ICOT Technical Report: TR-066

TRD66

Design and Implementation of a Two-Way Merge-
Sorter and its Application to Relational

Database Processing

by

Kazuhide Iwata, Shigeo Kamiva. Hiroshi Sakai,
Susumu Matsuda { Toshiba Corporation}
Shigeki Shibayvama and Kunio Murakami

May. 1954

L1984, 1COT

Mita Kokusar Hldg. 21F P41 456-3191—5

| G DT =28 Mita 1-Chome Telex ICOT J32964

Mimato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Design and Implementation of a Two-Way Merge-Sorter and its

Application to Relational Database Proceasing

EAZUHIDE IWATA, SHIGEKI SHIBAYAMA, SHIGEO KAMIYA

HIROSHI SAKAI, SUSUMU MATSUDA and KUNIO MURAKAMI

Abatract

A new hardware sorting unit having both internal and external
sort capabilities is deseribed. The main elements of the unit
consists of an IN module, sorting cells, a sorting checker, a
merger, a data input adapter and a data output adapter. &
general-purpose CPU controls the hardware components, The sorter
is responsible for interpal sorting and the perger is responsible
for externzl scorting. The sorting alpgorithm i= a straight two=-way
merge-sort. The sorting hardware is accommodated in a database
machine for relational database processing. The merger is also
provided with relational database operation facilities, for
example, join operstion commands. The CPU alse controls complex
relational database operations. The decisions made in the design
phase focused on the practical aspects of use in a relational
database environment. The performance estimation indicates that
the hardware can sort YK 16-byte tuples imn 56 milliseconds,
ingluding data transfer time.

Index terms:
two-way merge-sorter, internal sort, external sort, merging,
relational database machine, jein operation, set operation,
pipeline processing

1. INTRODUCTION

Sorting is an essential operation with a great deal of practical
significance in data processing. In particular, it is one of the most
important operations in database processing. Various kinds of sorting
#lgorithms have been developed {rom the beginning of computer science
research and some eof them, for example, quick and heap sorts have
practical applications in eonventienal computer systems [1]. However,
a5 sorting is & time-consuming operation and imposes a heavy burden on
conventional computer systewms, the intensive research has also been
done on hardware implementations of various sorting alporithms
[2]1-[6]. This research is sumparized briefly below.

K. Iwata, 5. F¥amiya and H. Seakai are with the FResearch anc
Development Center, Toshiba Corporation, Kawasalid, Japan.

8., Matszuda is with the Ome Vorks, Toshibsa Corporztion, Ome,
Japan.

S. Ghibayama and K. !Murakami are with the Neseareh Center, the
Institute feor UlNew Generation Cemputer Technology (ICOT), Tokyo,
Japan,

This work is part of a major research and development project on
Fifth Generztion Computer Systems (FGCS), conduected under 2 progran
set up by Japan's Ministry of International Trade and Industry.

Page 2

Winslow and Chow [T] have classified parallel sorting architectures
into five categories based on the nature of the data input and output
and compared existing sorting hardware designs in order to design new
sorting ecircuits. Thompson [8] has analyzed the area-time complexity
of thirteen sorting cirecuits wusing an updated model of VLSI
implementation. However, scme of the sorting circuits described in
these literaturcs aimed at the theoretical verifiecation of sorting
algorithms and are, in some respects, impractical for data processing
using currently available technology.

Given these circumstances, we designed a herdware sorter for
research on relational database processing, rather than on hardware
sorting algorithms. It iz based on the straight two-way merge-sort
algorithm analyzed by Todd [§] and is implemented using currently
available technolegy. This implementation ecan be elassified as a
seguential input/sequential output sorter (SIS0) according Lo the five
categories by Winslow and Chow [T]. Qur sorter is designed and
implemented as part of Delta®!, a backend relational database machine.
The following list summarizes the properties of this sorter as
implemented for use in the database machine environment,

{1) The sorter consists of a linear array of 12 processing elements,
called the sorting eell, and one processing element, called the
sorting checker: these arrange input data elements so that they
are in a specified linear order (ascending or descending). The
sorting operation is efficiently performed by pipeline processing
synochronized with the data transfer rate of 3IMB/sec.

{2) The sorter processes only absclute values represented in standard
binary notatian. However, the pre-processing module, called the
IN module, connected to the input section of the sorter, has the
function of transforming some data types into absolute values
on=-the=11y.

(3) The sorter processes the entire tupies as well as the key f[ields,
in order to perform set operations, such as intersection, and
relational algebra operatiens, such as join.

{4) The sorter performs stable sort operations on egual wvalues, 1.e.

it maintains the original relative order of the input sequence of

tuples having the same values. This properly iz wuseful for the
group-by operatien, which is often used in database processing.

The sorter processes null values by recognizing the tag fields.

The sarter provides a function for detecting duplicate values.

This capability enables the manipulation of duplicate values in

the hardware implementaticn of cur propesed relational database

processing algorithm.

{7} The serter provides a function for checking sort results. This
function increases reliability of the sorter.

(8) The sorting cell has two operation modes: the sort mode and the
pass mode. The forper merpges two sorted sequences of tuples into
cne, The latter does nat merge, but transfers input data directly
ta the next cell.

]

oo
Tt

These properties represent important facters in the design of =2
practical =sorter and are discussed iIn detail in later sectionsz. In
Section 2, we present an overview of Delta and its key component, RDBE
{relational database engine), and summarize their main functions to

#1 Delta is under development at ICOT Research Center (Institute for
Mew Ceneration Computer Technology =supported Dby Japan's Fifth
Generation Computer Project) [10].

Page 3

clarify the background of the sorter design. SJection 3 describes
design considerations for the sorter. Section 4 describes sorter
design and implementation. Applicatiens and performance estimation
are described in Sections &5 and 6, respectively. Section 7 is the
conclusion.

2. RACECROUND

The relational data model is wuseful not only for conventional
database asystems, but for logic database systems as well [11]1, [12].
At ICOT Research Center, from the latter peoint of wview, research on
the conneetion of an inference machine toc a relational database
machine i1s being eonducted for the purpose of developing a knowledge
base machine. In this section, we outline the architecture of Delta
and its key component, RDEE, in order teo provide some background on
the sorter design,

A, Overview of Delta Architecture

Delta's global architecture is shown in Fig. 1. In this figure,
the dotted line shows the finzl ecenfiguration. Delta consists of the
following components:

(1) An interface processor (IF), which connects Delta to a loeal area
network (LAN) and the -Multibus.

(2) A control processor (CP), which provides database management
functions, such as concurrency control and daetabase recovery.

{3) A relational database engine {(RDBE), which is the key compenent
for processing relational database operations in Delta. The RDEE
is implemented by the combination of a generzl-purpose processor
with a specialized processor. The sorter is accommodated in the
specialized procezsor for performing high-speed relational
database coperations,

(4) & maintenance processor (MP}, which provides functions that
enhance Delta's reliability and serviceability.

{5) A hierarchical memory (HM), which provides functions for storing,
aceessing, clustering and wmaintaining relations. The HH 1is
implemented using a general-purpose processor as a controller, a
high volume of semiconductor memory and large-capacity moving head
disks. HM iz connected te octher components through high-speed
channels. HM can be =seen as a large semiconducter buffer with a
very short latency time and a fast transfer speed from the EDBE.

The general Delta command processing sequence is as follows.

The IP receives relational algebra level copmands, called Delta
commands, from a host connected to the LAN, and sends them to CP. The
CP translates these commands into 2 sequence of internal subcommands,
which are then issued to RDEE and HM to make thexm cooperztively
perform the zpecified database operstion. After execution of the
Delta commands the IP transfers the result stoered in BM to the host
via the LAHN.

B. Overview of the RDBE Architecture

Fage 4

The RDBE configuration is shown in Fig. 2. It is designed to
achieve high-speed relational database processing by means of a
pipelined sorting and merging. The RDBE is implemented using the
fellowing modules:

(1) A general-purpcse CPU, which is used as the RDBE contreller.

{?) Two HM adapters, which serve as interfaces between RDEE and HH.

{3) The IN module, which transforms the format of input data dinto an
internal format suitable for the sorter and merger modules. Among
these transformations are:

Field ordering, which shifts a2 key field to the head of the tuple
¥ data type transformation
peneration of null value bit signals.

{4) A sorter, whieh penerates sorted tuples. This module iz described
in detail later.

{5) A merger, which performs external merge-sorting and relational
database operations using a processing algerithm based on a merge
operation, This module is also described in detail later.

{6) Two input/output controllers (IOCs}), which control the internal
bus connection to CP and MF in Delta.

In Fig. 2, DT, PT, NL and DP stand lor data lines, parity lines, a
null line and = duplicatioen line, respectively. The null line is used
to denote that there is a tuple with a null value key on the data
linas, The duplication line is used to denote that there is a tuple
having the same key value as the next on the data lines.

These modules are controlled to run simultaneously in such a way
thzt pipeliine processing is synchronized with the data transfer rate.

The main data path is from the HM adapter (IN) to the HH adapter
{(OUT) through the engine core indicated by the dotted line in Fig., 2.
If an FDEE operation invelves two relations, as in 2 join operation,
the relation is first stered in the engine core from tihe HM adapter
(IN). Then, the engine core compares the tuples of the relaticn from
the HI adapter (IN) with the stored relation, and outputs the result
to HY via the HM adapter (OUT).

If the CPU itself is required to manipulate the data, the result
from the engine core is sent to the CPU's main memory via the HE
sdapter (OUT)., After the CPU has finished the manipulation, the final
result is sent te HM via the Hi adapter {(OUT).

PRRE offers various kinds of cperations necessary for relational
datapzse processing. They are classified inte the following
categories:

{a) Relatienal algebra operations, such as join, projection and
selection

{b) Sort operations in both ascending and descending order
(c) Set operztions, such as intersection, union and difference
(4} Arithmetie operations

(¢) Lggrezate operations over an entire relaticon and also over a
nonintersecting partition of a relation

Pape §

(f) Miscellaneous operations specifie te the way in whieh Delta
manages data,

These pperations are perforped cooperatively by the engine core and
the CPU software to achieve high cost-effective database processing,

3. DESICH CONSIDERATIOHS
A. Inpncorporation of Sorting into Relational Database Proceasing

Most of the latest research on sorter design is focused on
algorithms for high-speed sorting of large veolumes of data. From the
peint of wview of current technelogy, such designs reguire very
diffieult podifiecations ef the seftware and the memory system. For
these reasons, there have been very lew implementations of relational
database machines eguipped with sorters until now [13]. Therefore, we
have designed a praetieal s=sorter for applieation te relational
database proceszing. The central concept of our design 1=z to unite
the sorting operaztion and the relational database operstions in order
to deocrease the time reguired to transfer sorted deata betwean the
sorter and the memory system. Fer example, in the join operation,
which iz an important and time-consuming aspect of relational database
processing, one of the two target relations is uwsuzlly limited by =&
restrict operation and becomes a scaled-down relation. The join
ocperztion with the other full-scale rpelation iz performed using Lthe
sorter's capability of separately processing the fragments of the
full=-scale relation. To implement thisz idea, we gonnected the merger
to the output section of the sorter. The merger L3 a new hardware
unit that performs relational algebrz operations, as well as externzl
merge-sorting, on data processed by the sorter. The perger used 2 new
processing algorithm that takes nuwll and duplicate wvzlues dinto
consideration.

Based on this idea, the following problems have been taken inte
gccount in our imoplementation.

B. Input Data Structure

With the regard to thelir input daeta structure, sorter desipns are
classified 4intoe those uszing the key sort method and those using the
tuple sort method. In the key sort method, & seguence of Leys iz
received and 2 sequence of numbers (C1, €2, .., Cn} is oubtput,
indicating that the i-th key i=s the (Ci+1}th, the smallest (in case of

ascending order) in the input key seguence [&]. In the tuple =zort
method, a seguence of tuples is received znd & sorted seguence of
tuples is output aececording to the value of the key field. Although

the key sort methed has the advantages of decressing the EgEpount of
sorting hardware and the gsmwount of data transfer, 1t nes drawbacks, in

that a key field nust be selected from a tuple =and tuples must be
rearranged in the CPU or pemory system using an oubput sequence of
nucbers, On the cther hand, although the tuple sort nethod increases

the amount of sorting hardware required, it not cnly lightens the lozd
of the CPU or pemory systen, but czn alsce perform set operations, such
a5 intersection. We, therefore, adopted the tuple zopt method, which
processes the entire tuple.

Page &

As a result of adepting the tuple sort methed, it is necessary that
the key [field be placed at the head of the tuple, so that the sorter
can perform a pipelined two-way merge-sort from the head to the tail
of the tuple. In our scorter, the Key [ield must ke positioned at the
head of the tuple, because other fields must not be sent to the next
cell until the key comparison i=s complete, The value of the key field
is the only relevant component for sorting. We decided to order the
fields of the tuple in & pre-processing module, called the IN module,
connected to the input seclion of the sorter., Fig. Ela) shows the
scheme for field-ordering of the tuple with five fields whose key
field is B, We decided to rotate the fields for ease of ordering and
later reordering. Field recrdering, if necessary, is performed in the
merger connected to the output section of the sorter.

C. Treatment of Null and Duplicate Values

The tuple has an additional field, called a tag, that dindicates
whether the wvalue is null; the sorter function that checks the tag
field i3 essential to the database processing which dezals with null
values. However, the addition of this function to each sorting cell
inereaszes the complexity of the cell configuration econsiderably.
Therefore, we prepared a null bit feor each two-byte "word" in the
megory of each sorting cell and a null bit line (NL) between cells;
these are analogous to parity bits and parity bit lines {(PT). The
null bit line indicates that there is a tuple with a null value key on
the data lines, Using this line, each cell can easzily output a scrted
seguence of tuples that include null wvalue keys. In other words, the
tuples with null wvalue keys are considered to be duplicate tuples and
the original relative order of the 4input tuple sequence is thus
maintained. In our implementation, the tuples with null value keys
are placed after the tuples with normal key values, regardless of
ascending or descending sortis.

The detection of duplicate wvaluesg 15 an important funection in
relational database processing. There are two kinds of duplicate
values; duplicate keys and duplicate tuple=s. Duplicate keys zre used
in the hardware dimplementaticon ef our relatiosnal algebra processing
algorithm, which is described later in detail. Duplicate tuplesz are
used to perform set operations, such as intersection, and to remove
the dupliecate tuples (unigue eperation) that are freguently produced
by the projection operation. The addition of this detection function
to each sorting cell alsc increases the complexity of the cell
configuration, Therefore, we aszsipgned the function of duplicate value
detection to a post-processing module, called sorting checker,
connected to the last sorting cell, The result of this detection is
sant te the merger threough the duplication line (DP) and is used as a
signal for controlling relational database operations.

D. Input data type

Various kinds of data types must be handled in database processing.
Fowever, it is impractical to reguire the sorting hardware to sort
data types 1in theilr origpinal reprezentation. For gase of
fmplementation, we decided thet the sorting hardware would compare
only absolute values represented in standard binary notatioen., It is,
therefore, necessary to transform some data types to absolute values

in order to epply the sorter Lo database processing. Such
transforpation imposes a considerable burden on the CPU if the sorter
does not have this ozpability. We deecided, therefore, that this

tranaformation would be performed by the IN module. According to the

Page T

data type transformation functicon of the IN module, the =orter can
process the following data Lypes:

{1) Unsigned integers

{(2) Signed integers

{3) Single precision normalized fleoating point numbers (IBM format)
{4) Alphabetie Charzeters (ASCII code)

E. Data Length

The data length for sorting veries widely, depending on the
application. It is desirable to be able to handle variable-length
data, Tt is very difficult, however, to implement this funection in
hardware. Therefore, we determined the specifications for data length
as follows.

A1l tuples within & relation must be the same length a2nd the equal
number of fields. &5 the number of data lines between RDBEE components
iz set at 16 (two bytes wide), the length of tuples is restricted to
multiples of two bytes, The maximum tuple length is 4096 (2%%12)
bytes including a 2-byte tag field and the maximum number of fields is
256,

In order te satisfy the above specifications, we decigned a sortep
that s=erially processes even-byte data using a twoe-byte wide hardware
scheme,

4. DESIGP AND IMPLEUEETATION OF THE SQRTER

The straight two-wzy merge-sorter is characterized by the lollowing
parameters:

1] sorting cell count

H: eapacity of one of Lhe FIFO nemory of the last sorting e2ll (in
bytes)

T: ecommon clock interval to process and transfer one byte of data

+ s

Il deternines the maximun interrally-sortable tuple count within the

limits of FIFD memory capaeity. A merge-sorter having U sorting cells
can sort up Lo 2%¥3Y fuples in one scan, ! detersines the length of
tuples that ¢an be sorted, ifr I i=s 12, for exanple, the sorter czn

sort 2¥%72 (40090} tuples. However, if ! iz B4Y bytez, the marimun
length of & tuple thet c¢zn be sorted is 16 bytes (GLESLE) when a
4096-tuple sort is specified. ({Longer tuplcs can be zortod in a2 sort
of & smaller number of tuples by fully utilizing the FIFQ mcpory
capagity.} Therefore, the capakilitlies of the perpge-seorter are
determined by I and !,

The maxirum nuobers of tuples that cz=n be sorted is

min(2%®%y, M/L), where L iz the length of one tuple.

The maximum tuple length that can be sorted is

M/{2%%[1pogC]), where C is tuple ecount not prester than
2%#0 2nd [logC)] denoctes an integer not less than logl.
Base-2 logarithms are used throughout thisz paper.

Page &

A. Algorithm

Here, we introduce some terms used throughout the paper. We eall
an enptire sequence of tuples a streaw, a sub-sequence of 8 =strezm a
substream, and a sorted seguence of tuples between sorting cells =a
string. Fach tuple consists of 2 key field and other fields, called
satellite information or satellite attributes [1].

We have adopted an algorithm based on a straight two-way merge-sort
alporithm [9)]. By using this algorithm, the sorter has been provided
with properties that make 1t applicable to relational database
processing. That i3 to say, the segquential nature of the input and
output of this sorter makes it easy to copnecl a pre-processing module
gand & post-processing module to the sorter's input amnd output
zections, respectively, and to perform pipeline processing at the
module level, as well as at the function level within each module.
Module-level pipeline processing means that several operations, such
as a date type transformation, sorting and relational database
processing are overlapped. Function-level pipeline processing means
that several operations within each module in a transfer cycle, such
as memory write, memory read and comparison are overlapped.

The straight two-way merge-sort algorithm performs a sort operation
by repeating the merge process that comnbines twoe sorted strings into a
gingle sorted string. That dis to say, the first seortiog cell
generates strings of two tuples by merging two one-tuple strings, each
of which consists of & single tuple; the second serting cell merges
these strings of two tuples inte strings of four tuples, and so on.
The i-th sorting cell generates a sorted string of 2%#i tuples.

Tn our sorter, each sorting ecell 1s performed Dy 2 specialized
hardware unit called a =corting ecell, which consists of two
first-in/first—out({FIFD) gueues implemented in RAM, a comparator and a
control circuit. These sorting cells are controlled to run
synchronously. In general, the i-th sorting cell penerztes a sorted
string of 2%#%i tuples by merging two output strings of Z2¥¥(4i-.1) tuples
from the (i=1)th cell. Each sorting cell starts to perferm the merge
speration when it has received one complete string and the first two
bytes of the next string from the previous cell.

Ls an example of an ascending-order sort cperation, we consider the
fellowing input stream in which numersls and letters dencte key fields
and satellite infermatien, respectively.

3E,TW,85,0L,4G,9T,44,2U

In sorting eell 1, the tuples of the above iaput stream are
alternately stored in two FIFO queues to produce gsingle-tuple strings.
The strings are read from each gueue and merged i1nte the following
two-tuple strings.

{3E,TW){OL,85)(uG,9T){2U,44)

Page 9

In sorting cell 2, the input strings from the previous cell are
alternately stored in twe FIFD queues. The merging of these two-tuple
strings into four-tuple stings vields

{OL,3E,7TW,83),(20,8C,84,9T)

Similarly, in sorting cell 3, the two lour-tuple strings are merped
to produce the final eight-tuple sorted string.

(0L,2U,3E,4G,44,TW,85,9T).

This example shows that a sorter having ¥ serting cells ecan sort
Z2**N tuples and that the i=-th =orting ecell reguires two 2%E{i-1)_tuple
QUEUES,

B. Implementation Details

The sorter confipguration is shown in Fig. 3. It consists of 12
sorting c¢ells and a sorting checker. Twelve cells form a linear
array. The input section of cell | is connected to the IN module and
the output zection of the sorting checker is connected to the merger,
#11 the cells and the checker are nonnected te the I/0 bus of the CFPU
and communicate control pareameters and status information. Amorng the
centrel parameters are tuple length, key field length, nucmber of
tuples and operation mode.

Fig. 4 is a2 bleek diagram of the sorting cell. It consists of an
L=register, g U-register, a eompsrator, a selecter, an output
register, a FIFD memory, an addreas control eirecuit, an interface
controller and =2 eell contreller, The FIFD memories are logically
divided into two gqueues, ecalled a U-memory and zn L-memory, which are
used to =zlternately store string tuples fror the previous cell. The
address control eircuit provides three kinds of addresses, WAR, RAD
and HRAL. WAR is a write address for stering input register data inte
the memory: RAU and REAL are read zddresses for reading dzta fron each
nemery inte the U-register and the L-register, respectively. The
interface controller comnunicztes eontrol parameters and status

information between the CPU and the cells, The oell eontraller
provides six signals TLC, KELC, SHCI, STC, 2TU and 37L Taop controlling
the execution in the eells, Fach signal 18 a carry bit of the

corresponding counters., The counters in the cell contreller are
loaded with the control parameters containing the lenpth inforzation.
They zre then counted down in synchrony with the 2-byte processing
locp (deseribed below) te produce the control signals as carry bits,

TLC: end of the tuple

ELC: end of the key field

SMC: end of the stream

STC: end of the input string from the previous cell.
STU: end of the string read fros U-nemory

STL: end of the ztring rezd from L-memary

Pape 10

The control structure in the sort mode of the sorting cell contains
three nested loops: a 2-byte processing leop, a tuple-processing loop
and 2 string/estrezm-processing loop. The 2Z-byte leop haz three
states. In the first and the second states, 2-byte data iz rezd fron
the U-wpepory and L-memory, respectively. In the third state, data in
an input register is written into the memory, the two tuples in the U-
and L-registers are compared, and one of the two tuples is transferred
to an output register via a selector zccording to the result of the
comparison, This represents the desired sorting order. Tnese states
are controlled by 2 three-phase clock. The state-transition time is
z20ns. Therefore, the repetition interval of the 2Z-byte proecessing
icop is 660ns. Tnis interval iz synchronized with the Jdata iransler

rate of 3HL/=sec, The tuple-processing loop controls the 2Z-byte
processing loop by means of TLC and KLC. This loop has also three
states: the comparison state, the U state and Gthe L state, The

comparison state iz maintained urtil the sort cell detercines the
tuple to be sent te the next cell according to tne comparison result.
In tae U state, the U-nemory tuple is transferred to the next cell and
the peinter address of the L-pemory tuple in current use is reset for
next comparison state. In the L state, the L-pemory tuple iz
transferred o the next cell and the peinter address of ithe U-mepory
tuple in curraent use 13 reset.

The state-transitien condition is 25 fellows:

<eonparison state to U stater
o In ascending sort, t(U-nemory) =¢ t{l-memory)
o In dasecending sort, t(U=newory) »= t{lL-ueuory)
0 t{L=penory) = null
o botn t{L-mewory) = null and t{U-mewory) = null

{ocomparison state to L statel
o In ascending sort, t{U-newmory)} > t(L-memory)
o In descending sort, t(U-nemory) < t(l-uemory)
o t{U-nmemory) = null and t{l-oemory) A= null

where t(U-gzemory) or t{lL-Deaory) denctes tne tuple ab the head of
eac menory.

The upperuost string/streau loap sontrols the lower
tuple-processing and 2-byte loops by detecting tioe =ziring or strean
end usiag SHC STC, 3TU and STL.

#y using these gonirol loops, stable sorts containing null values
ere ceohieved.

Ia the pass mode, the sorting cell aerely forwards 2-byts data
dircetly to tae input tuples via thke input register, the L-register
and the oubtput register., The tipne required to forward 2 bytes i3
660ns, corrosponding to the sort-mode 2-byte processing loop.

Tuiz mode is wsed when the tuple length is gsreater than 1o bytes or
thhe oueber of tuples apre sS@all. It i5 not necessary Lo zctivate cells
thaet are not reguired to perforn the speeified sort.

Page 11

5. APFLICATION

Sorting iz often a very effective type of preprocessing for
database operations. & natural-join, {or exemple, can be performed
efficiently by merging two sorted relations, # umnigue operation cor
duplieazte elimination is wvirtually impessible without first sorting
the target tuples. If the characleristiecs eof the manipulated
attributes are known in advance, an optimization algorithm can be
applied to streamline database cperations. Software-backend database
mechines use puilt-in access paths to mateh predefined access
characteristics. It is, however, g well=-known fact Lhat those
software-backend database machines perform poorly when unexpected
2ogesses occur, a2s in a join of twe attributes that are not assumed te
be join lkeys, If' these characteristics are not known, in the worst
case, every attribute has to be handled symmetrically; a different
processing scheme iz regquired to process gqueries inm a rezsonable
anount of time., Database operction based on merping iz considered =2
good algerithn for this purpoze.

In an envircnpent in which database schemata are [ixed and there
are anly predeterninsd patterns of acecess to the databases,
incorporating a2 special (asymmetrical) internal schema iz effective.
Satellite attributes, if they are known, can be stored with 2 sonme
kind of pointer from their key and fetehed =235 needed. However, to
expleit the [ull power of the relaticenal model, database manzgement
s¥ystems (inoluding software DBME and database machines) reguire more
flexible zttribute-handling czpabilities., For example, in information
systems such as decision-support systems, queries tend to be of a
conversational nature. Such gueries are npeot usuzlly made by
programmers; often the user is an executive., Therefore, it pust be
casy to select, joln, and group attributes, for inztance., This can be
done by providing indices to every attribute that cen be uzed as an
acoess Rey. However, the maintenance of such indices, as the number
of links prows, can repidly becemes a difficult and time-conzsurming
Lask,

In this circumstanece, some essentially =symmelrical Ltreatment of
attributes hecomes necessary. We decided that nerge-bzsed dztabase
cperatiens are good for symnetriczl datzbase @panipulation. The
reascns for this are as follows:

') with 2 hardware =ort/mergze support, the tiue reguired to gperfors:
dztabese operations can be winimized, in tre zen=ze thet the
cperations are perforred concurrently with dzta trensfer,

2) merpe-based database operations on cach attribule cen be performed
&t a rezsoneble speed.

The sorter, in cur implewmentation, is =2 piece af hardware Shaot
receives a data =tream ss input and outputz a data strezno that is =

permutation of the input stresm. To sort & long streaa that cznrot be
sorted in cone sean, soxze external nerping of sorted substrecms is
necessary. The madXioum lerngth of the sub=treams is, naturally, the

length the sorter can handle in one scen, in other words, the sorterts
capacity. Ve provided a merger for perforsing externcel =orting by
perging. The =ecrter's capacity iz limited; however, by providing a
merger in eddition to the sorter, arbitrary-length externzl sort:s can
be performed by merging., Thus streams of any length can be sorted.

Page 12

The basic idea that the merger is necessary for performing external
sorting. By modifying the output econtrol of the merger, various
relational database operations can be acpcompodated by the merger.

block diagram of the merger is shown in Fig. 5. The mnerger
consists of an operation sectien and an outpui control section,

The operation section contzins two 64K-byte menmories (U-memory and
L=-memory). Each has a FIF0 funetion, a comparater snd a control-ROH
table. This section performs the following steps:

{1) Storing two sorted streams from the sorter into the memories

(2} NReading a tuple from each of &wo mewmgries simul taneously and
providing them to the comparator and the tuple memory in the pext
section.

(3) Comparing the keys of each tuple and detecting ouftput tuples
satisfying the condition of the command,

These functions are executed under the control of a ROM table off 1K
10-bit words. The address of the ROM table includes a null [lag, a
duplication flag, and the comparison result and so on. Tne output of
the ROH table consists of memory address control signals,
tuple-selection signals used for the output control section, and an
operation-end signal.

The output control section consists of two 16E-byte tuple memories,
two field-ordering circuits, two fleld-selection eireuits, two
data-type-transformation circuits, e onew TID (tuple-identifier)
generztor, a selector and an ocutput seguence controller. This section
performs the following functions under software control.

{1) Reordering the fields of an output tuple.
{2) Belecting fields of an output tuple.

{(3) Undoing the transformation of the key [ield,
{4) Acdding a new TID to an cutput tuple.

Examples of thesc functions are shown in Fig. 6. Fip. 6(a) shows
reordering of the fields of an output tuple. That is to =ay, tuple
{1) with five fields (&, B, C, D, F; B is 2 key field) is rotated to
tuple (2} by the IM module, so that the key [leld 1is positioned at thc
head of the tuple, and tuple (2) is rearranged te the original tuple
{3) by the merger,

Tne selection ef fields of an ecutput tuple is shown in Figp. 6(bl.
That 4is to say, tuple (4) is projected to tuple {%) or tupie (6) by
the assipnment of the two peinters, P! and P2. Fig. 6(e) shows the
addition of 2 new TID {(HTID) to an output tuple.

Tn the remzinder of this seetion, we deseribe algorithms for
external sorting and the join operation as examples of relational
databaze processing.

£. External Sorting

Ve assume that the substreams to be externzlly @merged are
reprecented =zs S1 and 82, and that 51 and 32 have been previously
sorted. S1 ceonsists of 811, 812, 513,..., 3in; 52 consists of 821,
822, S23,..., 82n. Sijs are segmented beginning with the top of each
substrezm, zo Sij is a sorted substrcam and every tuple inp 3i] is less
than or egual to 2n arbitrary tuple in 3ij+1. #11 Sijs are of the

Page 13

same length {the capacity of the sorter's internal sort). U-pmemory
and Lepemory have the same 64K-byte capacily.

1) let 4 = § = 1

2) load 51i into the U-memory

3} load 523 inte the L-memory

4) merge the top tuples in the U- and L-memories as soon as the first
tuples of 311 and 52j appear at the top of the gueus

5} if U-memory is exhausted, increment i by one tuple-length and if i
< n, load 51i into U-memory, then go te 4. If i gets greater than
n by incrementing, go to 7.

6} if L-memeory is exhausted, increment j by one tuple-length and if]
£ n, load 32j into L-memory, then go to 4. If j becomes greater
than n by inerementing, go to 7.

7} eutput the remaining tuples {31 or 52).

#, Join operation

in example of JOIN-EQ command proecessing is shown in Fig. 7. The
JOIN-EQ command 4is typically used when an egqui-join of two relations
is performed. Fig. 7{a) shows two input streams (51 and 52) sorted
in ascending key-order (A1 and B1}; these are stored in the U= and
L-pewories, respectively. UADR and LADR provide segucnec nucbers for
explaining the address control scheme of each memory. Fig. T(b}
shows the output tuples and Fig. Tle) 4illustrates the execution
process,

The processing algoritha for the JOIN-EQ comuand is ag [ollows:

If 41 » B1, then ULIDR UADR and LADR = LADR + 1
If KA1 < B1, then UADR UADE + 1 and LADR = LADH
If &1 = B1, then output a matehed tuple pair
and
if the DP of &1 and the DP of D1 are on,
then UADR = UADE and LADR = LADR + 1
if the DPF of &% is oo and the DF of D1 is off,
then UADR = UADR +1 and LADR = LADE®
if the DP of A1 is off and the DP of 21 is on,
then UADE = UADR and LADE = LADR +1
if the DP af A1 and the DP of L1 are ofl,
then UADR = UADR + 1 and LADR = LADR <+ 1

lHere, DP stands for the duplicetion line and LADPRE® peints te Lhe
First tuple of the duplicate tuples.

This algorithm is more efficient tham & siaple mnerge 2lgorithn,
because the duplicztion eontrols the selection of the tuple Lo be
processed, Obthar merger ccapands asre also executed by an algarithua
zinmilar to the above exanple.

6. PEEFORUANCE ESTIUATION

Bz the sorting alporithm proceeds in a deteruinistic way, the Goipo
reguired t¢ sort a stream of tuples cen Le astimated preclsely. Toe
following list suws up the paranectors describing tie two-wey Lerpe
aorter:

H: seorting cell count
ii;: merger's nenory capacity

Page 14

C: streaw tuple count
L: tuple length
T: time to tranafer a byte

To estimate the time required to sort a stream using the sorter,
the length of the strcag must be determined. & soprt that is performed
by scanning the whele stream once, in other words, a complete strecno
sort that uses only the sorter section, is ecalled an internal sort. 4
streamn larger than the mexioum internpally-sortable stream has te be
merged after the internally-sortable substreams are sorted. We czall a
sort in which the merging of presorted supstreams 15 necessary an
external sort.

Tne merger's pecory ceEpacity iz twiece that eof the last stage
sorting cell mesory. 2o M is 2%¥%(10 +« 1) ¥ Lpax, wherc Lmax 1is the
waximus tuple lenzth, under the reztriction that the stream of length
2%%5 can be sorted by the H-stage sorter. IF M iz G4UE bytes and I ls
12 =tapges, Lrmax is L4Y bytess/2¥%¥92 o 16 bytes. That is to say, 28812
{40w6) tuplez of wup ta 16 bytes czn be sorted internally by this
sorter. The time reguired te sort C tuples whosze length iz Lmex 13
deteruined geeording to the oxternsgl merppe count. Ve define the
effentive sorter ocapacity, B, as:

F represents the marinum sorter capacity that can be efffectively used
for &n internzl sort, If L 4i= 1 byte, for exaomple, although the
sorter's capacity is one !V byte, only 2%®0 bytes can be uszed te
invernally sort the strean.

rﬁ

Tnen, we define the merge eount factor, F, &
.
F o= [log{CL/E}].

F odeterninss how nany times the strezm has toe be merged. If F eguels
0 (i.e,, CL/L iz less tnen or egual te 1) the strezm can be internelly
sorted without using the merger. Il F eguals 1, merging of sorted
substresias L5 aseceszary. In tnis case, however, the time reguired to
loed & substrezn can be reduced by [Mlowing the [irst sorted substrezm
dirsctly dinto the nmerzer penory, o the streznm does not have to be
rezd twice, If F is= preater than or eguszl te 2, however, the sort
stretely chanpges. £z Lthe sorter and merger combination can not sort a
strean longer than 2E in one scan, the stream is divided into
supstrezns of length 22, First, the substreams are sorted &s in the F
t case. Then, the soried substrezms are externzlly nersed.

The time required to sart a stream is determined zeceording to the F
valuesz,

Case 1: [= 10

Tsort = {(20L + Llog(CJi)T + Teverhesd(F}
approximately, 2CLT + Toverhead

Case 2: F = 1
(3E + log{E) + 2(CL-E) + ipg({CL=E))T + Toverhead(F)

= (Z0L 4+ F + iogl(EZ) + 1log(CL=E})T + Toverhead(F)
approvimately, Z2CLT « LT <+ Toverhead

Tsoert

Page 15

Case 31 F 2 2
Approximately,

{CL/2E)SET + 1.5{CL/E)JET[log(CL/2E}] + Toverhead(F)
2.5CLT + 1.5CLTiog(CL/2E) + Toverhead(F)

Tsort

Here, (CL/ZE)SET means that the stream of length CL is divided into
{CL/2E) substreams of length 2E, each of which reguircs a time of 5ET
te sort., (CL/E)ET is the time required to transfer the siresm of
tepgth E {CL/E) times. The ecoefficient 1.5 means that the pean tine
required to merge two substrezms reguires 809 pore time than is
required by the substreaw transfer. Log(CL/2E) is the mezn merge
count fer a substrezm to form the Final sorted reszult.,

The implementation values are as follows:

: 12, the sortable tuple count 1is 2%¥¥12 = L0996
if: 64KB

Lmax: BUHEB/UM09E = 16D

T: 1/(3liB/s=e) = 0,33 & 10%%({=5)

The sorting time versus tuple court when tuple lencth is 16 hytes
is shown in Fig. 8.

T. LCQUCLUSION

We have deseribed our design considerations &énd the implementation
of the sorter used 1in the RDSE for relational database processing.
Our scorter is charscterized by the following features:

(1) High performance, achieved through pipelined proecessin
synchronized with the deta transfer rete (3iD/zec)

(2) Sufficient data types, including null values, are provided by ean
Il module

(3) High reliability, achieved by using 8 sorting checker

(4) Relationzl database operztion ezpability, achieved by using a
merser

[
L

Tne scrter was inplenentated using ecurrently aveilable Lecnnology.
The time elapsed froo the inltial design stapge to the izmplementation
in EDBEL w2s about a year and & half. The EDEE is incorporzted in the
Delta databacse machine and is currently undergoing syates tezting.

fotivities planrec for the Future ingluge] CELe-array
inplementation of the serting cell with the exceptien of the wencory
elemernl.

Acknowledgement

We would like to erpress our sinecere appreciation to the pesbers of
ICOT's HBI (KEnowledge Base lachine) group Teor valuable discucsion, a2nd
to Dr. K. Mori, director of Teshiba iaforamation systens laberatory,
who provided the opportunity teo conduct the prezent recearcha. e
would 2lso like te thank the Toshkiba develapoent group, inm particular
. ndz, T. Oke and L. Tanaka, for their cooperstion in dezipgning
end implementing the RIBE.

Page 16

Heferences

(1] D.E. ¥nuth, The Art of Copputer Progremming, Veol.3, Sorting and
searching, FRezding, MA, Addison-Wesley, 1873.

[#2] F.P. Preparata, "Hew Parallel Sorting Schemes," IREE Trans.
Comput., Vol. ©C-=-27, pp.669=0673, July, 1978.

[3] ¥. bBahi, A. Suzuki and H. Patzui, "Hardware Sorter and ils
Applicetien teo Data Dase ilachine," Preoc. 9th Annuzl Symp. on
Computer Architecture, pp.218-225, April, 1922,

[4] F.Y. ©Chin and H.2, Fok, "Fast Sorting Algorithms on Uniform
Ladders {Multiple Shift-TNegister Loopz)," IREE Trons, Comput.,
Vol. ©£-29, pp.61B-631, July, 1980,

Ig] ¥. Tanaka, Y. Mozakz and &. Masuyeos, "Pipeline 3ecarching and
Soerting Hodules a3 Components of Data Flow Database Cowputer,”
Froco. IFIP'B0, pp.U427=-432, Oct., 1980.

61 H. Yasuura, . Takapi and 5. Yajime, TThe Parallel
Enumerzation Sorling Schexe for VLEI,™ IBEE Trans. Couput., Vel,
C-31, o.12, pp.1192-1201, Dee., 1GEEZ.

(7] L.E. Winslew and Y.C. Chow, "The Ansly=zis and Design of Some
Hew Sortiny Hachipes," IEEE Trans. Cemput., Vol. C-32,
Ep.89T7-6483, July, 1083,

8] c¢.b. Thowmpsen, "The VLS5I Cemplexity of Serting,"™ IEEE Trans.
Comput,, Vol. <C=32, pp.1171-1184, Dec., 1934,

{g] 5. Todd, "&lporithsm and Hardware for a lerge Sort Using
Multiple Processors," IBH Journsl of FRes, and Develop., 22,
15748,

1ol =. Shibayama, T. Fakuta, i, Miyazaki, H. Yaketa and K.
Murakani, na FEelational Detabaszse Haechine with Large
Seniconduetor Disk and Hardware [Delational Algebra Processcor,®
ICOT Teeknieal Heport TRE-085 and =zl=o0 to appear in Hew
Generation Cemputing, Vol.2, lUo.2?, March, 1984.

[11] E.F. Codd, "& RKelational #odel for Large Shared Data Banks,"
Commun. AC!H, 13, 377, June, 1970.

[12] H., ©G=zllaire and J. HMinker {(eds.), Logic 2nd Datas Bases, Plenun
Press, 1578,

[13] D.H. Hziaol{ed,), Hdvanced Database Machine Architecture,

Prentice-fall, 1GE3.

Multibus LAN
1P
Channel
Bus#l Bus#l
ce —

RDBED ' HM

£

Fo====== ==
. beercece——=—a
O o RDBEZ [___]
Lol 2 “
MP r

LaN : Local Area Network

IP : Interface Processor

CP : Control Processor

RDBE: Relational Database Engine
MP : Maintenance Processor

HM : Hierarchical Memory

Fig. 1 Delta architecture

(512KB)
Channel
HM Adapter -
(IN) N
DT
I0C S Jf{_______1
i J '
: IN Medule '
: : Engi C
Bus#? : OT NL ngine Core
] L FT L4 []
i [
- Sorter i
; p
¥ I
10C [DT I
: e DP PT L o] NL H
; |
; Herger :
— ' '
Bus# 1o 0T - —mmd
PT
W
Channel
Memory Bus A HM Adapter x
- (OUT) -
1/0 Bus

Filg. 2 RDBE configuration

HM

HM

HM Adapter({IN)

e

IN Module

L
L=
]
+
-y
=
ul
L]
i
—
—
[

Sorting Cell 2
|

- Em e w wm mommom ==

L ST S ——

L}

|
]
I Sorter
i
"

P

Sorting Cell 12

k W

A L R Ty e,

Sorting Checker

----- DP I--.-—I-——-'--r-----"h--J
14 0 HL
5 L 3
Herger

im

/0 Bus
HM Adapter{0QUT)

Fig. 3 Sorter confipuraticn

1/0 Bus

[
Previous Cell

WAR I
Li=Memory “
Fe=======- Egntrql Interface
Input L-Memory RAL ireu Controller
Register
M A
T1%
i b
L-Register U-Register
TLL «—
KL &=——
16
— Comparator K-+ SHME Ee———] Coll
T19 5Tc «—— Controller
b 4 > STY —
Selector
STL €
-"
futput
Register
i 19
Next Cell

Fig. 4 Block diagram of sarting cell

Sorter

]

K

20 (DF,DT,PT,NL)

¥

Operation
Sectian

Qutput
Control
Sectiaon

U-Memory e L-Memory
r
]
LV
3 Control-
Command { | - b ROM fK-=-=-=-==f~ ~-| Counters
Register Table
5
DT | b
PT 18 o
16
1 » Comparator
DT
—
]
W ! W
U-Tuple | L-Tuple
HMemory ' Memory
i
Output
Sequence
. Control L
Field i Field
Reordering < B > Reordering
Data Type : Data Type
Transformation &= =======—#-=====3| T qcformation
Field U S Field
Selection < ¢ 7 selection
I
|
|
1
.'
Y
Hew TID
Generation Selector
4‘13
w
HM Adapter(OUT)
Fig. 5 Block diagram of the merger

(1) DA B | C D E

(2) B C|D E A
(3) A Bl C | oD E
(a)
(4) \ s lelcl|ole
P1 T p2
(5) B C (6) A D|E
(b)
(7) NTID| A D £

{c)

Fig. & Functions of the output contreol section of the merger

Stream 51 Stream 52

(U-Memory) (L-Memory)
UADR Al A2 LADR Bl B2
0 2 1 B 0 1 0T
(a) 1 3 1 3 1§
2 3 ¢+ D 2 3y
3 4 A 3 5 , U
JOIN Al = Bl
Al A2 Bl B2
i i P
g - -
! 'E] 3 ql v
(b) 309 P 3 ios
I R B
UADR | LADR U-TUPLE : L-TUPLE | RESULT | ouTpuT
o 1 0 22 1T >
? : 1 2B : 35 <
o 3C '3 - 3035
(c) 1 2 i 0wy = 3c3y
2 ; 1 i+ 38 = 3035
2 : 2 30 | k] = 303V
3 ; 3 4 : 5U <
END | 3 ;

Fig. 7 Example of JOIN-E{ commpand processing

Sorting Time
{in milliseconds)

M
400 +

300 71

200 T

100 1 /
/ ltem Count
x {x1000)

Cal

0 4 B 17 16

fig. B Performance estication of the sorter

