ICOT Technical Report: TR-072

THAT72

Comparison of closure reduction and
combinatory reduction schemes
by
Tetsuo lda
(Riken: Institute of Physical and Chemical Research)
Akihiko Konagaya
{C & C Systems Research Laboratories. NEC Corporation)

August. 1984

Mita Kokusai Bldg. 21F (03) 456-3191— 5
|[:D I 4-28 Mita 1-Chome Telex 1COT 132964
Minato-ku Tokwvo 108 Japan

Institute for New Generation Computer Technology

Comparison of closure reduction and

copbinatory reduction schemes

Tetsuo Ida t and Akihiko Konagayva i
t Riken: Institute of Physical and Chemical Research

t C & C Systems Research Laboratories, NEU Corporation

This work is partly based on the activities of W3, 5 of Fifth Ceneration Computer
Project of ICOT.

The work 1s also supported by the Granl in Aid of Ministry of Education and
Culture., No. 59580027,

Authors’ addresses: T. Ida. Institute of Physical and Chemical Research,

2-1, Hirosawa., Wako-shi, 351-01, Japan,

Akihiko Konagaya, C & C Sysiems Research Laboratories, NFC Corporation

1-1, Miyazaki, 4-chome, Mivamae-ku, kavasaki, Kanagava, 213, Japan

-1-

Abstracl

We analyze the efficicncies of closure reduction and combinatory reduction schemes
by introducing a labelled tree representing a i term. Translation of a &4 term into
combinatery terms. i.e. brackel abstraction. can be viewed as attaching labels 5,
E. C. K. T to each node. Similarly. a node of a tree representing a i-term can b
labelled depending upon the presence of free variables in the subtrees Resulting
labelled trees which represent a i-term and the translated comblpatory term are
made similar. i.e. whose underlying trees are the same. We can then make perform-
ance comparisons in terms of the cost involved 1n traversing the labelled trees by
machine models reflecting the essential behaviors of Turner's combinatory reducer
and a closure reducer. Our work is an elaboration of Turner s and Peyion Jones es
experiments of combinatory reductions. However, our approach is not to resorb to
actual runs of programs, but is more theoretical based on abslract machine models
working on labelled trees. Our conclusion of the performance comparisons is that a
closure reducer is in most cases more efficient than combinatory reducers in terms
of storage consumption which 1is a dominant factor in determining the overall
porformance of the reducers. Furthermore, we show that the two reducers which seem
guite different at first sight 1s in fact very similar and with small modifications

the two schemes become cssentially the same,

Keywords and phrases: d-calculus. combinatory logic, functional programming.

reduction machine

CR Categories: C.1.3, D.1.t, F.i.1. F.4.1, F.2

1. Introduction
This paper 1is an attempl to atlain unified understanding of the behaviors of the
two known machine-implemented reduction schemes of A-caleulus, closure reduction

and combinatory reduction.

In T101 . Turner presented a new technique of implementing functional programs
using combinators. Turner’s scheme consists in compiling functional programs into a
sequence composed of combilnators and constants that are represented internally as a
graph., and reducing the graph into a normal form by the leftmost reduction stra-
tegy. Efficiency comparisons are described in [10] in terms of the number of
consumed cells and the number of reduction steps in the graph reduction system and
SECD machine [8] . Later Peyton Jones gathered the statistics of Limings of
various program runs on both the combinatory graph reduction system (to be called
combinatory reducer) and the i-calculus reduction system (to be called A-reducer’
18] . In this paper. ve investigate the efficiency of the schemes with the view to
elaborating Lthe results of the efficiency comparisons made by Turner and Peyton
Jones. and further show that both reducers can be made to become the same reducer

{which we will call a labelled tree reducer) by successive improvements.

Given a functional program. we have three alternatives for its execution following
the previous works as above;
{1} to translale it into a i-term and directly interpret

the i-term by the i-reducer,

(This scheme is to be called closure reduction for the reasons

to be described in section 2.)
(27 to translate it into combinators. and interpret the combinatory expression

by the combinatory reducer,
(3} to translate it into SECD-like machine code and interpret the code

by that machine,

Measuring the timings of runs on the three abstract machines (simulated by the same

real machine) is one way of comparing the efficiencies. However, care has to be

taken lest that any peculiarity of the real machine might squeeze into the perform-
ances of the simulated machines. We [irst ask ourselves whether one machine sub-

sumes the other in some {undamental way.

Therefore we starl our investigation by presenting a model of computation at a
i-term level, and elaborate the model into a machine model which is similar to the
SFCD machine. In this process we atlempt to form a clear view of underlying
machines for i-caleulus and to give intuitive and convincing arguments to the
efficiency comparisons. In this paper we limit our considerations Lo machine models
that are essentially of von Neumann type: it consists of a single processor and
random access memory. The processor is to execute the various reduction strategies
such as n-calculus leftmost reduction. The memory is organized as heap and stacks:
the heap for storing the tree representation of the terms, and stacks for storing

temporary operands and control information. Finally, some examples of comparisons

are given.

2. A-calculus and machine models

We list preliminary notions below. For full expositicn of A-calculus and combina-
tory systems, readers are referred to [1]
. Programs are a sequence of terms' . e.g. ((..(MzY .. M)
A-terms are either constants, variables, or functions denoted as Ax .M.
where M is a term and 1 is a variable.
. A variable cccurrence immediately after i is called a i-variable.
4 pair of terms is called an application.
. Function with n arguments 1;.... I, 1s represented ' as AT . . Xn. M.
Assume M does not contain 4. then xy....1, which appear in M
15 called "bound™ by L. otherwise "free’,

fool nobe

t We use following short hand notation: M. M, for ((.,{MM:). . 4,} and
ATy . . xe M For dxy. (Ars. L (A, ML)
We omit "A° whenever context permits us to infer.

Machine LO

A-terms are reduced successively to a no longer reducible form called a norwal form
by applying following reduction rules:

(1) substitution rule (f-rule):

(Ax .Mia — M [x:=a] where M [x:i=a] is the result of substituting a for every free
occurrence of ¥ in M.

{2) é-rules:

kMMa. .M, — L where k is a constant called &-constant. L is the result of the
reduction (é-reduction) specified by k on M;. M2 ..., My. The reduction assoclated
with k is given a priori. &-rules are built inte the system to make certain opera-
tions on terms as primitive, €.g. + in + m n — m+n . We assume that the binary

relation & induced by &-rule satisfies Church-Rosser property.

Observations I

. In the realization of jf-rule, the literal substitution on von Neumann type
computers is expensive, since it entails copying of the term to be substituted.

.- Finding every cccurrence of variables at the substitution time is also time-
consuming.,

The literal substitution may cause variable name clashes.

Thereforc. we use a pointer to term o instead of the term itself. and simply
establish the correspondence between the value (pointer) and the variable. We delay
the actual substitution until the variables are referenced. To enable the delayed
substitution, ve use an environmen! list consisting of the (dotted} pairs of a
variable name and the ecorresponding value, 1.e. substituted term. Therefore,
M[r:=a) is actually represcnted as a pair of the term and the envirconment, 1i.e.
[4.2) . Here, [.} is called closure. and & in this case is {ix.a}.&) vhere &
is the environment before the substitution. The variable name clash can be avoided
if a search for a variable in the enviromment list is made consistently from the

head to the tail of the list.

Given torm MyM:. .M. . Machine LO reduces the term by [inding the leftmost reducible

application (reducible application is called redex). It can be shown that the

\eftmost reduction strategy is normalizing (i.e. the normal form, Iff exists. 1s
reached by repeated application of the reduction rules to the leftmost redex) i P.
991. 11 . This normalizing property is one of the reasons why recent functional
programming systems [e.g. 5. 1] adopt the leftmost reduction strategy despite the
added complexity (and possible degradation of efficiency) compared with the lan-
guages with the applicative order reduction strategy. We assume that term

(.. (MM=7y. . M,) is represented as a binury tree {or tree for short) (see Fig. 1).

The machine is equipped with a reduction stack and heap storage. The leftmost
reduction strategy is implemented on machine LO by the following algorithm p:
(Implicit in this algorithm is the presence of control stack which is necessary to

implement the recursive algorithm below).

Leftmost i reduction algorithm p;
Initial input to p; is ferm, & and an empty reduction stack, where lerm 1s a

program to be reduced, and & is an initial environment.

pr (M, &,stack) =

let stack=<sy,...s,» or <> i.e. empty
(1) M is atomic'
if M is a terminal object'?
then resultis'

{ M when stack is emply
Hh1{55.{:.newstuck(}*4j..p;(sn,(}.newgiac'{}] otherwise

else if M is &'
then resultis
Msyg2. .5, when n is less than the number of the terms
required in this & reduction
pilw, &, stoack™) othervise

vhere w is the result of the &-reduction, 1.e.
w = 1"!":S||....b'|_} .
and stack’ (=<si.i...,S.>) is the stack after the reduction.
else let w = p;(lookup’ " (8,M), (), newstack ()
update™ enviromment & with (M w)
resultis pylw, &, stack)
2y M is of the form Aix. body
resultis
M when siuck is empty
pi thody, ({1.51).8).%52,53....5.7) othervise
(3% M 15 closure
let M = [M".8']
resultis p; (M8 .stack)
4y M is MiM: (i.e. application;

resultis pp M. &, < M2 B) 5. .50, . .87

S ———— Y

nole:

1 Type atomic is given a priori; number., a sequence of characters, e.g. abed, and
structured data, e.g. lisl are atomic.

*2 An atom is a terminul object if it is non-variable and not &.

Y3 resultis erp” means that this algorithm terminates with eap as a resultl.
:; newstack () creates a new stack.

A symbol is & if 1t is assoclated with a reduction rule, i.e. §-rule.
*¢ Functional notation for Y indicates that M is an externally given funclion. The
order of reductions of i arguments are left to the semantics of M.

lookup searches for the bounded pair M, M]3 in the environment list from left
and returns |M| if such a pair exists,

"update environment & with (M.w)" implies the replacement of the bounded pair
M.IM| Y first from left) in & by (M.w), where |M! is a term formerly bound to
M. That is, &=:{... M. [M|y... .0 —» &=(...M.w))

Algorithm p; shows that the objects it handles are closures rather than i-terms.
Hence, we call this d-reduction system closure reduction sustem (or closure reducer
for short). The machine traverses the tree that represents the term leftwards from
top to bottom. pushing the closures of the subtrees on the reduction stack (ef.
Fig. 2). When a bottom. presumably some &-constant, is reached, the machine reduccs
necessary number of operands which are on the reduction stack and the &-rule 1s

applied.

A note to the wmplementation of algorithm p;

i+ For clarity of the presentation. a closure is formed when it is stacked onto
the reduction stack.

f1ii) We can avoid the unnecessary formation of closures, if we realize a stack that
consists of two fields: one is (or storing a term. and the other for an environ-
ment

{iii) The paramctcr binding in -reduction (ef. case (2) in algorithm p;) can be
extended to allow for the simultaneous binding of variables to the values on the
stack. That is, the execution of ;0 [ix, M.8) ,<s;,..,5>) results in

Pal [N O e b . (0.8 0.82) (<Shth .. . Se) when mzn. or

Pl LAz My ({25850, . (1.5 . 82) o> when min.

From now on., ve assume algorithm o 15 modified as above.

{iv) Turner's system employs a graph Lo represent a term. A graph 1s construclted

hecause a recursion function is realized by a circular pointer to the term defining
the function. The graph is converted to a tree by cutting the circular link to the
funcLion and by letting the pointer to point to an atom of the function name which
is outside the world of our discourse, and hence is regarded as a constant. {ef.

Fig. 3

Observations II

Forming a closure with the current environment in each push of terms
M.. M,y. .., M- onto the stack may be superfluous since the stacked environment
may not be used. Imagine the case that M; is a constant. Even i the improwve-
ments of (i) and (ii} are made, the push of an environment onto the stack 1s
superfluous in the cases thal terms do not need an environment.

Whether a particular term M, needs the environment for its reduction can be
determined beforehand. Simply check the presence of the variable that are free

in M.

Therefore, we elaborate machine LO into L1 by intreducing a tag in each node.
The types of tags are following:

s to denote that the right and left subtrees need an environment.

b to denote that only the right subtree needs an environment.

¢ to denote that only the left subtree needs an environment.

See Fig. 4.

Machine L1 and algorithm p’;

Machine L1 checks the tag stored in each node and the closure is formed on the
basis of the comparison. Either the subtree itself or the closure are stacked
during the traversal of the tree. The rest of the workings are the same as machine
L0. The reduction algorithm p; is modified to process a tagged tree, The modified

algorithm is called p';. It is further developed intc algorithm pe; in sectlon 7.

Claim I

Machine L1 is more efficient than L0. The underlying assumption in this claim is

that forming a closure is more expensive than providing the tag bits and checking

the node in the traversal.

3. Combinatory system and machine models

Combinators are defined as terms without free variables. We consider following
combinators most important from practical point of wviey, S = ilayz.xzz(uz}, K

=iry.x. B Sixyz.xiyz) ., C =iryz.xzy and I =ixr. 1.

We recapitulate the method for translating terms to combinators. [10, 3
Let the term to be translated be ir M. We eliminate x using the following
algorithm.
Case 1: M 15 a single symbol

M=z I

ME KM
Case 2! Otherwise, let M = Mo
- 1 N and rehd KiViNa)

r=N; means that &, contains free occcurrences of &,

Likewise r«N; 1is defined to the contrary.

- xeN; and x ¢No CN) N

where the Lerm wilh = is the translaled Lerm by this algorithm.

« xeN; and r eN» BN R
« relNy and x eNo SN NG

In the case of an n-variate term, Axy..x,.M. recursively apply the above algorithm

starting with ix, M.

Machine CO0 (Turner’s comhinatory reduction machine)

Machine C0 reduces the translated combinatory terms using the leftmost reduction
strategy. The combinatory terms are represented in the same way as i-terms. [10]
described in detail the reduction algorithm.

Essentially, the roduction is performed in twoe phases: first remove the combinators
by copving the nodes and dislribubting Lhe argumenls Lo proper places (distribution

phase!, and then redure the constructed subtrees by &-rules (reduction phase). This

reduction is performed bottom-up. It is imstructive Lo note the similarity between
the clesure econstructed in p; (and p’;) and the subtree constructed immediately
after the removal of combinators. The picture will become clear as we introduce a

T-labelled tree.

4. T-labelled tree and labelled reducers
A T-labelled tree is a tree where at each node (both terminal and non- terminal) of
4 labelled tree a sequence of symbols in the sel L can be attached as a label. A

distinguished symbol £ is used to denote an empty sequence.

A tree in Fig. 4a is a [Arj-labelled tree. (We simple call it {i}j-labelled tree.)
From |i}-labelled tree, we construct a (S, K, I!-labelled tree using following

equations. We consider first a single variable case.

ir. MMy = S{dr My AT M2 1)
ix.M =1 if M=x =
ir.M = KM if M is an atom other than x (3

Translating the term of the lefthand side of the equations to the righthand side
and regarding combinators as a label. we obtain a 18, K, I, 4ii-labelled tree.
Figure 4b shows a (3. K, 1. il-labelled tree constructed from a 4i-term tree.
Variablc names bound by i are entirely eliminated by the repeated application of

the above rules. Eventually we get (S, K, I!-labelled tree. (ef. Fig. 4dc}

The leaf nodes of the (8§, K. I'-labelled tree are either labelled as I or K. The
I-labelled nodes are empty. and K-labelled nodes have a constant. For technical
reasons (such as enumeration of leaves, or debugging), instead of an empty
1 labelled node. we use an I'-labelled node in which a variable name to be elimi-
nated in Turner's translation schome is retained.

That is, 4r;.M is translated to I'r, when M=x; and the corresponding reduction
rule is I'r;a — a . Here the variable 15 now regarded as a conslant. Mostly 1n our

discussion the presence of the variables is ignored. however.

In the case that one of M; and M. does not have free occurrences of variable 1, we

][]

have the following:

T £ My Ax. MM BMy (Ax. Mz 0

T € M2 Ax.MiMz

C{ix .My Mz 53

B and C make more optimized reduction possible, as we see in the following reduc-

tion algorithm pp.

We now extend the labelled Lree construction to the case of an n-variate i-term. We
first consider the following lemma,

Lemma 1

A MiMo=S" ™S (AT, My) (AT M2) (8)

Here we use the following notation:

5= 5 (8™p), and §%= M for any M.
vhere S° is defined as Akryz. k{xz) uz).

Proof: By systematic renaming of variables we rewrite AT, MM as
At My B =il,..t .M M and prove

W MM=8 " S Ay it M)

Induction on n,

When n=1. vbvious from equatiocn (1.

Aty Mb=at,. (AT Mib)

- Ata. 8IS (AT M A M= ST ST 28 (A Ay M Y At (AT MR)Y

SISt M AL M) 0

We have a label 5°%°'S at the root node of Lhe Lree iz, M*» . We can generate
‘optimized’ labels using B' (Sikxyz . kx(yz)) or C' (Zikxy=.ki{r='y) instead of 8§’
depending upon the presence of a free occurrence of a variable to be eliminated in
the subtreces. That is, we have, for example.

ALy MM=S" (B'S""38) (Ax1x3. . .%o My) (AT, M2) when 1z €M)

arnd

WXy Mibe=S (C 8 " S (ATa M)) (AXIT5. .. Tn M) when To € My

In the label. a prime of the combinalor is omitted since by the way of the genera-

tion of combinators in labels all the comhinators in the sequence except for the

-11=-

rightmost one are always with a prime. Hereafter all the combinators with a prime

are treated as il ones without a praime.

Machine C1 (E-labelled combinatory reducer)

Machine C1 reduces the T labelled tree by the leftmost reduction. We use £ = (5, B,

C, K, I} and Algorithm pr below lor reduction.

Algorithm pr

ool slack) =
J% t is initially a tree (later modified to a graph) to be reduced.
stack is either empty or <t;.lz....t,> where t; is a subgraph so far stacked. */
if t is atom
then if t is a terminal cbject
then relurn

else

t when stock is empty
tpe (ty . neustack (). . . .pe(ty.newstack ()) vhen stack is<i).tz2....ts>

else /« T is & #/
return

ttitz..t, when n is less than the number of the terms
reguired in this &-reduction
o, slack”) otherwise

where w is the result of the &-reduction
ie, w=t{ty,.. ., t;) (ef. note t6 in Algorithm p;)
and stack’ (=<t,.;,...l.») is the stack after the reduction.

let L.l.r be the label, left, right subgraphs of graph t, respectively.
/% In the case of a terminal node only the left subgraph field is used =/

if Lol t is ¢
then return pe(l of &, <t, ty....t.>)
els=e
if siack is empty then return t
else

let lahel of 1 is Xi. X,

(1}

e
P
s

{4)

X =35
I of t; « newnode® Xo. . X,, | of t, rof t;)
rof t; — newnode (N2, .X,, rof i, rof £}

return pe(l of t, <l of t13, tz, .., ta2)
X =B

rof t, = newnodeX>..X,, rof t, rof t;)
I of I — [of i

return pr{l of #. <t;,to,.. . t>)

.“:1 =

L of t = mewnodeX>, . X,, lof t, rof b}
rof t; - rof

return peil of t, <l of {13, t2, ... 1=
X =K

Lof ¢, — I of t

return pe (b, <ts, L, 130

X =1

return pe(l of #y, <tz. .., fu2)

¥ newnoded!., lt, vl constructs a node whose label is

-192-

I. left field is subtree it. and right field is subtree ri.

Now an intuitive interpretation of the working of algorithm pe 1s due.

Let Tr be a labelled tree corresponding Lo the combinatory term translated from
iri..x,.M. When ir,..1,.M is applied to some term o, algorithm pc distributes
to the leaves where 1, is stored (the node with label I' and the constant xy) using
the first combinator of the labels on the distribution path as a directive [B
On its way to the destination, pc constructs a subtree. (Since a subtree is shared
by other subtrees, the resulting structure is in fact a acyclic graph.) {n return
from the leaf. p- reduces the subgraph (hy &-rule) if possible. Let the resulting
tree be T!. Similarly, i, 1s distributed to the leaves of x; in T8 for § =

2.8, .., n.

Assume that the cost of the provision of a label in each node and the check of Lhe

label at the reduction time is lower than that of Turner’'s system,

Claim II: With preper hardware support which makes the above assumption valid,

machine C1 with =[S, B, C, K, I} is faster than machine CO0.

It is clear that a machine with L = {S, B, C, K, I} is more efficient than a
machine with T = (8, K, I] since the former makes use of the prior knowledge of the
presence of the occurrences of free variables in the subtrees, and does not con-

struct redundant nodes.

With the same hardvare arrangement for the i-term representation we can realize
machine L1 as a [l.s.b.¢.0 | -labelled tree reducer, where [is a label for a
closure. Note the correspondences of the roles of s and S. h and B, and ¢ and C in

machines L1 and C1.
5. Initial comparison of A-reducers and closure reducers
We are ready to make a comparison between machines L1 and C1. We first give a data

structure for a labelled tree. A cell 1s a structure which consists of three

—13-

fields: label field. | field. and r field. In ! and r fields, a pointer to Lhe left
subtree and a pointer to the right sublree are stored, respectively. For the label
of the node at most nlog:|L| bits are needed to accommodate a label. where n 1s the
number of i-variables in the original term it,.M and |E] is the cardinality of the
F We assume a fixed bit field for the label in the following treatment. Because
the bit reguirement for the label does not increase during the reduction, this
assumption does nol affcct the validity of the folloving analysis. A cell can also
accommodate a dotted pair and a closure; in the former case the label field is not
used, and in the latter case | field contains a pointer Lo a subtree, r field an

enviromment. and lobel field is marked as [.

Let 7T; be a trec of the {ij-labelled tree and T¢ be a corresponding translated (S,

B, C, K, I|-labelled Lrec.

We define an underlying tree T' of tree T as a tree with all the labels and leaves

removed

Lemma 2

T'¢ and T'; are equivalent, hence Tr and T, are similar.

For the notion of 'similarity’ and "equivalence’ of trees, see [7, p. 326

Praof . Since the underlying tree of T, is intact during the process of the con-
struction of Tr as illustrated in (8). T'¢ is obviously equivalent to T7;.

We first consider the reduction (iz, M N, -» M [L,:=N,] . where M does not contain
i. The original f-reduction (Ax,.MN, -> M |T,:=Ns 1s fully simulated by p'; when
N, consists only of terminal objects. {In this case M [1,:-N,] 1is a normal form.}
The simulation by p’; is the same as the preorder traversal of the labelled tree
representing i1..M. The corresponding reduction by pe 1s also characterized by the
visits of nodes of the corresponding [S. B, C, K, I!-labelled tree Tp. Under the
above conditions. the orders of the traversal of Tc by pc and T; by p';. i.e. the

orders of the visits of Lhe nodes of the Lrees, are the same since the underlying

trees are equivalent.

-14-

Therefore the comparison of bthe efficiency can be made for Lhe cost. e.g. storage
consumption, involved in the traversal between any sublrees S¢ of Tc and 5, of T;

vhen both represent the same subtree of a i-term.

We first take up a general case.

Suppose we reduce [ATn.Maii N, (7
where M,;; s represented by a tree Toq, with leaves o(1,). @(L,)
(=gir)..0{x,) » 1is a permutation of r,. and N,=Ni..N, where Ni,i=1.2,...n is a

term consisting only of terminal objects. lLet T,:,c and Ty7,1 respectively be a
{i)-labelled tree and s, B, C, K, I}-labelled tree. both represenling
{ﬁ.'fn._-'lr'n;;,_; ', . During the reduction of (7) by p';. all the nodes of T,:, are
visited. In the {ii-labelled tree, a closure is made at every node (including
leaf ;. Therefore, the number of closures created is 2n - 1 (eells). The total
number of cells consumed during the traversal is therefore 4n1, since 2n cells are
required by the construction of the environment of n wariables, (See below)

We have more general statements (Lemmas 3 and 4) about the storage consumption by
p'y and p': in the case of (ir,.M'\, in which ¥ is represented by [1)-labelled tree
T.

Lemma 3

In p';, binding [{ix, MN,.8) -> [M, ((xo.NoJ(xe Ny d oo (x1.Nj3.8)] requires 2n
cells on machine L1.

{The lemma relies on the representation of the environment list which is in our

case a list of dotted pairs. |

Lemma 4

Given a [i}-labelled tree T, with m leaves. The total number of closures created
during the traversa! of all the nodos by algorithm p; is 2w-{. In the case of
{i,s.b.c.J-labelled trec. that number by algorithm p7; is 2w-1. maximum

Proofl:

Since in algorithm p, a closure 15 crealed at each node of tres T;. the total

number of closures is equal to the mumber of the podes of tree T,. O

]5

Proposition 1
The maximum number of cells consumed during reduction (7) by algorithm p’; on
ti g hoo 7 -labelled tree is 2n+2m-1.

Proof: Obvious from lemmas 3 and 4. [

All the nodes of T,;.¢ arc visited once for each distribution of i, 1i=1,2....Mn.
by {S. B. C. K, I!-reducer. Hence, we have the felloving proposition.

Proposition 2

The average number of cells consumed during the reduction (7) by algorithm p: on
IS, B, C, K. Ij-labclled tree is 6n'®).

Proof'.

During the distribution phase of the reduction each variable creates a cell
whenever it visits the node. (In fact, in this case all the labels except for
leaves consist of only B's and C's.) The total number of visits to reach the leaves
summed over all the variables is equal to the path length of the tree. Since the
average path lenglh over all binary trees is 0(n'®) , the average number of cells
consumed is 0m''®y . O

The amount of the storage consumption by pe varies greatly depending upon the
shapes of treeas.

The worst case is with the tree

Tezo=(x (T2, .. (Tn-1Tn). ..)

in which the storage consumplion is

'l b1
ninel, 1 far n = 3.

2 =
and the best case is with

Toz= X132, . Xns

in which case the storage consumption is none, since ix,.Y, = I by extensionality.
In practice, some leaves are constants. Moreover., the cell consumptions on both

machines ©C1 and L1 are different depending upon the pattern of variable eccur-

rences. Consider first the traversal of the trees in Figs. Ba and 5b. During the

~-1B-

reduction. S, B and C consumc 2, 1 and 1 eells. respectively by algorithm pr and s,
h and ¢ consume 1. 1 and 0 cell. respectively by algorithm o7 Hence the numbers
of cells consumed during the traversal of the trees are as follows for the cases
shown in Figs. 5a and 5b:

2in for the traversal of the li.=.b,cl labelled tros representing
ix.ky(ks. . tknry. ..) 1nm Fig. 5a by algorithm p’; . and

n for the traversal of the corresponding (S, B, C, K. Il-labelled tree in Fig. 5b
by algorithm pe.

On the other hand. the traversal of the trees representing iv . xk,. . kok; (Figs. 8a
and Bb) consumes 2 cells by p; and 2n by pr. In the case of single variate A-lerms
pe only outperforms p'; when the number of § and C encountered during the traversal
is less Lhan 2.

The disadvantage of p°; is the creation of an enviromment list during the parameter
binding., Therefore, it is possible to think of wunusual examples such as
AT|..Ty.7yXz in which some A-variables do not appear in the body of the i-term. In

this case pr consumes 2 cells whereas p°; consumes 2n+1,

8. Elaboration of l-reducers

The investigation in the previous section shows that in simple cases considered in

scotion 5

. Generally speaking. machine L1 is more advantageous than machine Cl in terms of

thg storage consumption.

As the number of arpuments increases. the difference of the amount of the
slorage consumption become large: and hence machine L1 becomes more advantageous
than machine C1.

On the other hand we observe the following advantages for machine C1:

{1 No search for variable names is needed at the reduction time.

(21 Uniform treatment of application of terms is possible. and hence we can avoid
the extra level of complication incurred by forming an enviromnment at the time
of binding,

{3} Partial evalualion is automatically in effect in machine C1, whereas in L2 not.

As for the poeint (1), variable names can be eliminated before the reduction in

-17-

machine L1. The method for variable eliminalion is similar to the one adopted by

Automath (2] and SECD machinc,

Nameless- A reducer L2
For each wariable 1, in Aipﬁf, the relative position (the order from lelft} of its
bounded pair in the environment to be formed when il..M is applied is known stati-
cally. We replace free occurrences of x; in M by that relative position, say k. k
is treated as a function to be called crnufun to get the kth element (from left) in
the environment list. The numbering rule is similar to the ones adopted by block
structured languages such as Algol 60. For example,

Axpxe . (xp{Anire.ny ... X2 plAlUe X2l)

AT R A I

21 2 212 1 21

B ——

1]

i is replaced by /., where n is the number of A-variables. The environment formerly
defined as a list of dotted pairs of a variable name and a corresponding value are
now consisting of only values. During the reduction. k gets the kth element of the
current environment list. and update the kth element after the reduction. &, is
changed to A, when that term is applied to an argument. Slight modifications of
algorithm p'; in the environment handling (i.e. environment search and environment
formation *) are sufficient for machine L2 to operate (see pg; 1n section B).

The eell econsumption in the reduction by machine L2 incurred by parameter binding
is now n for n variables. Moreover. the speed of the environment look-up 18

increased.

Peint (37 mentioned at the beginning of this section needs more explanation.
Suppuse we have Jjxjas.- - x; 1ixz . When term N(=(irixz.+ (+ 1) 1)x2310) is

reduced, a S, B, C. K, Ii-labelled tree corresponding ta (Axo.+ (+ 10 1)x2) is

* When i-terms are nested as above. the search time for the outer level of
i-variables become large. i.e, proportionate to the product of the number of
i-terms and the number of recursions of the same level of i-terms. This trouble can
be taken care of easily in Lhe combinatory reducer, In the i-reducer., 1L can be
handled by introducing & label function as used in Lisp 1.5. The technique is
similar to statiec chaining used in compiling block structured languages. We do not
discuss this point {urther since this is besides the point of our argument.

-18-

constructed. Suppose multiple copies of term ¥ (actually a pointer to X} is distri-
buted to several places. When N is further reduced. e g. when X is applied Lo 3,
Lthe expression + 10 1 18 reduced Lo 11 and Lhe effect is felt by all the terms
which reference the term Y in the combinatory reducer, On the other hand, on
machine 1.1 ‘also on L2 the closure [.- xy 1), 00x.10}.8)} created during the
reduction of [iire.+(= ap by m0. ({r . 100.&)) 1is computed every time X is applied
to some value., The effect of this partial evaluation may he great if a partially

applied funetion such as above is distribuled and reduced many times.

Fortunately, even on machine L2 the same effect is achieved by rearranging terms.
The method is due to [4] . We identify a moximum free term i.e. term consisting
only of rconstants and free variables. and shift it outside the enclosing funclion
body. In this case the maximum frec term is (+ 1 1) in Axz.+ (+ 1 1) 12 . We
change Airyre.~ (+ 1 1) 1= to iry. ({irsv2.+ 13 12)(+ 1 13). Then the reduction of
17 only once induces the reduction + 1 1%, and the effect of this redwclion is

felt by all the Lerms thal reference the clousure of Aixy. ((Axstz.+ I3 T2){(+ X1 12},

The other aspect of the partial evaluation is self-optimization [10] 1n conjunc-
tion with Lhe local definition of a recursive function. The self-optimization is
equally well taken care of by a i-reducer. We discuss this poinbt in the example

foldr in the next seciion.

7. Examples of comparisons

In the following analysis. the comparisons of the performances are made by measur.
ing the difference of the numbers of the cells consumed during the reduction. In
doing so. we assume that the amoun! of time used for & reduction is the same in
both reducers. We use the following three examples all of which are given in
100 0 factorial, foldr and ticice.

faclorial

def foctorial = in, cond eqg n 00 1 Cdimes n Jucloriel (- w1500

Figure 7-a shows :}.s.bh.cl-labelled tree representing foctorital. The number of

cells consumed during the reduction of foctorial n on machine L2 is:

-19-

4 3 for the traverse and 1 for the environment) when n = 0, and Bn+4 when n =1
Figure 7-b shows the corresponding {8, B, C, K, I:-labelled tree. The number of
cells during the reduction of the tree on machine C1 is

B when n = 0, and 91 + & when n =1 .

foldr
def foldr = Afkxr.cond (null x) k (f thd x) (foldr f &k (tL x)))
foldr is a list manipulating function used in conjunction with a binary function f.
For example,
def' sum = foldr plus 0
def product = foldr times I .
Figures B-a and 8-b show the corresponding labelled trees representing foldr. The
numbers of cells consumed are /4n ¢ 7 on machine L2 and 24n + 9 on machine CI,
respectively for the given list whose length is n.
However, this comparison may not be fair since in machine C1 the self-optimization
is not workable in this definition. To realize the self-optimization, we introduce
the following local definition of function g.
def foldr = Afkx. gx

where def g = Ay. cond (null yi k f (hd wilg (21 wi))
The reduction of foldr plus 0 e.g.. using the above definition of foldr is per-
formed only once. The local definition of a recursive function such as the above
can be transformed to a A-term using combinator ¥ (Y is a combinator with the
following reduction rule Yf = fi¥f):.
def foldr = Afk. Y(Agr.cond (null x} k {f thd xi(g {80 x)}3)
The (S, B, C, K, I'-labelled tree representing the above term is shown in Fig. 8-c.
In this case the cell consumption becomes iin + 15, which is comparable to the cell

consumption on L2,

Similar optimization effect can be achieved by introducing &-constant label which
is similar to LABFL in Lisp. label adds a new local definition of a function to the
current environment,

def foldr = Afk. label g (Axr.comd (null x) &k {f hd xi0g (tL 301D

—o0-

Figure 8-d shows the corresponding labelled tree.

In this casc the number of consumed cells is

b for creating the enviromments for f and &,

2 for the execution of label

{ 1 for constructing a closurc. and

1 for adding the definition of a function into the currenl environment),
1on + &5 for exccution of the locally defined function g.

hence i1n total

10 « 9.

twice

def twice - Afr.fifx)

twice is a function which applies a given function twice.

Figures 9-a and 8-h show [i.s.b,c)-labelled tree and {5, B, C, K. I|-labelled tree
representing twice, respectively. The numbers of the cell consumption are 4 and 5
respectively. However. on machine Cl we can generate a more optimized combinatory
expression for twice. That 1is, we have Aifr.f(fr) = SBI. in which case the cell
consumption for each application of twice becomes only 3. In the above example, the
extensionality plays an essential role in simplifying the resulting combinatory
eXpression:

Afr. fifxy = Af. (Bfy{Ax.fx}

= Af.Bff by extensionality on ix.fx
= S(Af.BfASf.Sf
= SBI by extensicnalily on Af Bf

Thus using the extensionality we can effectively transform the original labelled
tree to a more optimized (simpler) tree. In such a case, our method of comparison
does not work well since the shapes of the initial trees to be reduced are diffe-
rent in the closure and combinatory reduction schemes. However, in real programs.
f-constanls are scattered in the terms representing the programs and prevent the

extensive application of the extensionality, as we see in the example of factorial.

In Turner’s measurement twice 1s the only case in which Turner’s combinatory

D=

reducer outperforms SECD machine in the applicative order evaluation. In this case
the performance is susceptible to a small optimization. For example. if we counted
2 cells for the construction of the enviromment of a variable, the cell consumption
would be B for machine L2. Therefore, the performance of machine C1 could be twice

as high as that of L2,

8. Towards a more efficient reducer

Ta make our argument clear we use Lrees illustrated in Fig. 10. Suppose we reduce
Majae by a combinatory reducer. In Fig. 10, the leaves r; and 1z in M are initially
empty. When Moy is reduced, aq is placed in the leaf 1. and a new tree 1s con

structed (left subtree T, is shared). Further when Loz (vhere L=Ma,) 1s reduced.
another new tree is constructed. Hence we actually have three trees Ty, Tp and T3.
T, in Fig. 10 is shared since T; is not “contaminated™ by these applications of the
terms. This obhservation leads us to have a pure lree and separate working storage
(taken from heap) for wvariables. A pure tree is a tree with all the leaves of
variables being replaced by a relative locatien for the variable within the working
storage. A term to be reduced can be represented as a pair of a pure tree pt and
separate working storage w for variables. Furthermore we need status bits to tell
whether the storage for variables is (illed with actual parameters. let us call the

machine which reduces this tree machine (2.

The pair above has a remarkable similarily to the labelled closure constructed in

the labelled closure reducticn system with the following correspondence!

pt namcless labelled tree
u the portion of the environment currently accessible
status bhits n in label i,

in indicates the number of remaining arguments to be applied)

As for the label of nodes of pt, we have two cholces:
case 1, Use [S, B, C, K, I!.
In each node. each variable is inspected whether it is used in the subtrecs

and the eclosure should be constructed.

e.g. label=3B wilth & =12 v, & !
We create & - 1» wv,.&') for the right subtree and §=(v; .&) for the left
subtree,
case 2, Use s, b,]
On ecach node the use of an environment by the left and right subtrees is
examined.
e.g. label=s with &= {1» v . &}
For the same tree as the above example, label s is attached because the left
and right subtrees have at leasl one variable occurrences and £ is passed to
both subtrees.
In case 1, we construct an environment for the more efficient access, whereas in
case 2 we sacrifice speed [or the economy of storage if the same variable 1s
accessed several times. Although we departed from machine Cl im order to decrease
the storage consumpticn. in casc 1 we again return te a scheme in which the slorage
consumption is equal to that of C1. The storage is consumed in preparing the proper
environment . One can easily see that what is performed in case 1 is essentially the
same as in pc. On the other hand, when we take case 2 we see that machine C2 is

converged into machine L2,

To sum up. by improving the combinatory reducers we come to a nameless {&,s.b.c,[
‘-labelled tree reducer. The reduction algorithm pg; for the ([1,s.b,c,l }-labelled
tree, is derived from pe and p°j .

let a closure representing term {iz,.M) [T;:=N;] by a labelled node be
Apmi s MONp Nz L0 NLE))Y where M is a nameless A-Lerm.

Algorithm oy o

oy b, stack) =
let 1M, 80=t and stack=<s,,..,8,> or <&, 1.e. empty
(1v 1 is £, 1.e. M 1s atomic
if M is a terminal object
then resultis

{ oM when sfock is emply
£ Mper (S, Cenewstack (1), oo (Ses O news lack ()) othervise

else I Mis &
then resultis

+ A symbol in front of the semicolon (in this case Ap-1) is a label of the node.

required in this é-reduction

{ ¢1Ms50. .5, when n is less than the number of the terms
ooyiw. B, stack”) otherwise

where w is the resull of Lhe & reduction, i.e.
w=rAisy. .. .8 0.
and slack’ (=<s;.1....5,>) 1s the stock after the reduction.
else /+ M is enuvfun k »/
let e, = kth item on the environment list &
w o= poyien, {oncwsiack (0
replace kth item on & with w
resultis pe(w,&.stack)

2y lois il
resultis
LM when stock is empty
{ Apend "y (ML lEn Spe) -5 B when m > n
pea (1M, (Spem-1Snie-2. . . Sn. 6, <Speg+Spens] 2.} when m S n

(33 1 is O
let M= (M, &7}
resultis pey (M . & stack)
(4" 1 is b, ¢ or s in which case M is MM> (i.e. application)

[is h

resullis peoy M) <20 M2 B .5 0852005,)
lis ¢

resultis ey M -51‘2’421& PERs L :Su}:i

il 15 =

resultiﬂ ﬂfj_’ 'r}fl 12:.-{5: fJ.'IE-E}|$| .‘52: - 55:1}:]

9, Conclusion

Major work involved in reduction is the traversal, copying and reconstruction of
the tree to be reduced. In this paper ve analyzed the complexity involved in the
reduction in terms of the storage consumption. Two known methods, the i-reducer and
the combinatory reducer, are reviewed and elaborated. When a term is represented as
a labelled tree, the behavior of the reductions by both reducers become quite
similar. The difference of the performances of the two reducers is then measured in
terms of the storage consumed during the traversal of the tree. Contrary to the
arguments for combinatory reducers claimed by Turner and Peyton Jones, our conclu-
sien in the comparison is that the advantages of the combinatory reducer diminish
when due considerations are made for the formations of closures before the redue-

tion.
Our analysis also shows that there is a trade-off relationship between the access

speed to wvariables and the storage consumption in the implementation of the left-

most reduction strategy of A-calculus, Fast access is enjoyed by the combinatory

-24

reducer at the expense of extra work on the distribution of arguments and small

storage consumption by the labelled 4 reducer,

In this paper we will stop the elaboration of machine models at the labelled tree
reducer. since the introduction of the labelled tree reducer reveals the essential
work to be done on the reduction. Optimizations of machine models on both reducers
would be fruiltful. On the closure reducer side an obvious optimization is to
‘compile” pl to make the traversal of the tree faster. Since the shape of pt is
fixed, we can traverse the pt beforehand, and generate linear code from & tree,
Therefore the design of the code is a next theme to pursue in speeding up the
reduction. It is interesting to observe that similar approach is taken by Warren in
speeding up Prolog (known as structure sharing) although the objects of the study

are Prolog clauses [11] .

Peyton Jones'es experiment compared the performance of machine CO with machine LO,
and measured the efficiencies of only Curried functions. {All the functions are
treated as Curried in the closure reducer, but not decomposed inte single-argument
functions.) But the efficiency advantage of the combinatory reducer claimed in the
paper [@l wvill be much =maller when algorithm p; is properly implemented as
sugzested in this paper. The comparison of the reduction stack depth is nol essen-
tial in the performance analysis since hoth the closure reducer and the combinatory

reducer traverse and reduce similar labelled trees.

Our observation is limited to the case of a single-processor machine. The advantage
of functional programming in multi processor environment is pointed out, since
functional programming enjoys the property of referential transparency. One may
argue that in the multi-processor environment the combinatory reducer is more
advantageous than the closurc reducer, since arguments are copied and distributed
in the combinatory reducer. To prove Lhe validily of Lhis slalement we need further
analysis based on concrebe multi-processor machine models. The invenstigation 1in

this direction will be a future theme.

References

L1

[2]

L 3]

[4]

[&

)

[10]

[11]

Barendregt., H. P.. The Lowbdo Caloulus, ils Syniayr and Semaniics, North-
Holland Puk. Co.. 1981
de Bruijn, N. G.. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation. Incog Moth, 34, 381-382
Hikita, T., On an average size of Turner’s translation to combinator pro-
gramz, Journal of Informcittion Processing, to appear
Hughes, R. J. M., Super combinators: A new implementation method for applica-
tive lanpuages, Conference Record of the 1982 ACH symposium on LISP and
funclional progrusning (Aug. 1982, 1-10
Keller, B. M., FE. (Function-Equation Languaze) Programmer's Guide AMFS
Technical Memorandum MNo. 7. Department of Computer Science. Univ. of Utah,
March 1982, Revised April 1983
Kennaway. J. R., The complexity of a translation of A-calculus to combina-
tors, University of East Anglia, Report CS5/82/23/E. 1982
Knuth, D. E., The Art of Computer Programming. 2nd edition, Vol.1, Addison-
Wesley Pub. Co.
Landin, P. J., The mechanical evaluation of expressions, The Computer Jour-
nal, Vol. 6, (1964, 308-320
Peyton Jones, 5. L., An investigation of the relative efficiency of combina-
tors and lambda expressions, Confercnce Record of the 1982 ACM symposium on
LISP and funciional progromming (Aug., 19825, 150-158
Turner., D., A new implementation technique for applicative languages,
Software-Practice and Experiences, ¥ol. 9, (1979), 31-49
Warren, D., Implementing PROLOG - Compiling logic programs, 1 and 2, D.A.I.

Research Report Mo, 28 and 40, Universitly of Edinbough, 1977

-26-

Figure Captions
Figure 1 Representation of term M2, ..M,
Figure 2 A snapshot of the reduction (Af iz f(fr)}) addi 0
Figure 3 Conversion {rom graph to tree
Figure 4-a (i} -labelled tree representing Axr.cond {egqx 0 1 (1)
Figure 4-b [S, K, i}-labelled tree representing ix.cond (eq x 0) 1 {(-1)
Figure 4-c [S. K. I}-labelled tree representing ir.cond (eq r 0) 1 (-1
Figure 5-a {i.s.b,cl-labelled tree representing ix.ky(kz.. knx)..}
Figure 5 b {S, B, C!-labelled tree representing ix. ky(kz, (kax)..}
{Best case for pr)
Figure 6-a [i,s.b,c]-labelled tree representing Axr.xk,. . . kak
(Case favorable to p';)
Figure 6-b (S, B, C}-labelled tree representing lx.xk,...ka2k
Figure 7-a {l,s.b,c}-labelled tree representing factorial
Figure 7-b |S. B. C}-labelled tree representing foctorial
Figure 8-a |i,z.h,cl-labelled tree representing foldr
Figure 8-b {8, B, C, K, Ii-labelled tree representing foldr
Figure B8-¢ ({8, B, C., K, I}-labelled tree representing foldr
{using Y combinator)
Figure 8-d [i,s.b.cj=labelled tree representing foldr
(using function label’
Since lobel needs the current envirconment. ¢'s
are generated in the ancestory nodes of lobel,
Figure 8-a {l.s.b.cl=labelled tree representing twice
Figure 3-b {8, B, C., K. I}-labelled tree representing lwice

Figure 10 Construction of trees by a combinatory reducer

-2

add |

[X A(x.0)(f.add I)=T—

reduction
stack

o — et — — —]

Fig. 3

AX

cond

€q X 0

AX

cond

€d

Fiz.

T

Kl

Fiz. 4=z

AX ;b

Fieg, G=a

Fig. 5-b

Fig. B=a

Fiz. &=b

E R

factorial

C

Fig. 8-

folder

tl

BSS

cond null

cond null

AfXx:s

Fig.

SB

CB

D_] .__.._HH_. DN- -DM

La, (= Ma,a,

)

