ICOT Technical Report: TR-075

TR-O75

HARDWARE DESIGN AND IMPLEMENTATION OF
THE PERSONAL SEQUENTIAL
INFERENCE MACHINE (PSD)
by
kazuo Taki, Minoru Yokota. Akira Yamamoto.
Hiroshi Nishikawa, Shunichi Uchida
(1COT)

Hiroshi Nakashima. Akitoshi Mitsuishi
(Mitsubishi Electric Corp.)

August. 1984

CICOT. 1984

Mita Kokusai Bldg. 21F 103} 456-3191 -5

H :D | 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

HARDWARE DESIGN AND IMPLEMENTATION OF
THE PERSONAL SEQUENTIAL INFERENCE MACHINE (PSI)

Knzua Taki, Minoru Yokota, Akira Yamameto,
Hiroshi Mishikawa, aod Shunicki Uchida

1COT Rescarch Center
Institute far Wew Gereration Computer Teehnology
Tokyo, Japan

ABSTRACT

The Fersonal Sequential Inference Machine (P5I) is
& personal computer desigoed as s tool for software
and hardware development in Japan's Fifth Generation
Camputer Systems (FGCS) project. This paper describes
P5I's hardware systems and the unique features of its data
processing and sequence contrel uaite,

The P51 system adopts & logie programing language
as ity primary laoguage. It consists of & large main
memery (16 mega words), interactive [/O devices, and
eperating system support and language support hardware,
FET's machine language is & high-level langpusge based on
logie programming, and its description level is very similar
to that of Frolog. It ia called Kernel Langusge Version 0
(KLU). Unification and backtracking, the principal operas
tions of KLO, are performed by the KLO frmware in-
terpreter in cooperation with several dedicated hardwars
components. These include branch and dizpateh facility
testing tags, a cache memory designed for stack ae-
eess, and a high-speed local memory (ealled a work fle]
designed for use in Lail recursive pplimization,

Commercially available high-speed Sehottkey TTL
ICa are used in the CPU. Printed circuit boards for the
CPU, main memory, and IO controllers are mounted
in a sipgle cabinet along with secondary storage devices,
A prototype machine has been manufactured and micro-
program development is nearly complete.

1 INTRODUCTION

Japar's Fifth Generatlion Computer Project has start-
ed using a new logic-based programming language ns ita
primary language for both software and hardware rescarch
and development. However, programming epvironments
for such languages have not been sufficiently developed in
conventional computer systems in terms of their process-
ing speed, memory space, languapge support, and fexibility
for experimentation. In order to build & research and de-
velopment tool fulfllling these requircments, a high-level
language machine spocialised for logic programming is
under development at ICOT and supporting companies
[Uehida B3], [Yokota 83], [Mishilkawa 83]. The machine
iz callec the Personal Sequential Inference Machine (PSI),
reflecting its machine features and funetions

To develop = viable pregramming environment for

and

Hircehi Naknahima, apd Akitoshi Mitsaishi

Information Systems and
Electronics Development Laboratory
Mitsubishi Electric Corp.
Kamakura, Japan

logic programming, several targets have heen established
for P51, as follows;

f{a) Efcient execution of legic programming language
KLO(Kernel Language version 0), which is the machine
language of P5I [Chikayama 84-1]

(b} A machine architecture that supports the SIMPOS
cperating system developed for PSI [Hatteri 23]

{e) Memory sise and executicn speed sufficient for ex-
ecuting large dpplication proprama. Specifically, as
compared with the eompiler version of Dec-10 Frolog
[Bower 81] on the Dec-2060, PSI will have a maximum
of 16M words of memory, which is G4 times larger than
that of Dec-10 Preleg, and will attain approximately
30K LIPS (logieal inferences per second) in processing
speed, which ia almost equivalent to the Dee-10 Prolog
on the Dec-2080.

{d) Highly interactive 1/O devices, such as 3 bit-mapped
display, mouse, ete,

ie) A local area network (LAN) system for inter-PS] com-
munication and resource sharing

[f] Ressonable physical size for personal uze and practical
cost-eflectiveness

(g) Reliability as a research and development tool
(b} Early availability

Other target specifications are listed below. These invelve
the plan to use P51 a3 a tool for architectural researeh into
eficient execution mechanisma for logic programming.

[a) The adoption of hardware mechanisms resulting from
ICOT research that increase unification speed

[b) A flexible microprogrammed sequence controlier with
large writable cootrol storage

(¢} Hardware and Srmware evaluation facilities for measur-
ing dynamic characteristics and coliecting statistical
data

To satisfy these specifications, we have proceeded
with the designs for the architecture and the hardware,
Ia this paper, PSI's hardware system and its unigue fea-
tures will mainly be deseribed. The PS1 architecture i
presented first, then the hardware configuration and the
detailed specifieations for the specially designed part of
the PSI CPU are described. The action and waage of each
hardware component of the CPU ab the time of program
execution are also mentioned.

2 PEI AHCHITECTURE

In this chapter, we summarize the hardware architec-
ture of PSI mainly from the machine-language level, Le.,
from the system programmer's point of view,

1.1 Word formst

A word consists of 40 bits, as shown in Fig.l. Eight
bits are used for a tag and 32 bits for data, The tag
contains two mark bits for garbage collection (GC tag) and
1ix bits for & data tag that represents one of the following
data typen

undefined, symbelic atom,

integer, foating point number,

stack/beap vector, string, code, baili-in code,
lecal fglobal variable, local /global reference,
nooked wvariable, control marks, ete.

1.2 Machine lostruetions

KLO, a logic programming language whose apecifica-
tions are almost equivalent to those of Dec-10 Proleg, is
designed 1o define the functicn: of the P3l machize in-
itructions, The representation of the machine instruction,
shown in Fig.Z, is a simple ceonverted form of the KLOG
souree program. Each instruction code can correspond
to each component of the source program. The machine
instruction is executed by the Brmware imterpreter, by
which unification and backiracking are alao performed.
The reason for the adoption of high-level machine instruc-
tions iz discusaed in section 4.1,

The representation of the machine instruction of a
KLO clause containg & clause header, head arguments and
some body goals (ef. Fig.2). These bedy goals include
user-defined predicates (which are actuwally painters to the
jostruction representation of the clause and arguments)
and built-in predicates. Mest bwli-in predicates have a
compact format that contains one operaticn code and at
most three arguments in ooe word. Each of the argu-
ments has a 3-bit tag and 5-bit daza. When the built-
in predicate is executed, a corresponding firmware sube
routine is called directly aceording to the operation code,
I¥ integers or variable numbers appeanng as arguments are
small epoupgh Lo represent in five bits, most built-in predi-
cates can be packed in one word, This representation is
quite effective in saving memery space and shortening the
execution time.

.3 KLD

The specification of KLO is summarized as follows:

38 ~GC Tag 0
: T =
Cata Ta.g-f Data
(2) (6} i

Fig.1 Word Format

(a} It iz hased on a subeet of Dec-10 Frolog,
{b) It has extended control structures.
e} It has bardware contrel functions.

*Subset of Dec-10 Prolog” means that KLO does not ins
ciude built-in predicates compatible with those of Dec-10
Prelog fo: internal data base management, such as Assert
or Retract, and [/O predicates, such as Read or Write.
These predicates are replaced by user-defined predicates
using primitive built-in predicates of the hardware control
functions.

The hardware control functions correspond to direct

hardware operations to handle hardware registers, memory,
and the [/ bus.

The extended coatrol structures [Takagi 83] contain
such fupstions as Dind-hook, On-backirack, Extended-
cut, etc. Dind-hook is a special function for proce-
dure invocation, which calls a previously registered pro-
cedure when a specified variable is unified to a walue.
Op-backtrack i» a fupction that invokes a previously
regisiered procedure only wher backiracking occurs and
conirel returna to the registration point of the procedure.
Extended-cut specifies the level of a predicate's call to cut
the or nodes of that leve]. These extended control strue-
tures enhance the descriptive power of the language, but
require many run-time supperte (operations that can mot
be determined during compilation],

pilX,¥,test) - p2{X,Z}, add(Z,5,4), p3(L.256,1)

3 32 23 18 B 0 alternate

elause { int ltype[narg| nif ng| <clause
%

header int aize of pi
rel Eem—

reasrved

head lvar 0 |---I

arguments lvar 1 |-==X

atom| atemd af "test’

7 oat code —

body goal 1lvar o
lvar

z nd —{ Blt | built in pred. —

bady gpaal oode -
Lvar 3

ird int 256

body goel lvar 1

built in prodiecate

tag | CPcode| L 1) i
v, 2 lm 5 |¥ 13
= blt |= add |a, t aj
F. [™

Fig.? Hepressntation of Machine Instruetions

All the system programs and the user programa are
written in logic programming language ESP (Extended
Self-coptained Prolog) [Chilmyama 83-2] [Chilmyama #4-
2], which is the system description language and user lao-
guage of PSL. These programs are compiled into KLOD for
execution.

2.4 Execution environment for KLO

To execute KLO programs, the interpreter uses four
stacks, namely, loca!, plobal, control, and traii stacks, and
eone heap aren. The heap area is used to store machine
instructions and vectors (vectors include waual structured
data seeh as lists and arrays). For represecting stric-
tured data, the structure-sharing method [Warren 77] is
used. The utilization of the stacks and execution control
mechanisma are bazically the same as in Dee-10 Frolog
[Bowen §1|[warren 7T). However, Dec-10 Prolog's local
stack is separated inte control and local stacks in P51, be-
canse an independent control frame 15 needed for extended
control structures.

Fig.2 thows the execution environment of KLO during
unification, There are machine instructicns for the clauses
of "caller' azd ‘calles’ jn the]H‘.H]:‘I- area, and instruction
pointers for each. As in Dec-10 Prolog, 2 group of vari-
able cells, called a frame, iz made corresponding to caller
of caliee. These frames are placed oo the local stack for
variables and on the global stack for variables in the atrue-
tured data. To accesa a variable cell, the relative distance
from the frame base that is poioted to by a frame-base
pointer is wsed. The control stack is used to store frames
containing infermation of the return chain and the back-
track chain, as well 81 poiaters to the environment for
continuing execuotion at the return point. The trail stack
is used for storing cell addresses that must be recovered
to the initial state oo backtracking and iz accessed using

P:-Q, R, S.
Unification

~
R:-T, U

« Frame BHase

of Caller Ly P/

ET}T——?—W1
s f_._.’_z_.’_a...l"_hh

+ Frame Base I___,_l> |

of Callee ;//,«:’R" fff;};
v Top of Stack l:’“ 1

+ Instruction
Countear
of Caller

its stack-top pointer. These pointers, namely, instruction
puiuters, frame-base pointers, and stack:top pointers, con-
stitute the execution environment of KLGO,

1.5 Addreis representation

To execute KLO programs, four stacks and a beap
Copcurrent execution of multiple
processes is necessary for PSI, and sharing of instruction
codes and variable spaces among Lhe processes are also
required. To satisly these requirements, the address space
ia divided inte independent logical spaces, called “areas’,
and each is identified by ac area oumber. An area can be
assigned to one of four stacka of a process, or to a beap
area shared among processzes for code storage and common
wariable apaces. Thus, the address representation of P51,
shown in Fig.4, contains an &-bit area number and a 24-bit
inner ares address. This means that there can be up to
256 arcas, cach of which can be assigned physicsl memaory
up to 16M words,

area are requered

1.6 Address translation

Pl ean have up to 18M words of physical memory.
To alloeate and relocate phyiical memory more efficiently
to each area, ap address trapslation meshanism is intro-
duced. Phrsical memery is managed in 1K-word pages.
Fages are allocated to each area on demand, and deallocs-
tion is performed by a garbage cellector. Fig.5 illustrates
the address tracslation mechanism, whick i3 performed
using two tables, one for the page map base and another
for Lthe page map.

(" Object Code
= ’_R_J(||

IR T ||

T R |

|I 5

L Heap Area

i
= Instruction
Courter
ol Callee

Trail

Conliol

Ginlial

f .
T

‘Using {4 Slachs

Fig% Execution Environment fer KLO

3t 24 13

Aeez Number inner Area Address

&

23 109

Logical Page Mumber Offzat

An Area: A lLogical Address Space of

| Maximum 16 M Words
Whole Address Space (32 Bits):

Consisting of Independent 256 Areas

Fig.4

Address Representation

2.7 Multlple processes

Many programs, such as the editor, compiler, device
handlers, and user programs, are executed as different
processes in PSI. Each of these processes has a process
shatus that ipeludes KLO execution envircnment and
hardware eontrol information, such as processor priority
for interrupl processing. This eoviropment and informa-
tion s collected in & table, called a process contral block
[F'Ch).

The PCB of an inactive process is stored in a loeal
memory in the CPU, whereas the FCB of an active process
[curreat PCB) is distributed in CPU registers. The con-
tents of the current PCH are swapped by the firmware
when process switching eccurs. Process ewitching is in-
itiated by an interrupt er various built-in predicates. The
maximum number of processes is 63 due to the limitation
on the pumber of areas, However, this [s suficient for the
aperating aystem and mosi user programs.

1.8 Interruption

A vectored interrupt system is adopted in PS1 Am in-
terrapt vector is prepared for cach ioterrupt source [c.g.,
an [/0 derice) and a registered process identifier ia as-
signed to ench vestor. When an interrupt occurs, & process
i3 switched to the correspending registered proceas by the
firmware. There are eight interrupt lewels, two for exter-
nal and six for interpal interrupts. P51 alic bas s non-
maskable trap system to deal with errors that oceur during
program execution.

Garbage eollection (GC)is performed as an independ-
ent process in P51 and is iovoked by a GC trap. However,
some interrupts, such as hardware errors and urgent in-
terrupts from [/O deviees, may take priority over garbage
collection. These urgent interrupt: are hendled by ape-
cial processes, called supra-GG processes, that use some
special areas for stacks end a beap. These areas, ealled
GC-less areas, are not subject to garbage collection.

3 BYETEM CONFIGURATION
3.1 Conflguratlon of the tolal sysiem

Fig.6 shows the system configuration of P51 The PSI
CFU contains & sequence control unit, a data procesaing
unit, & memory module, which ineludes s eacke and an
address translation unit, and an 1/Q bus interface unit,
These are connected to each ether by internal buses. The
P51 I/O system containy a [EEE-T96 standard bus and
several IO devicea, A console processor is connected to
the CPU for maintenance, initialization, and debugging
support. A mini-computer (PDP11/23plus) can alse be
connected to the CPU instead of the conscle processor as
s moreé pawerful debupging aid.

3.3 1O devices
PSI has the following /0 devices:

a bit-mapped display (1200 x 900 pizels),
an optical mouse, a keyboard,

bard disk drives (3TM bytea x 2),

floppy disk drives (1M bytes x 2Z),

& jocal area network (LAN]),

and a serial printer

Some commercially avallable devices that have [EEE-T96
standard interfaces can also be conmected. There iz a
E12K-byte buffer memary on the [/O bus, which is used for
data trapsfer to secondary storage devices and the LAN.
The buffer memory is also managed as a disk cache by
the saftware. The bit-mapped display controller has raster
operation functions and independent image memory. The
imege memory ean store more than ten full screen images
and character fonts. Window images are normally stored
bere to decrease the load on the I/0 bua.

3l 4 23 19 9 0
hArea Nesber E.Jgi:al Page MNumber Offset
|
Area Table Page Map
\ i Y E—
1 ,_}(
23] 10 9 1]

Physical FPage Address { Offcat

|

Fig5 Address Translation Mechanism

| l II ™ o~ —,,I
:r Cache
EEQTEF‘JEF-‘ g:f:zess'wg | Memory
gnrtrol ir N .
i : Unit Main
Unit Unit Memary
1 | | | Address Unit
< Internal Data Bus > E";'t'mlli‘“
s) L)
l"”:I i- (it I 1 . N
Consale Interface | Opticnal [Floating Point Processing
Frocessor Unit ¢ Boards lunit, ete.

C

Commen 1/0 Bus (IEEETY)

SO

J0MBytes 1200x 300 pixels

4 HARDWARE DESIGN
4.1 Basle deslgn concepts

In the PSI hardware design, priority was given to
sufflcient execution speed and large memory space, while
keepiag reasonable physical size and early availability, To
satisly these requirements, the design philosephy called for
avoiding hardware complexity and for utilizing micropro-
gram techniques. Hewever, the PSI CPU has adopted
fome specialized bardware mechanizms coocentrating on
speecdup of the KLO fArmware interpreter, eapecially of
unification and execution controls. To satialy the re
guirement for fast developmesnt, it was decided to utilize
commercially-available L5z and time-tested implementa-
tion techniques, In this section, the basic design concepts
that determine PSI hardware architecture are discussed.

{1} Machine instruction level and CPU architecture

Two different design methods were considered con-
cerning the machine imstroction and CPU architecture
designs. The first method takes high-level machine iz-
siructions, whose level is nearly the same as the soures
ianguape level, like those of PSL The representation of
the machine instructions can closely correspond to the
tource program; thus, the size of the instruction code i3
held down. In this method, machine instrections are ex-
ecuted by the firmware interpreter. For interpretive ex-
eculion, it is uselest to adopt tuch heavy hardware 2z an
instruction pre-fetch unit or & pipelined execution unit
becanse micropregram branch oceurs very frequently and
it breakes the execution pipes. The second method i3 to
choose [ow-level machine instructions. Iz this method,
source programs are compiled into machine instructions,
fetehed by an instruction pre-feich unit and executed
less interpretively (determinately) by a pipelined execu-
tion unit (for example, {Tick 84]). In this method, the

e

O
0

Figf SHystem Configuration

determinate instruction execution mecharnirm makes the
hardware easy to optimize; thus, it is more suitable for
high-speed execution. However, the complexity and the
amount of the hardware will [nerease.

The extended control structures of KLD |Takagt 83)
reguire several run-time supports {operations that ean
rot be determined during eompilation). Thess run-time
mpports are easily realized by the interpretive execution
methed which doesn't require complex bardware. And
translation cost between source programs and machine in-
structions i3 very low for the method. For these reasom,
P51 bas chosen the interpretive execution method. Since
the method doesn't require frequent memory access to the
instruction codes, because of the small instruction code
sjze, Lhe instruction pre-fetch unit or the instruction cache
memory ean be omitled. The interface between the CPU
and the main memory is then simplified to a single connee-
tion between the CPU and cne cache memory. As a result,
P35I has adopted a simple hardware architecture. However,
several hardware components are specially designed to cn-
hanece the performance of the KLO firmware interpreter.

{b) Speeding up stack access

I executing a language llke Dec-10 Prolog, informa-
tion for backiracking is often pushed and left on the stack,
and thus the frame of the caller clause is often buried
deep in the stack. Becauwse of this, the stack accesses
seatier both te the top and to the inner part of the stack.
Hence, o stack cache Lthat has only a copy of the stack-tap
data in bhigh-speed momory deesn't work efficiently. An
independent hardware stack is also unsuitable because it
i3 zot Jarge enough to be used for the global stack KLOD
requires, Accordingly, a cache memory that ia a more
general hardware facility has been chosen Lo epeed up
ISI and a few fusctions suited to stack access have been
adopted for the cache memory.

(e} Speciabized bardware

Dats paths and the basic CFU cootrol timing have
been kept as simple as possible. However, branch mecha-
pisms for micro instructions, such as conditional branch
and dizpatch, which are often used in the frmware in-
terpreter, and a register file used for the tail recursion
optimization [Warren B0 are specially designed for the
elicient execution of KLO. These are described in detail
in fellowing sectiona.

4.2 Miero Initructions

4.1.]1 Control fentures

A very simple pipelined control is used to fetch the
next micro instruction in parallel with exesution of the
current micre instruction. The brapch comtrol circuit ia
designed 30 that the execulion result aof a micro instrue-
tion, such a3 an ALU flag or a register value, can be
used in the immediately subsequent mwicto instruction as a
jump condition er as dispatch source data. These simplify
micropregram coding and inerease the execution speed of

unifieation, which uses many branches and dispateh opera-
Lioma.

4.2.2 Micro Instruction format

Az shown in Fig.7, a micro instruction has s 64
bit werd length and has & fleld assignment that enables
effective paralie! control of hardware resources. There are
three micre instruction types. They have common fields
between bit 62 te 22. Theze flields mainly specily data
operations. Bits 21 to 0 bave different meanings in each

ipstruction type and mainly specify branch contrels and
ALT aperations.

Trpe 1 instructions xpecily various conditional branch-

es and dispalch operations. Helative addresses (up to 4+
256) are used for conditional branches. Arithmetic opera-
tions are available in type 1. Type 2 instructions specify
sbsolute jump, logical operations, and bit rotation of the
barrel shifter. Type 3 instructions specify varicua opera-

tions, such as arithmetic and Jogical operations, bit rota-
tion, tag replacement with immediate data, 1/O bus con-
trols, etzc. However, jump operations are limited to in-
direct jumps wsing the jump register.

The three-operand operation is specified by the data
operation fields. Mamely, two operands specified by the
SCI1F and SC2F felds are proceszed by the ALU and
stored in a register specified by DSTF field in one micro
instruction cycle. One of frequently used regisiers can
alao be specified as an destination register by the multi-
destination fleld. Data specified by the SCIF field can
be shifted apd masked by the barre]l shifter and field ex-
tractor before the ALU cperation, Memery access control
is specified by the cache control field {CCF) independ-
ent of the data cperations mentioned above. DRF and
LARF flelds spezify the selections of the data register and
the jogical address register used in memaory accesa from
PDR and CDR, and PLAR and CLAR. LAIF specifies
the automatic increment of Lhe logicai address register.

4.3 Data processing unlt

4.3.1 Confipuration of the data processing unit

Fig.8 shows the configuration of the data processing
init. A register fle, called a work file, the ALU for 32-
bit cperation with barrel shifter apd field extractor at its
entrance, address and data registers for memory interface,
and tag circuits are conbected to each other by internal
buses, There are three such buses; two are source data
buzses and one is a destination bus. Each j= 40-bits wide;
B bits are for tag transfer and 32 bhits are for data trans-
fer. These internal buses also connect other units that are
shown in Fig.6. The work file (which has many address-
ing modes), pairs of memery interface registers, and tag
operation circuits are special hardware for KLO execution.

4.3.1 Treatment of tags

Tag processing {which doean't contain branch and dis-
patch using tags) rarely appears in uwaual microprogramai
with the exception of tag replacement snd tag comparison.

L0 i LR 3o 20 o
3210)08 76532 1098765432100 BTESL432 1006765032 10/9876583210)98T65432170]

R| nlplLiL 5

8| BIRAMMDE| DSTF 5C1F M sSC2F
v| GlFia F

F| F| iFlF

CCF

Fig.T

e e

10 0
5
O|IALF CHDF EAF Type 1
i
F
B
FF1F| [oaLF| I AAF Type 2
]
1 F
B |Els|FlBi T
1ALF| I |AL[FlJIBCF|E| TYF Type 3
R |Liz|2|Fi F
F [FiF|F l

Micro Instruction Format

Sequance Sewce Data Bus 1 (40 Bits)
Canlral — Cache
Source tDaIa Bus | |l femary

Lirt

Barral
Shitler

Field
Exlraclor

_—

Unil

Address

1 Translalion
37 Bits | '— Unil Fig.s Configuration of the
Seguence lT'l Mewpulater Data Processing Unit
Confral <=
LUnit Destination Bus (40 Bils)

When data processing or data transfer is performed, tag
data from one source bus is transferred directly to the des-
tination bus ar completely replaced by immediate tag data
and traneferred. Tags on two source buses are compared
in parallel with the data processing and an equality fag
is tet. This can be tested in a conditional branch instruce
tion. Only the garbage collection mitreprogram reguires
tag processing. Dit operation of the GC tag is performed
by the same ALU for the data processing. The tag usage
in the microprogram sequence conotrol is described in sec-
tion 4.4. Oxly the data registers of the memory interface
and the work Gle have tags.

4.3.3 Darrel shifter and fleld extractor

The barrel shitter can perform up to 32 bits of rotat-
ipg shift. It can also perform left/right shift of 1 bit com-
biced with the Q register, which is used for multiplication
and division as specified by the ALU ecatrol fleld.

The field extractor 13 o maskiog circoil that haa
three different types of masking operationa, namely, the
low most & hit through, the lowest byte through and
the lower double byte through operations. These mazk-
ing operations are often used for extracting operands of
built-in predicates, string data, apd packed information
of machipe insiructions in eombination with the barrel
shifter.

4.2.4 ALU and & swap eireult

The ALY is construcied from commercially avalable
ALV LSTs. The ALY coutrol feld of the micro insiruc-
tion has an encoded format that controls coly the re-
quired fupctiops of the ALU. Arithmetic operations in-
clude addition, subtraction, those with carry or borrow,
multiplication and division combined with the shift and
Q-register operalions, and the 24-bit operatiops for in-
mer ares address caleulation mentioned in section 2.5,
Some flags, such as carey, overfow, and fero, are set for
use in conditional branches when fag setting iz enabled
by micre instruction FFLF fSeld. Logical operations in-
clude THROUGH, AND, OR, EXCLUSIVE-OR, AND
with SWAFP, and OR with SWAP. "With SWAP'" means

that bytes are exchanged between byte 0 and 3, and be
tween 1 and 1. The swap circuit is positioned at the exit
of the ALU. Tt i2 used for re-directing nomerical byte data
and byte string data; these have the opposite byte order.
This circuit is also ured to re-direct bytes in the 1/O bus
accars,

4.3.5 Address reglsters and dats regliters

There are pairs of memory Toterface address registers
and data registers called PLAR, CLAR, PDR and CDR.
LAR means logical address register: I and C mean
parent and current of predizate call respectively. When
unification is performed, machine instroctions and data
of both the parent clause (caller) and the current clause
{caliee} must be fetched from memory. Regitters prefived
P and € are used for memeory access for the parent clavse
and the current clause respectively. Tags of FDR and
CDHR are used for tag dispatch and the least-significant 5
bitz of PIXR and CDH are used for addressing the work
file, ag described in later recticns. FLAR and CLAT are
automatically incremented when centiguous data is being
read or written.

4.3.0 Work ¥File

The work fle {WF) i3 a multi-purpose register file
moest frequently ueed in the data processing unit. The
work file has a 40-bit x 1K-word capacity and has many
addressing modes. The WF can be read from and written
to different arbitrary addresses in a single micro cycle.
That is, data read from the WF is aent to the ALU and
the result i rewritten to different 'WF addresses in one
miera cycle. The first 16 words of the WTF are desigoed
as dual-port registers for use as general registers. Figd
ahows Lhe following WF addreszing modes.

{a) Direct addressiog

The first mod last 64 words of the WF constitute an
srea directly addressable by micro instructions. The first
16 words are used a3 general registers and the subsequant
48 werds are mainly used as logical registers containing
information of the eurrent KLO execution envircoment.
The last 64 words are ealled the constant area because

the mask polterns and constacts used by the Armware
interpreter are stored thera,

[b) Indirect addressing

WEFARD and WFARZ are address registers of WF.
The WY can be indirectly accessed by any address using
these registers. These registers have aute-increment and
auto-decrement, and boundary detection functiops, The
latter means that Aags are set when the contents of the
register points to the 32-word or 258-word boundary of
WF. These functions enable a part of the WF to be used
as a stack area. In practice, they are used to access the
fecal frame buffer apd trail bufer, described later.

{c} ladirect addressing wiing PDR and CDR

In this addressing mode, & WF address is geaerated
by concatenating the content of WFBR and the leasti-
significapt 5 bits of PDR or COR (whichever i1z specified
by the DRF field). This is vsed to access a local variable
cell on the local frame buler (LFE). WFHR points to the
base of LFD, apd PDR or CDH holds the cell oumber of
a local variable that is a part of the machine instruction
code Tetehed from memory.

{d) Direct addressing using a base registar

In this addressing mode, a WF address is generated
by concatensiing the contents of WFCBR and a 5-bit
direct address specified by the miers instruction, WFCBR
iz uzed to point to the basze of the extended constant ares
or work area.

[e) Local frame bufler

The local frame buffer (LFB) is a temporary local
frame [or & current ¢lause {:nrm!‘pnnd! io a current frame
on a local stack, as shown is Fig.3) created in the WF,
ot an the Jocal stack in main memory. In the unification
using LFH, the local variables of the parest clause that
are requited for unification are firat copled to LFD, then
unified with the arguments of the clause head of the cur-
reat clause. The LFD then temporarily becomes a current
local frame. When the execution proceeds to the first body
goal of the current clavse, if it i3 a user-defloed clanse,
LFE i3 pushed npto the local stack and o new temporary
local frame for the new current elawse is ereated in the
WF. However, if the first body goal ia & built-in predicate
and the following body goals are alse built-in predicates,
LFE continues to be used as the current local frame, and
is not pushed onto the stack until a wser-defined predicate
appears, When a user-defined predicate is called, if it ia
the last body goal and it has oo alternative clause, LFB is
over-writlen to oew local variables used in the new current
clause instead of being pushed onto the stack, This means
that the last body goal that has no alternative clause is not
ealled, but invoked through jumping. This corresponds ta
tail recursive optimization [Warren 80|, This method of
uring the LFE ofien leaves local variable cells in the WF
and decreases stack aceess jp the main memery.

LFD has fixed size of 32 worda, Physically, twoa LFBa
are used alternaiely by firmware control. In unification,
the mmformation to be pushed onto the trail steck i3 slso
temporarily stored in a WF area, called the trail bufer.

WORK FILE
dual port
[FOR/CDR
Direct addressing i I
by micro instr. =T || General Reg.[16W} h ll\rar| ; ?]
T |
Legleal Reglaters tag data
Indirect addreasing 1
by registers Trail bulfer {32W}
base affset
_— “— base
4 Laeal frame o
r::ﬂ} buffer 1 (3203 within 32W from baae

{push,pep, Loaal
limit-check]

frame
buffer 2 (32W)

Baze address
4 +«Indlrect addrezalng
AN

base
—

Base address

\'

Loecal Frame Bufler
«base

«Direct addressing - s Extended constant

lopal war.

[a2W])

]urcsal‘ N J (EN

baae ol faet

Miero Instr,

Conatant arealGliW)

of '~
aet
logal wvar. 2 =2

lecal war.

Fig.9 Four Addressing Modes of the Waork File

4.3.7T WCS as a regluter file

The writable cootrol stornge (WCS) is used for fetch-
iog micro instruction io the latter hall of the miero in-
struction cyele. WOCS 13 designmed to be accessible from
the internal bus in the frst half of the micre cyele. This
enables read and write saccesa o WOS under micro pro-
gram control. Using this function, the last 1K-word area
of WCS s assipned as a save area for the process control
block. This increases the speed of process switching,

4.4 Sequence eontrol unlt

4.4.1 Conflguration af the sequente control wailt

Fig 10 ahows Lhe eonflguration of Lhe sequence contral
unit. A micro program control system is used in P51, A 64-
bit x 16K-word WCS i implemented. The Grat kalf of the
miero instruction cycle geoerates the address of the pext
micro instruction, and the second half fetches it. There
are several address generation methods, sueh as absolute
branch, relative branech, continuation, OF code dispatch,
tag dispateh, multi-way branch using operand tags, con-
ditional branch using a relative address, micro subroutine
call, subroutine return, and indirect branch through a
jump register. The specialized festures of this machine
are tag dipatch, mulli-way branch and variations an the
branch conditions.

4.4.2 OF code dispateh

The instruction eode for a built-in predicate contains
an cperalion code (OF code), as shown in Fig2. This
instruction code ia transferred o Lhe instruction regiater
(Ift) and the OF code is extracted and fed to the dis-

!

patch memory. The dizpatch memory transiates the OF
code ipto the start address of the firmware subroutioe cor-
responding to the operation in a balf miere eyele, and this
i% uged for fetching the next micro ipstruction. The dis-
patch memory has 256 x 14-bit eotries that can be used
for up to 256 built-in predicates.

4.4.3 Tag dispatch

The operation for testing the tag is frequently re-
quired in the firmware interpreter. The tag dispateh cir-
cuit 15 introduced to increase the speed of tag testing and
branch address gemeration. Address generstion is per-
formed in a hall micro cycle using the tag of the data
read iote PDR or CDR {rom memory. In contrast te OF
code dispateh, tag dispateh iz 2 multi-way braoch using a
base address specified by a micro instruction and an ofset
gererated by the dispatch memory.

There are €4 types of tags in PSI. Heowewer, cnly
up te 16 branch targets for multi-way branches are re-
quired in practical firmware eoding. Coe of the frmware
routine needs a fwe-way branch, an other needs an eight-
way branch, ete. A PDR or CDH tag i3 translated into a
ende of three or four bits by the dispateh memory. The
code is then concatenated with the base address and used
for the pext micro instruction address. Twelve transla-
tien patterns, frem the tag to the code, can be stored
in the dizpateh memory, Mine are uied, The pattern to
be uted is specifled by the micre instruction. As one to
saveral ateps of the operation must be exeeuted at the
branch destination, the trapslation patiern is designed to
genérate mulii-way branch addresses in one |, two-, four-
or eight-word intervals, according to the request,

Destinatien PRRSCOR
WC3E MAR Bug
Eibits !atm atom @
x 16kH Pl R N
tag data
L g Compact
Dinpakeh N IE Operand
MIR | ! Memory A—— —— I}
1 T for Tag ! \
+1L‘ +___)’ {IFcndu‘au \
- 1-14 B
|
Diapateh +8 {‘3
4 HE;{II‘}" -)
or
JR_l JPcode £3
Rerative I,}u.mp addr. r |I}[
Branch
414
1 B Jpin 1% 414 14 1k 14
Khaolute | Conti- | Subrautine Indirect Tag OFcode Hul ti-way
Aranoh s fmturn Branch Dispatch | Dispateh Jump uaing
i i o+ v Operand-Lag
EEIEEEETPEE VAEEENE l:l:r_::[::::t':::!:lﬂ':l’lll‘"l==l==========:==llL.F;======‘-'==—===

Fig.l0 Configuration of the Sequence Cantrel Unit

The dispatch memory eonszists of 14 bits ¥ 1K words
of RAM apd is shared for OP code dispatch and tag
dispatch.

444 Multi-way branch wring operand tag

The built-in predicate takes up Lo three compacl
operands, as shown in Fig.2. Each cperand has three bits
of compact tag. The instruction register extracls these
tags. They are then shifted to the left by one bit and con-
catepated with the base address of the muiti-way jump.
Thus en 8-way branch with a two-word address interval is
achieved.

1.4.5 Conditlonal braneh

The wide variety of branch conditions is one of the
special features of the system. True and the false branches
can be specified for each of 64 branch conditions. A con-
ditional branch testing the equality between a register tag
(in PDR, CDR, or WF) and an immediate tag data is also
available. The major flags used for braneh conditions are
listed below,

[a) 10 types of ALU Bags

(b} Universal lags that can be set and reset independently
through FF1F of micro instructions.

(¢) Each bit of a register tag of PDH, CDR, or WTF

{d) loterrupl request Hags

{*) A flag indicating that jump register is equal to zero
() I/O bus condition fags

Among these conditions, (b) is frequently waed for
the interface between frmware modules. These *switches’,
which can be easily set and reset, are a valuable assal for
a system with so many firmware modules,

4.4.6 Subroutine eall and return

Microprogram subroutine call and return are avail-
able. The retorn address is automatically pushed onto and
popped from the micro address stack (MSTE). M5TK can
be also read from, and written to by the internal bus, so it
ean be saved and restored when process switching occurs,
The MSETK is 1K-word deep but it uses less than 16 words
in current coding.

i.4.7 Indirect branch uslog Jump reglster

The branchk address can be et to the jump register
(JR) in two ways: from the destination bus, and from
the calculated result of the relative address specified by
HAF of the micre instruction. An indirect JR braoch is
avalable in type 1 and type 3 micro instructions.

JIL is also used as a loop counter. Decrementing is
specifled by the MDF field and zero testing is performed
by the function of &) described in section 4.4.5.

4.5 Memory module

4.5.1 Conflguration of the memory module

Fig.11 shows the confguration of the memory module.
It contains the cache unit, address translation unit, main
memory, and cache control unit. All memory access is
performed using the cache order given in the micro in-
struction. Only when the cache misses ap actual memory
access i3 initiated by the cache control unit, The cache
memory is accessed through a logical address. The logical-
to-phbysieal address translation is performed in parallel
with the cache access and the result of the tramalation
15 used only when the eache misses. The cache eontrel
unit has an independent sequence controller and eantrals
the address trapslation unit, memory accesa timing, and
memery refresh. Opee the cache order is executed, the
cache unit work: independently from the main sequence
contral unit., The CPU works in parallel with the cache
uztil completion of the cache order,

4.5.2 Cache unit

The cache memory has a 40-bit x 8K-word capacity,
it is comstructed from two sets of 4K words. The access
time is equivalent to one micro cyele for kit and four miers
eyeles for miss-hit. The set-azsociative method (s uaed for
cache management and the LRD method is used for the
replasement algorithm. The block size ia four words and
the contents of & Block are replaced when the cache misses.

The write-swap method is used in write operations in
which write data is only written to the cacke instead of
to main memory when a write order i3 executed. When
the cache misses, the cld data in a cache block is actually
written back io main memory. Althowgh the method
necessitates writing back old data apd reading in required
data when the cache misses, it enbances performance when
data must be {requently pushed oote and pepped from
stacks, becauvse there is less overbead for write access to
the cache. The write-swap cache is easier to design if the
memery bhas no DMA paths with the [/0 devices, a3 in
PEIL

4.5.3 Address transiation unit

The address translation mechanism is showno in Fig.5.
The page map uses a valid bit that is set during page
allocation and tested during address translation. This unit
haz another memory, called page map zize memory, which
holds the page size allecated to each area,

4.54 Maln memory

The word length of the mam memory iz 40 bits. Up
to 16M words of main memery can be iostalled in PEL
There iz an error detection and correction cirenit in the
cache unit, that can correct single-bit errors and detect
double-bit errors. A four-word bleck trapsfer is used to
transfer data belween the main memory and the cache
memary. This iz performed using the nibble-mode of a
dynamic FLAM to increase the transfer speed,

to PLAR/CLAR from PDH/CDR to FOR/SCODR
Jpruneaaim; 432 Logical Memory Addreas
unit
r T
| Cacha iz) ’
Y r—[Unit T
3z . L
T4bita 15biEs e
x 256 x 256 Bl 1410k | Cache
Page |Fage fWrite Back Dakta and
HKap |Map — Hemory = Memory Hepory
Size [Baae hddressn B0bits Control
14 f 15 % Ak Unit
i z
1 -
15 Fege -
Addresa Hap ¥ ; 1 'F_
Translation 15bits v ECT ECC
Unit % 3Tk e Cheok e i =
valld 1 *j'.‘i.-‘ Compare ate
* J
Physlcal Addresa T i
Reglster i—'—'ld e J
Memory Addreas Main Hesory lm—— HGII.'DJ.'; Iélen:rrl
Bus | Data Bus ontre
Zawparity 16 MW max. 4O-ECC Bua
-~
-1
Fig-ll Coenfipuration of the Memory Module

4.0 Mardware lmplementation

High-speed Schottkey TTL 1Cs and kighly-integrated
MOS5 RAM chips are maialy used in the hardware im-
plementation, becauze of their commercial availability and
rmall size, The machine cycle time is 200 nano econds,
The CPU is constructed frem !2 printed eirevit boards,
each of which contains about 160 1Cs; the main memory
is constructed from 16 hoards of the same size when 168M
words are inatalled, The OPU hn.a.rrl'sl Lhe memnry :I:||::-=|.r|:]|:__
10 or more controller boards for 170 devices, Winchester
hard disk drives, and oppy disk drives are all iustalled in
oné cabinet,

5 FIRMWARE DEVELOPEMENT

The firmware coptains three groups of micro pro-
grams, such as the interpreter keroel, built-in predicates,
and 08 supports such as ioterrupt handhng. Total code
size of the Srmware 18 approximately 12K steps.

The interpreter kernel contains routines for basic ex-
ecution conirol and uaification; both have about same
code size, that ja, [.GK steps in total. There are ap-
proximately 160 buili-in predicates, each of which bave
from 80 Lo 100 steps of eode, the total code for the built-
in predicates is 9K steps. The OF support micce program
contains routines for interrupt handling, process switching
and memory management, for which Lthe tulal code sive ia
1.5K steps,

& CONCLUSION

In this paper, we presented the machine architecture
and hardware destgn of the personal sequential inference
machize, P51 We also described the sysiem confipuration
and the basic hardware design philosophy: to design
basically simple bul partially specialized hardware using
microprogram techrmigues to enhance the eficieney of in-
terpreiive executicn of high-level machine insiruetions.
We also deseribed the detailed epacifications of the hard-
ware components, particulacly the register file, which
has special functions for tail recursive optimizaticn, end
mrcroprogram dizpatch facilities usng tapgs.

The experimenial hardware development of PSI is
already complete, as iz Lesting of the basic Grmware
modules. An operating sysiem &nd a programming sF¥s-
tem for PSI are being developed; tests and debugging are
underway on a real machine.

We plan to precisely measure PS03 processing speed
using zome bench mark pregrams, and te evaluate the
design of hardware componests and the firmware inter-
preter by measuring the dypamic action of the hardware
syitem duripg program execution, We alio plan to com-
pare the architesture of PS] with a machine having
determinale inalroclion execulion [nnl. iuLcrprrLir!} and
pipelined execution mechanisms (for exemple, [Tick B4]),
and to apalyze the strengths and weaknmesses of the ar-
chitectura,

ACKNOWLEDCGMENTS

We would like to thank to Mr. Kazuhire Fuchi, Direc-
tar of the ICOT Research Center, and Dr. Toshio Yokoi,
Chief of the Third Hesearch Laboratery for their con-
tinuous encouragement. Thanks are alto due to Dr. Takashi
Chikayama for bis valuable advice, and to other memboers
of ICOT for useful suggestions and discussion. We would
also like to extend cur thanka to Dr.David Warren for his
advice on the tail recursive optimization methad.

REFERENCES

{Bowen E1] DL Bowen : DEC system-10 PROLOG USER’S
MANUAL, Dec.15 1981 Department of Artificial Intelli-
gence, University of Edinburgh

[Boyar T2 R.5.Doyer, and 1.5.Moor @ The Skaring of
Structure in Theorem Proving Frograms, Machine Intefi-
gence Vol 1.7, Ediaburgh Up (1972)

[Chikayama §3-1) T.Chikayama : Fifth Generation Kernel
Language, Proc.of the logic Programming Conference '83,
in Tokyo, Mareh 22-24 1983 pp.7.1 1-10

[Chiksyama 83-2] T.Chikayama : ESP—Extended Self
Contained Prolog—as a Preliminary Kerne! Language of
Fifth Generation Computers, New Generation Computing
Vol.1 No.1 1083, Obmsha Ltd,

[Chikayama §4.1] T.Chikayama : K1.0 Heferense Manual,
ICOT Technical Report (to appear)

[Chilayama B84-2] T.Chiksyamna : FSP Reference Manual,
ICOT Technical Report TH-D44, Feb. 3 1884

[Ceben 81} J.Cohen : Garbage Collection of Linked Data
Structures, ACM Computing Serveys, Yol 13 Ne.2 1931

iHattori £3) T Hatiori, and T Yokei ; Dasic Construets of
the §IM Operaliog Sysiem, New Generation Computing
Val.l Mo.l 1983, Ohmaha, Lid.

[Morris 78] F.L Merris : A Time- and Space-Eficient
Garbage Compaction Algorithm, CACM Vol.IZ? No.lD
1479

[Mizhikawa 83 H Nishikaws, M. Yeoketa, A Yamameto, K.
Taki, and S.Uchida : The Personal Sequential Inference
Machine (PSI}—Its Design and Machine Architecture,
Proc.of Logic Programming Worlkshop, Algrave | FOR-
TUGAL, June 1943, pp.53.73

[Takagi 83] 5. Takagi, T.Chiknyama, M.Yokota, and T,
Hatteri : lolroducing FExtended Contrel Structures into
Prolog, Proc.of 26th later- Domestic Conference of IPSJ,
Mareh 1283, No.4D-11, in Japanese

[Tick 84] E.Tick, apd D .H D Warren : Towards a Pipelined
PROLOG Processor, Procof the Iuternational Sympe-
tium on Legic Programming, in USA, Feb. 6-9 1084,
Pp-29-40

[Uchida 83] 5.Uchida, M. Yokota, A Yamamota, K. Taki,
and H Nishikawa : Outline of the Fersonal Sequential
Inference Machine—PSI, New Geperation Computing,
V¥ol.1 No.1 1983, Ohmsha Ltd.

[Warren TT| D.H.D Warren : lmplementiag Pralog---com-
piling predicate logic programs, Vol.1,2, D.AT Research
Heport Me.32 40, Unly. of Edinburgh, 1977

[Warren BOf DH.D Warren @ An Improved Proleg lmple-
mentaticn which optimizes Tail Heeursion, Proc.of the
Logic Programming Workshop, in Hungary, July 1980

{Yokota 83] M Yokota, A Yamamete, K. Taki, H. Nishilawa,
and 5.Uchida : The Design and [mplementation of a
Personal Sequential Inference Machine | PSI, New Gener-
atien Computing, Yol.1 No.2 1983, Ohmaha, Lid.

[Yokota 84]) M. Yokola, A Yam amoto, K.Taki, H.Nishikawa,
S.Uchida, K Nakajima, and M Mitsul : A Mieroprogram
Interpreter of the Peraonal Sequential Inference Machine,
FProc.of Interoational Conference on FGCS "84, Nov, 6-9
1984, in Tokyo

