ICOT Technical Report: TR-089

TR-089

The Design and Implementation of
Relational Database Machine Delta

Takeo Kakuta, Nobuyoshi Miyazaki,
Shigeki Shibavama, Haruo Yokota
and Kunio Murakami

November. 1954

Mita Kokusm Hidg, 21F {031 456=3151~5

|| :D | 4-28 Mita 1-Chome Telex 0O 139964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

The Design and Implementation of

Relational Database Machine Delta

Takeo Kakuta, Nobuyoshi Miyazaki, Shigeki Shibayama,
Haruo Yokota, Kunio Murakami
Institute for New Generation Computer Technology
Mita Eokusal Building, 21F,

1-5-28 Mita, Minatoku, Tokyc, 108 JAPAN
ABSTRACT

Delta is a relational database machine under development at ICOT.
It has specially designed hardware components to perform relational
database operations and a large semiconductor memory to be used as
di=k cache area. The machine will be used in an experimental local
ares network enviromment along with Personal Sequential Inference
Maghines which are also being developed at ICOT, This paper describes
design decisions concerning Delta's architecture and processing
algorithms, as well as its overall functions. Dalta is expected to be

operational with a data storage capacity of 20 GB by March, 1685,
1. Introduction

Japan's Fifth Generation Computer Syatems {FGCS) research and
development aim to build a prototype of a knowledge information
processing system capable of efficiently performing knowledge-based
problem solwing and inference. Toward this end, a tep-year period has
been assigned to the FGCS project, and this period has been divided

into three stages.

Page &

The knowledge base machine and parallel inference machine are the
most important hardware components of the FGCE. In the FGCS prototype
to be completed as the final product of the project, the two machines
will be integrated through a close link. In the initial stage,
however, research and development are proceeding separately for each
machine, since the initial stage mainly aims to conduct research and
development of individual component technologles to establish the
basic technology for the bardware, palled the knowledge base subsystem

and inference subsystem te be built in the intermediate stage.

In the initial three-year stage, 2 relational database machine 13
being developed in order to research and develop the basic techniques
necessary for developing a knowledge base machine inp the intermediate
stage of the project and for investigating a prototype database
machine . capable of parallel relaticnal and knowledge operations

[MurakamiB3].

Development of the ICOT relational database machine {called
Delta) has two purposes, One is te create an experimental enviromment
in which various knowledge base functions and thelr implementation can
be investigated. The other is to connect the macnime via a local area
network (L&N) [Taguehi8k] with the personal seguential inference
machine (called P2I) being developed separately [YokotaM®3]. PSI is a
software development tool that makes use of a logic progracolng

language, Kernel Language Version-0 (¥L0) [ChikayamaB3].

Thia paper gives an overview of the arehitecture, functions,
processing algorithms, and the implementation of Dalta, Details of
its architecture, guery processing flow, and impl ementation have been
reparted elsewnerc [Shibayamalla, bl,[Sakaibh]. Various database

machines (DEM) has been reported and implemented

Page 3

[1EEET9],[BancilhonB2] ,[Schweppef2], [HsiaoB3]. Some are software
oriented and others are hardware orlented, Hardware oriented database
machines are designed to improve the performance of database
operations., Delta is a hardware oriented database machine that adopts
set-oriented internal operations and specialized hardware to realize
these operations. It is one of the f[irst hardware oriented DBMs

implemented to store and manipulate large scale databases.

In chapter 2, some fundamental design decisions concerning the
architecture are discussed. Functions that are made available to host
computers and database administrators are described in chapter 3.
Processing algorithms and methods for several basle operations are
discussed in chapter U4, and implementation considerations are
presented im chapter 5. Farforrcance estipation is deseribed in

chapter 6.

2. Architecture

2.1 Fundamental Design Decisions

We have to solve two key problems 4in the design of a high

performance DBEM:

(1) Fast relaticnal operations

(2) Efficient access to database storage.

Most DBMs so far proposed adopt parallel processing or specialized’
hardware to solve the first problem. OQur solution is to perform all
relational operatic..r on sorted sets and te use a specialized
preprocessing hardware to sort data. It i3 well known that join, a
very time-consuming operation, can be executed extremely fast if Dboth

operand relations are sorted by their join attributes. Dasic sel

Fage &

operations are also processed guickly if operand relations are sorted.
Thus, relational operations can be performed efficiently if we can
sort relations fast enough. The best seftware al gori thms can sort N
{tems in O(Nlogh) time, but there are several algorithms to sort then
in O(N) time using specialized hardware. ¥e designed a relational
database engine (RDBE) based on a pipelined merge-sort algerithm
[ToddT8] [Sakaift]. BDBecause most RDBEE operations can be done in O{N}
time, 3its processing ecan be synchronized with the data tranzfer
between itselfl and the memory subsystem. This is pazlled data-stream
processing and can be regarded as an extension of "on-the-fly"®
processing. Delta has four RDBEs, which can be used in parallel or

independently.

There are severzl methods we may use to solve the access praobl em.
{a) Parallel I/0 deviees to reduce access time,
(b) Use of search filters attached to storage devices to reduce the
amount of data to be processed by the upper layers
(a¢) Large cache (buffer) memory to reduce access time
(d) Clustering and indexing techniques to reduce the amount of data

te be procesaed.

Delta adopts 2 combination of (¢) and (d), because they provide more
flexibility, and a large low-cost memory is avallable., This deciszion
may seem somewhat conservative, Dbecause sayeral devices that
incorporate methods (al or (b) have already been proposed and
izplemented, However, because the usefuiness and feasibility of these
deviess remains wrrroved, we believe our methnd 15 more realistic,

given the relatively short time allotted to EDEM development.

2.2 Internz! Schema

Fage 5

Conventional database management systems (DBMSs) steore a relation
as a file in which a tuple is treated as a record and an attribute as
a field. To rapidly obtain tuples satisfying specific orlteria,
indexing and hashing technigues are applied. These methods are more
useful if the mmber of attributes frequently used in the criteria is
kept small. A DBMS has to scan the entire relation if an indexed or

hashed attribute cannot be used as an access path for & given query,

Ve expect Delta to have an unconventional access characteristies,
because a logie programming language 1s used as PEIl's language, and
because the system 1s used for knowledge information processing.
heecess to the database stored in Delta is predicted on the following
characteristics, based on the usage of Prolog programs:

(1) Relatively few attributes in typical relations
(2) Uniform distribution of attributes used in conditions

{3) Relatively uniform frequency of access to tuples.

Delta adopts an attribute-based schema to efficiently process these
kinds of pequesats., Instead of storing all the attributes of a tuple
together, it splits a relaticn inte & ocllection of attributes and
stores all occcurrences of each attribute together, & TID (tuple
identifier) is stored along with an attribute value to identify the
tuple to which it belongs. To reduce the amount of data to be
progessed by the RDBEE, 2 two-level indexing method is used, aé shown
in Flgure 1 [Shibayamabbz]. The merits of Delta's attribute-based
schema are as focllows:

(1) Attributes that are not necessary for a given request need not be

read from the =scoudsry storage to work buffer area.
(2) Attributes are trez :d uniforcly.
{3} Unneccssiry sttributes need not e Lransferred between RDBE and

the memory subsystem.

There are several disadvantages as well.
(1) Transformation between tuple format and attribute-based format is
necessary.

{2} Tuple identiflers occupy additional storage space.

To prepare tuples for output (called tuple reconstruction) 1s a
formidable task for conventional DEMSs because it is an operation
similar to join. Delta can make effective use of the attribute-based

schema because it can effieciently reconstruct tuples using the RDBE.

Attribute
1180 value
TID Range Fﬁ;//#- g | 2
Ir_,,- 1-18 10 ! a7
| 20-38 | Il ! 72
| 40-58 N |37 | 8
;' : *
vValue Range | [
—————— — 22 | 40
1-99 J’/f - 1-35 .
% | @
(100-199 -/ B4 | = _
| . 28 | B4
200-799 | 49-83 *
™ B | 11
. : £ : ®
Attribute ID e = |
I \ —— T
att 1 / a-az —\II e 1-24 * 3 | M
ate ? b-bz - H 95-35 * 16 i 144
are 3 I—-—\ ¢-cz = I'|I £6-72 * 30 | 155
—_ -
- \ e 0 : * 35 | 169
| | :
! | :
11 k - |
g -0 * --_: 1-03 -
E-H - i RETTH] ® \\-- 4 | ae
I-L * r Ed =80 = 1t ah
» [” B 19 b
o 21 i ah

Koie: ssterisks indicale poinlers

Fipurs 1. Inlernc! Schams of Deita

Fage 7

2.3 Architecture of Delta

The Delta architecture was designed based on funectional
decomposition. Delta principally consiats of three kindas of units:
RDBEs, a Hierarchical Memory (HM), and a Control Processor (CP). A
front=end processor (Interface Processor: IP}) is used to connect
Delta to the outside world., One more unit, a Maintenance Proceasor
(MP), 13 included mairly for system supervising, as described later,
Thus, Delta consists of five kinds of functional unita, as shown 1in
Figure 2. & logleal request specifying the operation of an individual

unit by another unit is called a subcommand,

Logal Arez lletwork

Mzintenance

a
Hul ti h'{:l-f'- | EPU‘EEHEGI'
h Interface .
Processor -]
Control
Proce sasor
Helational Hierarchical
Database
Engine Hemory

Figure 2. Delta Functional Architecture

RDEE performs basic data-manipulation operations such as
selection, Join, and =ort. RDBE subcommands resepble relational
algebra operators, except that their operands are wusually attributes
instead of relations. Operands of RDBE subcommands are called streams
which are uwauvally arrays of the form <TID, attribute-value, optional

fields>, or sometimes arrays of combined attributes, Most subcommanda

Page B

are of the form [out put=atream '= OPERATION (input-stream?,
input-stream?, options)], where input-strean2 does not appear for one
operand operation, such a3 selection (restriction). Input-streams are
read from HM and the output-stream ia written back to HM. Examplea of
operations are "join", “restrict®, T“sort®, “unique®, and “union®.

There are four RODBEs which can be used in parallel or independently.

HM i3 a hierarchicelly structured memory subsystem, which serves
as Delta's system work area as well as secondary storage. Physieally,
it hasa two layers, The upper layer is a large semiconductor memory,
called the database memory unit (DMU)., The lower layer consists of
large-capacity moving-head disk units (MHDs). Logiecally, HM has three
layers because the DMU! is divided into two areas: a buffer area and a
cache area, The buffer area 1s used a= a system work area, which
stores streams {for RIBE) and sets of tuples. The cache area serves
as a large disk ecache te reduce acceas to the disks. It adopta the
write-after strategy to reduce access further, HM has a battery

baeck-up =ystem to protect database against power failures,

HM providea the other units with a high-level I1interface [for
apeess to buffers and data, For instance, buffer-IDs are used instead
of memory addresses for buffer access. Moreover, other units can
specily the conditions of the permanent data (an attribute) to be read
into a buffer from secondary storage (or cache area). HM maintains
and manages the two-level attribute indices mentioned previously and
uses them Lo find pages which contain data satialying the given
conditions, Thus, HM performs a kind of pre-screening of data to be
used by other units, It also provides a low-leval physical addressing

interface for the storspe area that contains the system directory.

Page 9

A Shadow-page mechanism [Lorie77] and logs are also supported in

HM to be used for transaction roll-back and data recovery.

Most database functions can be performed by a combination of RDEE
and HM functions. Therefore, the main functions of the CP are to
compile regquests from the host into sequences of RDBE and HM
subesommands, and teo centrol their execution. The CP uses a system
directory stored in HM to bind names te internal IDa. Other functions
are as follows:

(1) Transaction scheduling and ceoncurrency control
(2) Resource management
(3) Transaction commitment control and data recovery

{4) Management of dicticnary and system directory.

3. Functions

Delta acts as a database server to & number of FPFS3Is (Personal
Sequential Inference Machines) in a local netwerk (LAN) [YokotaME3]
[TaguchiB4]., A LAN may be a little slower than other interfaces, but
it 1is ecurrently the best availlable method of connecting a number of
hosts to Delta. A faster direct dinterface 1s also available for
experimentation with PSI. These experiments ineclude interfacing the
PSI logle programming language with Delta [YokotaHEL]. Figure 3 shows
the enviromment in which Delta will be used. It has been suggested
that we incorporate as many database management and on-line I/0
functions as possible in a special-purpose back-end computer to free
the front-end general-purpose computer from database mapagement chores
[Heiao80). This might be true for a database backend that served a
few host computers. However, Delta ocould prove Lo Dbe a system
bottle-peck if we assign it all the DBMS functions, because it will

have to serve several dozen high performance P3Is, Therefore, some

Fage 10

high-level functions are not implemented in Delta; 3some of them will

be incorporated in FSI's sof tware.

Delta functions can be classified into three groups:
(1) database access funections
{(2) database (access) controls

{3) aystem supervising

LA i L | LIA
i ,
— _
PSl] l PSI] Bridge PSl
ety - - =
Gate | LIA [LIA L1A
-way | —7 |
psl T RoBM | General
() Purpose
. ROBMS) Delta Computer

Figure 3. Total Swstem Environmant

3.1 Database Access Functions

Delta is based on the relational model and provides "relationally
complete® but pet "fully relational™ DBME functions according to
Codd's definition [Codd82]. The relational model was selected, for
(1) 1its compatibility with legle programming languages, (2) greater
freedom in tne design of internal schemas and processing algorithos
made possible by itz higher level of eabstractien, and (3) fewer
interactions with the host enabled by the set-based dnterface. The

Delta accessz language is based on relational algebra; reguests

Page 11

expressed in user-level query languages are compiled intoc the Delta
access language by the host. HRelational algebra has the expressive
power equivalent to the relational caleulus, and is easier to compile
into 1internal operations. Moreover, adding special operators such as
Pagrt™ and "set comparison™ is easy in a language based on relational
algebra. The Delta accesas language uses attribute-numbers instead of
attribute-names because it is designed for use with logie preogramming
language as the host language. Another difference between the Delta
access language and relational algebra 1s that it allows complex
conditions to be specified in econjunctive normal form in the selection
operator in order to reduce the mmber of operators. A list of the
primitives ealled Delta commands that are available in the Delta

access language has been provided in [ShibayamaBka].

Delfa provides the following access functions:
(1) Relationally complete access to relations
{2) Aggregate functions
(3) Data definition and updating
(4) Arithmetic operations for updating and in retrieval conditions
{5) Special eperators, such as "sort" and "set comparison”

(6) Support of null values

On the other hand, the following functions are not =upported in
the current system:
(1) Views
{2) Predefined requests

(3) Least-fixed-poin: cperaticns

Yiews are not included to reduce the load on Delta. Predefined
reguests are not supported because the anticipated f[requency of

repetitive requests does not seem to justify implementation of this

Page 12

function. Least-Fixed-point operation are very desirable in a logic
programming envircnment because they reduce the number of interactions

required; we may later include this function in Delta [YokotaHB4],
3.2 Database Controls

Delta supports the following database (access) control functions:
{1} Support of the (atomic) transaction concept
{2) Transaction concurrency centrol
(3) Data recovery
{(4) Data dictionary

(5) Special functions for database administrators (DRAs).

The transaction concept is essential to every DBM and DEMS. The
host ecan direct Delta to commit or abort a transaction at any time
during i't,a progress. M though 2 host pay issue multiple wupdate
requests in a transaction, the result is treated as if the transaction

were a single (atomic) operation,

Beecause Delta has to serve many PSIs sipul taneously, it should be
aple to process concurrent transactions. Delta automatically locks
and unlocks necessary relations so0 as to preserve their consistency.
The granularity of locks is & relation, although finer granularity may
be necessary for high throughput. It is fairly difficult to deaign
concurrency control algorithm using Finer granularity for DBEMs such as
Delta that have a functionally distributed architecture and
set~oriented basic operations, because fiper granularity must also be
supperted by recovery algorithm. 2 combination of deferred update and
short-term locking methods 45 applied to the data dictionary so as to

improve performance of transactions that inveolve dieticnary update.

Page 13

Data recovery is another function essential to every DEM and DBMS
in case of system or media failure. Delta rolls-back all transactions
in progress after a major failure. #l1 transactiona committed, or in
the process of being committed, are preserved. Moreover, back-up
dumps and magnetic tape logs can be used to restore database, If
roll-back processing falls due to destruction of magnetic disk
eontents. In thia case, roll-back processing is performed after

restore processing.

The data dictionary consists of schema information for database
relations, It is defined as a set of special relations whose
consistency with user-defined relaticons is preserved by Delta so that
hosts can look ther up just as they can normal relatiens, A host may
access the dictionary each time it acecesses a relation to determine
its ac&ema. It may temporarily preserve the current contents of the
dictionary in order to reduce interactions with IDelta and improve
overall performance, Thus, there could be schema information for the
same relation in both the host and Delta, and we have to make sure
this information 1z consistent. Beside the concurrency control
mentioned above, Delta attaches a kind of time-stamp to Schema
information to indicate the latest update; this time-stamp is checked

each time a host accesses a relation.

There are several special functions available for the convenience
of database adoinlstrators. The bulk loading and unloading faecility
using magnetic tapes is useful for exchanging data with cther sysatems
or efficiently inputting large amounts of data. This facllity can
also be used to restructure the database 30 as to improve performance.

Other examples of functions are the commands for storage management.

Page 14

Pelta does mot currently have some functions that may be found in
other systems:
{1} Security management
{2) Integrity control

(3) Support for the database schema design

It was decided to incorporate security management in hosts
because this funetion should be unified with the security functions of
P5I's coperating system, although it can be Limplemented easily on
either =side of the system. However, part of thia function may bDe
supported by Delta when the overall strategy for system security

management is decided upon.

The other two functions were excluded from Delta, since there
exist no fully-developed matured methods of implementing them. Some
ICOT researchers are studying integrity control mechanisms for logle
programming environment, and their methods will be applied to the PSI

sof tware that provides the interface to Delta.

3.3 System Supervising

In conventlional computer syatemas, the system supervising
funetiens are provided by the operating system rather than by the
DEMS. If a DBM is a back-end, tightly-coupled with its host, some of
the system =supervising functions may be incorporzted in the host's
operating system. However, these functions must be provided in DBM if
it i=2 an 1independent database server such as Delta, Delta's aystem
supervising funetions include the following funetions:

{1) System console {(Operator or DBEA interface)
(! Control of =ystem status
{3) Status report to host upon request

{4) Modifying parameters (size of the buffer area, eteo.)

pPage 15

{5) Maintenance of log tapes, etc.

{6} Failure detection and system reconfiguration (disconnecting
faulty equipment, etc.)

(7) Diagnosing faulty equipment

(8) Collection of statistical data for evaluation.

Most of these functions were designed and implemented especially for

Delta, although a few made uszse of existing facilities.

Functions for registering users and maintaining their records are
not supported, because Delta does not support security by itzelf, An
accounting function is probably necessary for some DBMs; Delta does
not need one because 1t 4is to be used in a closed research

environment.

4, Basic Processing Algorithms

Delta processing algorithms are described in this chapter. The
sequence of request processing is as follows. IP recelves a request
from a host and passes it to the CP. The CP compiles the request into
a sequence of internal operations, A compiled request consists mainly
of RDBE and HM subcommands, Then, CP controls the execution of the
compiled request by RDBE and HM. The path between IF and HM 1a used
to transfer tuples to and from host; the CP dees net process theo

directly.

4.1 Retrieval

Processing alporithms are best explained by some examples. For
readability, host requests are written in an SQL-1like syntax instead

of in the Delta access language, Some trivial cperations are omitted.

Example 1: simple selection

Pags 16

Request: Select A, D

from

R

where B>"10" and Bd=s "207

Compiled request: (modified for readability)

1:

2:

10:
11:

12:

13:

HM:
HM:
RDBE:
HM:
HOBE:
HM:
HM:

RDBE:

HM:
RDBE:
HH:

HM:

Temp! := R.B where (range ["107"<, <="207"])

allocate Temp2

Temp? := restrict (Templ, range [M107<¢{,<="20"])

allocate Temp3

Terpp3 := sort_ by tid (Temp2)

Temp4 := R.A where (tid in Temp3)

allocate TempS

Temp5 := restrict (Templ, equal_tid [Temp3])
/% this performs tid-join ®/

allocate Templ

Temph := sort_by_tid (Temp5)

allocate TempT7

Temp7 := transpose_to _tuple (Tempb, Temp3)

/% result in Temp7 #/

HM:

release Templ, Temp2, Temp3, Templ, Temp5, Tempd

® Data transfers between RDBE and HM are directed by HDBE.

For instance, RDBE {ssuves two HM subcommands,

start_stream_in {Templ) and start_stream_out (Temp2),

when it exeputes step 3. These subcommands do not appear

Page 17
in the compiled sequence, because they are automatically
issued by RDBE and CP is not involved.

In step 1, HM gets items of attribute B that may satisfly the
condition "™10"<B<=M20%" using clustering indices. Then, RDBE extracts
only those items that actually satisfy the condition (step 3). Hext,
HM4 pgets those items of attribute A that may correspond to the same
tuples as the result of the previous cperations (step &), and RDBE
extracts the exact items (step B). This operation is called a
tid-join because it resembles to 2 join. At this stage, the result is
obtained, but 1t is still aplit between two buffers although both are
sorted by tids. Thus, the fipal step is cooversion to the tuple

format.

Tn this example, steps 2, 4, T, 9, 11 simply involve just the
buffer alloecation. Different buffers are used for different data for
simplieity in this example, but buffers may be reused in actual
operations. If they are reused, some allocation steps shown here are
not necessary. ALl buffers except the bulffer containing the result
are released at or before the last step. Allecation and release of
buffers are not shown in the other examples because they are trivial

operations.

Steps 5 and 10 prepare for the subsequent ateps by sorting data.
They may be skipped 4if the result of previous operation does not
exceed a specific limit (GUEKBE or LE items), because they are already
sorted in previous steps or can be automatically sorted at the next

steps 1n such cases.

Page 18

In Delta operations, projections do not usually appear explicitly

in internal operations. There may be more than two attiributes in
relation R, but the internal operation 1s the same as above. Thus,
those attributes which are not cutput and are not conditioms are not

accessed in Delta.

Example 2: seml-join
Request: select A, B, C
from R
where C in
(select C
from i

where D = "gw)

Compiled reguest:

1: HM: Templ := 5.0 where {(egual ®d®)

21 RDBE: Temp? := restrict (Tempi, equal ["d7])

3: HM: Temp3 := 5.C where (tid in Temp2)

L: RDBE: Tempd := reatrict (Templ, equal tid [Temp2])
L HM: TempS := R.C where (equal Tempd)

b1 RDBE: Tempb := restriet (TempS5, equal [Tempil)

/% this performs semi-join %/
T: HM: TempT7 := R.A where (tid in Temph)
B: HM: Tempd := R.B where (tid in Tempt)

9: RDBE: Tempd restriot (Temp7, equal_tid [Temptl)

n

10: RODRE: TemplD := restrict (Tempd, equal_tid [Tempd])

11: HM: Templ1 := transpose_to_tuple (Tempd, Templd, Temph)

Page 19

in this example, several trivial operations (allocate, release,
and sort) are not shown. The semi-Jjoin can be performed by RIBE as a
restriction, with the condition being given in a stream. Note that

semi-join and tid-join are done by almeost identical operations 1n

Delta.

Example 3: Jjoin
Request: select H. A, H.B, 3.C
from R, 3

where H.A = 5.4

and 5.0 = maw
Compiled request:
13 HM: Templ := S.D where {equal "d")
2 RDBE: Temp? := restrict (Templ, egual "d"}
3: HM: Temp3 := S.A where (tid in Temp2)
y: RDBE: Templ := restrict (Temp3, equal_tid [Tepm2])

5: HM: Temp5 := R.A where (equal Templ)

b: ROBE: Temph

aw
1]

join (Tempd, Temp5, egual)

T: RDEE:; Temp] := Jjoin (TempS, Tempb, equal_tid)
/% tid-joln for result relatlion %/

B: HM: Templ := R.B where (tid in Teampb)

9: HM: Temp? := 5.C where (tid in Temph)

101 RDBE: Tempi0 := join (Templ, Tempb, egqual_tid)

11: RDBE: Templi := jdoin (Tempd, Tempt, egqual_tid)

12: HM: Tepmi2 := transpose_to_tuple {TempT, TemplOd, Templl)

The result of the join (step €) is an array of triplets (new_tid,
R's_tid, S's tid) and does not include the wvalues of R A or 3.4
because of hardware limitstions, Thus, [new_tid, R.A} := Jein

([R*s_tid, HR.4), [new_tid, R's_tid, 5's_tid], equal R's tid) must be

Page 20

done at atep 7. Steps 10 and 11 are tid-joins, but are a 1ittle

different from examples 1 and 2, because npew tids are attached,

4.2 Updating

There are three kinds of update operations in Delta: insert,

delete and update.

An update i3 basically performed by a combination

of delete and insert of necessary attributes. The example below shows

the basic of update operations.

Example 4: Updating
Request: update
set

where

R

A

B

Compiled request:

1: HM:
2t ROBE:
3: HM:
4: RDBE:
5: RDBE:
b: RDBE:

Tenpi
Temp2
Temp3
Tempd
Temps

Temph

A+ "an

lbﬂ

W
L1}

R.B where (equal "b")}

restrict (Templ, egual "b™)

e
n

= R.& where {tid in Temp2)

Ll

restriect (Temp3, Temp®, equal_tid)

add (Templ, ®an)

delete (Temp3, Temp?, equal tid)

/% Tempd := Temp3d = Temp® ®/

T: HM:

R.A :

= update pages corresponding to Temp3 by Tempb

/% R.A i= R.A - Temp2 %/

a: HM:

E.& :

= insert (H.A, Temps)

Selection of the qualified tuples is performed from step 1 to

step 4. Calculation of new values is docne in step 5 by RDBE. Actual

pdating takes place after these preparations. In steps 6 and 7, old

value items of attribute A are deleted from the database. MNew wvalue

Page 21

items are inserted in satep B.

When items are deleted from an attribute table, they are actually
erased f[rom the pages of the table. However, the items are inserted
in the overflow pages. Thus, newly inserted Ltems are not Iindexed and
are read as possible candidates for whatever conditions are specified
for subzeguent retrievala, Indices must be restructured 10 the
retrieval performance 1s degraded by these update operations. This
restructuring is ealled reclustering; it is performed automatically
by special system transactions whenever a specific trigger condition

i3 satiafied.

5. Implementation

Delta consists of an RDEM Supervisory and Processing (RSF)
subsystem, which takes charge of overall control; moniter and
operation processing, and a Hierarchical Memory (HM) subsystem, which
is responsible for storage, retrieval, and wpdating of relation data.
Each functional unit identified in chapter 3 is being implemented by a
sgparate piece of hardware, a= shown in Figure &, Delta i=z =
loosely=coupled, functionally=distributed multiprocessor. The RSP and
the HM are connected through a total of 11 channel interfaces. Flgure

& shows the specifications for the Delta systems.

5.1 RSP Subsystem Configuratien

The RSP subsystem consists of the CP ({(Control Proceaser), IP

(Interface Processor), MP (Maintenance Processor), and RE (Relational

Database Engine), each of which consists of hardware and software,

IEEE4BE

BUS

e
[

Page 22

HHA CHANNEL R

T INTERFACE j DISK CACHT
CF AR sl

Ty —

HP | HPHE
PL.1 HB

CONSOLEl (MR

LTA : LA Interface Adapter
LIAL: LIA Interface

ICRE: IC Bulk Hemory

HHA : HH Adapter

&=H : Sorter and Mergoer
HPNL: Monitor Panel

— MHCTL

HoHE)

HMETL: WM Control ler

{HY : Database Hemory Unit
SCU : Storage Control Unit
[OP ¢ 1/0 Processor

MHO : Moving Head Disk

Figure 4. Delta Hardware Configuration

(1} RSP subsysiem

{2) BH subsysiem

4 Controlicr

™ Configuration Final
of Hay, 1984 configueration
control Processor 1 1
Relational DR Engine 1 &
Interface Processor 1 1
Haintcnarce Processor 1 1
1 1
D0 Heaory Unit 16 HB 126 MB
Boving lead Dish 2.5 R :-c:.*unils; 2.5 GB X Bunits
Magnelic lape Unit 2 i 4

Figure 5. Deita system specifications

Page 23

£.1.1 RSP hardware configuration

Each unit basically consists of a 16-bii processor with a main
memory size either 512 KB or 1 ME. The RE is provided with dedicated
hardware for sorting and merging, and the CP is provided with a 15 MB
semiconductor disk storage for increasing memory capacity. CP's
control program temporarily stores the directory and other tables in
the semiconductor diak storage. The MP i=s connected to the Delta
system status monitoring display, the desk ceonscle, and the MIU for
collecting REP log information. Each HSP unit is conmected to the
others via three IEEE UBB buses. Each CP, IP, and MP unit is provided
with one HM adapter (HMA), which serves as interface hardware for the

HM, The RE is provided with an HMA for input and another for output,

(1) Relational database engine
The HE comprises of a sorter and a m@merger, which perforo
relational operaticns for pre-sorted results, Although various
kinds of sorting algorithms have been studied [Knuth73], a
two-way merge-sort algorithm has been adopted lor the sort, a
major component of the RE.

{a) Two-way merge-sort algorlthm
This algorithm rearranges 4input record values in either
ascending or descending order, An array of input records is
regarded as a collection of sorted arrays, each of which has a
length aof 1. Sorted arrays are merged in pairs so that the
length of each sorted array iz doubled at each sort stage. When
this operation is carried out in the plpeline processing
configuration, the use of the lﬂgzn—stage sorter enables & sort

output with 2 cyecle time of En+(ln52n]-1 [ToddTB] (n=number of

(b)

Page 24

records).

Configuration of the RE

The RE consists of a IN module, & sorter consisting of 12-stage
sorting cells, a merger, two HMAs, and the processor and RE
control programs, which controls the above units, Figure 6

shows the configuration of the RE.

RE gperations, based on relational algebra, =ort item
groupa consiating of attribute values and TIDs while
transferring them as a atream, perform relational operations
from the head of sort output, and output combinations of items

based on the results of the operation [SakaiBil.

The IN module transforms input stream data i1tem inte an
internal format suitable for the sorter and merger @ field
ordering, which replaces the head of each item to be sorted, and
data type transformation. The sorting cell is made of two FIFO
buffers, a comparator, and a multiplexer for merging. Bach FIFQ
buffer has a capaclty of 16 bytes at the first astage and 32K

bytes at the twelfth stage.

The merger consists of an operation =ection, and an output
cantrol section, The operation section comprises of a
comparater and two 64 FB memories having FIFO functieon, and
performs relational algebra operations by comparing two sorted
stream data. The output contrel section comprises of two 16 KB
buffers, two field-=ordering, field-selection and data-type
transformation circuits, =a selector and an output segquence
controller, This section performs field reordering and
selecting of an output data item, and adding a new TID te 1it,

and then transferring output data items to the HM via an HMA,

Page 25

P U

(512KB)

HH Adapter (IN) je——— HH (Channe!)

!

IN Hodule

0——; Sorting Cell 1
——— Sorting Cell 2

| Sorter
sorting Cell 12 | |

— Sorting Checker | |

1/0 BUS —]

$—— Herger |
!

/ et HM Adapter (QUT)} p=————2 HM (Channel)
Hemary bus

Figure 6. RE Configuration

£.1.2 RSF Software Configuration

Some pleces of software, such as the operating system and the
IEEE 488 bus driver, are common to IP, CF, and MP. The IEEE L88 bus
driver is used for inter-R3FP subsystem communicatiens and alse used

for the physieal level interface with the LAN Interface Adapter (LIA).

The following is a list of software functions assigned to the RSP

unita,

(1) IP

Page 26

{a} LAN interface control
(b) Delta command and data extraction from packel-typed data
(e) Parallel reception of command tree
A command tree consists of one or more Delta commands, and 1is
the unit in which any seguence of meaningful proecessing is
ecarried out. This software identifies and controls a command
tree for each transaction in the received packet data array.
(d) Data format conversion
When data i3 input from the host, it is provided each tuple with
a tuple identifier (TID). The TID is removed when data 1s sent
to the host.
(e} Data transfer with the HM
After the CP completes an fnstructlion execution that reserves a
buffer fer data transfer between the IP and the HM, the IF
performs data transfer with the HM.
(2) CP
{a) Transaction management
The CP is responsible for transaction execution management,
Delta command analysis, generation and execution of HM, RE and
IF subcommands, and Delta resource management.
{b) Dictlonary/directory management

Dietionary 1s used for the host user reference and directory is
used for the Delta command analysis, subcommand generation and
concurrency control. Dictiomary includes two meta relations, "
Felations™ relation and ®Attributes™ relationsz, bul directory
does not dinciule the unnecessary part of dictionary
information. IMetionary is stored im HM based on
attribute-based schema, but directory is stored in HM in speesial

data structures for the efficiency 1in look-up. The

Page 27

semiconductor disk storage in the CP stores the directery for
repeated use. If npecessary, the CP obtains directory pages from

the HM by directory-access subcommands.

{c) Concurrency control
Concurrency is controlled by locking the relations based on the
two=phase locking method. Relations to be locked during a
transaction can be expliecitly locked using a start-transaction
command, or they can be automatically locked befcre command-tree
execution. All the relations are unlocked at the end of a
transaction whether it is a normal or an abnormal termination.
(d) Recovery management
When an abort-transaction command Is received [rom the host
during command-tree execution or hardware failure in Delta and
media failure are detected, relations are restored in a status
before the transaction has been started.
{3) RE
{a) RE control

The RE software analyses subcommands from the CP, controls the
sequential operations of RE hardware and ocontrols 1/0 data

transfer with the HM.

(b} Relational cperation support

The RE sof tware performs arlithmetie operations that cannot be

proceased by the merger hardware.

(4) MP

{a)
{b)
{e)
{d)
{e)

Delta system status monitoring, and system configuration centrol
Delta system start-up and shut-down

Database loading and unloading

Operator command and message management

Statistical information collection

Page 28
5.2 HM Subsyatem Configuration

The HM subsystem consists of HM hardware and software deaigned to
efficiently manage the storing of large amount of data to and the
retrieving of data from storage arca, as lpstructed by the RSP

subsystem.
£.2.1 HM hardware configuraticn

In the finzl econfiguration, the HM hardware comprises of a
non=-volatile high speed Database Memory Unit {(DMU) having a memory
capacity of 128 MB, magnetic disk units having a maximum capacity of
20 GB, disk controllers, a 32-bit processor (named HM controller,
HMCTL), which controls HM execution, and magnetic tape subsystem for

system logging and database loading and unloading.
5.2,2 HM s=of tware configuration
HM software functions are listed below.

(1) EM subcommand processing
The fellowing processing 1= performed by H{ subcommands
specified by the RSP,

{a) Attribute definition and operation
This processing generates and deletes attribute definitions,
transpoaes tuples to attributes, and vice versa.

(b) Update proecessing
This processing inserts, deletes, and updates attributes.

(e} Clustering operation
Clustering tables are generated and updated in accordance with
the wvalue of &iiributes and TIDs by HM subcommands instructed
rom Lhe OF,

(d} Date transfer management

Fage 29

Stream data transfers between the HM and the RE, and packed data
between the HM and the IP or CP.

(e) RSP buffer management
R3F buffer inside the HM i3 reserved and released by HM

subcommands.

{2) Memory and MID space management
The data transfer of attributes and directory information is
performed between secondary storage and the DMU, and memory
resource 1s managed for storing such information.

(3) Data recovery processing
Data recovery of attributes information is performed by recovery

aubcommands from the CP.

Delta can be c¢lassified as a hardware-oriented DBM because it
incorporates 2 new piece of hardware in its kernel, and its processing
algorithms for primitive relational operations are totally different
from those of conventional DEMSs, However, some basic operations and
additional functions are implemented in software. We expect to learn
more about which functions to implement in hardware by evaluating

Delta in actual operation.

6. A Delta Performance Estimation

We noew consider an example selection query in S5QL form for a

Delta performance estimation :

SELECT a1,22,...,3n0
FROM A

WHERE ai IN [value list]

where A i3 a relation composed of 10 attributes, having 10000 tuples.

Fage 30

The al,a?, and soc on are the attributes among the 10 attributes. We

assume 10 Bytes for each attribute here.

The executlon time characteristic for selectivity according te an
estimation is shown in Figure 7. This figure assumes 2 high hit ratic
of disk cache in DMU, For certain range of =selectivity, there are
different deminating factors. For the selectivity range between 0.01
¢ and 1 £, the dominating factor is the dncreasing TID Jein time.
Buffer preperation in DMU 4is not so time-consuming, because the
intra-buffer data transfer in DMU is fairly fast compared with TID
Jjoins, For selectivity factors between 1 % and 10 %, the estimation
curve shows a plateau. In this area , the processing time is
dominated by the full TID joining. All contents of the attributes
should be seannd for TID joinm in this area. For the selectivity range
between 10 % and 100 %, along with the TID join in this time which
forms the plateau, tuple reconstraction time becomes influential. The

effect of tuple reconstruction rapidly becomes great.

This result, though 3till not sufficlently quantative, indicates
that the incorporation of a large capacity IMU is effective for a high
performance database machine. The effort to increase the hit ratioc by
the wise replacemnt algorithm is the key to effectively utilize the

DHU.

Page 31

Processing time (Hatlo)

A
1.0

ﬂt5‘

Tuple Selectivity

———————; Total processing time

————— + Tuple reconstruction time

—— = ——— ; TID join time (high hit ratio)
pata staging time (low hit ratio)

Figure 7. Estimated Delta Performance Characteristics

T. Conclusions

We have presented an overview of relational database machine
Delta. Part of 1its hardware, along with & GB of storage, was
installed at ICOT ip April 19B4, and has been used to debug and test
the ocontrcl software. The design of most of the eontrol software has
been finished and it is currently being tested. The remaining
hardware will be installed in December 1984, and we expect Delta to be

fully operational by Mareh 1985.

The functions deseribed here and the performance of the machine
will be tested im ICOT. Our goal is not just to build a good database
machiine, but to pave the way for future knowledge base machines. He
hope these tests will prove our most crucial decisien ecorrect: thatl

developing an RDBM is the first logical step toward a true knowledge

Page 32

base machine.

Acknowledgements

The authors express thelr appreciation to the Toshiba and Hitachil
researchers and engineers who have participated in the development of

Del ta.

REFERENCES

[BancilhonB82) F. Bancilhon et al., VERSO & Relational Back-End
Data Base Machine, Proc. of Int'l Workshop on Database Machines,
Aug. 1982,

[Chikayamaf3] Takashi Chikayama et al.; Fifth Generation EKernel
Language, Proc. of the Logic Programming Conference'83, Mar.
1583,.Tokyo Japan.

[CoddB2] E, F., Codd, Relational Database: A Practiczl Foundastion
for Productivity, Comm. of ACM, Feb., 1982,

[HsiaoB0] David E. Hsiao, Data Base Computers, in (ed.) M.C. Yovits,
Advances in Computers, Vol, 19, Academic Press 1980,

{H=iaof3] David E. Halaoc (ed.), Proc. of Int'l Workshop on Database
Machines, Aug. 1982, and also revised version : Advanced Database
Machine Arechitecture, Prentice-Hall, 1983,

[IEFEET9] Special Issus on Database Machines, IEEE Transactions of
Computers, Vol. c-28, June 1979,

[Knuth73] D. E. FKEnuth et al., Sorting and searching, The Art of
Computer Programming, wvol.3, Addison-Wesley Publishing Co., 1973.
[LorieT7] Raymond A. Lorie, Physical Integrity in a Large Segnented

Databasze, ACHM TODS, 2=-1, Mer. 1977.
[MurakamiB83] Kunio Murakami, et al., & FRelational Data DBase Machine:

First Step to Knowledge Base Machine, Proc. of 10th Symposium on

Fage 33

Computer Architecture, Stockhelm, 3weden, June 1983,

[SakalBi] Hiroshi Sakai, et al., Design and Implementation of the
Felational Database Engine, FProg. of Int'l Conf. on Fifth
Generation Computer Systems 1984, Nov. 1984, Tokyo Japan. (to
appear)

[Schweppe82] H. Schweppe et al., RDBM - A& Dedicated Multiprocessor
System for Data Base Management, FProc. of Int'l Workshop oo
Databa=e Machines, Aug. 1982.

[ShibayamaBla] Shigeki Shibayama, et al, A Relational Database Machine
with Large Semiconductor Disk and Hardware Relational Algebra
Processor, MNew Generation Computing, WVol.2, No. 2, June 1984,
Ohmsha, Ltd. and Springer-Verlag.

[ShibayamaB4b] Shigeki Shibayama, et al., GQuery Processing Flow on
RDBM Delta's Funetionally-Distributed Architecture, Proo. af Int'l
Conf. on Fifth Generation Computer Systems 1984, Nov. 1984,
Tokyo, Japan. (te appear)

[TaguchiBb] Akihito Taguchi, et al., INI: Internal WNetwork in ICOT
and its Future, Proc. of ICCC, Australia, Oet. 1984, (to appear)

[ToddT78] S. Todd, AMlgorithm and Hardware for a Merge Sort Using
Multiple Processor, IBM J. of Research and Development, Vol.22,
No.%, Sep. 19T78.

{YokotaHB4a] Haruo Yokota, et al., An Enhanced Inference Mechanism for
Generating Relational Algebra Queries, Proc. of 3rd ACM Symposium
on Principles of Database Systems, Apr. 1984, Waterloo, Canada.

[YokotaMi3] Minoru Yokota, et al., The Design and Implementation of a
Peraonal Seguential Inference Machine: P31, New Generation
Computing, Vol . 1, HNo. 2, 1563, Ohmsha, Ltd. and

Springer-Verlag.

