domipant atom list[A). DBecause each definite clause is inducible with 0, we can
apply the induction immediately and two generated formulas are

append(|].| LD,

v U A (append(A,] LA) —append([UJALL] IUIA]).

Example 4.5.3: Theorems may include existentially guantified variables. Suppose we prove
{ heorem(last-cap-be-first-of-reversed).
¥ AV,C (append(A,[V],C) 23B reverse{C,[VIB]}).
end.
MNote the deminant atom append(A, [V], C). Because each definite clause is inducible with
@, we can apply the induction immediately and two generated formulas are
v V 3 B reverse([V],[V[B]),
7UAVC(3B reverse(C,[VIB]) 23 B reverse{|UC),IVIBIY).
Note that the generated subgoals sull remain within S-formulas.

5. Manipulation of Computational Induction Sehemes
5.1. Mergible Schemes

1o section 4,we cited examples with only one dominant atom intensionally. Bul some-
times more than two different induction schemes are suggested from theorems to be proved.

Example 5.1° Suppose we prove the second formula generated from FEUET SE-TEVETSE
theorem|first-last).
vA,B,CU (reverse(C A} pappend(C,|ULB) ~yreverse{ B, [UJA])].
end.
Then both reverse(C, A) and append(C, |U7], B} are dominant. Let @, and @2 be
QA BCU): append(C,[U]B) Sreverse(B,IUJA]),
Qz(ABCU): reverse{C,A) Dreverse(B,[UAl).

E

Then revers¢((7, A) and append(, [U7], H) suggests two different induction schemes.
t"BU Q]-{:]1B I] U] I“‘I’AlEchul‘i‘llvl {QE{AIJB!CFU} ,IP\H-IJFQH{!(ALJW].A} :)QI{.I"I.E_,]\'IIIC:_,U_]]

o

wA B C U [reverse[C A) Aappend(C,|ULL) Dreverse(B,[U[A]))
VAU Qa(AJULILU) ¥AB.CUY (Qa(AB,C,U) DQulAIVIBLIVICLL)

VA,B C,U (reverse(C,A) Aappend(C,|U],B) Dreverse(B,[U|A]))

In the example ahove, the substitution to N in each scheme coincides and it suggestis a
possibility to apply both inductions simultaneously. In order to justify such a manipulation,
we describe an equivalence preserviog traosformation io the next section.

5.2, Tamaki-Sato’s Transformation

The Tawaki-Sato’s transformation system is developed for Prolog programs based on
unfold/fold transformations. The entire process proceeds as follows [16].

Transformation FProcess

Py :==the initial program ; Dg = {};
mark every clause in Fp “foldabie”;
for::=— 1 to arbitrary

apply any of the transformation rules to obtain B and D; from Fi -y and D;_,; i

Example 5.2.1: Before starting the transformation,the initial program 15 given,e.g.,
Pg : C1. append(] |,L,L)
Cs. append((X|L]M,[X|N]) - append(L ,M,N).
Cy. reverse([1,.[]).
4. reverse([X|L1 M) - reverse(L, N} append(I,[X] M)
and Dy s initialized to {}.

The basic part of Tamaki-Sato's transformation system consists of three transformation
rules, i.e.,defimition,unfolding and folding.

Definition - Let © be a clause of the form p{X,, X3, .., Xa) - Ay, A5, . An where

(a) p s an arbivrary predicate appearing neither in &, nor in D, 4,
(b) X, X5, ..., X, are distinct variables,and

el Ay, Az, ... Am are atoms whosze predicates all appears in Py
Uhen et By be Py 1J{CY and By be DGy LUH{C), Do net mark © “foldable”.

Example 5.2.2: Suppose we need the conjunciion of atoms each inducticn scheme is ac-
coupling for in example 5.1, Then we introduce it by the following definition.

Co. new-p(L M N XY - reverze[N, L), append(N, !X, M)
Then Py= {C,.Ca,Cy, Cy, Cs} and Dy ={Cx}. The underlines indicate “foldable™ clauses.

Unfolding - Let © be a clause o F,_y,4 be ap stem 1o its body apd Oy, Cy, ..., T be all
the clavses in P,y whose heads are unifiable with 4 Let 7 be the result of resolving ©
with C, on 4. Then fet P, be (P — {CHIHC,. CL .., CL}and D, be Dy Mark each
. “Toldable™ unless it is already in Fi—,.

Example 5.2.3° Wiwi (s 1; unfoided at iis firet atom ia the body, we obtain Pa={C1.Ca, Ca,
gi_g_ﬁ_,g-r_} and Da=={Ce} where

Ce. new-p(l M.l . X) = append(’ |, (X[.M).

Cq. uew—p[L,M,'lY'.N!,){] - TETEFSE{NJLJ,H‘DPEH&LLIJ'iYa_.L},appEnd[[T[N],]K],Tﬂ].
g and Cy are still unfoldable into

C‘ra.' DEW'DH '!PII]IE ij

CY. nev.up{I.J‘f|]-1},|Y'|N1,I] - reverse[N,I.l’],append[h,[Y‘;,L},appeudl[N,ﬁ}U"M}.
and we get Pa={C1, Ca, C_'E;_Q!.ﬂ _i} and D3={Cs}
Folding - Let C bea clause in Pi—y of the form Ag - A1, Az - . An and Craides be a clause
ip D;_, of the form Bo - By, Ba,- .., Bm. Suppose {here is & substitution @ and & subset
[A;, Ao A;_} of the body of C such that the fallowing conditions hold.
(a) Ay = o{B;) for j = 1,2,...m,
(b} o substituies distinct variables for the interoal variables of Cpoider and moreover those

variables occur neither in A mor in {A;,A2,.- 4 ALt — 1A A A;_}eod

(¢) C is marked =fgldable” or m < .
Then let P; be (Pi—1 — {CHULC} apd [, be D,y where C' is a clause with head A and
body ({A1, Az, - ALY AL A .,A.—m}}U{u[B]}. Let ¢ inherit the mark of C.

Example 5.2.4 : BY folding the whole body of Cy by Cs, We obtain Py=1{C1,Cz, Ca, Efi,@_, Cs}
and D,={Cs} where
Ce. new-p(L,[YIM],YINIX) = new-p(Ls,M,N X),append(L1,[YLL)

The most important property of this transformation sysiem is stated as follows [16].

Equivalence Preservation Theorem
Py iz equivalent 1o Pl Dy in the minimum Herbrand model semantics ie., the min-
imum Herbrand models of them are identical.

Example 5.2.5 Through the previous trapslormation process, Wo reach a program
P, : Cy. append(] L
Ca- aPPend[iXiLl.M,l'IIN}} - append(L M,N].
C5. reverse(l 1,1]).
Cs. reverse(| X|L],M} = m?ersﬂl{L.N].apprnd[ﬂ,[ﬁ},h{}.
Ch new-p(l 11X, 1.X)
Cg. new-plL,; MY NN new-p[l.-_,H,N,x},append[Ll,ﬁYE,Lj.
which is equivalent 1o
Fp - C;. append(} J.L L}
Cz. append[!.X!L‘,,M,]X',N‘-_] - append(L,M,N}.
C,. reverse(| L] 1)
Ca- reverse{[X|L] M) = revcrse{L,N},appf_ud{N.lK]__hi}.
D, : Cs. pew-p(L, M, N.X} - Teversetﬁ,L],appnnd[?ﬂ,l)i].M}.

5.3. Derivation of Merged Schemes

Wve keep each induction scheme iz 8 triple (A, Q, {2C5)}), 1e.a0 atom A accounting
for, a goal formula @ and an instanciated program {m{Ci)}

Example 5.3.1: Suppose We are tryiog Lo prove the theorem first-igst. Belfore merging, we
have two induction schemes J and J whose ipstanciated programs are
7 :reverse{] L,{ 1)

10

reverse{ W|L] M) - reverse(L N),append({N,[X] M).
J o append(]],1X][X]).
append([X|L],[Y],[X!M]) :- append(L,[Y] M].

An induction scheme J accounting for g{s1,52,..., ¢m) is said to be mergible to an
induction scheme [accounting for p{ty, tz,...,.ta) {cl. [3] pp.191-194) when
{a} plty, ta, ..., 1) and g(s;, £2,. .., 8=) share at fcast one free variable,
(b} Ewery recursive definite elause of [is mergible to only one definite clause of J and
{e) No two recursive definite clauses of T is mergible to a same definite clause of J.

where a recursive definite clause Ay - Ay, Az, ..., A, i5 said to be mergible to a recursive

definite clause My - Hy, Ba, ..., Bs when the {ollowing conditions are satisfied. Let Ay be

rolplts, ta, ... ta)) and Ho be = ry(glsy, s2,.. ., #ml)-

(a) 7o and rf substitute ap identical term to each common variable of p(ty, ta, .. 2.} and
251,52, $m),

(b} There is a ore-to-one correspondence between recursive calls in the bodies such that
the corresponding 1, and r} substitute an idestical term to each common variable of
pltita, .. o ta) and glsy, 82,..., 5m).

Example 5.3.2: The previous two induction schemes are ovbiously mergible, because for the

second clauses,

{a) When reverse[C,A) 15 unified with reverse{[X|L], M) by rp = < C+ X |L], A=M >,
append{C, [U7], B} it unifiable with append([X|L], [Y], (X IN))by r, =< C&=[X|L],B=
XN, U&Y >

{b) There iz only one recursive calls reverse(L, N) and append(L, [Y], N} in each second
definite clause and they are instances of reverse{C, A) by r, =< C+=L, A=N > and
of append(C, [V, Bl by r]; =< C=L, BN USY >,

The mergibility guarantees that a transformation sequence like one stated in example
5.2.1-—5 iz applicable. Note thal the trapsformation is a routine and we can apply it
mechreally, When two schemes are mergible, we derive a new scheme as {ollows.

{2} Define new-p{X,, X2, ..., X)) by the conjunction of p(t;, 12, . ., ta) and qlsy, 52, .. ., Em).
(b) Unfold at p{t,, 2, ..., 1) and g5y, 82, ..., §m) obce in the bodies of definite clauses,
(e} Fold if possible.

Then the obtained definite clauses represeat a new scheme with new-p{X, X, ..
@ = Gpleaty, ninhale; e, q'-.}!:“-'eu truef |.

X:) and

o

Fxample 533 As was shown in example 5.2.1—5, we can obtain a definite clause program
for new-p from the previous two induetion schemes
EEW’P{E]rirx]ll Elx]-
new-p(L,[Y|M],[YiN],X) - new-p(L, M ,N X} append(L,,[Y],L).
and the theorem te be proved 15 now
YA BCU (pew-plA B C U) Dreverze(B,[UIA])).
Henee the new scheme accounting for new-p represents

YU reverse([U] U YA BC U ALY {reverﬁe[l‘_[l}lﬁ;}_] __‘H_‘EPF'E?'_@E*'WI'A} Treverse[V|B], IUIAD)
T U WABC U (reverse{C.A) Aappend(C,|ULB) Dreverse(B, [UjA]))

Merzing of compuatational nduction schemes: sometimes results tn surprisingly simple
schomaes.

11

Example 5.3.4: Suppose we prove a theorem
theprem|equivalence of-flatten-apd-me-fatten)
YW, A,B,C (flatten(W A} Amec-flatten{W,B,C) Sappend(A,B,C)).
end.
where flatten and me- flatten arc procedures collecting leaves of S-expressions delined as
follows (3], (me-flatten(W, 1], A) performs the same lask as flatten[W, A) more efficiently J
fiatten(X,/X]) - atom(X).
flatten{(x Y}.L) = flatten{X, L), futten{Y L2} a ppend(Ly Lz, L)
me-flatten(X,M,[X{M]) - atom(X}.
me-fatten([X[Y],M,N) - mc-ﬁam.en["f,M,L},mr:-ﬂntten{}f.L,N].
Then by defining a new predicate by
new-p(Z,L M,N) =- fiatten(Z,L),me-flatten{Z M N).
and appiying the transformations we obtain a new definition
new-p(X,[X],M,[XIM]) = atom(X).
DEW—pl:f}[::ﬂ,L,H,N} - ‘i_{!pl’nd“q,l_.g,]_.‘],I}EW-p[x,]..L,ngN},T'-EWFPtYJLz,T'-"I,Lz:l.
The scheme aceounting for new-p(W, A, B,Cis

VU.B (atom(U) Dappend({U] B,[UIB])
VA1B|CrA'1:-'A= rAE- {ﬂPPEDdfﬁluhz-A] happend{ﬁ,,ALC}l fﬁ‘append{ﬁZrBrAS] jaPPend{ArB-C}]

VYW, A,B,C (flatten[W,A) Amec-fatten(W,B,C) Dappend{A,B,C))
The second formula is the associativity of append for A;,Az and B.
8. Discussions

Computational induction is due to de Bakker aud Scott [2]. Its uee in mechanical
verification is investigated by Weyrauch and Milner |18] and Gorden etc [4]. The simplest
form of its use in Prolog was pointed out by Clark [5). (Integration of induction into a
logic programming system as an inference rule is investigated by Hagiya and Sakurai [9].)
But our use is more general in the sense that atoms accounted for need not be in general
form p(X,, Xz, .. Xn)eg. Example 4.4 5 and 4.5.3. Our method to merge computational
induction schemes is new as far ag we know

In our verification system, if we can apply computational inductions we prefer Lhem.
But when we can't because of the conditions and heuristic constraint, we resort 10 well-
founded induction. Formulation of well-founded induetion is done similarly with BMTP-like
heuristics [12].

7. Conclusions

We have shown how to formulate computational induction formulas in verification of
Prolog programs and its advaotages. Compared to BMTF use of computational induction
{a] need not guaraotec termination by any well-founded ordering, (h) does not require
+he restriction that procedures be terminzling, {¢) generate induction goals 1 less than
BMTP-like well-faunded inductions, (d] generate simpler induction formulas mere first order
inferences are already performed to and (c] accomodate paive structural inductions and
well-founded inductions 1t many cases This wethod to formulate induetion formulas is an
element of eur verification system for Protog programs under development.

iz

Ackpnowledgements

The authors would like to express deep gratitude to Dr.T Sato (Electrotechnical Laboratory)
and Dr.H.Tamaki (Ibaraki University) for their stimulative and perspicuous works.

Our verification system is a subproject of Fifth Generation Computer System(FGCS)
“Intellipent Programming System®. The authors would like to thank Dr.K.Fuchi (Director
of ICOT) far the chance of this research and Dr.K Furukawa{Chief of ICOT 2nd Laboratory}
and Dr.T.Yokoi(Chief of ICOT 3rd Laboratory) for their advices and encouragements.

References

1] Apt, K.R. and M.H.van Emden, *Contribution to the Theory of Logic Prograrmming” , JLACM,
Wol.28,No.3,pp B41-B62,19582,

12} de Bakker,J.W. and D.Scott,“A Theory of Programs® Unpublished Notes, IBM Seminar, Vienna, 1369,
3] Boyer,R.5. and 1.5.Moore, “Computational Logic™ Chap.14-15, Academic Press, 1979,

i4] Burstall, R, “Proving Properties of Programs by Structural Induction”,Comput.J.,12,Neo. 1. ,pp 41-
45,1969,

I5] Clark,K L., “Predicate Logic as a Computational Formalism”, pp.75-76, Research Monograph

- 79/59, TOC,Imperial College,1979.

6 Clark K L. and 5-A.Tarplund, *A First Order Theery of Data and Programs” in Information
Frocessing 77 (B.Gilehrist Ed), pp 939-844,1977.

17! var Emden M H. and R.A Kowalski,*The Semantics of Predicate Logic a3 Programing
Languapge™ J ACM Vol .23 No.4,pp T33-T42,1976.

8] Gordon,M.J.,A.J Milner and C.P.Wadsworth,“Edinburgh LCF — A Mechanized Logic of
Computation®” Lecture Notes in Computer Science 78, Springer, 1978,

9] Hagiva,M. and T.Sakurai,“Foundation of Logic Programming Based cn Inductive D~finition” New
Generation Computing,2,pp.59-77,1984.

[10] Jafar J.,J-L . Lassez aud J Lloyd, *Completeness of the Nagation as Failure Rule™, Froc.
JCAIS3, Vol.1, pp.500-508, 1983,

[11] Kanamori, T .and H.Seki,“Verification of Prelog Programs Using An Extension of Execution”,
ICOT Technical Report, TR-093,1984.

{12! Kapamori, T.and K Horiuchi, *Type Inference in Prolog and Its Applications™ ICOT
Technical RHeport, TR-095,1984.

113! Kowalski, R.A., “Logic for Problem Solving™,Chap 10-12 North Holland, 1920

14 Murray,N.V.,“Completely Nop-Clausal Theocrem Proving®, Artificial Intelligence, Vol 18 pp 67-
85,1982,

15! Pereira,LLM.,F.C N Pereira and D.H.D Warren,“User's Guide to DECsystem-10 Preleg”,
Cecaticnal Paper 15,Dept.of Artificial lotelligence, Edinburgh, 197€,

18! Tamaki H. and T.Sato,“Unfold/Feld Trapsformation of Logic Programs”, Proc.2nd
{nternational Logic Programming Confercoce,pp.127-138,1984.

7] Tarnlund,5-A.,"Logic Programming Language Based on A Natural Deduction System” UPMAIL
Techrnical Report No G 1981,

18! Weyrauch RW. and R.Miloer,*Program Cotrectness in A Mechanized Logic”, Proc.1lst
USA-Jepar Computer Copference, 1972

13

Appendiz. Closure of Atom
Theorem Closure is unique up Lo renaming.

Proof: Suppese A has two closures A and A . Then from the condition {b), they are
upifiable. Let its most general instance be A= p‘{ﬁ} = _u"'{xl}. Suppose a head of a
recursive definite elause By iz unifiable with A by an m.gu. fgoo. Hence (rgop')oois
s unifier of A and Bp and {re g') oo is a uniler of A and Bg. Because A apnd A" are
closures of A, By is unifiable with A byanmgu rhpeo and unifiable with A by an m.g.u.
Il o ¢". This means that for some ' and o', 0 = 1/ e = " wo™. For all i such that Hyls
a recursive call, o(8,) = v/ na’{.:_i‘] = w“[I] = iMegA)= 1"o r‘,;’l[f'}, Hence o{B;}
it a common instance of A and A", Because p'op” isan mgu. of A apd A", there exists a
substitution r; such tkat o(B)) = n,° ;,;'{I'} =0 p‘"{ﬁ"] Then r, satisfies the condition of
the closedness and A is a closure of A. Because of the condition (g}, A and A are variants.
Hepce the closure is unigue up to renaming.

y S) A Ay &
L o i r; i rf
o'(Bo)— !~ o{Bg)— "~ " (Bo) (B, — v = a(B)— v"—¢"(B)
..] #_,,-”' b 1 ‘_‘_,.-"'f
oo o d_ e o
e L
By B

Computatien of pit;, 1z, 1)

ii= —1: Ag 1= plty,ta, ..., ta); Fo = the set of recursive definite elauses defining p;
repeat
§:= {4 1: eelect a recursive defipite clanse 1o Py fairly;
if the bead of C iz unifiable with A,
then A, = elosurel(A;, C); Pixy = Fi —{CH
else A;jq = Ay Py i~ Fi
uptil all head: of definite clauses in Py are not unifiable with A;
returo A

elosurel(A, " Py = By, Ba, .., B}
fomm 1 Ay = A
repest forever
1:—=1—1;
let igwo be an m.gu of A; and Bo
where 7, and ¢ are the restrictions to Ay and Hg;
let BY, By, 0%,..., B be wariants of atoms with p in o{Bg - By, Ba,...,Bm)
without shared variable by an appropriate reoaming;
= most speeific common generalization of B B, B, Bl
if Bis an inttance of A; then relurn A, else Ay '= I,

where most specific commor generalization is the dual of most general commen instanciation,
i.e., E is a most specilic commot generalization of &y, Fypy E; when

{a) Ey,Ea,..., E; are instances of E,

(b) E is an instance of any E' zausfring (a).

It is eazily cbtaiped by comparing the corresponding subexpressions.

14

