ICOT Technical Report: TR-074

TR-O74

An Overview of Relational Database
Machine Delta
by
Nobuyoshi Miyazaki, Takeo Kakuta,
Shigeki Shibavama,
Haruo Yokota. Kunio Murakami

August, 1984

CICOT, 1984
Mita Kokusai Bldg, 21F {03) 456-3191~5
I :D [4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

“institute for New Generation Computer Te_c:ﬁnology

An Overview of Relaticnal Database Machine Delta

Nobuyoshi Miyazaki, Takee Kakuta, Shigeki Shibayama,
Haruve Yokota, Kunio Murakami
Institute for New Geperation Computer Technology
Mita Kokusai Building, 21F,

1-4-28 Mita, Minatoku, Tokyo, 108 JAPAN

ABSTRACT

Delta is a relational database machine under development at ICOT.
It has specially designed hardware components to perform relational
database cperations and 2 large semiconductor memory to be uszed as
disk cache area, The machine will be used in an experimental loeal
area network environment along with Personzl Sequential Inference
Machines which are alsc being developed at ICOT. This paper describes
design declsions concerning Delta's architecture and processing
algorithms, as well as its overall funetions. Delta is expected to be

operational with a data storage capacity of 20 GB by March, 1985,

1 Introduction

Delta 13 a relational databasze machine under development at the
Institute for New Generation Computer Technology (ICOT). Development
began in 1982 and Delta will be operational by March, 1085, The
machine will ©be used in an experlmental research environment at ICOT
with a local area network and a number of PSIs (Personal Sequential
Inference Machines) as hosts computers. The development of Delta has
a tofold purpese [Murakawif2]. First, Delta will be used to atudy
the constructlion of knowledge base machines. For a logiec programming

environment, the relational database machine is considered to be the

Page 2

first step toward knowledge base machines. Second, the machine will
be used as a software development tool, along with P5Is, for the
intermediate stage of the Fifth Generation Computer Systems (FGC3)

project.

This paper gives an overview of the architecture, functions,
processing algorithms, and the implementation of pelta. Details of
its architecture, query procassing flow, and implementation have been
reported elsewhere [ShibayamaBla,b] [SakaiBh]. Various databasze
machines (DEM) have been proposed and implemented [IEEETS] [HsiacB3].
Seme are software oriented and others are hardware oriented. Hardware
oriented database machines are designed to improve the performance of
database operations. Delta is a hardware oriented database machine
that adopts set-oriented intermal operations and specialized hardware
to realize these operatiomns, It i3 one of the first hardware criented

DEMs implemented to store and manipulate large scale databases.

In chapter 2, some fundamental design decinsions concerning the
architecture are discussed. Functions that are made available to host
computers and database administrators are described in chapter 3.
Processing algorithms and methods for several basic operations are
discussed in chapter 4, and implementation considerations are

presented in chapter 5.

2 Architecture

2.1 Fundamental Design Decisions

¥e have to solve two key problems in the design of a high

performance DBM:

{1) Fast relatiornal ecperations

Page 3

(2} Efficient access to database storzge.

Moat DBMs ao far proposed adopt parallel processing or specialized
hardware to solve the first problem. Ouwr solution iz to perform all
relational operations on sorted setza and te use & sSpecialized
preprocesaing hardware to sert data. Tt is well known that jein, a
very time-consuming operation, can be executed extremely fast if both
operand relations are sorted by their joirn attributes., Basic set
cperationz are zlso processed quickly if operand relations are sorted,
Thus, relational operaticons ecan be performed efficiently if we can
sort relations fast enough. The best software algorithms ean sort N
items in O{Nlogh) time, but there are several algorithms to sort them
in O{N) time using specialized hardware, We designed a relationzl
database engine (RDBE] based on 2 plpelined merge-sort algorithm
[ToddTE] [Saksifli]. Beecaucze mcost RDEE cperations can be dene in O(H)
time, its processing can be synchronized with the data transfer
between itsell and the memory subsystem. This is called data-stream
processing and ecan be regarded as an extension of "on-the-fly"

processing, Delta has four RDBEs, which can be used in parallel.

There are several methods we may use to =sclve the access problem.
{a) Parzllel I/0 devices to reduce accesas time.
{b) Use of search filters attached to storage deviees to reduce the
amount of data to be proccssed by the upper layers
{e) Large cache (buffer) memory to reduce access time
{d} Clustering and indexing technigues to reduce the amount of data

to be procesaed,

Delta adopts a combination of (c) and (d), because they provide morsa
flexibility, and a large low-cost memory is available. This decision

may =eem gomedhat conservative, because mseveral devices that

Page 4

ineorporate methods (a) or () have already been proposed and
implemented. However, because the usefulness and feasibility of the=e
devices remains unproved, we believe our method is more realistie,

given the relatively short time allotted to HDEM development.

2.2 Internal Schema

Conventional database management systems (DEMSs) store & relation
as a file in which a tuple ls treated as a record and an attribute as
a field., To rapidly obtain tuples satisfying specific criteria,
indexing and hashing techniques are applied., These methods are useful
only if the number of attributes freguently used in the criteria is
small., A DIBMS has to scan the entire relation if an indexed or hashed

attribute cannot be used as an access path for a given guery.

We expect Delta to have an unconventicnal access characteristies,
because a logic programming language i= used as P3I'=s languapge, and
because the system is used for knowledge information processing.
fceess to the database stored in Delta is predicted on the following
characteristics, based on the usage of Prolog programs:

(1) Relatively few attributes in typleal relations
{2) Uniform distribution of attributes used in conditions

{(3) Relatively uniform freguency of access to tuples.

Delta adopts an attribute-based schema to efficiently process these
kinds of requests. Instead of storing all the attributes of a tuple
together, it splits a relation into a ecollection of attributes and
separately stores individual attributes. A TID (tuple identifier) is
stored along with an attribute walue to identify the tuple to which it
belongs. To reduce the amount of data to be processed by Lhe RDBE, a
two=level indexing method is uzed, as shown in Figure 1

[ShibayamaBlal. The merits of Delta's atiribute-based schema are as

Page 5

follows:
(1) Attributes that are not necessary for a given request need not be
read rom the secondary storage to work buffer area,
(2) Attributes are treated uniformly.
(3) Unnecessary attributes need not be transferred between RDBE and
the memory subsystem.
There are several disadvantages as well,
(1) Transformation between tuple format and attribute-based feormat is
Necessary.

(2) Tuple identifiers occupy additional storage space,

To prepare tuples for output (ealled tuple reconstruction) is a
formidable task for conventional DBMSs because it is an operaticn
similar te join. Delta can make effective use of the attribute-based

schema because 1t can efficiently reconstruct tuplés using the RIBE.

Page 6

Tid Value

Tid Range /’ § | 3
1-18 10 | a7

(ﬁf 20-39

1| 22
40=30 -:\\ 17 | Bl f
: * \ -
Value Range \J i 40
! 1-94 *‘H/;Hﬂ*' 1-35 -“M\\E ” a0
100-19% | 36-48 =

] fi+

200200 s8-ad *

a3 11

art 1 / & ad
b=bz

|
3 = 16 | 184
. ; j* . 35 l 168

-1 * 64-¥0 * 0| sk
w ' £ 19 | aiy
21 ah

Note: Asterisks indicate pointers

Figure 1, Internal Schema of Delta

2.3 Architecture of Delta

The Delta architecture was designed based on functional
deconposition. Delta principally con=zistzs of three kinds of units:
RDBEs, a Hierarchical Memory (HM), and a Control Processor (CP}. A
front-end processor (Interface Processzor: IP) is used to connect
Delta to the outaide world., One more unit, a Maintenance Processor

(MP}, 4is 1included mainly for system supervising, as described later,

Page T

Thus, Delta coensists of five kinds of functiopal units, as shown in
Figure 2. & logical request specifying the cperation of an individual

unit by another unit is called a subcommand,

To Hosts wia LAN or multibus

i o —_—— - -
H | Interlace Processor |
+ 4m=me=e et et
i M ! Control Procsssor | H
+ e e ———— e !
I{P! RDBE ! :
> i e }
H | Hierarchieal Memory i
e e ——— ———— <

MP: Maintenance Progessor

Figure 2. Functional Structure of Delta

RDEE performs basie data-manipulation vperations such as
selection, Join, and sort. RIBE subcommands resemble relational
glgebra operators, except that their operands are uswally attributes
instead of relations. Operands of RDBE subcommands are called streams
which are usually arrays of the form {TID, attribute-value, optional
fields>, or =sometimes arrays of combined attributes, Most subcommands
are of the form [output-stream b OPERATION (input-stream?,
input=stream?, options)], where input-stream? does not appear for one
operand operation, such as selection {(restrietion). Input-stresms are
read from HM and the output-stream is written back to HM. Examples of
operaiions are "join®, frestriet"™, fzort", Tupnique™, and Tunion®.

There are four RDBEs which can be used in papallel.

M is a hierarchically structured memory subsystem, which serves
as Delta's system work area as well as secondary storage. FPhysieally,
it has two layers, The upper layer i= & large semiconducter memory,

called the database opemory unit (DMU), The lower layer conszistz of

Page &

large-capacity moving-head disk units (MHDs). Logically, HM has three
layers because the DMU is divided inteo two areza: a buffer area and a
pache area, The buffer area is used as a system work ares, which
stores =treams (for EDBE) and sets of tuples. The cache area serves
as a large disk cache to reduce access to the disks. It adopts the
write-after strategy to reduce acecess further. M has a battery

back-vp system to protect database against power fallures.

HM provides the other units with & high-level interface for
access to buffers and data. For instance, buffer-IDs are used instead
of memory addresses for bueffer access. Mareover, other units ean
specify the conditions of the permanent data (an attribute) to be read
into & buffer frem secondary storzge (or cache arezl. HM maintains
and manapges the two-level zttribute indices mentioned previously and
uses them to find pages which contain data satisfying the gilven
conditions. Thusz, HM performs a kind of pre-sereening of data to be
used by other umits. It also provides a low-level physical addressing

interface for the storage area that contains the system directeory.

& Shadow-page wechanism [LorieTT] and logs are also supported in

HM to be used for transaction roll-back and data recovery.

Most database functions can be performed by 2 combination of RDBE
and HM funetions. Therefore, the main functions of the CP are to
compile requests from the host into sequences of EDBE and HM
subcommands, and to control ‘thelr execution. The CF uses a system
directory stored in HM to translate names tc internal IDs. Other
functionz are as follows:

(1) Transaction scheduling and concurrency control
{2) Rescurce management

{3) Transaction commitment control and data recovery

Page 9

{4) Mapagement of dictionary and system directory.

3 Functions

Delta acts as a database server to a2 number of PSIs (Personal
Sequential Inference Machines) in a local network (LAN) [YokotaMB3)
[TaguchiB4]. A LAN may be a little slewer than other interfaces, but
it is currently the best available method of conmecting a number of
hests to Delta. A faster direet interface 1is also available for
experimentation with P3I. These experiments include interfacing the
F31 logic programming language with Delta [YokotaBBLY]. Figure 3 shows
the environment in whieh Delta will be used. It has been suggested
that we incorporate a3 much database management and on-line I/0
functionalities in a speeial-purpose back-end computer as possible to
free the front end general-purpose computer from database manzgement
chores [HsiaoB0]. This might be true for database backend that served
& few host computers, However, Delta ecould prove to be a system
bottle-neck if we assign it all the DBMS functions, because it will
have to serve several dozen high performance PSIs, Therefore, some
high-level functions are not implemented in Delta; some of them will

be incorporated in PSI's software,

Delta functions can be classified into three groups:
(1) database access functions
(2) database (access) controls

{3) system supervising

2 ? _
LIA LIA
SIM SIM
< ﬁ. =7

Gate | LIA LIA LIiA
"‘ME'}-’ ’ | -

St RDEBM General
== Purpose

DeLTA Computer

: {Eé[]EﬂhﬂéD

Figure 3, Total System Enviromment

3.1 Database Access Functions

Delta is based on the relaticnal model and providesa "relationally
complete™ but not T"fully relatiopnal™ DBMS functions according to
Codd's definition [Codd82]. The relational model was selected, for
{1) its compatibility with logiec programming languages, (2) greater
frecdom in the desipgn of internal schemas and processing algerithma
made pcssible by itz higher level of abstraction, and (3) fewer
interactions with the host enabled by the set-based dinterface. The
Delta =ccess language 4is based on relational algebra; reguests
expressed in user-level query languages are compiled into the Delta
acress langeage by the host, Helational algebra has the expressive
power equivalent to the relational caiculuz, and ls easier to compile
into interpal ocperations. Morecver, adding special operators such as
"sort® and "set comparison® is easy in a language based on relational

algebra. The Delta access language uses attribute-numbers instead of

Papge 113

attribute-names because it is designed for use with legiec programming
language &3 the host language. Another diffﬁrance betwesn the Delta
dccess language and relational algebra is that it allows complex
conditions to be specified in conjunctive pormal form in the selection
cperator in order toc reduce the number of operaters. A list eof the
primitives called Delta commands that are available in the Delta

access language has been provided in [ShibayamaB4al.

Delta provides the following access functions:
(1) Relationally complete aceess to relations
(2) Aggregate functions
{3) Data definition and updating
(4} Arithmetic operations for updating and in retrievzl conditions
(5) Speecial operators, such as "sort® and "set comparison®

(5] Support of null values

Cn the other hand, the following functions are not supported in
the current system:
{1) Views
{2) Predefined requests

{3) Least-fixed-point operaticns

Views are not included to reduce the load on Delta, Predefined
requests are not supported because the anticipated frequency of
repetitive requests does not seem to justify implementation of this
function., Least-fixed-point operation are very desirable in a logic
programming eovircenment because they reduce the number of interactions

required; we may later include this function in Delta [YokotaHBh].

3.2 Databasze Controls

Page 12

Delta supports the following database (access) control functions:
{1) Support of the (atomic) transaction concept
{2} Transaction concurrency control
{3) Data recovery
{(4) Data dieticnary

{5) Special functions for database administrators {DBAa).

The transaction concept is essential teo every DEM and DEMS. The
hest can direct Delta to commit or abort a transaction at any time
during its progress. Although & host may dissue muitiple update
requests in a transaction, the result is treated as if the transaction

were a single (atomic) operation.

Because Delta has to serve many P5Is simultaneously, it should be
able to process concurrent transactions, Delta avtomatieally locks
and unlocks necessary relations sc as to preserve tLheir consistency.
The granularity of lecks is a relation, although finer granularity may
be necessary for high throughput. It is fairly difficult Lo deslgn
coneurrency control algorithm using finer granularity for DBM= such as
Delta that have 2 funetionally distributed architecture and
set-oriented basic operztions, because finer granularity oust also be
supported by recovery algorithm. A combination of deffered update and
ahort-term locking methods is applied to the data dictionary so a=s to

improve performance of transactions that involve dieticnary update.

Data recovery is another function easential to every DEM and DBEMS
in ecase of system or media failure. Delta rolls-back all transactions
in progress after a major failure. ALl transacticns committed, or in
the process of being committed, are preserved. Moreover, back-up
dumps and magnetic tape logs can be used to restore database, if

roll=-back processing fails due to destruction of magnetie disk

Page 13

contents. In this ecase, roll-back processing is performed after

restore processing.

The data dicticnary consists of schema information for database
relations. It iz defined as a s=set of =special relationz whose
consiastency with user-defined relations is preserved by Delta so that
hosts can leook them up just as they can pormal relations. A host may
gocess the dictiomary esch time it accesses 8 relzation to determine
its schema. It may temporazrily preserve the current contents of the
dictionary in order to reduce interactions with Delta and improve
overall performance. Thus, there could be schema information for the
same relation in both the host and Delta, and we have to make sure
this information is consistent. Beside the concurrency control
mentioned sbove, Delta attaches & kind of time-stamp te schema
infermation to indicate the latest update; this time-stamp is checked

each time a host esceesses a relation.

There are several speclal funetions aveilable for the convenience
of databaze adminis=trators. The bulk leoading and unloading faecility
using magnetic tapes is uszefuwl for exchanging data with other systems
or efficiently Ainputting large amounts of data. This facility can
alze be used to restructure the database =0 as to improve performance.

Other examples of functions are the commands for storage management.

Delta does neot currently have some functions that may be found in

other systems:
t1) Security panagement
{2} Integrity control

(3} Support for the database schema design

Pape 14

It was deeclded to Aincorporzte security management in hosts
because this function should be unifiied with the security functions of
PSI's operating system, although it can be implemented easily on
either s5ide of the system. However, part of this function may be

supported by Delta when the overall strategy for system security

management is declded wpon.

The other two functions were excluded from Delta, since there
exiast no fully-developed matured methods of implementing them. Some
ICOT researchers are studying integrity control mechanisms for logie
programming environment, and their methods will be applied to the PSI

sof tware that provides the interface to Delta,
3.3 System Supervising

In conventionzl computer systems, the system supervising
functionz are provided by the operating system rather than by the
OBMS. If a DEM 15 a back-end, tightly-coupled with its host, some of
the system supervising functions may be incorperated in the host's
operating system. However, these functions must be provided in DBM if
it is &an independent databasze server such as Delta. Delta's system
supervising funetions include the following functions:

{1) System console {Operator or DEA interface)

(2) Control of system status

{3} Status report to host upon reguest

(4) Modifying parameters (size of the buffer area, ete.)

(8) Maintenance of log tapes, etc.

(6) Failure detection and system reconfiguration (disconnecting
faulty equipment, etec.}

{7) Diagnosing faulty equipment

(8) Collection of statistical data for evaluation.

Fage 15

Mozt of these functions were designed and implemented ezpecially for

Pelta, although a few made use of existing facilities,

Funotions for registering users and maintaining their records are
not supported, because Delta does not support security by itself. 4n
accounting funetion is probably necessary for some DBMs; Deltz does
net need one beecause it is to be used in a closed research

environment.

4 Basic Processing Algorithms

Delta proceszing algorithms are described in this chapter. The
sequence of request processing is as follows. IP receives a request
from a hest and passes it te the CP. The CP compiles the reguest inte
a sequence of internal operaticons. A compiled regquest consists mainly
of RDBE and HM subcommands. Then, CP controls the execution of the
compiled reguest by RDOBE and HM. The path between IP and HM is used

to transfer tuples to and frem hest; the CP does not process them

directly.

4.1 Retrieval

Processing slporithms are best explained by some examples. Fap
readability, heost reguests are written in an S0L-like syntax instead

of in the Delta access language. Some trivial operations are omitted.

Example 1: simple selection
Reguest: Select A,B
from R

where RB>™I0™ and fd=s 207"

Compiled regquest: {modified for readability)

1: HM: Tempt := E.B where (range ["10"<, <="z20"])

Page 16

2: HM: allocate Temps
3 RDBE: TempZ := restrict (Tempt, range [™10%<,<="20"])
4z His allocate Temp3

E: RDBE: Temp3 := sort_by_tid (Temp2)

E: HM: Templi := E.A where (tid in Temp3)

T: HM: allocate TempS

B: RDBE: TempS := restrict (Tempd, equal_tid [Temp3])

/* this performs tid-jolin */

(T
aa

Hie allocate Temph
10: RDBE: Tempd :=z= sort_by_tid (Temps)
11: HM: allocate TempT

12: HM: Temp7 := transpose_to tuple (Temph, Temp3)
/% result in TempT %/

13: HM: release Templ, Temp2, Temp3, Templ, Temps, Tempé

* Data tranzfers between RDBE and HM are directed by RDEE.
For instance, RDBE issues two HM subcommands,
start_stream in (Templ) and start_stream cut (Temp?),

when it executes step 3. These subcommands do not appear
in the compiled sequence, because they are auvtomatically
iszsued by HDBE and CP is net involved.

In step 1, HM gets items of attribute B that may satisly the
condition MIO"{D<s"20" using clustering indices, Then, ADBE extracts
only those items that actually satisfy the condition (step 3). Next,
HM gets these 1tems of attribute & that may correspond to the same

tuples as the result of the previous operations (step 6), and EDBE

Page 17

extracts the exact items (step 8}, Thi=s operation is ealled a
tid~join because it resembles to & join. At thisz stage, the result is
obtained, but it is still split between two buffers although both are
sorted by tids. Thus, the final step 1s conversion to the tuple

format.

In this example, steps 2, 8, 7, 9, 11 simply invelve just the
buffer alleoeation., Different buffers are used for different data for
simplicity in this example, but buffers may be reused in actual
operztions. If they zare reused, some alleeation steps shown here are
not necessary. All buffers except the buffer containing the result
are rPreleased &t or before the last step., Allocation and release of
buffers are neot shown in the other examples because they are trivial

cperations.

Steps & and 10 prepare for the subsequent steps by sorting data.
They may be slkdpped Lif the result of previous cperation does not
exceed a specifiec limit (G4KB or 4K items), because they are already
sorted in previous steps or can be autocmatiecally sorted at the next

steps in such cases.

In Pelta operations, projections do not usually zppear explicitly
in dinternzl operations. There may be more than two attributes in
relaticen R, but the internal operation is the szame asz above. Thus,
those attributes which are not output and z2re not conditions are not

aceessed in Delta.

Example 2: semi-Jjoin
Request: select A, B, C
from F
where C in

(select ©

Page 16

from a8

where ' = "d")

Compiled request:

1: HM: Templ := 3.0 where (egual "d")

2: RDBE: Temp2 := restrict {Tempt, egqual ["d"])

3: HM: Temp3 := 5.C where (tid in Temp2)

Y: RDBE: Temps := restrict {Temp3, equal_tid [Temp2])
5: HM: TempS := R.C where (egual Tempd)

6: RDEE: Tempb := restrict (TempS, equal [Temph])

/% this performs semi-join ®/

T: HM: Temp7 := E.& where (tid in Tempb)

B: BEM: Tempd := H.B where (tid in Tempf}

9: RDBE: Temp? := restrict (TempT, egual_tid [Temptl)

10: HRDBE: Templ0 := restrict (Tempd, equal_tid [Tempt])

11: HM: Temp1! := transpose_to_tuple (Tempd, Tempil, Temph)

In this example, several trivial operations (allocate, release,
and sort) are not shown. The semi-join can be performed by ROBE as a
restriction, with the condition being given in a strezm. Note that

semi-join and tid-join are done by almost identical operations in

Delta.

Example 3: join
Reguest: select H. A, H.B, 5. C
from R, 5
where R.A = 5.4

and S.D = mgw

Compiled request:

i HM: Templ := 5.0 where (egual fdn}

Page 19

2: RDBE: Temp? := restriect {Tempil, egual "d")

3: HM: Temp3 := S.A where (tid in Temp2)

L ROBE: Templd := restriet (Temp3, egual tid [Tepm?])
53 HM: Temp5 := K. A where (egual Templ)

b1 RIBE: Temph := jJjoin {(Tempd, Temp5, equal)

T: RDBE: Temp7 i= Jjoin {(Temp5, Tempb, egual_tid)

g: HH:
9z HM:
10: RDB
11: RDE

12: HM:

/% tid-join for result relation %/
Tenpf := R.B where (tid in Tempf)
Tempd := 3.C where (tid in Temph)
E: Templd := join {(Temp8, Tempf, equal_tid)
E: Templl := Jjeoin {(Temp9, Tempb, equal tid)

Tepm12 := transpose_to_tuple (Temp?, TemplO, Tempiil)

The result of the join {(step 6) is an array of triplets {new_tid,

R's_tid, &
because of
([R's_tid,

done at step

5 tid) and does not include the wvalues of R.A or S.&
hardware limitations. Thus, [new_tid, BR.A] := jein
R.A), [mew_tid, R's_tid, S's_%tid], equal R's tid) must be

T. &Steps 10 and 11 &re tid-Jjoime, but are 2 little

different from examples 1 and 2, because new tids are attached.

4.2 Updating

There are three kinds of update operations in Delta: insert,

delete and update. An update is basically performed by 2 combination

of delete and inzert of necesszary attributesz. The example below shouws

the basiec of

update operations.

Example 4: Upndating

Reguest:

update R

"
b
+

zet A Haw

where B = "p"

Pape 20

Compiled request:
i HM: Templ := E.B where {egqual "b")

RDBE: Temp? := restriet {Templ, equal "b")

™

3: HM: Temp3 := F.A where (tid in Temp2}

HE RDBE: Templl := restrict (Templ, Temp2, egual_tid)

52 ROBE: TempS := add (Templ, "a®)

Gz RDBE: Tempé := delete (Temp3, Temp2, egual tid)
/% Tempb := Tempd - Temp2 */

T: HM: H.A := update pages corresponding to Templ by Tempt
/* R.A := R.A - Temp2 ®/

B: HM: R.A := insert (R.A, Temps)

Selection of the gualified tuples is performed from step 1 to
step 4, Caleulation of rew values iz done in ztep § by RDBE; Actual
updating takes place after these preparations. In steps 6 and 7, old
value i1tems of attribute A are deleted from the database. New value

items are inserted in step 8.

When item= are deleted from an attribute table, they are actually
erased from the pages of the table. However, the items are inserted
in the overflow pages. Thus, newly inserted items are pot indexed and
are read as possible candidates for whatever conditions are specified
for =mubsequent rektrievals. Indices muat be restructured 1 the
retrieval performance is degraded by these update operatlions. This
restructuring is called reclustering; 1t is perflormed sutomatically
by special system transacticns whenever a specific trigger condition

is satisfied.

5 Implementation

Fage 21

Each functional unit identified in chapter 3 is being implemented

by a separate piece of hardware, as shown in Figure 4, The result is

a loosely-coupled, functienally-distributed multiprocessor.

T e
i]
] 1
¥ ¥ =L =] H
LA ' SCU r
e L oL
ce iar HMETL
LamM ' - |
'
RED CH : | —@MHD
ae CKC
]' 1 —@MHD
1 [}
cH |
— () wru
S i i
MP i ﬁ MTU
P
e,
Figure 4§, Hardware Configuration of Delta
General |
I Purpose
I Pipeline Merper Processar
Mudule Sorter Lt
- H
;
Figure 5. RDEE Schematic Configuration

Page 22

RDRE consists of 2 controller, which is a 16-bit CPU, and =a
newly-designed Tmengine core". The engine core itselfl econsists of an
IN-module, & sorter, and a merger, as shown in Figure 5. The
IN-module i= responsible for preformatiing data for the sorter. The
sorter iz based on the two-way merge-sort algoerithm and consists of 12
sorting cells wuwsed 1in pipelined fashion and a sort checker. The
merger is the central podule of the engine core and performs basic
relaticnal operations, such as restrict and jJoln, on the output of the
sorter. The CPU has two functions. One 1is to control the entire
RDBE. The other is to perform complex operations, such as arithmetic
operations instead of the merger. For instance, step § 1n example §
iz done by the CPU instead of the merger. We think it is wise not to
implexzent rarely-used complex operations in bhardware, even though
software implementation may slow these operations. The engine core
has its capacity =et at either 64 K Hytes or 4 K (2%%12) items,
However, the CPU directs the core to repeat the execution of some
opegrations lor several specific subccmmands so as to provide unlimited

procesaing capacity to the CF.

The IPF, CP and MF all use the same land of =single board 16-bit
CPU with a main memory size either 512 KB or 1 MG. The Delta conzole
is attached to the MP. Each of these wunits is econtroelled by a
TS5-based operating system, while the RDBE software 15 simply an

event-driven single-task system.

The EM configuration is also shown in Filgure 4, The HM
contreller 1z a 32-bit CPU whose main memory is uzed as a DMII. The
size of this IMU is 128 MB, and the total capacity of the MHDs is
aboutt 20 GB. The whole system 1s backed-up by 2 battery unit im HM
to protect data in ease of power failures, The HM operating system 1is

standard software for the HM controller and supportsz virtual storage.

Page 23

There are two kinds of interfaces used feor inter-unit
communication and data transzfer., One is a kind of I/0 interface with
maximur tranzfer rate of about 3 ME per second. This interfzce is
used to connect HM to other units; these are the main data paths in
Delta. The other Ainterface is the IEEEY88 standard bus, which
connects units cother than HM te each other., This bus is used to

tranafer inter-unit subcommands to control the Delta operztions.

Delta can be classified 25 2 hardware-oriented DEM because it
ineorporates a new piece of hardware in its kernel, and its processing
algorithms for pripitive relational operations are totally different
from those of conventicnal DBM3s. However, some basic operaticns and
additional functions are implemented in s=oftware. We expect te learn
more about which functiens to implement in hardware by evaluating

Delta in actuzl operation.

6 Concluszions

We have presented an overview of relational database machine
Dalta. Fart of its hardware, along with 5 CB of storage, was
installed at ICOT in April 1984, and has been used to debug and test
the control software. The design of most of the control software has
been finished and it is currently being tested. The remaining
hardware will be installed in December 1984, and we expect Delta to be

fully operational by March 1085,

The functions described here znd the performance of the machine
will be tested in ICOT, Our gosl is not just to beild 2 good datahbase
maching, but to pave the way Ffor future knowledge base machines, We
hope these tLests will prove our most orucial decision correct: that

developing an RDEM is the first logiecal step toward a true knowledge

Page 24

baze machine.

foknewledpgements

Delta i= being developed with the cocoperation of Toshibka

Corporation and Hitachi Ltd.

REFERENCES

[Codd82) E. F. Codd, Relational Databasze: A Practical Foundation
for Productivity, Comm. of ACM, Feh, 19082,

[HsiaoBG] David K. Hsiao, Data Base Computers, in (ed.) M.C. Yovits,
fdvances in Computers, Vel. 19, Academic Press 1980,

[BsiaoB3] David K. Hsiao (ed.), Advanced Database Machine
Arechitecture, Prentice-Hall, 1983.

[IEEET9] Special Issue on Database Machipes, IEEE Transactions of
Computers, Vel, ¢-28, Jun. 197%9.

[Lorie77] Raymond A. Lorie, Physical Integrity in a Large Segnmented
Database, ACM TODS, 2-1, Mar. 1077.

[MurakamiB3) Kunio Murzkami, et al., A Felational Data Base Machine:
First S&tep to Knowledge Dase Machine, Proc. of 10th Symposium on
Computer Architecture, Stock-Holm, Sweden, Junc 1983,

[SakaiB4] Hiroshi Sakai, et al., Design and Implementation of the
fielational Databa=e Engine, Proe. of International Conf, on Fifth
Generztion Computer Systems 1984, Nov. 1984, Tokyo Japan. (to
appear)

[ShibayamaBla] Shigeki Shibayama, et al, A Relational Database Machine
with Large GSepiconductor Disk and Hardware Relational AMlgebra
Frocessor, New Generation Computing, Vel.2, HNo. 2, Jun.1984,
Ohm=sha Ltd and Springer-Verlag.

{Shibayamafib] Shigeki Shibayama, et al., Query Processing Flow on

Page 25

RDBH Delta's Functionally-Distributed Architecture, Proc. of
International Conf. on Fifth’ CGeneration Computer Systems 1984,
Mav. 1984, Tokyo, Japan. {to appesar)

[TaguchiB8l] Akihito Taguechi, at al., INI: Internal Network in TICOT
and its Future, Proec., of ICCC, Australia, Oct, 1984, (to appear)

[ToddTE8] S. Todd, Algorithm and Hardware for a Merge Sort Using
Multiple Processor, JTBAM J. of Research and Development, Val.22,
19748,

[YokotaHB42] Haruo Yokota, et al., An Enhanced Inference Mechanism for
Generating FHRelational Mgebra Queries, Proc. of 3rd ACM Symposium
on Principles of Database Systems, Apr. 1984, Waterloo, Canada,

[YoketaM83] Minoru Yoketa, et al., The Desipn and Implementation of a
Parsonal Sequential Inference Machine: F:I, Hew Generatioaon

Computing, Vol. 1, No. 2, 1983, Ohm-sha Ltd and Springer-Verlag.

