ICOT Technical Report: TR-087

TR(WT

Sequential Inference Muchine: SIM
Its Programming and Operating System

Toshio Yokor, Shunichi Uchida
and lcot Third Laboratory

Ociaber, (984

Alita Modiusai Bldg, 21F §3 46-31%0 -5

IGC}T =28 Mita 1=Chome Telex ICOT J32u84

Minato-ku Tokyo 108 Japan

—Iﬁstitute fof_ New Generation Computer Technology

SEQUENTIAL INFERENCE MACHINE: 5IM
ITS PROGRAMMING AND OPERATING SYSTEM

Toshio Yokoi, Shunizhi Uchida, and ICOT Third Laboratory

ICOT Hesearch Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

As the first major product of Japanese
FGCS (Fifth Generatien Computer 5ys-
tems) project, Personal Sequential Inference
Machine {(PST)} iz under developrent. The
whaole system including the seflware system
is called SIM. Here we describe the design of
the 5IM's programmiog system apd operat-
ing system SIMPOS, its major language ESP
(Extended Scli-contained Proleg), the devel-
cpment tosls, apd the history of research
and development.

The major research theme of SIMPOS
iz to develop a logic programming bazed
programmiog environment jrcluding system
Programs,

The basic design philosephy of SIMPOS
is to build a super perscpal computer with
database features and Japanese natural laz-
guage processing under a uniform frame-
work (lopic programminpg) based system
design {Yokoi o1 al. 1983a,b).

1 PREFACE

As the first major product of lapa-
nese FGOS project, 58IM is under develop-
ment. Here we deseribe the overall design of
SIMPOS, its major language ESP, develop-
ment toels, and the history of research apd
development.

The major SIMPOS research themes
sre Lo develop:

+ System programe in logic programming,

» A programiming envirenment for legic
programming.

518 is the pilot model of the FGCS
software development. It is a hkigh-
performance personal machine and will be

veed az the research tool for the middie stage
of the FGCS project.

SIMPOS has 5 basie design principles.
They are:

Uniform framework-based system design

A single uniform PROLOG-like logic
programming based framework covers all
of the machine architecture, language
sysiem, operating system, and program-
ming system.

Personal interactive system

We hope SIM will be cre kind of per-
tgonal and very highly interactive com-
puters similar Lo mapy kinds of super
personal computers,

Databaze features

PROL.OG has database facilities that
can easily conform to relational database
systems. We hope to construct A new
programmming system and a new operat-
ing system that fully uses the database
features.

-

Window features

In order to facilitate high Jeve] interac-
tion, SIM uses a hitmapped dizplay and

a painting device.
« Japanese language processing

All computers until now have been based
on Western cultures. This is a major
disadvantage for peoples of other cul-
tures when they want to use computers.
Everyone should be able to use com-
puters io his own tongue. So, the Japa-
nese should be able to use computers in
Japanese,

SIMP O3 consists of a programming sys-
tem (PS) and an operating system (05). 05
consists of a kernel, a supervisor, zod I/O
media subsystems. PS consists of subsys-
tems ealled experts, PS5 subsystems are con-
trolled by users, but there is a need to coor-
dinate the subsystems or processes. This
taszk is accomplished by the coordinator sub-
system.

All the ether subsystems are:

Window (OF),

File {O8),

Network (08),
Debugger/Interpreter (PS),
Editor/ Transducer (FS),
Library {F5).

2 DESCRIPTION LANGUAGE: ESP

2.1 Language Overview

SIMPOS iz written in a user program-
ming languape called ESP (Chikayama et
al, 1982} (Chiknyama 1984a). ESP is spe-
cially designed aud implemented for writing
SIMPOS, but is found to be useful alse for
writing various application programs, espe-
cially those requiring hierarchical knowledge
representatiol.

Almost all of the features of KLO, the

machine language of PSI, are directly avail-

able from ESP (Talkagiet al. 1983). As based
on 2 PROLOG-like exesution mechanism of

KL0, ESP paturaliy has many of the fea
tures of logic programming languages. The
important ones among them are the use
of unification in parameter passing and the
AND-OR tree-search mechanism based on
backtracking.

The main features of the ESP language,
except for those of logic programming lan-
guages, are:

» Objects with states,

« Object classes and inheritance mecha-
pizms, and

s Macro expansion.

See (Chiksyema 1984b} for further
details of the features of ESP.

2.2 Impiementation

Currently, all the object-oriented fea-
tures of ESP are implemented using features
of KLO. Programs written in ESP are com-
piled into KLO. Object-oriented calls are
translated into calls to a runtime subroutine,
which implements the mechanism., In this
way, such object-oriented calls are three to

[our times slower than usuzl predicate ealls
of KLO.

Implementing several built-in predi-
cates especially designed for speeding up the
execution of ESP are being planped. With
such firmware supports, the execution of
ohiect-ariented calls is expected to be only
slightly slower than usual KLO predicate
calls.

Anoller approach is-also taken for
epeeding up the execution, i.e., lutroducing
general source program level optimizations
{Sawamura et al. 1984).

3 OPERATING SYSTEM

The SIMPOS operaling system con-
cists of three layers: kernel, supervisor, and
1/0 media subsystems (Hattori and Yokol

1883) (Hattori et al, 1954a,d e} (Takagi ct al,
1854).

3.1 Kernel

The kermel manpages the hardware
resources to fill 2 gap belween the PSI
bardware and the supervizer (Kawakami
et al, 1%84). The processer manage
ment realizes multiple process eavironments,
the wemery management MBReges MOMCTY
space and perferms parbage collection, and
the I/O device management controis the
inpulfoutnut devices.

3.2 Supervisor

The supervisor provides the basic ex-
ecution facilities of object storages, process
interactions, and execution environments
(Hattori and Yokoi 1984c). Note that these
facilities can be extended and modified as a
user chooses.

A peool is a contaiper, which is also an
object, of cbjests of any ¢lass. A st and an
rray are examples of poolz. An ohicct can
he put into or taken frem a pool (Saito et
al, 1984),

A directory is a pool of ohjects which
are associated with a name. An object can
be bound and retrieved witl 2 pame in a
directory, Sizee a directory can contain
another directory as well, a tree of direc-
tories 1s formed, where an ehject is identified
with a pathname.

A stream is a pipe through which ob-
jects flow (Shimazu et al. 1984). Ap object
which is put 1oto ene end of a stream, will
be retrieved at the other end, When no ob-
Ject is in the stream, a retrieve operation is
suspended until some object 1s put into the
stream. A stream is used for syochromiza-
tion and communicatinn among processes.

A chanrel 1= defined on top of a stream
to allow message communicsiion among

processes. A message i3 sept to and received
from the channel. A port is a message
box for two-way communpication, being con-
nected to apother port with channels. A
message sent through the port will arrive at
the connected port Lo be received there,

A process execules a given profram,
which is an instance of a program class. The
main goal of the program is defined a3 an in-
stapce predicate, and the slots of a program
instance heold objects jocal to the program.

An execulion environment consists of a
program, a library, a world, and a universe
{Watanabe et al 1984}, They can be
referred o 2l any poinl of the pregram. A
worid is a sequence of directories, and each
process keeps one as its working world, A
universe is a system-wide directory tree.

3.3 [0 Media Subsystems

[/O wedia subsyslems manage the in-
terfaces with the onter worlds. This subsys-
tem consists of three subsystems: window,
file, and network,

3.3.1 Window Subsystem

The window subsystem supports high-
level man-machive interface of SIM {T=uji ot
al. 1984) (lima et al. 1984}, It supplies mul-
tiple logical displays {windows) ou a single
physical display and primitive Tunciions on
them. Olher functions like echoing or cursor
copirel are supported by other subsystems,
transducer and coordinator.

In the window subsyetem, windows con-
struct A hierarchy. The wost superior win-
dow iz the logical sereon, and vswal windows
are inferivr windows of the logical screen.
Eash windew may have inferior windows
{sub-windows) within it. For example, an
editor window has a comwaud sub-window,
a text sub-window, ele. A window is shown
as & rectangular area on the pbysical screen,
and sub-windows must be inside of its supe-

rior window. Windews can be overtapped on
the screen.

Each window is dedicated to one
process as its own display, and it serves asa
communication channel belween the process
and the uzer at the machine. Anoutput ona
window is displayed at an appropriate posi-
tion op the screen by the window subsystem.
On receiving an input {rom the keyboard,
the window subsystem decides which win-
dow, called the selected window, the input
should be sent to. The mouse, a pointing
device, can move anywhere on the dizplay
screen, and the window manager seads the
mouse click either to the selected window
or the background window, according to the
mouse position. The process reads keyboard
and mouse inputs through its window,

3.32.2 File Subsystem

The file subsyetem provides permanent
storage both for data and objects (Hatteri
and Yokoi 1984b) (Komatsu et zl. 1934).

A permanent storage of data (records)
is a file, which resides in a dizk veclume
and consists of dispersed disk pages. Three
types of files are available: binary files, table
(fixed length record) files, and heap (variable
lengsh record) files. A record is identified
with its stored position and/er its associated
key through an index file. A binder mech-
anism will be supported so that a virtual
file with mauy data and index files can be
construcled. A relatiopal database manage-
ment may be built on these facilities,

A permanent storzge of objects is an
instance file, where each object is stored as
at instance record. It 15 ome of the major
features of the file subsystem, which i1 not
provided by ordinary file systems on other
machines,

A directory file is a file which aszociates
an iostance record with a name. A per-
manent directory is a directory which has

a directory file as itz permanent storage.
When included io a permarnent directory, &
permanent object is stored as an instance
record in ap instance file and included in the
directory file with a pathoame. Therefore,
it can be restored even when the system is
rebooted.

3.3.3 Network Subsystem

The network subsystem provides three
types of interfaces to communicate with
other machines (Takayama and Hattorl
1984).

Ioter-machine communication facility
supports data transfer between cne SIM
with apother SIM or other different ma-
chines. The network subsystem define: the
classes node, socket, cable, and plug to
implement the communication.

Inter-process communication facility al-
lows two processes on different 5IM nodes to
commuricate with each other, just as if they
exist on the same nede. A remote channel
is defined to represent zn original ehanmnel
on the other node. A process can send a
message to the remote channel and another
process oo the remote nade can receive it
from the corresponding original channel,

Femote chjest operatien facility pro-
vides a weans of dezling with objects on
a remote node. A remote object on a lo-
cal node represents an object on the rewote
pode, aud can be manipulated jusi as an or-
dinary chjecl to operate on the original ob-
ject. The network subsystem will support
this facility to make SIMPOS to be a net-
work operating system,

4 PROGRAMMING SYSTEM

The programming system of SIMPOS
is a collection of expert processes. An ex-
pert process is o process which has zn in-
dependent comunication window (called
e_window) with the user. It performs the

special action upon the user’s request,

This view is different from the views
such that the programming system is a cal-
petion of dumb software tocls, mer is it a
collection of programs to support the pro-
gram production. Qur view frees us frem
the overhead of the controlling process to
manage the available tools or the informa
tion between the programs.

From the user's viewpeint, he can io-
vuke, control, and terminate any ecxpert
through the expert’s e_window. He need not
navigate the complicated proces: invecation
tree to accomplish his task. He need not
bother about the unexpected destruction of
hiz work through wrong pavigation.

4.1 Coordinatar

In SIMPOS, there is mo explicit su-
pervising process such as Shell in UNIX.
However, there is a work-behind process
named Ceoordinator. Coordinator itsell is
pot an expert process but a process that
manzges the et of experts (Kurokawa and
Tojo 1984).

As noted ahove, the nser may think that
he contrels the expert directly through the
wicdow, bui actually, coordinator helps the
uzer's eontrol via the window interface that
is the associated key command table of the
window.

The detalls of Coerdinator are found in
(Kurokawa 1984). The principal functions
of eoordinator are simply described below:

= Send a user’s key command through the
window 1o an expert,

s Create, delete, and activate an expert via
systemn Imenu,

« Get and manipulate special commands
from an expert, and

» Help communicaticns between experts via

the whiteboard.

‘I'he whiteboard is just like a black-
board where an expert puts a message to
another expert, who in turn picks up the
message by the user’s instruction.

The other way to solve thiz communica-
tion problem is to set a communication
ehannel with ancther expert. Dut, io this
caze, the chanpel should be set between the
experts before the uzer decides the partner
of the expert. It is mot easy to tell who
talks to who before communication becomes
DECREsary.

The ultimate solution in thiz line would
be to set a communication channe] between
any two experts, even though the cost be-
comes very high 23 the pumber of experts
grows. And still, a few problems remain.
The user may change the partner after he
ordered the expert 1o put the message. It
may difficult to denote both the partper and
the meszage using only the mouse click.

Using the whiteboard, we can sel wvir-
tyally complete communication channels be-
tween experts. The user can select any ex-
pert after he has ordered ope to put the mes-
sage. This operation will be realized with
ene mouse click,

Fach user has 2 directery to create ex-
perts. It contains the experts’ pames and
the program names Lo create experts. The
user can chanpe Lthe directory and the com-
mand table as he likes.

A user has his own directory which is
inherited from the system's commen direc-
tory, i.e., the standard set of experts.

An expert has its own set of key com-
mand table associated with its window.
Heowever, Coordinator permits the user to
change the key command table of the win-
dow only when that window accepts the
change key command tahle command {rom
the uzer.

This freedom i3 achieved at the least

cost of execution. This minimum overhead
and the maximum provisien of user contral
is the main achievement of Coordinator.

4.2 Debugmer/Loterpreter

This subsysiem interpreis programs
and provides ionformation concerning the
control flow of the programs. The basic
facilities of the Debugger/Interpreter sub-
evstem is similar to the debupping facility
of DEC-10 TROLOG (Dowen et ai. 1881},

wew Teatures aro:

s Procedure and clause bex coutrol Oow
maodel,

= Calls between interpretive and comnpiled
codes, and

« Multli-window user interface.

DEC-10 PROLOG uses Box Controf
Flow Model Tor its debugger. It comsiders
that each predicate is the debupging unit.
In thiz view, each elanze looks like a black-

=% and cannot be traced whether the
unification of its head or body fails. The
predicate call simply fails in both cases.
Howewer, it is often the case that the
clavse head 1s correctly selected, but the
Jdrefinition of the bedy is erroneous. When
the Procedure and Clavse Nox Contral Flow
Madel iz usierll it is possibie to che=k whether
unification of the head or that of the body
fuils {(Figure 1)

In 5TM, it is possible for ioterpretive
and compiled codes to mutually call each
other, However, Debugger canpotl trace in
the rompiled code. Debugper treats the in-
vocation of compiled cades just like a simple
built-in predicate invocation. If interpre-
tive codes are inveked from compiled codes,
there 1s oo way to pass the trace information
Lz the interpretive codes. In such a caze,
Debugger restarts tracing with oo trace in-
fermation.

5IM has a bitmapped display screen.
Debugger uses the window subsystem that

]'tlrr:n:-:h:ru

claunse

Hedo

i |
- | |

Mext * Miss Reda

Figure 1. Procedure 2ad Clouse
Baox Contrel Flow Maodel

for interpretive code

offers a multi-window user interface with the
mouce. A uwier can select one of the control
oplions at break poiots, look at ancestors or
spy poiztz, check Lthe values of siols, or see
the class definiticons using the library sub-
system. This information is shown in sub-
windows of Debugger and all the zelections
can be dope using the mouse click.

4.1 Editor end Transducer

Aun editor is a typical component of a
programming system and an indispensable
software tool in using 3 computer system.
Theough there can be editors to manipu-
late abstract siructures completely different
from iexts, here we limit our discussion to
the editorz which edil texts or data ex-
pressed in Lexts

Even texi expressions usually have
nested siructures and the editor for 5IM

{ealled Edips) is designed to manipulate
structured texts generaliy. But we do not
believe that there can be s general purpose
editor which is convenient for every struc-
ture. A pood general editor is one that is
convenient for a specific purpose and cap be
wsed for peoeral purposes even 1f Jess power-
ful. Under this criterion, Edips is designed
to be especially convenient for editing ESP
propgrams and can manipulate other stroc-
tures. Io addition, Edips has the followiog
features:

= Customizalion with macro defipition

» A small pumber of commands easy to
memorize

« Failsoft with many recovery environments

To make Edips general, we allow users
to defipe the syntax. Though other general
structure-editors ususlly use BNF, we do
not adopt it because usual editing opera-
tions are neither to trim a branch of
the synotax tree nor to traverse the tree.
Editing operations are more closely related
to the text expression of edited data. So
we adopted an operator precedence gram-
mar with user definable parenthezes. An
operater precedence grammar is more simple
and has better coarrespondence Lo the text
expression.

Every token iz the text expression of
cdited data is classified into six categories:
« Atom

+ Prefix operator

Infix operator

» Postfix operator
s Leltl parenthesis
» Right parenthesis

Each operator has a precedence. For edit-
lng purpose, however, too many precedence
levels should not be adopted, because
precedence imtroduces structures without
direct correspondence to the text structure.
As for an ESF editor, two or three levels are

necessary and sufficient. They are for:

e logical svmbols such as “-", =", %

i’ ro r
« function symbols such as “+47, *—"

o w o im

o

Il neceseary,

» prediczie symbols sueh as =<7, %"

P

will be added,

In addition to the operator precedence
grammar, we adopt the usual regular ex-
pressions for defining the Ltokens, The text,
which is a sequence of characters, is first
transformed to a segquence of iokens by
antomata and then parsed to a structure.
Thus the grammar iz twe-leveled. However,
since the both levels are very simple, it is
eacy to treat the grammar, but it has enough
expressive power to define the syntax of al-
most all the structured programming lan-
guages.

It 1z desirable that the parser and the
preily printer for the grammar can be used
by other programming tools such as com-
piler, interpreter and debugger. Therefore,
those tools are made a3 utilities (named the
transducer) separate from the editor. Thus
Edips consists of the editor kernel and the
transcducer.

4.4 Library

The library subsystem manages all the
classes and predicates on SIM, It controlz the
registration of classes, loading program files,
compiling, and building class objects by the
analysis of inheritance.

Each class has a class sowrce file, a
class template file, and a class object fle
en some sccondary storage. Class templates
and class objecis exist only in the maio
storage, bot are saved to and restored from
the secondary storags.

Clasz source files are text files coded

by the users. A class source file can have
just one class definition. Like source files,
template files and object files also have just
cne class information in each.

A class template is built from a siogle
scurce file. [t helds all the information
of that clasz except those from inheritance
analysis. The predicates of that clasz are
kept as inlerpretive codes when the template
i3 built., They are compiled when the
user requests. Afier the compilation, both
interpretive and compiled codes are kept.
Templates can be saved or restered before

compiling the predicates,

Class objecis are built from some elass
templates. [In a efass objeet, all the in-
heritances are arvalyzed and solved. It is an
exccutable image of an object oriented pro-
Eraum.

Another feature of the library subsys-
tem iz to manapge predicates. It contains
the features of referring to one predicate of
a class, iL.e, object oriented invocation, and
the invocation from compiled codes to inter-
pretive codes or the converse. This mecha-
nism is implemented by indireet references.
All the invocalion of predicates are dene via
indirect references. When some interpretive
codes are inveked, that indirect word points
the entry of the interpreter. This mech-
anism causes a uniform invecation scheme
even i both the interpretive and compiled
codes are mixed.

For object oriented invecation, it is
pecessary to find which method should he
invoked during the execution time. Here,
the library has to distinguish those predi-
cates that bave the same predicate name but
are defined in different classes. In the com-
piled codes, all the references are processed
and changed to the direct invocation of the
specific predicate, but in the interpretive
vodes, the litrary has to search the predi-
cates during the cxecutjon time.

The compiler is simply a snbroutine of
the library subsystem. It compiles a single
predicate from interpretive codes, This
process is done only in main storage. After
the compilation, library holds both inter-
pretive and comupiled codes. The user can
specify which code should be used for build-
ing up a new class chjeet. The template fle
15 sutomatically rebuilt alter the compila-
Lion.

4.5 Exceplion Hapdling and Help System

Generally =peaking, the exception is
one af the important concept in the software
system. For exzmple, the followings are
included in the exception: the various er-
rors such 2z hardware-detected zero divi-
sion, device-detected 10 errors, software-
detected errors, and the giobal exits in the
complicated nested procedure invocations,
and the various help Tacilities provided for
the user at his werk.

In the tradilionzl sysiem, those ex-
ceptions are not well treated. They are
handled at each subsystem znd/or system
level separately and independently.

In SIMPOS, the exception handling svs-
tem it provided throughout the all com-
poments and all the system levels. Our prin-
cipal target and the basic frame are as fol-
lows:

s Uniform framewark

An exception is generated and signalled
by a pari of the software/hardware.
This action-taking part is called detee-
for. The signalled exception must be
hapdled by some process with & excep-
tion handling program. This processing
part is called handler.

o No limitation for exception registrations

Tn the evoiving system such as SIMP OS5,
it cannot be forecasted how many kinds
of exceplicns are used. Instead, it

should be provided the way to register
any number of exceplions with as fine
classification as possible. The multiple
inheritance mechanism should support
the above Larget,

s Flexible exception handling

The same exceplicn has the various
meanings depending on the environment
when and bow it occurs. And each oc-
currence must be handled differently ac-
cording to the meaning.

The detecter-handler scheme is power-
ful in thiz senze of the zontext mecha-
nism. Detector need not concern about
the environment. And bandler also need
ot coocern about the context, oaly if
the choice of the handler is performed
depending on the context.

The implementation is done as below.

There are two basic classes: event and
situation. Event iz the pame of the px-
ception in gemeral. There are two basic
subclasses in event: error and help. Error
has several subclasses such as warning, {a-
tal error, and oormal error. Help has also
several subclasses such as help in general,
and keyboard help and so on. Situation is
the name of the coutext for the exception
handling. The handler for the possible (or
dangerous} excepticns are set in situation.
Situation has a stack like structure where
each program can set the necessary handlers
for ils process and delete the useless hand
lers when the process normally ends,

One of the problem in this scleme is
Lhat there iz a case when the several hapd-
lers can be invoked for a single event. The
situation bas a mechanism to sort the hand-
lers aud 2pply them just in the mode of non-
determinism.

The help facilities are investizated in
the broadest senmse. Mot only the conven-
tional en-line manual lookup facility but

also the completion mechanism for keyboard
or the limited zpell correction are included.

The global exit such as cateh-throw or
errset in Lisp language is also realized with
the vee of this event-situation mechanism.
Alse a command-loop which is commen in
the application programs is provided.

5 S0OFTWARE DEVELOPMENT TOOLS
5.1 ESP Cross System

All of SIMP O3S s written in ESP. Since
they were desigoed and coded before the
bardware had become available, we needed
a cross system of ESP for software develop-
ment.

Mozt of the programs are wrillen in
FPROLOG and scme are in PASCAL cn a
main-frame machine, They are:

= ESP interpreter,

= ESP cruss compiler (lo KLO),
» KLO cross compiler,

KLO cross linkage editor, and

Miscellaneous utility programs fer in-
specting database of the linkape editor.

3.2 Ruptjme Support System

The object-oriented calling mechanism
of ESP is realized by translating them
iolo calls to runtime subroutines by the
ESP compiler. The runtime support sys-
tem of ESP is a set of such runtime sub-
routines, The runtime support system is
written directly in KL.O and provides the fol-
lowing features;

s Bane object-oriented calling mechanism
of ESP.

¢ Mpemonimupemonic t{racing of object-
oricoted calls. It is based on the proce-
dure box control flow model and various
interactive contral [=kip, redo, ete) are
possible.

+ lnspection of object slot values in mne-
maonic form.

All the input and output required for
the above features are implemented using
the built-in “read_console” and “display_
conscle” predicates which utilize the I/O
devices of the conszole processor. The console
processor is provided primarily for hardware
and frmware debugping and was ready with
the PPSI hardware. Thus, mpemonic debug-
ring of ESP prograins was made pessible al-
maost directly after the firmware of PSI bad
been completed.

When the firmware exccution support
far FSP gets ready, it will be responsible for
the basie calling mechanism. The runtime
suppart will be a package for treating trace
exreptions generated by the firmware.

5.3 'L

When debugging of SIMPOS first
Leean, programe to be debugged must be
compiled and linked completely on the
pain-frame machine, transferred to a8 mini
computer through a network, and then
iozded dewn Lo PSL The network transier
sud down-loading took almost unbearably
long time.

VWhen several parts of the kerpel and
the superviser of SIMPOS pot ready, a
rather flexible initial pregram loader was
implemented in ESP. Using this IPL,
wodules of programs to be debugged are
reparately compiled, partially linked and
stored in flexible disks (Ueda et al. 1984)
Leading from the flexible disk and the final
lirtage are done by the IPL on FEI itzell.
This sped up debugzing ronsiderably.

5.4 System Tracer

The system tracer is a program also
written in BSP. It runs as a separale process
and traces the execution of other processes
it the mnemonic form. The system tracer

was implemented lor bracing KLO level ex
ccution while the runtime support system
can only trace DSP-level execution (Sato et
al. 1984).

Currently, an effort to unify these two
debugging tools, the runtime support system
and the system tracer, is in progress.

8 BRIEF HISTORY

The design of SIMPOS was begun b
ICOT in the fall of 1882, and the func-
tional specification was prepared at the end
of fizenl 1682, o June 1983, a soltware
group of about 20 members, excluding the
ICOT mermbers, was established for the
detailed fupctionzl specification and im-
plementation. After several modifieaticns,
the class specification was finally completed
at the end of £ical 1983

in parsilel with these activities, the re
quirement specifications of ESP were dis-
cussed and finalized by the summer of 1983,
The lagguage design and implementation of
ESF was then started. The ESP support
system i& now eperational on a development
system. It includes an ESP cress compiler,
ap ESP cross linker, and an ESP simulator.
SIMPOS bes been coded in ESP from the
class specifications and cross-debugged oca
the ESP simulator since October 1983,

The first P31 was produced in December
1983, and firmware debugging was up at the
end of February 1954, P31 was made avail-
able tu the software group in March 1984,
and other PSIs later.

Single-process environment supports
were wade available in April and enabled
simple program debugging on PSL In May,
the IPL became operational, so as to
allow linking programs directly on PSL
With multiple-process enviroament facilities
which were supported in June, each subsys-
tem was able io be fully debugzed. The
major parts of the 1/O media systems wore

operstional in September. The program-
ming system is now under debugging on PSL

The preliminary version of SIMPOS
will be reedy for internal uses in Qctober,
and the first version of SIMPOS will be com-
pleted at the end of the current fiscal year.

7 COMCLUSION

About 40 guys from ICOT, Mitsubishi
Electric Co., Ltd., NEC Corp., Oki Electric
Industry Co., Ltd., Matsushita Eleciric
Industrial Co., Lid., and Sharp Co., Ltd.
are engaged in the development of SIMFPOS.
Their effort kas made clear the powerfuiness
and generality of logic programming. The
current status of SIMPOS will be shown in
the demoustration at the conference hall of
PG54 and ICOT.

Improvements and enhancements of
SIMPOS will be continued in parallel with
other research activities apd SIM will grow
into amain component inthe infra-siructure
of this project.

REFERENCES
Bowen, . L., Byrd, L., Pereira, F. C. N,
Pt!“ﬂil‘ﬂ., I.l- hi-, \vl.ﬂ‘l!lil.j D! H!- D- DEC!FS'
tem-10 FHOLOG User's Manual. Dept. AL,
Univ. of Edinburgh, p. 101, 1883,

Chikayamsa, T., Taksgi, 5., Sakal, K.
Persanal Sequential Inference Machine FSI
- Ttz Language System -~ FProceedings of
The 27th souual conference of Information
Frocessing Society of Japan, 1983 Also
in ICOT Technical Memerandum TM-0022,
1983,

Chikayama, . ESP Heferenmce Mapusl
1007 Tecknical Heport TH-G44, 189545,

Chikayvama, T. Ugigque Features of E3F.
Interpationa! Conference on Firth Genpera-
tion Computer Systems 1984 Also in [COT
Techntcal Memerandum TM-0055, 1984b

Hattori, T., Yokoi, T. Basic Conztructs of
the SIM Operating System. New Generation
Computing, vol. 1 mo. 1, pp.B1-85, 1883
Also in ICOT Technical Memorandum Th-
{18, 1983,

Hattori, T., Tsuji, J., Yokei, T. SIMFPOS:
Ar Operatiog System for a Personal Prelog
Machine PSL ICOT Technizal Repert TR-
055, 1884a.

Mattori, T., Yokoi, T. The Concepts and
Facilities of SIMPOS File Subsystem. ICOT
Technical Report TR-059, 1584h.

Hattori, T., Yokei, T. The Concepts and
Facilities of SIMPOS Supervisor. [COT
Technical Report TR-058, 1984c.

Iattori, T., Kuroknws, T., Sakni, K., Tsuji,
1., Chikayama, T., Takag, S., Yokei, T. Az
Operating System for Seguential Inference
Machine PSI. ICOT Techrical Memoran-
dum TM-00835, 1954d and ICOT Technical
Memorapdum TM-0061, 1954 (in Japanese).

Mattor, T., Tsuji, J., Uchida, 5., Yokoi,
T. Overview of SIMPOS Operating System.
Froceedings of The 29th annual conference
of Information Froceseing Society of Japan,
4T-1, 1984e (in Japancse)

lima, ¥., Nzkazawa, 0., Enomete, 5., Tsuji,
J. Windnw Subzystem of SIMPOS. Proceed-
ings of The 29th annval conference of Infor-
mation Frocessing Society of Japan, 4E-G,
1984 (In Japanese).

Kawakami, T., Ueda, N., Morie, M., Hattor,
T. Hesource Management of SIMPOS, Pro-
ceedings of The 29th annua! conference of
Ipformation Processing Society of Japan,
4E-2, 1984 (In Japanese).

Komatsu, M., Maoe, T., Kenagaya, A,
Hattord, T. File Subsystem of SIMPOS. Pro-
ceedings of The 291h awuual conference of
Inforiaation Frocessing Society of Japarg,
4F-8, 1584 (ln Japanesc).

Kurokawn, T., Teje, 3. Coordinater - a
kerme! of TPersonal Sequential Inference Ma-
¢hine (PSI). ICOT Technical Repert TR-
061, 1984.

Saito, S., Watanabe, H., Shimau, II,
Yoshida, N., Hattori, T. Execution Manage-
ment of SIMPOS - Pool —. Proceedings of
The 26th annual conference of Information
Procossing Society of Japan, 4E-4, 1984 {In
Japaness).

Sato, Y., Watanabe, ., Hori, A., Ueda, N,
Chikayama, T. System Tracer of SIMPOS.
Proceedings of The 20th annual conference
of Information Processing Society of Japan,
4E-10, 1984 (In Japanese).

Sawamura, 1., Takeshima, 5., Kato, A.
PROLOG Source-Level Optimizer: A Cat-
alogwe of Optimization Metheds, 1COT
Tochnical Repert TR-047, 1984 (in Japa-
neze).

Shimazu, H., Yoshida, N., Saito, 5.,
Watannbe, M., Mattori, 'I'. Exccution Man-
arcment of SIMPOS - Process and Stream -
Proceedings of The 25th annual conference
of Tafermaticn Frocessing Society of Japan,
4F-3, 1984 (In Japarese).

Takagi, 5., Chikayama, T., Hatteri, T.,
Tsuji, J., Yokei, T., Uchids, 5., Kurokawa,
T., Sakai, K. Overall Design of SIMPOS.
FProceedings of Second Internaticnal Logic
FProrramming Conlerence, 1984 Also in
ICOT Technical Heport TR-057, 1984,

Takaei, S., Chikayama, T., Yokota, M.,
Nattori, T. lntroduction of Extended Con-
trol Structures for Froleg. FProceedings of
The 26th aanual conference of Information
Processing Society of Japan, 4D-11, 1933 (In
Japanese),

Takayama, Y., Datterd, T. Network Subsys-
tem of SIMPQ3, Proceedings of The 25th
annual conference of Information Processing
Sueiety of Japan, 4E-7, 1984 (In Japanese).

Tsuji, J., Kurckaws, T., Toje, 5., Tima,
Y., Nakaiawa, 0., Enomoete, 5. Dialogue
Mapagement in the Personal Seguential
luferepee Machine {PS1). 1COT Technical
Feport TR-D46, 1984,

Ueda, N., Teojo, 8., Kurokawa, T. IFL
Scheme of SIMPOS. Froceedings of The
26th anpual conference of luformation Proe-
essing Socicty of Japan, 4E-9, 1954 (Io Jap-
anese).

Watanahe, M., Shimszu, H., Yoshida, N.,
Saite, S., Hatteri, T. Execution Manage-
ment of SIMPDS - Warld -. Preceedings of
The 29:h annual conference of Information
Frocessing Society of Japan, 4E-5, 1984 {In
Japanese).

Yokol, T., Taguchi, A., Kurokawa, T.,
Oattor, T., Tsuji, J., Sakai, K. Structures
and Design Principles of the Operating S¥s-
tem for the Fersonal Sequential Inferenmce
Machine {SIM). Pruceedings of The 26th
annual conference of Information Processing
Society of Japan, 6D-8, 1983a (lo Japanese).

Yokol, T. Taguehi, A., Kurokawa, T,
Hettord, T., U'suji, J., Sakai, K. Structures of
an Operating System on a Logie Frogram-
ming Languzge. Proceedings of The 26th
aconal conference of Information Processing
Socicty of Japan, 6D-7, 1982b (In Japanese).

