ICOT Technical Report: TR-076

TR-O76

MANDALA: A LOGIC BASED KNOWLEDGE
PROGRAMMING SYSTEM
by
Koichi Furukawa., Akikazu Takeuchs,
Susumu Kunifuji, Hideki Yasukawa, Masaru Ohki
(1COT)
Kazunori Ueda
(NEC Corporation)

August, 1984

E1COT. 1984

Mita Kokusai Bldg. 21F {03) 456-3191--5

|(:C] I 4-28 Mita 1-Chome Telex ICOT J32964
Minate-ku Tokye 108 Japan

Institute for New Generation Computer Technology

MANDALA: A LOGIC BASED KNOWLEDGE PROGRAMMING SYSTEM

Koichl Furukawa, Akikasu Takeuchi, Susumu Kunifuji, Hideki Yasukaws, Masaro Obld, Karunori Ueda!

ICOT Research Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

Mandala s a programming aystem aimed for devsl-
oping knowledge information processing systems in logic
programming framewerk. It is pot eniy a knowledge
programming syitem but alse & basia for & kmowledge
base mapagement system. The nature of this duality
comes directly from two-facedness of logie program-
ming, that is, both procedural and declarative interpreta-
tioz. lInstesd of conventiomal sequential execution en-
virenment, Mandala provides users with paraliel execution
¢b¥ironment, that i, Mandala allows users to describe
multiple-processes. On this paraliel execution eovirom-
ment, cooperative problem solving systems caz be com-
stfucted, in whick more than one problem solvers caf
be active in paraflel. Moreover, Mandala realizes object
oriented Programming uting a process mechanism jn KL,
thus achiewing Lo makhipilate dynamically changing states,
Objects 1o Mandala eap be seen a8 problem solvars which
bave inference engines and knowledge base, It i possible
far users to define a specific inference engine of tome ob-
Jjecta. Some experimental studies have been done to eax-
emplify its expressive power and Rexibility

1 INTRODUCTION

Knowledge representation is a major challenge for re-
seareh in artificisl intelligence. Human beings pestess a
wide variety of kpowiedge that, so far, no language or
system thal has beer developed ia capable of adequately
representing itx entire range. As i3 the case of informa-
tica processing research in geoeral, there i3 & construclive
aspect alse in artificial inteiligence research: it repeats the
process of develaping and testing a language or system.
bz that sense, knowiedge programming languages and =ys-
tems have been rapidly gaining attention as teels for de-
veloping knowledge representation systems. Examples in-
clude LOOFPS (Bobrow and Stefic 1933), KEE (Kehier
and Clemenson 19583), STROBE [Smith 1%84) and GLISF
(Novak 1583).

Sizee complex relalions between objects play & basic
roie in knowledge, it is mandatory that a knmowledge rep-
resentation language have the capability to express and
magipulate these relations. This basically requires list
proeessing, a fumetion for which LISP has long been
used. All languages listed above uze LISF a5 their bass
language, thereby previding emvironmenis which allew

{ C&C Systems Research Laboratories
MNEC Corporstion
Kawasald, Japan

object-, data-, and rule-oriented programming, beside
other sophisticated techniques. Howewer, these systema
need distinet mechanisms to fealize such advanced pro-
pramming functions as mentioned above and therefore
the language siructures as well as system structures are
quite complex. Tt might be worth o name them as PLS1
in knowledge programming lanpuages, which means that
they are pot quite well refined lanpuapes/systems

In addition Lo those programming functions, the func.
tions required for knowledge reprasentation are krowledge
base mansgement capabilitien, including consistency check-
ing, and inference using incomplete knowledge, Ameong
the rystems aimed at realizing these funetions are MRS
(Genesersth et al. 1930) and KRYFTON (Brachman cf
al. 1983). These are both based cn the use of predicate
lopic. This may be said to indieate that predicate logic is
specifically suited to such problems.

v have been desipning a knowledge programming
language/system Mandala based on logic programming.
Ity major characteristic s that it realizes both advooced
programming feature azd kvowledge base management
feature in & single framewark, which iz a direct reliaction
al the r.‘_.‘-'ijm'h'i'ﬁL_'F of double n:a.l]i]jg.'i al Horn elpuses pro=
cedural readings apd deciarative readings. That is, we
may say that Mandala i3 more like & knowledge program-
ming system in lerms of pracedural readings, while it is
more like a knowledge base mazagement system in terms
of declarative readings.

Furthermore, mais functlons in these two features
correapond to principal concepts in logic pregramming;
namely, object oriented programming corresponds to
siream programming in Coencurrent Frolog (Bercafier
we call it CP) (Shapire 1982(a)), rule oriented pro-
gramming to clagse-wise programming in Pure Prolog
{hereafier we call it PF) and data oriested program-
ming to data flow synchropization mechapism iz CF.
Conceraing on knowledge baze management {eature, the
entire mechanism itsell corresponds to meta program-
ming feature in logic programming languages by regard-
ing kaowledge described by a set of Horn clauses 1o he
objeet leve]l programs. Alao, the peonsisteney check can
be dope by usicg PP interpreier which performs He o
clauses deduction (a3 a theorem prover). There are furibe:
possibilities to realize inductive inference as wel] 23 pon
monotonic reasoning in a logic programming framework

(Mirachi et al. 1984(a)), (Kitakami et al. 1984}

Angther aim of Mapdala it to incorperate paral
lelisrn both in problem deseription and in execution
The ultimate poal of the Fifth Generation Cormnputer
Svstema Froject is Lo develop & hiphly parallel com-
puter for knowledge information processiog. To achieve
the goal, we need a proper tool for extracting a large
amount of paralielism from application problems related
te knowledge information processing. Since Mandala sup-
poris object oriented programming and also is written in
KL1 (Furulmwa et al. 1984) (whick iz a logic program-
ming language with stream-AND-parallelisam like CP and
will run on a Parallel Inference Machine [PIM], it should
be one of Lthe best suited languapges for thal purpose

In this paper, Chapter I explains the basic com-
ponents of Mandala, Chapter 3 discuszes knowledge
programming aspects in Mandala. Chapter 4 describes
knowledge management jzsues. And the final chapter
provide: a summary of this paper and future work.

2 BASIC COMFONENTS AND LINKS OF MANDALA

There are two besic components of Mandala: unit
worlds and instaoces. Each insiance iz associated with
one unit werld Logically a unit werld represents a set
of axioms and an instance represents a query handler far
the associated unit world. An instance receives thecrem:
from other instances and tries to prove them {rom a set of
axioms stored in the sasociated unic werld. In Mandala, it
is geaerally possible for a user to define a proef procedure
for an instance associsted with some unit world, Query
handlers can be regarded as receiving queries and trying
to anrwer them from the kuowledge in the associated unit
world. In a knowledge representation system, uanit worlds
represent static eptities sueh as declarative krowledge and
they may be used as components for creating a mere com-
plex world, As contrasted with unit worlds, instances rep-
resent dyoamic entities such as actor-like objects, which
can hold local states and can receive, send and process
messages. ln Mandala, instances can bake actions in paral-
lel. Furthermere, they are used to implement knowledge
baze managers io knowledge representalion sysiems.

[n the curreot tmplementation, unit worlds are com-
posed of sets of PP and/ar CP clauses, and instances are
realized by CF processes, where the term process means a
ehain of goal reductions initiated by a given goal [Takeuchi
and Furukawa 1983). Unit worlds and instanees ara il-
lustrated by crlinders and circles respectively (Fig. 1).

T

-
] /—\
/
| !
[a) Ynit Horld {8) Instance

Fig.1 Graphic representation of basic consiructs

The four basic links used in Mandala, instance_of,

is.a, part_of and manager_ of, are defined and their logicai
meznings are described as follows

2.1 instanee of link

ArD ipstance_of link relates a unit world to an instance,
If an instance J 15 conmected to a unit world U by an
ipetanee of link, J 15 called an iastamee of U, which 18
indicated by an undulating line, as illustrated in Fig. 2.
As decribed above, a unit world and an instance eopnected
by this basic link are logically seen a2 a set of axioms and
a prover {query handler) for the theory formed by the set
of axioms. If an ipstapce receives a query, it tries to solve
it based on & set of axioms stored in the assoeciated unit
world. DBased cn the procedural interpretation of lagic
program, this can be seen thai a ser of clawses which
specifies the behavior and the preperty of an instance is
defized in the unit world as a program and the instance
execates the program for some input. However, the poiot
here s that several imstapces can be conpected to the
1ame urit world anpd they cam execute the pregram for
their own input queries in parallel. This gives & basis for
ohject oriented programming in Mandala, which is further
described in the ehapter 3.

i inziencs_of
¢

1

"\"i-_.r A

Fig.2 instance af link

2.2 lo,n link

An fs.a hink, establizhed between unit worlds, repre-
sents a conceptual hierarchical relation between them, Far
exampie, il unit world U2 15 a specializaticn af unit world
U1, UZ je_a U1, and U2 iz connected to Ul by solid line, as
shown in Fig. 3. Legically a set of uwnit worlds connected
linearly by is_a links forme a theory. [n this sense, if a unit
world iy connected to the other unit worids by iz a links,
the unit world represents only a fragment of the theories,

U2

-

L

LJ it A

Fig.2 is_a link

So-called property inberitance between concepioal
entities 13 autemated in this framework (Goldberg avd
Hobson 1983). Unlike other object-oriented systems,
Mandals implements property inheritance by crealing a

world for message processing. That is, if an instance [ails
to process 4 message (query) by any axioms stored in the
unit world connected 1o the instaace by instapceof link,
Manpdala gets a higher-level uait world conmected to the
uzit world by an is_a lick, cembines the two inte 3 new
world and tries to process the message there, aad repeals
this process until it will sueceed. If an instance fails to
process a message in ail inherited unit worlds, precessing
the message is failed, Also, & basic mechanism for han-
dling muitiple inheritance is provided.

2.3 part,of link

A part.of link iz used to defioe a composite instance
having lewer level instances as its parts, As shown in
Fig. 4, this link extends between unit worlds in 3 whole-
te-part direction [Considering {ts name, the lipk should
have a pari-bo-whole direction, but io the flgure it iz
shown as having the opposite direction, reflecting the ac-
eess path of informaticn). The partof link also connects
corresponding instances. In this respect, it differs from an
is.a link since po fs.a link exists between ihe inatances.
A part.of link has mets-logical meaning that some theary
refers to other itheory as data objects. Note that these
twa kinds of pert.of links have different roles. While a
part.ef link between unit worlds (indicated by o broken
line) represents general facts, such that the eyes are part
of the face, a partof link betweena instances {indiested
by a sig-zag line) represents a specialized situaticn, such
tkat a particular face has itz own eyes a3 its parts. This
diflerence is reflected ip implementation methods; that
1s, a partaf link between unit worlds is represented by
tuch an assertien stored in the vnit world cerrespond-
ing to the whole that says “(Local¥ame.Part¥orld)
part_of YooleWorld® whete LocalName, Part¥orld and
TioleWorld are a local ideatifier of a part, & pame of a
part unit world and & name of & whele vnit world respec-
tively. However, 5 pariof link between instances is estab-
lished by a eommunication channel between them,

o
—_ —— e
T il L

RS
J 7 .
[b]

'-r," sarr_nf g
PG WL T o P S
R ot

Fig.4 part_of link

A part of lisk between unit worlds is traced when
creating a composite instance in order to find what are
ity components, and instances to be used as the parts are
created at the same time. Since local names for parta
represent Lheir roles in a eomposite, they are focal oot
composite rather than global in the eptire system.

1.4 manager.of link

A manager.of link connects an instance to a wait
world ae does an instance_of link, but instances conbected
by a manager.of links play an ertirely different role. One
magager.of link is attached to each unit world, (indicated

by a double lize), as showe o Fig. 5. Hewever one in-
stapce can be connected to more than one wnit worids by
manager.of links. A3 instance connested to 3 wmib world
by a magager.of link manages Lke unit world. Sueh anim-
stance iz called a manager. The functions of a manager io-
clude modifying axioms stored in a unit world (i.e., 2 set of
PP or CP clauses or ...} and geoerating or eliminating in-
stances balonging to the unit world. Note that & manager
jtsell iz eonnected to some unit world by an instance.of
link and its functions are described in the unit world (Fig
&). Theze functions are activated when managers receive
mestages Tem other instances.

F_,-—--h
IRI5ANCH :___ J
() T
oy ~
:I sxnager _2° rana s G
'L wrage_ol
o _'.J_|.-‘_ -
— -
L |
L

Fig.5 manager_of link Fig.6 manager instance

The relation between a unit world O and the uwnit
world M whose instadce manages the unit world O is
analogous to the relation betwesn object and meta theory,
sioee the unit world M describes the knowledge necessary
to manage the unit world ©. Based on this object-meta
hierarchy, assimilation/acquisitien of object knowledge
ean be performed by a manager. This legically natural
implementation of koowledge assimilation/ arquisition will
be described in the chapter 4.

A method of amalgamating object-lavel and meta-
level processing bas been proposed by Bowen & Kowalski
[Bewen and Kowalski 1981) and implemented in Prolog
oy Mivachi et al. (Miyachi et al 1984(h)). This
method employs a precedure called demo which checks the
provabllity of a Prolag program considered as o theorem.
demo is & predicate having four arpuments, Le., & sed of
axioms, a goal, a coatrol and & procf tree. It tries to
demonstrate that a certain goal i3 derived from a given
et of axioms under a given ceatrsl and getz & proof Lree
az & result.

We have expanded demo into a predicate named
simulate Lo check the provability ef CF programs {Furukawa
1884). Simulate, which itael! is written in CF, 13 aleo the
core of the Mandala processing system.

3 KNOWLEDGE FROGRAMMING IS5UE

In the prewious chapter, we have iptroduced basic
components of Masdala and described the logical inter-
pretation of them. O knowledge pregramming, the most
impertant feature is its expressive power. Mandala basi-
cally inherits its expressive power from its base [angaage
KLl. Since provers (guery handlers}) can be active in
parallel and ¢an send mesanges each other, thiz gives Lhe
basie framewark for distributed problem solving, where
many problem solvers cooperate to solve one big prob-

lem. In fact, each prover can be seen a3 ap actor which
sulve: a part of a big problem usiog its knowledge and ex-
changes information with other provers. The communicat-
ing distributed problem salvers can provide powerful basis
for problem solving. Inference procedures of provers as-
secisted with different unit worlds may not be the same,
beeause a user can define his own infersnce procedures for
some provers. An inference procedure of a prover depends
on its associated unit world. Examples of inference pro-
cedures and unit worlds are:

A et of axloms

PF program

CP program

First order predicates
Eguation system

Infertoce procedure
PP interpreter
CP mnterpreter

| First arder prover
Term rewriliﬁ'g s¥stem

A3 already mentioned, generaliy s prover is a proofl
sitem for a unit worid based on some infetence proce-
dure. However, like procedural interpretation of Prolog,
several pragmatic interpretation of provers are possibie.
The mest general interpretation is the view of regard-
ing provers as actors. Mandala realizes this general ac-
tor as & prover which iz a CP interpreter. The more
special pragmatic interpretation is possible to cther kinds
of provers. For example, Prolog interpreter can he seen
as an rule inference engine by regarding Hern clasuses as
rules, It is quite important for & problem solving sysiem to
provide several kinds of inference mechanisms. Combining
the parallel inference mechanism achieved by distributed
provers and the variety of user-defined inference systems,
Mandala provides powerful framework for constructing a
large problem solving system.

In the following sections, the basic implementation
scheme of Mandala constructs are presested. o the first
section, the implementation of itetances, the basia of the
parallel inference, will be given, and the peneral view
to consider instances to be acters will be explained. In
the second seetion, as an example of inference systems,
the rule inference engine, which is a PP interpreter that
manipelates cerlainty factors and returns proof tree, will
be presented. In the last section, a programmicg eam-
virorment for manipulating instances interactively will he
presented.

3.1 Instances

In this section we show the represeztation of unit
worlds and instances in CP. It is assumed that readers
are familiar with CP (Shapire 1983(a)).

A unit world is represented as a named set of axioms,
A name of a unit world is global ideatiBer which can be
uaed Lo refer the wnit world from other unit worlds and
also from all instances. A syntectie form of 3 unit warld
is as follows:

“unit world oame>(<aziomg>).

<unit vorld name>(<aziom,>).

Information eoncerning f5_a and part.of illustrated in
chapter 2 iz placed in a unit world as axioms. An instance
i3 an active object, which ean hold local states and can
rend and receive messages. An instance is implemented by
a perpetual process which takes local states as arguments.
Io other words, an instance is realised as a chain of goal
reductions. A goal always takes the form:

ingtance{<pame>, <input stream?, <world:)

where mame i1 an identifier of the instance and input
siream I3 & stream of messages received by the instance.
The third argument, wvorld, conceptually represents a set
of axioms contained in the unit world whick is associated
with the instance. The second and third arguments are
always ured as read only, As mentiened sbove, axioms
contained in world are CF program, PP program, First
erder predicates, equation system and 2a an, The fallow-
ing is a CP program that selves the above goal,

instance(Naze, [Wessage | Izput]. Worldl:-
slmulate(Naze, Message, World, NewWorld),
izstance(Name, Input?, Wew¥orld?).
instance{Na=e, [], ¥World).

The first clause describes the case in which there iz at
least one message in the second argument, ioput StTean.
In this case, an instance salves the message uting the set
of axioms in the sssociated unit werld, which specified
in the third argument, by simelate predicate. simulace
predicate returns a pew set of axioms to the fourth arpy-
ment after solving the message. The second goal, recursive
call to lostance, i3 activaied when the NesWorld will be
fixed and tries to selve subsequent messages. The second
clause deseribes the case in which the 1nput stream be-
comes empiy. Io this case, an instapee terminates, In
the abave program, the slmulate predicate can be seen
as a prover. User can define his own procf procedure for
an instapce. Different prool procsdures are realized by
different programs for the simulate predicate. Helow,
the program of the simulate predicate which sclves CF
programs (Shapiro 1984) are shown [We show simplified
gimulate program in which the frst and fourth argument
are omitted because they are irrelavant hera)

slmulate(tzue, World).
slmalate((A, B), World) :-
simulate(A, World), simulatelE, World).
slmilate (A, World) :- systezs(Al | calllA).
simnliszald, Werld) :- clauses(A, Cs, Werld) |
gimulate_resolva(A, Cs%, B, WTorld),
eioulata (B, Worldl.
glEulate_resolval{l, [C|CSs], B, World) :-
sloulate_unify{a, C, G, B),
eimulate{G?, World) | true.
eizulate_resolve(A, [C|Cs]. B, Warld):-
Elmelate_Tesclve(A, Cg?, B. World) | true.
simulate_usify{n, (A:-(G|E)), G, B}.
elmulato unify{h, (A:-B), true, B).
Slmalate-uniiy{A, A, true, trua},

In the program, given a goal and a world, the claueas
predicate relurns the axioms which can solve the given

goal, and the call predicate solves the goal grven as an ar-
pument. Another example of the program of the imulate
predicate is shown in section 3.2. Users can defpe his owa
ciculate predicate as a unit world. Which defipitions
of the simulate predieate should be used for az instance
must be specified at the Lime of instacce creation

Each imgtanee iz assoctated with a unit werld by
iastaoee of link. Sush unit worlds are used as a
template for creation of jnstances. Information eozcern-
ing instance of, part.of and manager_ef links illustrated in
chapter 2 is placed in €world> at the time of instance crea-
tien. In genersl, more than one instance can be created
frem = single unit werld, and they share the koowledge
in the urit world. lodividual instances, bowever, are not
identical with each other even if they are created from the
same unit world. This difference ameng instances comes
from their histories of messages received and processed.
The third argument, <vorld>, of instapes predicate is
used to keep states of individual instances reficcting the
histories. Specifically, <werld> comtains noi ooly axioms
in the umit world, but aiso axioms which bave been added
to or deleted from the wnit world in the course of message
processing.

The actual simulate predicate ia mere complicated
than shown above, because it solves the so-called property
izheritance. Since the unit world talen as an argument
of sipmlate predicate may cnly represent @ fragment of
@ theory, simulate predicate must soive a goal by ex-
pazding ax available warld thraugh iz a links when s goal
can Dot be solved under the curreat world. The follow-
ing s more specific description of actions taken by simu-
late predicate: When the simulate predicale receives a
goal (a message), it fArst tries to solve the goal using the
axioms stered in the unit world associated with the in-
stames (the unit world which is connected ta the insiance
by sostance.of link). IF it fails, it extracts an axiom in
the form of Name 1s.a ¥. from the curreat world and iries
to solve the goal using the template upit world + W If
cisulate predicate falls agaiz, it tries to sclve the goal
by Further expanding the world by tracing is.a relation.
Generally, elmulate searches & tree, the root of which i3
the template unit werid of the ipstance and consists of
unit worlds connected via fs.a relations, depth Grat, from
lefl 1o nght, for & eombination of unit worlds whick can
solve the goal,

If Goal is add(c) or delete(C) [which means addi-
tion or deletion of an axiom C, reapectiveiy], simulate
predicate updates a worid and returns & new world at the
fourth argument.

Note that, since added axioms are stored in the ¥orld
which iz kept as an argument of eimulaze predicate,
an instance can keep logical variables, which are skared
with other izstapces, without loss of the properly share.
Therefore channel variabies to other instances can be kept
it 3 world so that an instance can send messages to other
instances by ipstantiating thess chanme] variables to mes-
$Apes,

The creatics of an instapce from a wpit world is per-
formed by the manager of the unit world, Generally, a

-
| Te=Lly
| rebatisas

ipstznoe_of

k y sizulate predlezte
e whichk <oed rule Loference

Fig.T Rule inference engine

tmanager itsell is alse ereatad from the unit world Manager
or & woit world which has Mazager sbove the fs_a hierar-
ehy. In the fellowing, the part of the definition of Nanager
which is relevant to the sreation of & pew instance is shown
(it is written in CP).

Manager [create{Name, Goals, InfProc) i -
Me mansger-of UpitWerld k
ingtantiate{Unit¥orld Naze, DU} |
instance(Name, [1mit | Goalel DE):IntPrec).

This axiom is inveked when the received message
iz create{Nama, Goals,InfProc), which indicates crea-
tion of a new inatance with inference procedure InfFroc.
When & manager, an instance of the wnit world Mazager,
receives this message, the manager creates a new world by
the tnetantiate predicate and invokes 2 new goal which
represents the new instance. InfProc attached to the goal
spacifies the inference procedure {the program of sdlmulate
predicate) used by ihis instanee goal. At the time of in-
siance aciivabion, a message 1nit is given for the purpose
of initializaticn. If the instance is a compesite inftapee
and has parts, the 1nit message is used for automatic
creation of the parts.

3.2 Nule Inference

Az s slready shown by the recent researches (Clark
and McCabe 1982) [Shapire 1983(b)), by regzrding clauses
and top-down proof procedure as inference rules and in-
ference procedure respectively, logic programming can
be alsa seen as rule-ariented programming. 1o this
semze, Mandala alze provides rule-ariented programming
without intredueing additional computational mechapism.
Howewer, in practice, we need mechanism to handie a cer-
tainty factor and to extract a proof trec. In this section,
we show the CF program of rule inference engine, which is
more elaborated program of simolate predicate presented
in the previous section [simulate program Lhal solves PF

program).

In Fig.7, an instance which performs az a rule io-
ference engine is shown. In the figure, the unit world stores
individual family relations as data and inference rules,
which are represented as Prolog clauses. The instance of
this wnit world has rule-inference gimulate predicate, iz
program of which is shown below, and perform 2z & ruic
inference engine.

The examples of the contents of the unit world is
shown below,

folavga (father (domdom, damdam) | tTua, 507 .
felause (mother (demdon, toston) , tTue, 30) .
felauge(father (damdas, disdis), true,BO) .
folauge (mother (damdas tastam), true,40).
fzlause(father (dekeden dandas) true,20).
felause{mother (dekeden, tokatan) , trus, TO) .
prother (X,Y) - father(X,F),father(Y.F) X\=Y.
brother(X,¥Y) :- mother (X M), mother(Y,). X\=Y.

parent{X, Y] i~ father(X ¥).
parent(X.Y) = mother(X,Y).
ancestor (X, ¥} - parent(X,Y).

ancestor (X,Y) - parent(X,), ancestor{Z,Y).

where felauvse(F Q. N) represents a Proleg clavse P i -
§ with certainty factor N {eertainty factor is a number
between 0 and 100). All other clauses such as brother,

parent and ancestor precicates are regarded as having
certainty factor 100,

When simulate predicate receives a goal (a mes-
sage), it solves the goal by invoking the CP program
prove (Goal, [],Tr,Tr.caae). The answer, which is a
list of all solutiens, is returned te the Afth argument a3 a
stream. Dwuring the solution process, simulate predicate
creates many child processes, each of which corresponds to
2 process starching alternative sclutions, These proceases
tovoke goals of the form, clauses(Goal, List, World), in or-
der o get rules and data that can be unified with the goal
Geal they need to solve.

In the following, the CF definition of the rule in-
feremee sizulate predicate s shown {again irrelevant ar-
guments are omitted).

Eimulate (Goal Forld) :=-
prove{Goal, [],Tree,Tree, Proofs, Yorld) |
show.strea=(Proals?) .

prove (A, [1, (A<=} 100) << [100],
Tres, [ITres], Werld) :-
syatem(A)l & call{A) | true.
prove (A, [(C,TC<<X) [D], ({A<=] /10a)<<[10a],
Tree,Chan, World) :=
systes(A) & call(A) |
prove(C, D, TC<<X, Iree,Chan, Yorld).
prove({A B,C).D,(TA & TE}<<[XIY],
Tros,Chan, Warld) =
provefh,K [{{B, C}, TB<<Y) D],
TA<<[X] ,Tree,Chan Yorld) .
prove{(A,B).D, (T4 & TB)<<[X,Y],
Tres, Chan, Werld) :-
prove{i, [{B, TB<<[Y]) D], TACC[X],
Iree,Chan, Weorld).
provelh,C,ETresa, Trae, Chan, World) :-
clayses(A, Clanmas, Yorld) |
try.sach(Clauses A, C BETres, Troe, Chan, Yorld) .

try-each(ll - aia. o, 1. Warla).
try-each([{AQ:-B)<<FIR] .A.C.57,T,Chan, Yorld) :-
COpFIA+C+ET+T Al=Ci+8T1+TL) &
AO=K1 & ST1={{AD <= TB)/CF<<[EF1} |
prove (B, [(cf{F . CFL . CF) . Tcf<<Xel} ICL]),
TB<<CF1,T1,Chani ,Yorld),
try_aaek{R A, C 87 T, Chan2 World)
merga(Ctanl?, Chan2? Chan) .
try-each([.|Clauses] A, C.8,7,Chan, Yorld) :-
otherwiese |
try-oach(Clauses A,C,B,T,Chan, Forld).

The program i based on the two papers (Clark and
MeCabe 1982) and [Shapire 1983(b)). The maiz com-
ponents of the program are two CP programs, prove and
iry-each. prove 13 & G-ary predicate.

provTe {Goal,S%ack, SubIres, TTee, Chacnel , Forld)

The predicate prove solves the given goal Goal im
Yorlid and returns all the solutions to the fifth argument
Charvrel in the form of stream of proel trees, Stack is
used as 4 control stack. BubTres and Tree are used to
keep a partially obtained proof tree. A general form of &
proef tree iz as follows.

Froof Tree == (F <= 5T1 X S5T2 k ...
or .
(true<=) /100

where §TL, 8§T2, ... , ETm are all proof trees and CF
is a certaipty factor of the inference deriving P. Delow an
example of & proof tree i shown when the given goal is
anceetor (dozdon, XJ.

& ETon}/CF

{apcegtor {deadon dipdin) <=
(parent(domdon damdar) <=
{father (dopdon, dandam) <=(true<=} / 100}
S50}
/50 &
{ancestor (dasdam, dipdim) <=
(parent (dasdam, dizdim) <=
(father (damdam dipdim)<=(truec=z}f100)
/80)
il
S8}
/40

This procf tree can be read:

The goal ancestor (domdom, dimdid) iz derived with
the certainty factor 40 from two subgeals, parent(
domdoz, damdan) and ancestor (damdam. dimdim), using
the second clause of the ancestoer program. Each of

two subgoals are derived with the certaigty factor 50
and B0 respectively, and so on

3.3 Programming Eovironment

Copsidering Mcondela ss a knowledge programming
syastem, it iz desirable to develop a powerful program-
ming environment to facilitate interactive program devel-
opment and debugging. Besides the functions te manipu-
late unit worlds, the programming environment should

N
_J‘—O

7 |

| |

\
| n-mru | E "= -—l _‘___,/

'\. N I

— f
[!

L=y T imarnoel)
7owimamel L g IRAT

A S

Fig 8 The programming envirdLment

provide users functions te manipulate instances such as
menitoricg the histery of the behavior of each instance,
updating the local state of each imstence and chang-
ing the eammunication channel netwerk ameng imstances
dynamically. It is also important for-users to e such
functions interactiveiy. In the follewing, the experimen-
tal implementation of the programining environment is
described,

The basic configuration of the programming environ-
ment i3 bated on the multiple window manager (Shapire
and Takeuchi 1983), which mapages the outputs of concur-
rent processes by using the multiple windows associated
with eseh of them. The fanction: describad balow ara
added te it for the purpose of managing instances |

(a) ereating an imstamee and the window sssociated with
it

(b) mradifying the local state of an instance

(¢} changing the communication network of instances

(d) distribuling mesiages to instances

The multiple window manager plays a rele of the vaer
interface in programmieg environment, and keeps pairs
of the names and the input chanzels of all the instances
ereated by it. The multiple window manager accepts the
messages to perform all the functions listed above in el
dition io distributing ihe mesaages to instances. All the
inputs and outputs of an instance are displayed onto the
screen of the window associated with it, and recorded in
the window as the histery of it. It is able toc moniter the
history of the behavior of an instanee by monitoring the
window asaociated with it. Tt is also able to keep tracks of
the history of the behavior of an instance by using tes=ion
manager mode of the multiple window manager.

Io Mandala, the muitiple window manager is defned
by the axioms stored in the unit worid ws like other
knowiedge, and the configuration ef the programming en-
vironment realized by the ¥ ia shown in Fig. 8

The unit world ¥m holds the SF pregram we as showa

below, The first argument of the predicate vm is the input
message stieam to the ¥z, and the second argument i1 a
list of pairs of the name of an metanee ang the output
channel to the window asscciated with the instance. The
meszages to the instance are also sept to the instance
thraugh this channel

Te{wmf[{Clase, create (Name, (X0, Y0, ¥ H)}) | Input],
ListOfIChan) © -
gend (Class, cTeate(Nazme, InCh, Outth),
Ligt0fChat Hewligelflhan) |
window(([snew{¥ame) |In} , InCh, Dutlh?),
{{Xo,¥o ¥, 0} Y0, (C,C,C,C1), Name) ,
wz{Input?, [(Wama, In) |NeslistOfChan]ll.
¥u{wm{[{Name, adit) | Input] , List0fChan) -
find_precess(Naze, ListDIChan,
[shos(Name), edit|In] ListOfChani) |
wr(Izputl?, [(Nane, IR JL1stOfChan1])).
Yo{vz([(Name get.chan{Chan)) Izput] ,List0fchan) : -
find.process(Name Li8t0ICEan,
In.Ligt0ICRani) |
wo{Input?, [(Hame,Chapl) |ListCiChani]),
merge (Chant?, Chan?, Ind).
foiwvn([{¥ame Meg) | Imput] ListOrChan) =
send (Name Msg, Lisv0iChaz, NerList0IChan) |
w={Izput? NewlListDfChan}}.

0o reseiving a (Class, create (Name, (X0, Y0, ¥ H}))
meszage, the ¥2 eresles an ibstance named Name of the
unit world Class by sending a create(Naze , InCh JutcCh)
message to the manager of the unit world Class. In
thiz caze, the deficition of Manager listed in section 3.1
is modified in order to bandle the cutput channel of an
izstacee. The output chaneel is held in & loeal state of
the instapee Wame, and its voloe is initially a diference list
Out (0usCh, DutCh), j.e. an uninstantiated sireamm.

Thep, the windew process associated with the in-
stance i created and the window is displayed to the user
terminal according to the parameter {(X0,Y0,¥,B), where
the X0 and YO specifies the loeation of the windew and
the ¥ and ¥ specifies the size of Lhe window. This window
process has the same name as the instance, e, Name, and
holds the input and ocutpul chaooel of the lnstanse. All
the inputs to the instance and the cutputs of the instance
are displayed to the screen of the windew through these
two channels, and are kept is the window as text. The
izputs to the instance are sent from the kayboard through
the InCh, and the outputs of it are sent to the window
process associated with it threugh the DutCh by using
the predicates show and show-gtream of the unit world
Tartancs, which i3 the highest-level unit world of ail wnit
worlds along is 2 hierarchy. The predicate show(X} sends
the output ¥ and the predicate show_stream{L] sends the
¢lements of a siream through the ountput channel by in-
stantiating the output channel variable of an instance.

If the ¥m receives a (Naze,edit) message, it tries to
find the input channe! Tn of Lhe window process associated
with the instance Naswe by the predicate find procese
deflued io the ¥a, Theo the window precess enters ibc
session mapager mode, sm mode fer short, by the message

[N v
=)

[+
/i

al

Hilndew1 hu.ﬂ

l/‘ln-uuﬂ

O=C

Fig.9 Creation of chanoel connection

N “'““ \J

edit. In sm mode, the window process becomes az editor
ef the history of the instance, i.e. ihe window serolls up
and down the screen to see all the text displayed to the
windew. The message ezit causes the window process
to exit from the sm mode and return back to the permal
windew manager mode,

If the W= receives a (Naze,get_chan(Chaz)) mes-
sages, it tries to And the input chanpel In of the window
process associated with the instanee Kame as shown in Fig.
% (a). Then the chapael Chaz given by a user and the
newly created channel Chani are merged into In as shown
in Fig. 9 (b).

The channel Chanl is uzed to send messages from
Yo to the window process, that is, the messages are sent
through the channel Cuanl and In (see Fig. 9 {b)). And
the messages are sent to the instance Name unless a mes-
tage is the query to the window process itself.

The channel connection between the instance Nama
and the other instance Hazei is created by the given chan-
nel Chae as shown in Fig.9{b). The channel Chaz is used
to send messages from the instance Namel to the window
process aszociated with the instance Name and the instanee
Waze jtaell. As a result, 3 pew communication chanmel
between two instances Name and Namel s created dynami-
cally.

Il & message, say (Name Message), iz mot the query
for Wm, 1t is regarded as the message to the instance
Name. At first, the message i1 sent to the window
process asseciated with the instance Name, The window
process displays the message and sends it to the instance
transparently,

The medification of the corrent local world of an
mstance is done by the predicate add, delets and podily
of the unit world Instance. Thesze predicates are used
te add, delete, or modily the axioms in the current local
world of an instance.

The sereen output of the example execution of ¥m

Cly meeatel countes, T, ¥

Tt Lasclslf) s anew
fo laanfahl Lioup

|1z eaiz ir ampw !
sespancelet, [wnew T, TH i7 moedfyiataie|X) atatel18,
| mumpesd |I L] .
L eounier [nssance_of Class !)

uunur is_3 Sieple Objesi, i ahow

L ¥ EruE | [T] |

| lear, deleceazaiel 11 kana |
g idelete! ptatai TI1ATI0kal’ !
amun, (deleteistaieiX]1ar:=l |
gamw, | srarelTisesmal X1 1rue I

SHMATIT = = = Tl

Fig.10 The example of screen output

12 shown 1o Fig. 10, The window labeled Class iz as-
sociated with the manager Class and the window jabeled
cownter 15 associaled with the mapager of the uonit
world counter which iz created by Class. The meszage
createl{counter,X.Y) appeared in the window Class in-
dizates the creation of the manager of counter, Mote that
messages preceded by |: are input messages and other
messeges are outpute of instances,

The window counter iz now in the sm meode by edit
meesage. The prompt -- Bm -- within the |label af the
countar window indicates that the window is in the sm
mode.

The window labeled 21 i3 assoeiated with the instanee
of counter which iz created by the manager of counter.
The modification of the unit clause stace(X) i: done by
the messape modify(state(X) stata(100])) a3 shown in
the c1 window.

4 KNOWLEDGE BASE MANAGEMENT ISSUES

The basic functions of a knowledge base manage-
ment system ineluds knewledge representetion, knowledge
utilization and koowledge acquisition. Since the basis of
knowledge representatjon iz izcluded in the batic functions
af Mandala, bere, we show how the funetiont af knowledge
utilization and knowledge acquisition are achieved.

4.1 Enowledpe base search

Koowledge utilization depends oo ao effective acarch
strategy for the knowledge base. Therefore, we focus our
discussion on the knowledge base search function.

In Mandala, a upit of knowledge is represented by a
unit world, Such a unit world may be regarded as a rela-
tion table in a relational database. To retrieve information
cxisting in a unit world, it i3 necessary Lo have a likbrarian
that searches for & specific unit world. Such librarian can
be embodied as an instance of the unit world, That is, if
we assume a unit world to be ao item of knowiedge, we
¢an regard an instance connected by an instance_of link as

a librarian that searches the knowledge base, rather than
a5 al ipstapce represented by the unit world, The concept
of a librarian explained bere s an anether interpretation
of an instance which is explained 32 a prover in chapter
2.

A librarian dedicated to the knowledge base ran
periodically update the knowledge bate. The updated
knowiedpe is held by the librarian itaelf, while the original
¥knowledge base remains unchacged. This functicn can
be used to implement hypothetical reasoning and can be
further expanded to place different hypotheses in several
librarians, thereby making it possible to deal with such
problems as assuming many ueit werelds at the same lime
and determining whick hypothesis is mest [ikely. In
MYCIN (Shortiiffe 1576), for example, the hkelihood of as-
suming an infections disease i3 enmputed lor ail infections
diseases and several by potheses are selected as conclusions
in descending order of the degree of their likelihood. This
may be said to be a similar problem. Local updating of
the knowledge base can be implemented by a change in
the state of the librarian iteelf. Mote that this differs from
global updating, which iz performed by the knowledge
baze mansger. Giobal updatiog actually rewrites the upit
worid; it k2s & muck greater ;pfluence on the system as a
whale, and requires strict checking, This problem will be
addressed in the following section.

4.2 Knowledge base management and knowledge assimila-
tien

There are different aspeeta of knowledge acquisttion
for knowledge base mansgement, byt from the standpeoint
af canformity with a loge pregramming languare, we will
focus on assimilation problem {Bowen and Kowalski 1281},
(Miyachi et al. 1884(k)). The purpese of assimilstion is to
acquire kpewledge while, at the sames time, ensuring that
it iz free from logieal sontradictions and redundaneies.

We implemesoted 3 kpowledge assimilation program
which manages tonsistency and eliminates redundancies
in ordinary sequential Prolog (Mivachi et sl 1984[b])
The program employs the approach of dividing konwledge
into pemiive knoowiedge, which provides apecific facta
eopenrning individeal jnstaneess, apd negative knowiedpe,
which provides conditions to be satizfied by such specific
facts. Megative knowledge iz checked when new positive
knowledge it being acquired. This program incorporates
an extension of the desze predicate mentioned in chap
ter 2. However, it wasz found that the knowledge as-
similaticn program using the exteaded danc predicate was
not guite practical io terms of execution eficicncy, 15
it s mecessary te demonsirate that any new knowledpe
acguired is consistent with all negative knowledpe, the
execution time required i3 preportional to the amount
of pegative knowledge. Besides, the execution time [or
redundancy elitnination is propertional to the amount of
pasitive knewledge, since the algorithm fer redundancy
elimmination checks each unilt of positive knewledge Tor

redundancy.

We found that it is pessible to implemest & more
efficient algoritbm iz Mandala. As for consisteney

_________ ¥ -rl_ s -
. Lo O
: T s
g i e S n
£ g '_,f ~
— = - |
- M — 1]
—_— d
i . A
" hh__q —— e _: -
i h,,_h‘__“‘,.,_?-.
|I "\:\-\.‘“ L
o e
T
| R
— !
& d_/
e
a_wacid

Fig.1! The knowledge assimilation sysiem

checking, segmentation of positive koowledge and nega-
tive kaowledge permics reducing the amourt of negative
knowisdge to he cherkad when asquiring a unil of positive
knowledge. Furthermore, the consislency checking can be
dome 1o parailel in two levels: checking oo different cega-
tive elanses, and alse ehecking on each oegative elause
tHirakawa of al. 1953).

For redundancy elimination, it it possible to jode-
pendently check the redundancy of each uait of knowledge
within a limited scope and later eliminate all wnits af
kpowledge found 1o be redundant. Suppesc shat a graph
fermed by imolication relatiens (=) has no cloted loop
aod tkat P aod @ are iodepesdently shown to be redus-
doant Trom koowiedge base T. The redundancy of P, for
exampie, iz demonstrated by the derivaticn of P from T-F.
iiowever, &s we assumed the absence of a loop of Impliat
relaticns, it is impossitie that @ is used for provipg P and,
al the same time, that F is used for proving Q@ Io such
case, therefore, 1t is poszible to eliminate redusdancy by
the parailel algnrithm referred Lo abeve. {As ao example
in whick the abave conditions are not satisfied, consider
Lbe set of formuias A, B, A=H, B=A.) This technique can
alzo b applied w Prelog or CF programs which generally
do not fall izte an endless loop, because they have £o loop
of implication relations.

Fig.11 roughly illustrates how 3 knowledpe assimila-
tion program if implemented in Mandala. As can be seex
from the figure, the knowledge base management program,
Manager. iv expanded 1o have an assimilater as a part.
The assmilator itsell has twe modules, contradiction-
checker and sedundancy-checker, whick check for con-
tradistion and redendancy, respectively. Manager io-
stance, ogT, manages Lwo unit werlds called p-world and
w-worll which contain pesitive knowledge and negative
knewledge respectively.

A precequisite for improvement of the execulion speed
s to develop dedicated computers capable of execvi
ing KL1 in parallel. This will have to awail fulwre 1e
aearch. [n the meantime, we cun say that Maodale =i

least demonstrates the tselulness of parallelism.

¢ SUMMARY AND PROSPECTS

In this paper we have discussed the basic framework
and implementation of Mandala, 8 knowledge program-
ming system based oo KLI. We have also stated that
Mandala provides a basis for a knowledge base manage-
ment sysiem. However, the development of Mandaia is
still 1o & very eariy stage. 'We have much more research
to be dooe before the sysiem will be completed.

Of particular intersst for Mandala a3 & program-
ming system, i the intreduction of a partial execu-
tion mechanism. This is closely related to the congept
of parameterization or compilation. [f the walues of
parameters are specified early and the program partially
executed, compilatior will be performed. o this eate,
parameters cannot be dynamically changed at the Lime
of program execution. For 2 programmicg system, it is
desirable to have the capability of freely specifying levels
of partial executicn. This would allow users to control the
trade-off between Sexibility and execution efficiency. In
a sense, whether a system places emphasis oo Hexibility
or execution efficiency determines whether it {s criented
toward knowledge programming or system programming.
To provide s practical system with these two facets, it iz
required to pealize smooth transiticn frem one facet to the
other by means of 3 partial execution mechanism,

Another posaible extention of Mandala as a knowledge
base sysiem is enhancement af its expreesive power. We
defined unit worid knowledge as Fure Prolog and,/or CP
programs, but this limitaticn is too strict. The knowledge

represeatation language KRYPTON is capable of describ-

ing statements in first-order predicste logie, which is
more powerful than Hern logic in dealing with incomplete
inowiedge. A similar capability iz a possible direction in
which Mandala will be extended. This requires a powerful
thearem prover in first-order predicate logic.

ACKNOWLEDCEMENTS

We wizh to express our thanks to Kazuhire Fuchi,
Director of 1COT Research Center, who provided us
with the opportumity te pursue this research in the
Fitth Generation Computer Systems Project at [COT. We
would also like 1o thank Hireyase Kondou and other [COT
research stafly, members of ICOT Werking Groups 2, 3
and 4, and the Fujitsu, NEC and Oki Electric researchers
who participated in discussions with the knowledpe rep-
resentation task force. Our thanks go especially, to Dr.
Fumio Mizoguchi of Seience University of Tokyo, whe,
chalrman of Working Group 4, not only provided us with
insights on the development of Mandala but eonsistently
gave us valuable advice in subsequent discussions. We
alse gratefully acknowledge the informative discussions we
had with Dr, Ebud Shapire from Weizmann Institute of
Science and Dr. Keith Clark from Imperial College during
their stay at the ICOT Hesearch Cemier.

HREFERENCES

Hobrow, 0. G, Stefik, M. The LOOPS Manual (Freiiminary
Version], XEROX PARC Hnowledge-based VLSl Design
Group Memo KE-VLST-81-13, 1883,

Bowen, K. A., Howalslo, F. A, Amalgamating Language and
Meta Langoage in Logic Programming., Schoaol of Computer
and Tnforme ation Sciences, University of Syracuse, 1981,

Brachman, R.1 et al, KRYPTON : A Functional Appreach La
Krnowledge Representation., Fairehild Laboratery for Artifieial
intelligence Research, Fairchild TIR No.639, 1883,

Clark, K., MrCabe, F., PROLOG : A Language for
Implementing Expert Systems.. In [Michie and Y H.Pan
[ed.), Machine Intelligence 10, 1982,

Furukawa, K. el al, The Concoptual Spezificatisn of the
Kernel Language version 1., ICOT TR-034, 1984,

Genesereth, M. R et al, MRS Manval |, Stanferd University,
Stanford Heuristic Frogramming Froject Memo HFP-80-24,
19E0.

Geldberg, A., Fobeon, D., Smallialk-80 . The language and its
implementation., Addisen-Weslev, 1983

Hitalmwa, H. ¢t & Implementing an OR-Parallel Optimising
Prolog Syeiem [FOFS) in Concurrent Prolag, 1COT TR-020,
1983

Kehler, T. P., Eiernnn:nr._ (8 D_., KEE: The K_'rmw]'.-d"
Enginecering envirenment for Industsy., IntelliGenntics, 1983,

Kitakami, H. et al, A Methodology for Implementation
of & Hnewiedge Acquisition System., Proceedings of 1984
International Symposivm on Logic Programming, 1984,

Miyachi, T. et al, A Fnowledge Assimilation Method for Logic
Databases., to appear in New Ceneration Computing, 1984(a).

Mevachi, T. et al, A Knowirdge Assimilation Method for Logie
Databases., Proceedings of 1954 International Symposivm oo
Logic Frogramming. 1984(b).

Neovak, G. 5 Jr., GLISP : A Lisp=based Programming System
with Data Abstraction., Al MACATZINE, FALL 19831

Shapire, E., A Subset of Concurren: Prolog and Ite Interpreter.,
Imtitute for New Generation Computer Teshnalogy, ICOT
THR003, 1983(a).

Shapiro, E., Logic Programs with Uncertsintiesr A Tools
for lmplementing RHule-Based Syetems., Free. of [JCAL 83,
1283(k)

Shapire, E., Takeuchi, A, Chject Oriented Programming in
Cancurrent Prolog., New Generatian Computing, Val.1, Ne.1,
1983,

Shapire, E., Svstems Pregramming in Concurrenl Prolog.,
FPrec. of Principles of Frogramming Languages, 1984,

Shoerthife, E. H.,, Computer-Based Medical Consullationr :
MYCIN., American Elsevier, 1878,

Smith, R. G., Siructured Obpect Programming in Strobe.,
Sehlumberger Technology Corporation, 1984.

'Tak.eu:'hi. A, F‘uruhail, K., Tnl.rrpn:\:ru Communication
in Concurrent Prolog., Logic FPregramming Workshop®s2 in
Portugal, 1983,

