ICOT Technical Report: TR-064

TR-064
Query Processing Flow

on RDBM Delia’s Functionally-Distributed Architecture

by
Shigeki Shibavama. Takeo Kakuia,
Nobuvoshi Miyazaki, Hareo Yokota, and

Kunio Murakami

April, 1984

1984, 1COT

Mita Kokusal Blde 21F kb 456-5121- 5

l{: GT 4-28 Mila 1-Chome Telex ICOT 132964
penato-ku Tokvo 108 Japan

_i}istitute for New Geﬁefgtiun Computer Technology

Query Processing Flow

on RDEM Delta's Functionally-Distributed Architecture

Shigeki SHIBAYAMA, Takeo KARKUTA, Nobuyoshi MIYAZAKI,

Haruo YOEOTA, and Hunio MURAKAMI

ICOT Research Center

Institute for New Generation Computer Technology,
Mita Kolkusai Bldg. 21F, 1 - 4 - 28, Mita

Minato-ku, Tokyo 108

Page 1

Query Procesaing Flow

on RDEM Delta's Functionally-Distributed Architecture

Shigeki SHIBAYAMA, Takeo FAFRUTA, Nobuyoshi MIYAZAKT,

Haruo YOEOTA, and Funico MURAFAMI

ICOT Hesearch Center

Abstract

This paper presents the implementation details of a relational database
machine Delta being developed at the Institute for New Generation Computer
Technology (ICOT). We focus on how & transaction comprised of Delta access
commands are received, analyzed, managed and executed by using an example. As
a result, this paper is mainly concerned with the software configuration and
functionalities distributed among the processors which comprise Delts. A
detailed desoription eof relational database engine (RDBE), one of the major
hapdware featurez, will be given in another paper [3akai B4]. An approach to
use Delta as a part of the knowledge base machine research Gteool 1is also

briefly described.

1. Bagkeround and Introduction

In the scope of Japan's Fifth Generation Computer System {FGCS) project, a
relaticonal databzze machine is being developed. The relational database
machine (Delta) is planned to be finished at the end of the initial 3-year
stage of the projeect. Then it is offered for use as 3 backend store to
sequential inference machine (SIM) users in the intermediate L-year stage.
The inference machine is ancther system planned to be completed in the initial
stage. An FGCS prototype is shown iIn Fig.1.1. Delta receives concurrent
queries issued from SIM's via an Ethernet-like loczl area network, Delta will

be used not only as a backend store in the network, but alsoc as a researeh

Page 2

tool for the investigation of a knowledge base machine. An experiment system
where a SIM and Delta are tightly-coupled will be used feor this purpese.

Delta is basically a relational database system featuring a hardware
relational-type database procéssor and a large capacity semiconductor disk.
Tt is a functionally-distributed multi-processor system. It is alseo provided
with most of database management facilities, for example, multi-user supporti
and recovery functions.

In this paper, the basie architectural eoncept is desceribed in chapter 2
and hardware configuration being implemented is desecribed in chapter 3.
Chapter 4 describes the software configuration and how & transaction 1is
decomposed, dispatched and executed across the subsystemz in detail.

Knowledge base machine research plan is briefly described in chapter 5.

2. Architecture

Delta's conceptual architecture is shown in Fig.2.1. Delta adopted a
functionally-distributed architecture for a relational database machine
design. The reason why this approach was taken was that necessary functions
to cooperatively perfore database gperations, for example, query translation,
interfacing with hosts, relational algebra operations and database storage
management, could be separated. By separating the functions, efficient

hardware and software implementation can be applied to each of the funetional

pm————— + o m——— A m————— +
1 og¥ to.... | SIM | | HC | {network
| !]] : ! controller)
s PR B
I i i
fEsssmmmgs=E S SIS EC TS ammgpTT SRR SEPEESS L ==
LAN !

e e e e e e

I SIM | ; 1

i | ! Delta !

B H i

' |

e e

Fig.1.1 An FGCS Prototype

Page 3

subsystems. We divided the database functions into five categories. Those
are (1) host interfacing, (2} gquery analysis and hardware resource management
in the subsystem level, (3) relational database processing, (4) database
storage management and (5) system supervising. We provided an Interface
Processor (IP)}, a Control Processor (CP), Helational Database Engines (RDBE],
a Hierarchical Memory (HM) and a Maintenance Frocessor (MP), respectively, Lo
perform the above distributed functions. The implementations of the
subsystems are described in the following chapter. The functions distributed
to the subsystems are as follows:
(1) Interface Processor (IP)
o Local area network interface {physical and logical)
This interface provides a loosely-coupled connection between the
geographically distributed SIM's.
e A tightly-coupled interface
This provides an experimental tightly-coupled interface with a SIM
physicelly close to Delta.
¢ Concurrent command-seguence management

Delta provides a multi-user environment necessary far a backend special-

Local Area Network

==mr=s==s========z===== HMaintenance
Multibus | Frocessor
{ o ——————— Fm—————t
| IInterface|] Fa !
$mm—m—e——— lProgessor jszzss=====+ (=] H
| — Lo !
i H | <=1 i
A — e | ' !
! Contrel | ! ———— +
|Processor) i
PR '
i]
I]
o ——— e mmem—————— i
| I |
T ——— + e ————————
! Relational] |Hierarchical |
| Database l==z=z=zz====] !
| Engine | | Memory |
o e o e + e +

Fig.2.1 Delta global architecture

Page 4

purpeose processor in a network. IP mcts as the front-end of Delta and
resplves concurrent command-sequence arrivals from multiple SIM's.

o Tuple transfer {(tuple insertion and result tuple response)
IP has a high-bandwidth transfer path to HHM needed to perform this

function.

(2) Control Processor (CF)

o Transaction wmanagement
Transaction management funection is responsible for grasping each
transaction's status and for database resource management.

o Command-tree management
For each transaction, Delta command { command-tree) analysis, subcommand
generation, subcommand execution control are performed by this manager.

o Dictionary/directory management
In Delta's terminology, dictiocnmary iz =2 set of meta-relations which
users ean prefer to. Directory is an internal data structure which CP's
software refers to. We discriminated these for an efficiency reason.
However, the consistency between them should be maintained at
transaction commit or abeort times.

o Recovery management
At system-down times and wusers' transaction aborting, CP works in
accordance with MP and HM te maintain the database.

{3) Relational Database Engine (RDBE)

o Relational database processing
Ta execute relational alpebrz operations and set cperations fast, this
porticn should have special-purpose hardware and software, We observed
that the hardware two-way merge sorting could be used to carry out fast
relationz]l database operations, for example, join with no restriction on
operable attributes. Our first idea for constructing a relational

datahase machine wasz to build a fast relational database engine

Page &

according to this alpgorithm and to pake use of it.

By fast, we mean, first, that the database operations are performed
overlapped with the data transfapr, Thiz =simultanecus erecution of data
trarefer and relztionzl dztabase operation is useful when the dats

Hie] =Ieh is fairly large. £ nere transfer of data, in that case, will

- ¥ zh btime, We wanted Co avold the visible data transfer time as
oueh &5 possible, Zecond, the transler zpeed should be fast. To
en;oy Lhe fast engine hardware, 2 bi-directienzl high-bandwidth path to
the storage portion is necessary. This requirement led to the
tneo soraticn o large semiconductor memory with fast channels inﬁu the
Delie zystem (HM subsystem).

(4) Hierarchiecal Memory (HM)

o Cache zrnd moving-head-disk management
Te conceive 2 Tast dztabase machine, good care hzs to be tazken in the
dztabase storege portion. £s Delta iz determined to accomoodete current
technoleogies for an inplementation, the stcorage deviece cannot be thought
without moving-head-disks. The preoblem here is that without using a
large cache with z wise replacement algorithm, it 1is not possible to
salisfy the fest relational detabase operations performed 2t FDEBE. The
cashe and moving-head-disk space manzgsment should be separated to &
dec’ornted portion, Thereflore, HM i3 responsible for preparing and
receiving source and result relatiens (data) at 2 high transfer rate
to/from RDEE.

o Data recovery
Besides the space omanagement, another important role zssigned to HM is
the data recovery functions. £As BM is the dedicated storzge portion, it
iz better to make HM tsle care of the dgta recovery functions. This
should be done, of course, topether with CP and MP's recovery management
portions,

{5) Maintenance Processor (MP)

Page 6

o System supervising
The Maintenance Processor (MP) is responsible for the system
supervising. As Delta is a large computer complex, some global system
paintenance portion is needed., The following list shows the tasks in =a
little more detail.

o Start-up and shut-down of each subsystem

o Subsystem status management

o Operator command execution

o Delta system state management

o Database loading and saving

o Statistical data collecticn

3. Hardware Configuration

The actuzl hardware eonfiguration of Delta system is shown in Fig.3.1. It
iz the best to design special-purpose processors for the 3pecif£c reguirements
to implement the conceptuzl architecture to work most efficiently. For
example, CP could be built to have a special instruction set to handle
database locking and unlocking eapability, to manipulate dictionary/directory
and to cope with transaction concept. This cholce, however, is not practical.
The hardware design is concentrated on the most influential portions to obtain
required performance within the environment where Delta is placed. The
hardware design is thus focused upen the implementation of RDEE.

RDBE'= hardware organization is shown in Fig.3.2. The twWwo-way perge-sorter
and the perger are responsible for most relational algebra operations and set
pperations. The merge-sorter is a one-dimensional special-purpose processor
array for pipelined merge-sorting [Todd 78]. The merge-sorter can sort 2%*N
items in (2%2%%§ + M) time units where a time unit is a time to transfer one
iten. Merger merges input data streams and performs relational database
processing algorithom on them. The input to the merger is sorted by the former
stage sorter, The TN module is responsible feor appropriately reordering the

item's fields to place the sort key at the top of the item. Fields order

Page T
execution.
The details

An RDBE has 2 general-

independently to execute separate queries or they can work
ittt

iz performed within the merger unit when the item is output from

A =et of four RDBE's are installed for parallel transaction
load distribution 4is net determiped yet.

cooperatively to execute a single relationzl database operation.

Each EKRDBE works
IEEEMEE Fmmmm———————— =

readjustment
of FRDBE's

it.

—————————

e s

! LTAT|--] LIA& |

teeme] IP CPU #==e==|

| +==1 & L/0

o

BUS

HM MEM

——————1
IDISE CACHE

- —————

o+

HHA

o
!
I
I

-
1
i

——
I
[

INTERFACE

CHANNEL

1
i
! —————
i
+ i
|
1
|
1

P ————

]
I
[
]
]
i
i
!
+—

| ICE |

—
|
1

LIA Interface
: IC Bulk

: LAN Adapter

LIA
LIAT
ICE

[}

L]
o e
1 1
I

E I/0 +————=

(Semiconductor Disk)

: HM Adapter
5=M : sorter and merger

+

fr—————————
-

HMA

4+ == 4 +om= ot e 4 4 == 4
b g) tal i= 1=
bE oL 1 E B 1 e e m i
]] [=2 | (= |]]
H | LR N |
S - o -
o
+ === 4 =i 4
P oo lo |
V2| B I =
$ommmm e g = PE
T e
R HE
g) e T
: i i S = o= i
{ R AR AN o .
I I
¥ |
I]
—— i e TR WL M meEm mme e mews e .‘
= 1
3! i
P i
N |
|
|
R I
[+]
(] adl 0]
[. B, - D |
]] 1]]]]
A T T O N
] [|]]]]
i “ " | R T
w . b e H
i i T i
N —_— | i
H i i i
]] I]
———— g
Tal Tl d=i Tsl Ts1.0%
R SR R R 1= 1=-=-1 1
[== | = 1] i (= “ “ =0 [L]
18 Sl T Dol S U D I D O
e lE.% |lE,
aoo a5 B i 1 8 B
=% [£+ L] lf 1] [== [&
LYy =i []]]]
SRS S N N
I “]] "] “
- J R S [PUSPRII ROy S
e e e e e o

: Monitor Panel
HH Controliler
: Disk Controiler
MT Controller

HEA
HMCTL :
DKl

MTU

MTR
R —

MTR

P PR —
| HMA

0 e e

FIG.3.1 Delta Hardware Configuration

COMNSOLE

| MP CPU 4---——-|
& I/0

e ——————

Page 8

purpose mini-computer CPU with 512KB main storage for controlling the hardware
portion and performing a part of a variety of RDBE commands which hardware
portion does not support. The IN wmodule, sorter and merger are controlled by
the mini-computer as I/0 devices.

TP, CP and MP are comprised of the same generazl-purpoce mini-computers 2s
RDBE. The main storage sizes of IP, CF and MPF are 1MB, 1MH and 512EE,
respectively. Fach processor is provided with 2 local disk slorage for the
operating system use. CP's disk 1s a semiconductor disk sterage. IP and MP
are provided with the Winchester-type fixed disks. CP'sz econtrol program
stores temporarily the directery and ather tables in the semiconducter disk.
This is adopted to rapidly access the information swapped back in the
secondary storage.

HM iz implemented using a largsr generzl-purpose CPU as its eontroller.
The main storage of the CPU is used both for the program storage and the disk
cache. The size of the main storage is 128MB. Instead of developing a new
dediczted disk cache storage, we decided te make the main storage as large as
possible and simulate the large semiconductor disk cache. The disk cache size
and replacement algorithm can be altered for later system parameters tuning.
The pain storage is made non-volatile {at least from software point of view)
by an emergency power supply to avoid disk aceesses invoked by a write-through
storage manazgement and to facilitate the dalabase recovery tasks, The moving-
head-disks, the lowest storage hierarchy, have a capacity over 2GD per drive.
Eight such drives are attached to the I/0 channels; thus total storzge

capacity of about 20GE is provided.

Ceneral- |
-

1

i

o ————— & Ammm—————— fmmmmem———+ £=3| PUTPOSES >

| IN I 'Pipeline | | Merger | | |Processori |

-=>} l—=>| Merge- |==>| R + G==3

! Module | | Sorter | !' Unit .

o ——————— + mm——————— + dm——————m N et 4

I

I

Fig. 3.2 RDBE Schematic Configuration

Pape 9

CF, IF, RDBE and MF form & processors group called the RDBM superviscory
processing subsystem (RSP for short). While HM in it=elf iz a different
subsystem. Communication between the RSP constituents and HM is done wvia a
atandard ohannel interface. The transfer speed of the channel is maximum of
IME/ zecond. An RDBE is provided with two independent channels to KM for
dedicated input and output uses. The other RSP constituents are provided with
a single channel for bi-directional communication. Communication between HEP
constituents are done using the IEEE4BE buses, The transfer speed of the bus
i= about 150KB/second. As shown in Fig.3.1, the buses are independently
installed between the RSP constituecnts, The amount of infeormation flown
between BSP constituents are small compared with that between HM and RSP. So
the concern is communication overhead time rather than the burst transfer

speed,

4. Fupction Ristribution of Delta
4.1 Software Configuration

IP, CP and MP consist of the same CPU board. There are some pieces of
software which are pommon to 211 these subsystems. Most principal one is the
operating system. We adopted the same operating system G0 them. The
operating system is a modified version of an existing one. The IEEENSE bus
driver and HM adapter driver are included in the operating system. The
IEEELAR bus driver is used to perform inter-subsystem communication except HM.
In IP, the IEEFUBE driver in also used as the LIA (LAN Adapter) physical level
interfzeing. RDBE has the same CPU board as the controller., However, its
software does not have to perform concurrent operations, 3¢ an operating
syatem is not used.

One of the major operating system modifiecations is Gthe expansion of
segments which the operating system occupies. The memory management is done
on S4Kbyte segment basis.

{i) IP

Page 10

IF is responsible for communicating with 3IM's in the LAN environment. IP
is connected to LIA physically by the IEEENES bus. The physieal level LIA
interface in IP is performed by the LIA communication task. The leogical level
LIA interface is performed by the IP eontrol task. IP has pultiple command-
tree-buffers for receiving plural command-trees sent concurrently to it. IF's
command-tree management task aligns the command-trees sent from a host in
arrival order into 2 command-tree-buffer. The command-tree management task
then forwards the command-trees in 2 buffer to CP using the CP communication
task. A= the physical connection between IPF and CP is also the IEEE4EE bus,
this task mainly consists of the IEEE4BE bus driver, identical to LIA physicel
level interface.

Usually, the Delta command-trees in a transaction are taken out serially
from the command-tree-buffer. However, asynchronous-type commands such as
sense-status and abort-processing are served as sgpon as possible when they
arrive at IP and recognized.

{ii) cP

CP is responsible for controlling transactions, managing database and Delta
resources, command analysis, subcommand issuance, dietionary/directery (D/D)
management, rollbaeck and statistical data collection.

When CP i= triggered by the IP's command-tree management task via the CP
compunication task with the transfer of a start-transaction command, a
command-tree processing task is created. 4 command-tree processing task
corresponds to a transaction. The task di= killed upon transaction
termination. An cperating system facility (transaction supervisor task) is
notirfied of the states of command-iree processing tasks.

The command-tree processing task gets command-trees one after another. It
analyzes the command-tree, and if necessary, locks permanent relations at
execution time. It then generates a sequence of subcommands for REBE and HM
referring to the directory for schema checking. After 211 the commands are

translated into corresponding RODBE and HM subcommand seguences, a command-tree

Page 11

processing task forwards the sequences to RDBE and HM communication task to
send them to the subsystems. At execution time, by checking the responses
from RDBE and BEM, the command-tree processing task determines the parameters
appeared in the generated subcommand sequence. If the resultant temporary
relzation of a command is found to contain, for example, no tuples at all, the
sybzequent =ubeommand sequence is skipped.

Dictionary/directory (D/D) management task is responsible for maintaining
the directory for internal use and dictionary as users' reference. The
difference of dietionary and directery is summarized in table 8.1. Dictionary
relations are comprised of two meta-relations, "Helations®™ and "Attributes”
relations. Fssentially, dictionary and directery holds the same schema
information. Donecessary attributes in the dictiomary for the schema
checking, however, are not included in the directory. The reasons why we
separated the dietionary and directory are (1) the efficiency in look-up, and
{2) the concurrent acecess control, Usually, we decided to lock relations for
resolving the concurrency coatrol, If the dictionary is alsc locked during a
look-up, locking conflicts will be frequent. Instead, we use the directory
for fiper concurrency ocontrol. H¥ supportsz the directory storage in it
{direastory area) separate from disk cache or program area. CF's sepiconductor
disk cazches the directory for repeated use, If necessary, CFP obtains
directory pages from HM by directory-access subcommands.

As Delta is used in a network environment, there is a eonsistency problem

table 4.1 Dictionary and Directory

e o e R S e e i e iy e et o

| name definer reference external implementation HH !
: updater interface interface |
e e e e e o -
! dictionary host# hest relation permanant permanent |
1 Delta relation relation |
[——— P S PR LS oo e e +
! directory Delta Delta not defined linked page !
! data '
S B S e B s ————— -

: Only gqualified attributes can be updated by hosts.

Page 12

of dictionaries. Each Delta control program in heosts will hold a part of
Delta dictiomary for itself, & Delta control program has né means to know the
updates to the dictionary done by another control program after taking it ino.
To szve this situation, an attribute {Redefined-at) 1is provided to the
"Relations® relation te check the obsoleteness of the dictionary. In the
nfedefined-at" attribute, the time stamp of the last redefinition is kept.
Every permanent relation access should be associated with this value. I it
does not matech the current value, Delta inferms the host of the dictionzary
obsoleteness. The host should read the dictiomary relations to ceontinue,

The eoncurrency control task is & subtask of the trapsaction supervisory
task. Thi= task manages the copourrency SNong transactions. Concurrency
control is done by locking the resources (relations). We selected the two-
phase locking method. Permanent relations te be locked during a transaction
can be explieitly locked in a start-transaction command, or they are
automatically locked before command-tree execution process. Unlocking of all
the relations is done at the end of a2 transaction whether it Is a normal or an
abnormal termination.

(iii) RDBE

RDEE's software system does not have an operating sysied. The whele
program works as a single task. The software structure of RDEE is comprised
of three layers. The [irst and uppermost layer is the subcommand executive
layer. The second layer is the I/0 traffic comtrol layer and the third and
iowest layer is the interrupt handling layer.

The subcommand executlve layer recelves subcommands from CF and MP,
analyzes and executes the subcommands and sends responses to their senders.
Basically, subcommand executive repeals this eyele. It calls the IL/O traffie
control layer as libreries to handle L/O devices. Another role that this
layer performs 1s the extended operations which hardware core portion does not
support. The operations are listed below:

{1) Filtering of result data by a complex criterion

Pape 13

The hardware core portion can perform operations enly with a simple
eriterion =uch as a range search. The conjunction of one-term eriteris,
for example, is performed within the CPI.

(2) Arithmetic operations on attribute fields and result value assignment
{3} Aggregate opergtionsz on grouped streams

These operations are specified &3 a parameter of EDBE subcommands.

The I/0 traffie coptrol layer provides library routines for the subcommand
executive layer &nd interrupt handling routines for the interrupt handling
layer, FRetriable I/0 errorsz are for the most part retried here.

The interrupt handling layer does the following tasks:

{1} It sets up an enviromment in which RDBE contrel program runs at start-up
time,
{2) It ezlls an interrupt handling routine provided by the I/0 traffic
control layer by checking the I/0 device status when an interrupt oocurs.
{3) It hazndles the other interrupts such as CPU internal interrupts.
{4} It provides libraries [or manipulating special machine-dependent
instruetions such az PEW modifications,
iv) HM
HM's software configuration is as follows:
{1) Operating system
{2) HM eontrol program
{2.1) Control module
This module is comprised of HM task control submodule which manages the
HM multi-tasking and RSP interface submodule responsible for the RSP
interfacing.
(2.2) Subcommand processing module
Thiz module processes various HM subcommands issued from other
subsystems., The s=ubcommands are classified to the processing types.
(2.3) Common function module

This medule is 2 cocllection of common functions wused commonly among

Pape 14

ather portions. Cluster management, log management, recovery
management, DEmory management and disk space management are the
principal tasks.
(2.4) Initialization and termination module
{3) Support programs
Utilitie= to support the software development and system pperation
{4} Test programs
HM control program is the main portion to perform the database operztions
specified by the form of subocommands. FEach module in the program is further
divided into submodules for the logicel unit of HM internal operations. These
cubmodules run under the HM task control submedule. Subcommands from RSF are
collectively managed by the RSP interface submodule. 4 subcommand process
submodule is organized to correspond to 2 (set of) RSP subcomnmand(s}. The
attribute definition/operation submodule is, for example, activated to =2 =et
of attribute definition type subcopmand sequence. HM i3 usuzlly a passive

subsystem. It is activated upon the receipt of a subgcommand.

4.2 A Sample Transaction Processing Flow

is described in the architecture chapter, pelta performs a set of database
machine requirsments by the functionally-distributed configuration. By
showing how a sample transaction is received, analyzed and executed, we will
exegplify the functionalities distributed among Delta's subsystems.

A tragsaction, in Delta's terminolegy, i a bunch of command-trees
beginning with a start-transaction command and ending with an end-transaction
command. When the database update is specified, a transzetion is the unit of
updzte; an unsuccessfiul transection, whether on account of users'
specification of an abort-transaction command or a Delta's error, 4s rolled
back to the previcus database state hefore the start-transaction command, or
the update to a successful transaction is fully done. In a read-only sequence
of Delta commands, a transaction defines a scope in which intermediate

relations (typically a result of a sommand-tree) are kept and used across

Page 15

command-trees. Once & commit-transaction is received, conly input/output type
commands are accepted until an end-transaction command is received.

We will consider the following sample transaction. The permanent relations
used are company(company_name,location) and icot(name,age, company, laboratory,
group). We consider a SQL-like query which meszns "Select the name, belonging
laboratory and group of the persons with ICOT whe was with a ecmpany in
Yokohama, ™ as:

start-transaction
selegct name, laboratory, group
from icot

where company = next
select cogpany _name

{from company

where location = [yokohama]

end-transaction.
This query is translated into the Delta command sequence by a translator (SIM
saftware) as follows (the parameters are modified or abbreviated for

readability):

{1.1) Start-transaction
define the beginning of a transaction scops

(2.1) Selection(company,[2]={yckohama],templ)
select from company relation where the second ([2]) attribute equals
vokohama, put resultant relatien inte =2 temperary relation templ

{(2.2) Projection(tempi,[1],temp2)
project the templ relation against the first ([1]) attribute into temp2
relation

{2.3) Projection(icot,[1,3,%4,5],temp3)
project icot relation against tLhe first, third, fourth and fifth
attpibutes into temp3

{2.4) Natural-join(temp3,temp2,[2]=[1],temph)
natural-join temp3 and temp2 with the second and the fipst attribute,
respectively, put into templ

{2.5) Projection(tempd,[1,3,4],1int1)

Fage 16

project temp4 against the first, third and fourth attributes intc &an
intermediate relation inti
{3.1) Commit-transaction
freeze the transaction: freezing means te inhibit further modification
of the resultant intermediate relation in case of a read-only
transzction
(4.1) Get(imt1)
fetch the intermediate relation (int1) from the top tuple
{5.1) Get-next(int1)
feteh the intermediate relation from the point next teo the last get or
gEst-next command
{6.1) End-transaction
conclude the transaction
This comnand-segquence is comprised of six command-trees; the first command
number (before the periocd) denotes a command-tree number, the second number
{after the period) denctes a command number within a command-tree. Each
transaction-control command and inputfoutput type command forms a command-tree
only by itself. The =ix command-trees are packed with a <chain identilier,
sommand-tree identifiers and physical delimiters by 5IM's translator software.
This pack is called a command-tree chain. & command-tree chain is a2 unit
which is transferred in a sequence of LIA commands (LAN packets). LAN
interface adapter (LIA) is 2 LAN's subsystem responsible for the interfacing
between SIM and Delta. Then they are forwarded to the 5IM's network subsystem
(NS}, which deals with the local area network interfacing task.
NS uses the predetermined network protoeols to send the command-trees Lo
Delta. The first thing that N5 must do is to form a communication-group to
Delta per user database job. A user job is comprised of a set of serialized

transactions.

Page 17T

The sample command sequence is translated into the RDEE and EM subcommand
sequence shown in Fig.4.2.1.

Delta's internal storapge schema is attribute-based. Every attribute is=
stored separately with tuple-identifier (tid) and tag fields. S50 the
subcommand seguence does not directly correspond to the Delta command
seguence, With 2 tuple-based schema, the order of the relationzl database
pperations affects the performance. Projections, for example, are preferably
done before other operations for storage access saving. With an attribute-
based schema, as the subcommands only work on attributes which appear
explicitly in the operations, the order of projection commands are of less
impartance. Other optimizations, for erample, selections before 2 join, are
still effective with the attribute-bzsed schema.

The subcommand group (SG for short) 1 in Fig.4%.2.1 filters the tid [llelds

{ subcommand group 1] ;tid1recompany-location
HM:prepare-gqualified-buffer{buf1) scompany-location = yokchama
HM:prepare-bulfer(bufz) soutput buffer

KDEE:restrict scompany-locatien = yokohama
EDBE-IM:start-stream-in(buft} ;only tid list is cbteined
RDBE=HM:stari-stream-cut{buf?) sbufz = tidil

{ subcommand group 2 } ssorting of tidl
HM:prepare-buf fer(buli) sbuffer for sorted tid
RDBE:sort isorting RDBE command
RDBE-HM:start-stream—in{buf2)

RDBE-1IM:start-stream-out{buf3) sbufi = tid] (sorted)

{ subcommand group 3 } :tid1:company=-name
HM:prepare-qualified-tid-buffer{bufhd) ;tid is in buf?
HM:prepare-puffer{bufs) joutput buffer
RDBE:restrict ;%id1 selection
ADBE-HM:start-stream=-in(bufy} ;5id1 icompany-name
RDBE=-HM:start-stream-in(bul3) ;tidt (=orted)
RDBE-HM:start-streagp-out{bufs) sbufS = tid1:company-name

{ subcommand group 4 } H
HM:prepare-qualified-bufter{bufb) yicot-company
HM:prepare-bul fer{bufT) itid triplets output buffer
ROBE: join reompany-name = icot-company
RORE-HM:start-stream=in(bufs) ;COmMpany=tame
ROBE=HM:start=stream-in(bufh) iloot-company
ROBE-HM:start-stream-out{bufT) jtid triplets

[subcommand group 5 | jicot tid sort
HM:prepare-buf fer(bufd) ;output buffer
RDEE:unigue ;icot tid extract and sert
RDBE-HM:start-stream—in{bulT} ;tid triplets buffer
RDBE-HM:start-stream—out(buff) :buf8 = tid2 (zorted)

Fig., %.2.1-{z2) HM and RDBE subcommand sequence (to continue)

Page 18

of the company-loecation attribute the value of which is "yokchama" in puf2.
The 562 sort the tid fields in buf2 into buf3. The 563 joims the tid fields
with the company-name attribute's tid field. The company-name attribute
values are obtained in bufS. The SCY joins the company-name zattribute values
in buf5 with icot-company attribute values, This corresponds to the natural-
join command. The content of h;fs is a set of triplets of tid's, that is, the
{ subcopmand group 6 } ;new-tid attach

HH:prepar&-qualifjed-tid-huffer[bufg] ;iecot-name

HM:prepare-buffer(buf 10} H
ROBE:restriet

ROBE-HM:start-stream-in(bufd)
RDEE-HM:start-stream-3in(buf7)
RDBE-HM:start=stream=-out(bufi0)
f subecmmand group T }

HM:prepare-qualified-tid-buffer(bufil)

HM:prepare=buffer{buf12)
RDEE:restrict
RDBE-HM:start-stream-in{buf11)
RDEE-HM:start-stream=-3in{bufT)
RDBE-IM:=tart-streap—out{bufi2)
{ subcommand group 8 }

HM:prepare-qualified-tid=-bulfer(buf13)

HY:prepare=buf fer(buf14)
RDBE:restrict
RFDBE-HM:start-stream-in{buf13}
RDBE-HM:start-stream-in{bufT)
RDBE-HM:start-stream-out{buf14}
{ subcommand group 9 1}
HM:prepare-buffer{bufi1s)
RDBE:acrt
RDEE-HM:stari-stream—in{buf10]
RDBE-HM:start-stream-out(buf1s)
{ subcommand group 10 |}
HM:prepare-buffer{buf16)
RDBE:zort
RDBE-HM:start-stream-in(buf12)
RDBE-HM:start-stream-cut{buf16)
{ subcommand group 11 }
HM:prepare-buf fer{buf17)
ADBE:sort
ADBE-HM:start-stream-in(buf14]
RDBE-HM:start-stream=out{buf17)
[sufeommand group 12 1
EM:transpose-to=tuples
IP-HHM:start-packet-1in
IP~-HM:start-packet-in

;icot-name

;tid triplets
sselected icot-name
snew=-tid attach
jicot-lab

rselected icot-lab
;new=tid attach
;icot-group

¥

jzelected icot-group
ifor get preparation

"
]

H
rsorted-tid:icot-name

;for get preparation

:sorted-tid:icot=1ab
:for get preparatlon

;sorted=-tidiicot-group

;tuple reconstruction
;for get
;for get-naxt

The HM: and RDBE: prefixes denote that they are issued from CP.
The ¥¥-HM: prefix denctes that it is issued from XX to EM.
The instructions next to the prefix are the subcommands.

Fig. 4.2.1-(b) HM and RDBE subcommand Sequence {continued)

Page 1%

tid of company relation, the tid of iecot relation and the new tid For the
generated relation by the join. The bufs is one form of an intermediate
relation and the result eof the secopnd command-tree, specified as "int1". If
the "int1" is used by another command, the fellowing subcommand sequence 1is
changed. In this example, the next command-tree is 2 commit-tramsaction, so
the peconstruction process of tuples inte an output form {usuzl tuple-bassed
form) takes place. The SG5 extracts and sorts the tids of the icot relation
from the triplet buffer for later tid-restriction, that is, selection of other
attributes needed for the output relation. The 366, T and & =elect the
porresponding attributes, icot-name, icot-lab, icotegroup, respectively, to
the selected dicot tids, Then the output attributes are sorted and
reconstructed to & tuple form by the 5G% te 12, The bulfers used in the
transaction are dynamicelly released within the transaction. The buffers for

the output form relation are relezsed after the end-transaction command 13

received.
5. Delta ip & lgsiy progreqming resezrch enviropment

Delta iz used as = backend databzse =storzge in the intermediate Filth
Genaration Computer project. Wumber of SIM machines azre connected via an
Ethernet-like local area network., Delta is acepessed from a Delta interface
procram (called RDBMS for relational database machine management system) and
SIM operating system. There are & number of interfaces to access Delta [rom
SIM users,

There are several software layers through which users access Delta
(Fig.5.1). The lowest layer is respensible for handling the physical network
protocols. This layer corresponds to IP's LIA communication task. The next
lowest layer 4is logiczl network protocol handling. Mest part of the network

layer is supported by the STM operating system's network subsystem {N5).

The

Page 20

translater layer will be supported by the RDBMS, During the

translation, HRDBMS refers to the prefetched diecticnery relation, forms and

panages transactions, controls the access rights for security and perforos

related operations.

We expect the focllowing usages by the users:

(1)

(2)

(3)

(uy

Uszers handle logiecal Delta command directly. This wuses the physieal
Delta command translation layer.

Users define {at programming time) some special predicates {in logic
programming sense) and write programs in 2 usuzl way. The relational
algebra translation layer in RDEMS is responsible for both the
interpretation of users' programs and the generation of relational
database accesses in 2 Delta-coomand form. This method is presented 1o
[YTokota 84].

Users will have te write their own translation layer prograg if they
want a special-purpose software application system, The output of the
program is passed to the logical Delta interfacing layer.

Users use only a high-level database query languzge, for example, L or

QBE, built upon the RDEMS.

network layer -+- physiezl network layer

(NS)

+= logieal network layer

translator layer -+ physical Delta command translation layer
(ADBMS) ;

+ logiczl Delta command translation layer

+ Delta command generation layer

tranzaction management -+- dictionary management
(RDBMS) i

+= access right (security) contrel

1

1

+- rescurce management

g

+- transaetion forming/retraction
]
L

+= command execution control

Fig. 5.1 RDBMS software layers

Page 21

In the local area network environment, however, the LA&N communication
overhead is rather large for interactive database accesszes, In the usage
pattern (2}, we proposed a method combining a logic programming language and
relational database. In this method, Delta accesses are collected and iszsued
in 2 bunch, conszidering the access characteristies of LAN,

We also plan to provide a more tightly-coupled SIM to Delta interface. We
think that the tight coupling of inference part and database zopess part is
necessary for future te make a knowledge base machine, & machine which deals
with large amount of knowledge base and does inferences,

lie think that there zre a few candidates for the knowledge base machine
approach based on logic programming languages.

(1) Addition of a virtual memory system to the SIM architecture and stores
the whole knowledge base aleong with inference programs

(2) Setting of an interface between logic programming languages and
knowledge base and coupling them tightly

(3) Investigation of totally new architecture to manipulate knowledge base
and inferences

The first approach will perform poeorly, because the internzl data structure
suited teo perform inferences znd the one to zcoess 2 large amount of data are
different, although for programmers this one-level storage treatment is most
favorable, Efforts should be made to make the programmers' interface of
knowledge base system close to this., However, thisz is not considered 2 good
approach fer an implementation,

The third approach does not seem to be ripe taking the current knowledge
base research state. To think of & new architecture, a clear and sound
principle is needed. This approach will be taken after the research stages to

investigate such prineciples,

Pape 22

We think that the second appreoach is practiczl wusing the resources now
available, The interface between the Jlogic programming languages and the
knowledge base portion should be investigated, We think that the base concept
of the interface i3 relational database. The relational database is not,
however, fully appropriate for the knowledge base model. We estimate that
unit=-clause interface is better for the knowledge base model iLn conjunction
with the logic programming languages [Yokeota B83]. This implies that the
introduction of a simple unification capsbility inte relaticnal model is =
natural extension of the relational model for & knowledge base model in legic
programming.

To make an experimental knowledge bzse system under these assuwptions, a
tightly-coupled connection between SIM and Delta is needed. As LAN is
supposad to cause some amount of transfer overhead, a more responsive and fast
interface is necessary for the knowledge base pachine research. We decided to
use the buffer memory in the SIM system as a communication memory. The I/0
buffer memory is connected to the IEEET9S bus (Multibus) under an I/0
controller, By adding an interfzce board in the S5IM system to aceess the bus
and oonnecting it to IP, the path between Delta and SIM is established. We

wWwill make & software system in 3IM for a close connection between a logie

SIM software layers

_____________ —_

inference layer

L o

!

i

i knowledge base
; interface layer
i
!
|
]
]

ke B i . e . e s -

Delta interface layer
{translator layer and
communication layer)

e o -
! tiphtly-coupled
| conneection

. e D e e

H Delta i

! {Relational Database layer) |

ot B e +

Fig. 5.2 Seftware Layers for 2 Knowledge Base Experiment

Page 23

programming language and relationzl database. By providing a2 software layer
over RDBMS, we can simulate an experimental interface between knowledge base
and inference portion. Thus we <can vary the interface levels and will
investigate an appropriate interface for =z fubure knowledge base mpachine

(Fip.5.2).

6. Conclusion

We have described the functionally-distributed architecture of Delta, its
hardware and seftware configuration. We have presented a detziled processing
flow by taking up a sample transaction. The standpoint of Delta in the logie
programming environment and 2 future research plan for a knowledgce basze
machine is linally deseribed, Fough estimation of Delta's perforpance is
given in [Shibayama B4]. More accurste performance estimation, with the
neasurements on the actual machine, is the next evaluztion step. Enowledge
base pechanism research will be focused and condupted at the end of the

initial-stage project to the intermediate stage.

T. owledrment
The auwthors show Lheir appreciation to the Toshibz and Hitachi resezrchers
and engineers for the implementation decisions and designs, and the efforts

for the urgent waork,

[REFERENCE=S]

{Sakai BN] Sakai, H., Iwata, K., et al., "Design and Implementation of a

Relational Database Engine", to appear in Proc, 2pd FGCS Conference,
Hovember, 1964,

[8hibayama BY4] Shibayama, S., Kakuta, T,, Miyazaki, N., Yokota, H., Hurakami,
K., ™A HRelational Database Machine with Large Semiconductor Disk and
Hardware Relational Algebraz Processor®, ICOT Technical Report TR-055 and

also Lo appear in New Generation Computipg, Vol.2, No.2, March, 1984,

[Todd 78] Todd, S., "Algorithm and Hardware feor a Merge Sort Uzing Multiple
Frocessors™, IBM Jourpzl of FRes, and Develop,, 22, 1978,

[Yoketz 83] Yoketa, H., et al., "An Investigation for Building Knowledge Base
Machines", ICOT Technical Memorandum TM-0019, 1982. (in Japanese)

[Yokota BY] Yokota, H., Kumifuji, S., Kakuta, T., Miyazaki, N., Shibayama,

Papge 24

S, Murakami, K., "An Enhanced Inference MHechanpism [or CGenerating
Relational Algebra Queries", Prog, 3rd ACH SICACT-SIGIMOD symposium on
Principles of Database Svstems, pp. 229 - 238, April, 1984,

