ICOT Technical Report: TR-090

TRAHH

A Sequential Implementation of
Concurrent Prolog based on
the Shallow Binding Scheme

Toshihiko Mivazaki Akikazu Takeuchi
and
Takashi Chikayama

MNovember. 19384

hlita Kokusal Hlde, 21T (31 436-31091-5

IGDT 4-28 Mita 1-Chome Telex 1COT]32864

Ainato-ku Tokvo 18 Japan

Institute for New Generation Computer Technology

A Sequential Implementation of Concurrent Prolog

based cn the Shallow Binding scheme

Toshihike Miyazaki, Akikazu Takeuchi, Takashi Chikayama

Institute for MNew Gereration Computer Technology
Mita-Kokusai Building, 21F.
4-28, Mita t-chome, Minate-ku, Tokyo 108

,Jgga Il

LBSTRACT

In this paper, we will present an efficient implementation scheme on
sequentisl computers af Concurrent Prelcg which i3 one of the
sireap-and-parallel logie programming languages., The key issues of the
implementaticn are (1) the scheduling of suspended computation and (2)
or-parallel evaluaticon of clauses in order to szeleect one elause for the
geal resclution. The psolution to the first problem iz briefly explained
and we will focus on the solution te the second problem. The second
problem 1s divided inte two sub-problems: (2-1) realization of multiple
enviromments for clauses executed in parallel and (2-2) rezlization of

value aceess control which ia necessary when guards are deeply nested,

The proposed implezentation scheme is based on the so-called shallow
tinding scheme and introduces two mew low level constructs, a trail cell
and a locel envirorment mumber. The former realizes multiple environments

and the latter realizes wvalue access control.

Fage 2

1, Intreduction

Recently maay logic progremning languages ba sed an
stresm-and-parallelism have been propezed and it becomes clearer that thesze
languages are very powerful for parzllel programming. Some of these
langueges are Relaticnal Language [Clark and Cregory, 1961], Concurrent
Proleg [Shapire, 1983] and PARLOG [Clark and Gregory, 168487, The common
features of these languages are (1) and-parallelism, (2) communication
through shared logical variables and {31) don't care nondeterminism based on

copmitted cholces.

Implementations of these langusges wWers and are being performed by
several resesrchers [Shapire, 19831, [Clark and Gregery, 19841, [Levy,
15647, [Mitta, 1984], [Ueda and Chikayama, 1684]. The key dissues eof the
implementation are (1) the scheduling of suspended ecomputation and (2]
or-parallel evaluation of clauses in order to select ‘one clause feor the

gocal resglution.

In thi= paper, we will present a new sequential implementaticn
algorithm for the intergreter of Copcurrent Proleg, which solves the above
problems efficiently. The implementaticn scheme is based on the =o-called
shallow binding =cheme, which iz z well-known acheme for implementing the

variable-value binding envircoment in LISP.

The structure of the paper is as follows. In the section 2, general
coonputation model of Concurrent Prolog will be presepted. In the section
3, the key issues of the implementation will be described. In the sectien
4, the shallew binding scheme will be described in detail. In the section
5, advantages and disadvantages of the scheme will be discussed compared
with other schemes. BReaders of this paper are assumed to be familiar with

the stream-and-parallel logic programming languages.

Pape 3

2. Copputation medel cf Concurrent Preolog
As in the case of Proleg, the computation model of Concurrent Prolog
can be represeated by an AND-0R tree, In the feollowing discussion, AND

nodes and OF nodes are referred to as AND-processes and OR-processes

respectively. An AlD-process and 2n OR-process correspond to a literal and

a guarded clause in Concurrent Prolog respectively.

Figure 1 shows a =slightly modified AND-OR tree which illustrates the

state of Concurrent Prolog computation at some time [Shapiro, 1983b].

A loop formed by «—— is ecalled an AND-locp, and & locp formed by
====% 1= ealled zn OR-loop. Each loop hasz one parent process and severzl

child proceszses.

f/ {77 caND=process

v e [::::] :0R-process

Figure 1. An AND=-0R tree

In an AND=loop, the parent process is an OR-proceszs and the child
processes are AND-processes which correspond to conjunctive goals in the
guard part of the OR-process. In an OfR-lcap, the oparent process is an
AND=proceszz and the ehild processes are OF-processes which are candidate
clauses of the AND-process. The clauses which may resoive a goal are
called the candidate clauses of the goal. Without loss of generelity, we
az=ume the top level goal statement zlways consists of a single goal, which
means that the root of the tree Zs always an OR-loop including this goal as

a parent AMD-process.

Pzpe &

ir one of the AlD-processes in an AND-loocp fails, then the parent
OR-process fails. If &ll the AD-processes succeed, then the parent
OF=process succeeds. Similarly since the ¢nild Of-proceszes in an OR-loop
represent disjunctive clausesz, if one of such Ofi-processes succesds then
the parent AlD-process succeeds, and if all the OR-procernses fzil then the

parent AliD-process fails.

When all the AMD-processes in an AND-loep succeeded, that is, the
copputation ef the guard part of the clause represented by the parent
OF=process in the AND-loop is sucgessiully finishad z2nd reaches the commit
operztor, then Lhe OR-process _sucneeds gnd does commitaent. In the
commitment, the OR-process kills all the other Of=-processes belonging Lo
the =ame OF-loop thzt it belongs teo and replaces its parent iD=-process by
its literals in the body part. 1n other words, in the coomitment the
selection of the clzuse (the OR-process) which resolves the gool i=

estabiished and all the other cheiges are disearded.

- [L0 e £l is selected I [o v -:—-—-..,_\“

Hﬁ“&
Y j
&Dﬁ{_a:_]{"j K’CE-HWEHEL
e — ~ # —‘Ii% = y
% body of €1
(__,' Ll
(Fi—n
"“-___._\rp-——-_-'r
guard of ¢1
Figure 2 Commitsent

Generally, in an AND=COR tree, all the leal procscses are active and
other proceszes are Waiting for the completion of the compuiation done by
its ehild processes. In this sequentizl dmplementation, the =ysten
scheduler serves them one by one acsording to the scheduling algorithm.

There are several scheduling algorithms, breadth-first, depth-first and

Page 5

bounded depth-first. In the breadth-first =scheduling algorithm, the
scheduler serves them in the same order as it traverses the tree din
breadth-first order &and in the depth-first scheduling, it =zerves them in
the zame corder as it pgoes down the tree in depth=firat order. The bounded
depth=first =chedulipg algorithm i3 a pixture of both breadth-first and
depth-first scheduling algorithm. In this algorithm, it serves them in the

same order as it traverses the tree with =zome depth.

2. Eey Issves of the implemeptstion of Copcurrent Frolog

The key izsues of an efficient implementation of Concurrent Prolog are
the fellowing two:
(1) The scheduling of =suspended computation.

(2) The management of multiple computation envircrments
fer or-parallel eveluation of clauseas.

There is 2 reasonable sclution to the first problem [8hapire, 1983b1.
In this paper, we will concentrale on the second issue., However, before
the second problem iz specified in more detail, we briefly summarize the

first problem and iis answer.

Sinece Concurrent Prolog provides a read-only saonotation as the
synchronizatien primitive, when a goal ean not be resolved without
instantiating & variable annotated as read-only to a non-variable term, the

computation =uspends. The problem iz how to schedule these suspended

computation.

Sinee a computation suspends when 1t tries to instantiate a read-only
variable to a nop-variable term &nd it ean resume when the read-only
variable becomes instantlated to a nen-varigble term by another
cemputation, it i3 natural to asasociate szuspended computation with
variables which caused suspensionsz. For this purpose, &8 suspension gueue

iz introduces. A suspension gqueue i3 a gueug which ecan keep suspended

Page 6

conputation. The suspension queue 4is attached to an unirstzntisted
variabie and it keeps only suspended computation which have read-only
acress to the variable and have tried to {imstantiate it to nopn-variable
terms. The suspendsd computation kept in the suspension queus of sooe
uninstantiated varizble will become active when the warizble will be
instantisted to & non-variable term by another copputation which has non

rezd-only aceess to the variable,

The second problem, that i=, the management of multiple environments,

can be figured out by simple examples belaow.

goall: plx}, qlX) /* ¥ is an uninstantisted variable &/
elausel!: p(1) :- guardl | bodyl.
olauzed: pi2) :- guare? | bodyZ.

Frogrem 1.

goalz: p(f(E)),r{&) /% A i3 an uninstantiated variable ¥/

claused: pli) = g1(X}, q2{X) 1 o' &
clzused: gli{f{1)]) = ... can s

clauzes: qilfl2)) = cuv 1 +es &
clauseb: q2(f(B)) = ... |

. -

Progren 2.

In the Program 1, during the parallel eveluation of twe c¢lauses, clausel
trie=z to unify the variable "X" in the goal "pl{X}¥ with "i", while clausez
tries to unily the seme variable "X" with "2". These two bincings to the
same variable must be kept independently in their oun loeczl environment
until one of the c¢lauses will be selected, and must be made invisible f{reom

other environments such as the environment for the goal Ag(X)m.

In the Program 2, the gosl "p(f(A))" invokes the guard part "g1(X),
e2{X)", of clause3, and "gl{X}" invokes clausel and elause5. During the
parellel evaluation of clausel and claused, the GO inconsistent bindings
to the same veriable "A" will be made and they must be kept independently
as in the ez=e of the Pregram 1. When either alause im selected, the value

of MAT which is kept in the selected environment is exported to the

Page 7

environment of the clause3, and now the goal "g2(X)"™ can have access to the
value of MA", However it must not be exported to the enviromment of the
Eval?, because clavsel is not yet selected. In other words, although the
variabhle PA"™ [first appeared in goal?, its value was made in either clausel
or clauseh and it is still kept din the laocal enviremment of elause3.
Therefore goal? does not have acﬁass to the velue of "A"™ until eclausel is

selected.

Cenerally, in Concurrent Preleg, when the candidate clauses for & gozl
are executed concurrently (OR parallel), head utnifieation and guard
copputation of esch candidate clause pust be executed in its own loeal
envirenment wntil one of the clauses will be selected. When one of the
clauses reaches the commit operetor, computztion of other colauses are
abandoned and the loezl envircnment of the selected clause will be exported
to the enviromment of the goal. The essentizl difficuity dn OR-parallel
evaluation of candidate clauses i3 in the reslizaticn and the manogement of
oultiple environments corresponding to independant computation of cendidate

clauses and the control of the value aceess illustrated by Program 2.
4, Bealization of multiple enviropments by the shallow binding scheme

We emplay the shallow binding scheme for the reslization of multiple
enviroments, The differences among the multiple envircnments come onliy
from different instzntiations to the variables in the goal. Therefore, in
order to reslize multiple enviromment=, it iz encugh Lo keep oultiple
bindings for each wariable in the goal. The =shallow binding scheme
implements this idea. In the following, the detail of this scheme is
described.

4.1 Shelloy bindine apd snovirenment seitch

When an CR-process is invoked, the variable cells for the veriables

appearing in the clause are allocated first in its environment. These

cells will have values or reference peinters te cother cells [Warren, 19771,

Page &

[Yokota =t al., 1984].

Geperzlly, when, in some loezl enviromnment, an uninstantiated variable
appearing in the goal iz unified with & non-variable terz during the head
unification or guard computatien, the pair of the address of the cell of
the wvariable and itz current content is saved in the loczl enviromnment and
the non-variable terxz iz written inte the variable cell itselfl. The pair
iz called the "trail cell"™ and plays the ceniral role in the reszlization of
pultiple emvironments, Sinee the value written intoc the variable cell must
nct be =een frem other progesses, wihen &n other process is to be scheduled
next, the local value must be saved 4inm the local environment and the

original value must be restored to the cell.

goal: piX), qii) /% X% is5 an uninstantiated variable &/
clausel: pl1) - guard | body.

Program 3

a variable cell of X a trail eell an original value

| 1 L G PR H 4==|====>| uninstantiazted |

P —

{a) The trzil eell is used for saving original wvalue

2 variable cell of X a trall cell 2 =aved local value
e e e e o o e e + e ———— +

| uninstentiated |{——-—= | - i d—n | e | 1 !

e ——————— + e ————————— - ———————— +

{B) The trail ecell is used for restéring the local value

Figure 3 The trail cell

In the Program 3, when the hezd unification is performed for the gozl
"o(X)}" and clausei, the pair shown in Figure 3a is produced. However,
since clausel has not teen selected yet, "X" must be uninstantiated for the
goal Mg{¥in. This means that, in the resclution of the gosl "g{X}", the
value of "X" must be recovered uzing the trail cell, as shown in Figure 3b.
When the eomputation of the gpuzrd of clausel is resumed, the local binding

is recovered again using the trail eell. Thia procedure iz called an

Fape @

enviromment ssitceh,

In genersl, the head unification and the execution of the pguard of
each clause may require trail cells. Assume that we have the OR-tree of
the form shown in Figure 4 (Each OR-process is assumed to have one or more
trail eells, and OR-process 7 is the parent process of the currently active
MD-process and OR-process § will be scheduled next).

Mo, | - Of-process

0 s traii cells

N

T *

garen{ QR-process af parent CR-process of

ARB-process which will Lhe current aclive

be sehaduied ment AND-Brocess
Figure 4 in CR tree

In crder to aetivate OR-process § nesxt, the trail ecells attoched to
Of=processesa on the way between process 7 and progess 4 (i.e. OB-procsss
7:5,2, and B) are used to reccver the loeal envirenment for OF-process 4 in
the following wey. {(Notice that since the environment for OB-procesas 1 is
shared between OB-processes § and 7, the trail cells in 1 are not used for
this environment =witeh.)

1) If trail cells are used for saving the originsl bindings then their
bindings are restored and the local bindings are =maved.
2) Otherwise the loecal bindings are restored and the original bindings

ara saved,

In order to perform enviromnment s=witching, the path between the
OR-process of the current active process and the OR-process of the
AfD-process scheduled next opust be identified gquiekly, Teerefore, an
environment pointer is introduced in order te enable a2 process to know the

way to the current active process. An environment pointer points to either

Pape 10

2 parent ar a child. When & pointer peints to a child, there must be an
agtive AND-process in the descendants. See Figure 5 for an example.

j @ PCJ
/—\ —— ; grvironment poinier
-~

T 1
[e achedoled next garent QR-process of
active AMD-process
Figure § The OR tree with enviromment chain
Envircnzment suitnhing i= deseribed 2s follows:
1} Starting from the OR-process scheduled next, fellow the environment
peinters until the currently aetive process is reached, reversing the

- EA adp

direction el pointers.
2) Follow the enviromnment pointers in the reverse order until the

OR-process scheduled next is found, exchange values, if there are any

trail cells in the (OR-process,

3) When the process is found, change itz pointer to nil (The eavirocnment

pointer of the active process is always nil).

Figure & shows the directions of pointers after environment sSWitching

\ it pnvironment wointer

has been cocopleted.

’:J | @ *1"?

parest OR-grocess of a07iwe ARD-Drocess
after environeent swilching

Figure 6 The OR tree alfter envirorment sWwitching

.2 Nalue aeccess control

Page 11

Az described in section 3, for the contrel of wvalue access, it is
necessary to determine whether a variable belengs to the loecal envircnment
of the currently active prooess ar not. Since the trail cell of the
varizble must be Ekept in the locsl environoment if the variable does not

teleng to the loczl environment.

Fer the purpese of determining whether a wariable belengs teo zn
enyirenment or not, 3 unique number (called a loeal environment number) is
assigned to each local envirormment for identification. When an OR=process
is created, a new loczl envircrment number is allecated and it is assigned
to the associated envircoment., At the zame time, the pointer to the cell
containing the number is assigned to all the vezriable cells whieh are
allocated in the enviromment, =0 that one can kriow whether an
uninstantiated wvariable belongs to =ome environment or net by comparing
their number. We show the simple exzmple below.

the cell of local

environment number variable cells
o -+ f—————————— e ————————
! 0 +=l=m===2| 21 | e e = | == i
| process | e mmmmee I
o e i o i | !
I
i H
Figure T All cells of uninstantiated variables peint to

the locel envircmment number of the environment
to which the variables belong.

In the commitment, the content of this loesl environment number cell
iz c¢hanged to a reference pointer to its parent{in the OR tree) local
environment number eell, Filgure & shows the situation where varizble cells
2,3,4,5 end & beleng to the ssme local environment after several

commitments.

However, in some cascs, several reference pointers may have to be
follewed i1in corder to gpet & Local environment number. To avoid this
overhead, onee a reference chain is found, 1t is replaced by a direct

referaence pointer.

Page 12

g T I \
Wn. | :variable cells
— |
A
-

R - -lacal envifonaent
runber cell

These wariable cells beiong [o (he

saae local envirgneent.

Figure & local environment managezent

k.3 Dereference and head unification

When 2 normel({non read-only) variable is unified with another normal
variable, a reference pointer is set up from one variable to another. When
2 read-only variable and a normal variable are unified, the
read-only-reference pointer to the cell of the read-only varizble is
assigned to the esll of the nermal variable. Thua, an atiribute eof
"pead-only” is represented by an read-enly reference pointer. A wariable
cell consists of two Fields, a tag ficld znd 2 value field. The tag field
of a cell indicates the attribute of the value field.

F : read only reference [lag

dereference(VarType, VarCell)

begin:
Aif [VarType = rezd-only-variable) thep F := on
eles F o1z of;
return{ do-deref(Varlell))
end;
do-deref{VarCell)
begin:
easel{ tzg(VarCeil))
undef: returnl VarCell);
BUSp: return{ VarCell);
non-varizble term: return{ VarCell };
refercnce : do-derer{ value(Varcell) J;
read-only-reference: F = onj
do-deref{ value(VarCell) J;
end;

Figure 9 Derefersncing algorithm

Page 13

In genergl, a unified veriable either refers to anocther vwvariable wia
one or mere refersnce polnters (or read-only-reference pointers) or has its
own value. Obtainming a value by fellowing reference pointers is called the
dereference. A wvalue cbtzined throwgh the derefepence iz either an
uninstantiated variable cell or a non=varizble term (atom, integer, list,

)

or vector). Figure 9 shows the algorithm for the dereference,

Table 1 Tutline of unification.

P i
1
N‘ uragf j1HE+ '| ﬂl'-dtim !-l.i:ﬂm | [era
Co=REF(RY C.~FEF 3] i
indef er ar Ci-ADREF{P] | CawBOREFIP] | f:ep
Pr-REFIE) | Po=REFIEY
Co=AEF(P) | C=REF(F)
SUsD ar or CoROREEIPT | CowBORER(R) | Coep
: PieREFIC) | PieREFIT)
i
under™ | poaROREFICY | F:-ROREFICH | SuseEsD suseen | suseemn E
|
suse' " | PreBOREF(C] | PreROREF(E) SUSPEND SUSPLND | SUSPEND
tera | Poet Pl SUSPEND SUSPEND | wnilfy(P.C)
ro R
X oomeans [Rar the Tlag F oag om,

F.C 0 result walues of dereference

I "FP is eon after the execution of Mdereference" procedure, a
read-only-refercnee pointer was found in the reference pointer chain. In
this case, the value "v® gbtained by the dereference is represented by my™n
im the table 1, The tag "susp"™ is used to represent a pointer to 2 cell
containing 8 suspension queue. The tag "undef™ is uszed to represent an
wninstantizted wvariable without a suspension quewe. ~ These two tags

indicate that the variable is uninstantiated.

In this table, "C:=REF(P) or P:=REF(C)" means either C:=REF{P) or
:=REF{C) may be uszed, (Care must be taken for unification between logal

variables wher garbage collection must be taken into acecount).

Page 14

SUSPENT means that unifieation will be suspended. In it2is caze, the
tag of a wvariable causing suspensien is changed to Tsusp" if it is
uninstantiated, and & suspension queuc is produced., A susrended goal is
put inte the suspension queue. If the tag of the variabls is "susp", the

gpal is added to the end of the suspension queye.

A detaziled description of the unification algoritta used for &
veriable 2nd 2 term is shown in Figure 10.

variabie cell
address of wvariable cell

.
[FF 31

X
r
T

w4 ws as

if instantisted{X) then
unify (X, T);
elzeif ¥ belongs to the current enviromment Lheo

I":=T;
else '
allocatetraileellandsave(X™ ,X);
endif;
Fipure 10 Unifieation 2lgerithm used feor

a variable and a term

4.4 Copmitgent

Commit cperation is performed by an OR-process which is going to be
selected. The procedure i= a= follows:
1) Abort cther UH-processes in the same OR-lcop.
2} Export the binding information in the locsl envirommesnc to the parent
environment,
3) Create AND-processes for the goals in the body part ef the clause,

and replace the parent AllD-process by thesm.

Export operation consists of two stzges. In the first =—zge, for each
trail ceell kept in the lecal envircnment, the global valoe in the trail
cell is unified with the current local value of the correspesiing variable.
In the second stzge, if the first stage finishes successfully, the content
of local envircnoent nuober cell of the lecal envirenment 1s mmanged to the
reference pointer Lo that of the parent epvirconment as dezcribed in the

sention H.Z.

Page 1%

goal: p(f{A))} 4 disn an uninstantiated varizble o/

elausel: p{¥) = gql¥), .o | ou. .
clause2: g(r{1)) = ... |

Frogram U

In Program 4, the value "1™ of the variable "A" is made visible only
within the guard of clausel when clause? is selected. It is never seers
from the goal. That is, when clause? is selected, the trail ecell for "an

is moved to the OR-process corresponding to clausel,

Unification performed in the exportation process differs from hezsd
unification in the lfollowing two points:
1) When a variable, the tag of which is "susp", is instantiated to a

nop-varisble term, all the entries in that suspension queue are moved

to the ready queue.

2) If unification suspends in the commitment, the OR-process i=s put in

the corresponding suspension queue,

X" : Pointer to the cell
of the variazble "XP in the trail cell
¥ : Value zaved in the trail eell
(the current global velue of the variable 7X7)

Af The wvariable cell pointed
to by X° belongs te the envirorment
for the parent AND-process
then
The current value of X and V are unified;
glse /* the varisble does not beleng te it %/
The traill eell i= moved to the enviranment
of the parent AND-process;

R
21 3

Fipure 11 Export

E., Discussinn

There are severzl sohemes by which multiple environments ocan be
implemented. In this section, we will characterize some of them, copying
scheme and binding scheme, and compare the performance of the shallow

binding scheme with those of the other schemes.

a)

Page 16

Capving schene

In thi= scheme, oconceptually leoeal copies of arguments of the goal
are produced for each candidzte clause. Head unification and guard
ecmputation can freely instantiate these local copies, without
affecting the computation of other clauses, In the commitment, the
local copies are unified with the argunents in the goai. The schenme
oan be plassified into two schemes, eager copying scheme and lazy

copying scheme, according to when lcocel copies are made,

2.1) Eager copving scheme

In eager copying scheme, loezl eopies of zll arguments of the gozl
are made when the geal is inveked. This scheme iz simple, however,

it introduces = large copying overhead, end it may copy those nat

neccssery for computation.

a.2) Lazmy copying scheme

bl

Lezy copying scheme was proposed by Levy [Levy, 1988],[Tanzka et al.,
10847, In the 1lazy copying scheme, terms are copied when they are
tried to be instzntiated. However, it needs complicated mechanism in
order that gosls in the same envircnment share locally instantiated
terms.

Binding scheme

In this scheme, instead of mnaking a local copy for each
candidate eclause, local bindings are made in an environment when
variables in the goal are instantiated during the execution of 2
candidate clause. The scheme is classified into two schemes, deep
tinding scheze and shallew binding scheme, &ecording to the
implementatien detlail, In both scheme, local bindings for 2 clause

are kept in the OR-proce:zs corresponding to the clause.

b.1) Deep binding schome

In this scheme, loczl bindings for variables in the goal are kept as

an asseeiaticn list in each environment [Tehiyoshi et al., 19631, 1In

Page 17

the commitment, local values kept in the zssociation list are unified
with the ecurrent wvalues of wvariables in the goal. This scheme
requires a linear search for the association lists residing 1in the
ancestor OF-processes in order to get a value of a variable when
guard computation are deeply nested, beczuse there is no way te know

in which guard the variable is bounded to a term. Figure 12 shows a

simple example ermvirorment representation of the deep binding scheme.

goal: p(¥) /* ¥ is an uninstantiated variable ®/
clause: pl1} = guard | bedy.
the variable cell of X the assoeiation list esll
o o T +
| uninstantiated {-——=——=={—+ | 1!
g ———— =i fmmmmmmmm————— -

Aaszpeiation list is used
for ==ving local value.

l/—l\ 1 Mi-process
| 0ot asseeistion it
E;)—l | —
—; R N
[
T

o

11

[he environsent of (&% GR-procest
consist of three agsociation lists. &, B, £

Figure 12 Desp binding scheme
B.1) Shallew binding scheme
Thi=a is the =cheme described in this paper.

5,1} Advaptares of the shallow bipding scheme

Unification ia fast coopored with ezger copying scheme, because

shallew binding does not need copying of goalas,

Dereference algorithm is elear, and very fast compared with the deep
binding scheme. Because, 4dmn the deep binding scheme, it 1is always
necessary to search asscciation lists lipearly lor the value of a variable.
The cost of getting values in the worst case is the order of the number of

the ancestor OR-procenses.

Pape 1B

In lazy eopying scheme, the first dereference te obtain the value of 2
variable is as expensive as in the deep binding scheme. Alsc once a tern
is accessed, it must be copied inte all the environments beltween the
enviranment for the corrently asctive process and the environment to which

the term belongs.

5.2) Disadvantapes of the shallow bipcine schene

The expenzive operatien of the shallow bincding =chenme is the
environment =switching which oceurs when the next process is scheduled [rom
the ready queue. The cost of ervironment switching depends on the distance
between the ecurrently active process and the process which should be
scheduled next on the OF-Sree, One possible relexation remecy Tfor this
disadvantzge is to employ the bounded depth-Tirst scheduling methed. We

illustrate it by a simple example.

goal: 7= ap(M, A, A), ap(M,B,B). /#* A,B are uninstantiated variable ®/
ap(h, [21X],%XX) :-
W >0, Ni is N-1,
m{ XX7),
ap(H1, %, XX} | true.
ap{0,[]1,).
m{[1]}).

Program &

In the Progrzg 5, the mmber of reduction is

{the number of reduction? := (M # 4)42
Predicate "ap" in Program 5 recursively calls itself in its éuard. The
nmumber of recursive ecalls i1z specified by the first argument of Pap", &
mew trail eell will be eoreated per each recursive call. In the
breadth=first scheduling methed, environment switch will take place per
each recursive eall. In the bounded depth-first scheduling, it will take
place once every N times, where N iz the depth.

L ;gnﬁ] Qﬂ

Fage 19

In Figure 13, the performances of the Program 5 measured on different

interpreters are shown,

The features of this shallow binding implementation are summarized

below.
1) The realization of multiple enviromments by trail cells.

2) The realization of the value access control by the local
environment number.
[es]

———— & 3hallew bdnding(hreadih=firat)
2000 & aen- ; ahallow binding //
{boundad depib-flrat: bounds100)

—e— i desp bindirglbreadtb=Lirat] /

150 200 100 [reductiona)
Figure 13 Results of Program 5

I. Ackpowledgepents

We thank Kazunori Ueda, Jirou Tanaka, Nobuyuki Ichiyoshi, Hitoshi Aide
and other members of the group for the research of KL1 implementaticn for

their valuvable suggestions.

We would also espeeially like teo thank Kazuhniro Fuchi, Director of
ICOT Research penter, KEcuichi Furukawaz, Chief of second research laboratory
of ICOT Research Center, and all the other mepbers of ICOT, both [for
helping this research and for providing a stimulating place in which to

waorlk.

B, References

[Clark and Gregory, 1981 K.L.Clark, S.Gregory: A FRelational Languzge for
Parallel Programming, Proceedings of the ACM Conference on Fungtional

Progrepming Languages and Computer Architecture (1981).

Pape 21

[Ccrark and Gregory, 19331 K.L.Clark, 3. Gregory: Notes on the
Implesentation of PARLOG, Hesearch Report DOC 84/16, October (1984).

[Clark and Gregory,1284] K.L.Clark, S.Gregory: PARLOG: Parallel
Programming in Logie, Research Report DOC &4/4, April {(19Bu).

[Levy,1984] J.Levy: A Unification Algoriths for Concurrent Prelepg, FProc.
of 2nd Internatioral Logic Programsing Conference, July, 108L.

[Mitta,1984] K.Nitta: On Concurrent Frolog Interpreter, Preprint of 1ine
Eth VWGSF Meeting, Information Processing Soclety of Japan, 1984 1in
Japanese).

[Satou et al., 1984] H.Satou et al.: L Seguentiz! Implementatien of
Concurrent Prolog -- based on Deep Binding scheze --, The First
Kational Conference of Japan Society for Softwasre GScience and
Technology, 1984

[Shapire, 1¢63b] E.Y.Shapiro: MNotes on Seguential Implementaticn of
Concurrent Prolog, Summary of Discussiens in ICOT, 1983 (unpublished).

[Shapiro, 19B3] E.Shapiro: L Subset of Concurrent Proleg and Its
Interpreter, ICOT Technical Report TR=003 (1983}

[Tanzks et al,, 1984] J.Tsnaka, T.Miyzzaki, A.Takeuchi: A Segueniizl
Implementation of Concurrent Prolog =-- based on Lazy Copying schexe --
, The First Naticnal Conlerence of Japan Society for Sol'lware Science
and Technology, 1904

[Ueda and Chikayamsa, 1964) K. Deda, T. Chikayama: 4 PFracticsl
Implementation of 2 Parallel Logie Programming Language; The First
Hatioenal Conference of Japan Socicty for Softwgre Science and
Technology, 19364

[Warren, 1977] Warren,D.E.,, Imglementing PROLOG - Compiling Frecicale
Legic Progremes, Vol.1-2, D. A, I. Research Report No. 3%, Dept.
of Artifieial Intell cence, University of Edinburgh, 1877.

[Yokosz et al., 10847 ¥okota,M., et al., A Microprogrammed Interpreter for
the Persocnal Seguential Inferepce Machine, Proc. of FGCE'84, Tokye,

Nov., 19E4.

