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ABSTRACT

The properties that a partial order on
terms should possess for being applied to
the Kputh-Bendix algorithm is discussed.
A well-founded order having the desired
properties is introduced and its efficacy is
demonstrated by means of several examples.

1. Preliminaries

In this section, we introduce the terminology
and notation used in this paper and briefly
summarize some well-known results,

1.1 Ordered sets

Definition 1.1

Let X be a set and < be a relation on
X . Then, the pair (X, <) is eaid to be
an ordered set if it satizfies the following
conditions:

(1) z=<zforallzin X

(2) If z<y and y<z, then <z

(3} If e=y and y=z, then ==y
Deflnition 1.2

An ordered set (X, =) is said to be to-
tally orderedif <y or y=<z for all r and

yin X.

Deflnition 1.3
Let (X, =) be an ordered set.

(1) An element r is said to be minimum
in a subret § of X if z<y forall y in
S.

{2} An element z is said to be migimalin
a subset § of X if there exists no y in
& such that y<z. [The notation z<y
ofF y>z means that r<y and z£y.)

If there exists a minimum element, then it
iz unique.

Definition 1.4

An ordered set (X, <) is said to be well-
ordered if every non-empty subset of X
has a miniraum elemont,

Deflnition 1.5

An ordered set (X, =) it said to be
semi-well-ordered if for every infinite se-
quence £,Iz, - of elements of X there
exist i and j such that z; =<z, and i<7.

Definition 1.6

An ordered set (X, <) is 2aid to be well-
founded if there exists no infinite se-
quence Iy>zrg=-- of elements of X

Theorem 1.7

{1) An ordered set (X, <) is well-ordered
if apd only if every non-empty sub-
set of X has exactly one minimal ele-
ment.

(2) An ordered set (X, <) is semi-well-
ordered if and only if every non-empty



subset of £ has a finite number of min-
imal elements.

An ordered set (X, =) is well-founded
if and only if every non-emply subset
of X has (possibly infinite) minimal
elements.

Corollary 1.8

{1) A well-ordered set is totally ordered
and semi-well-ordered.

(2) A eemi-well-ordered set is well-
founded.
{3) A totally ordered well-founded set is
well-ordered.
Remark 1.9

Let (X, <) ba an ordered set. Then, the
relation —< satisfies the following condi-
tion:

if z<y and y<z, then £<2z and z2.

On the other hand, let < be an arbitrary
relation on X satisfying the above con-
dition and < be defined by:

z=y if and only if -y or z<y.
Then, (X, <) is an ordered set.

1.2 Term rewritlng systems

In this section, we will deal with finite se-
quences of the following three kinds of sym-
bols {and parentheses and commas in order
to make reading easy):

(1) a finite set F of function symbols in
which each symbeol has a fixed arity of
Arguments

(2) a denumerable zet V' of variables
(3) a special symbol (¥ called a zlot.

Deflpition 1.10
The terms and the contexfson F and V
are defined recursively as follows:

(1) Every variable in ¥V is a term and a
context.

(2) A slot {1 is a context.

(3) If f is an m-ary function symbol in
F and ty, -, t, are terms (contexts),
then f(ty, -, t,) i 3 term (comtext).
(We allow the case that n=0, and call
such a function symbol a constant.)

The set of all terms on F and V' is denoted
by T(F, V). A term without variables is
called a ground term. The subsct of I(F, V)
consisting of all ground terms is denoted by
Z(F}.

Definition 1.11

Let ¢[{};, «-, {}n] denote a context with
1 slots, where {1; indicates the f'th slot
form the left. Let &y, ¢, be terms
(contexts). Then e[ty, -+, t,] denotes the
term (context) obtained by replacing
the elot {1, with t;. In particular, we will
use the notation c[{1] for representing a
context containing precisely one siot. A
term # is said to be a subterm of t if
there is a context ¢|(2] such that t=c[s].
If e[l1]s0, # iz called a proper subterm
of ¢[s].

Definhtion 1.13

A function ¢ from V to T(F, V) is said
to be a (finite) substitution if o(v)=v for
all but a finite number of v's in V.

A substitution can be extended homomor-
phically to a function ¢* from I{F,V) to
T(F,V). This is defined recursively as fol-
lows:

(1) e*(v)=c(v) forall vin V.
(2) o*(f(ts, = ta))=Flo" (1), =~ 0" (ta)).

A substitution can be extended alio .o a
function from contexts to contexts. These
extended functions will be called a subatitu-
tion and denoted by o as well. Note that

olcls])=c(c)|e(s]].

Deflpition 1.13



A term rewriting system (TRS for short)
is a finite zet of pairs [—r of terms. An
element [—r of a TRS is called a rewrite
rule.

In order Lo aveid renaming variables in the
following discussion, we will assume that no
two rewrite rules have common variables.

Definition 1.14

Let K be a TRS. A pair t=u of terms 13
said to be a derivation with respect to R
if there exist a rewrite rule {-.r, a con-
text ¢[f1], and a substitution ¢ such that
clo(l)]=t and clo(r)]=u. Let us denote
the reflexive transitive closure of = by
% and the transitive closure 3.

Definition 1.15

Let R be a TRS. Two terms u and v are
said to be confluent (with respect to R)
if there exists a term ¢ such that ust
and v&t. A TRS is said to be confluent
if for any two derivation sequences t&f,
and t&%ig, £ and ¢3 are confluent,

Definition 1.18

A THS is said to terminaie if there
exizsts no infinite derivation sequence
ti=ta=-

Proposition 1.17

A THS terminates if and only if
(Z(F, V), %) iz a well-founded set.

Theorem 1.18

A terminating TRS is confluent if and
only if for any two derivations =t and
t=t; there exist: 3 term u such that
tifst and faBu.

Definition 1.19

A term ¢ iz said to be irreducible if there
exists no term u such that t=u.

Theorem 1.20

Let R be a terminating TRS. For every
term ¢, there exists an irreducible term u
guch that t2u. Moreover, R is confluent
if and only if the irreducible term wu is
unigue. In this case, the term u is called
the normal form of t (with respect to R)
and denoted by AlL).

Definition 1.21

A relation p on I(F, V) is said to have
the substitution property if t p u implies
that ot) p ¢(u) for any substitution o.

Definition 1.22

A relation p on T(F,V) is said to have
the replacement property if, for any
context cfily, ++-01a], t1pus, =, tn ptin im-
plies that c[ty, =+, tn] p cltig, ===, tin].

Definition 1.213

An equational theory is a set of pairs
ty~ta of terms satisfying the following
conditions. {We will use the symbol
~. instead of =, because the symbol =
means identity in this paper.)

(1) t~t for all term .

(2) if 8;~tg, then tz~t;.

(3) if t;~tz, ta~ts, then t;—15.

{4) ~ has the substitution property.
(5) ~- has the replacement property.

The equality preblem in an equational
theory T involves the determination of
whether #;—~t3 for two arbitrary terms
and i;.

Any set E of pairs l~r of terms can be
extended to an equational theory T(E) by
considering the closure of E with respect
to the above conditions (1)-(5). An equa-
tional theory T i3 said to be (finitely)
axiomatigable if there exists a finite set F
such that T=T(E). In this case, E is called
an axiom system for T, and an element of
E is called an axiom,



Decldability Theorem

If Risaconfluent and terminating TRS,
then the equality problem on T(R) is
decidable.

Outline of Proof :

Let #; and t; be given two terms. Find
.'i'[fl} H.!I'I.d "‘1:2} IT"IE'!'?Ij ){"{:l}-.ﬁl’l:z} if
and only if ¢, ~25.

2. TRS Equivalence

In this section we will discuss the relation
between two THS:. Let E; and Fg be two
equational theories. It is natural to eay that
E; implies E, if E; cF,;. Since, in this
paper, THSs are considered to be mechani-
cal methods for solving the equality problem
in an equational theory, implication between
TRSs should agree with that between equa-
tional theories,

Definition 2.1

Let Ry, and R; be TRSs. R; i3 said
to weakly imply Ry, if any two terms
confluent with respect to Ha are also
confluent with respect to H;.

If Rz weakly implies Ry, then it iz obvious
that T(R,) implies T{R).

Lemma 2.2

Let Fg be a confluent TRS. Hs weakly
implies f; if and only if for any u and
v such that ud ;v there exists a term ¢
such that utist and vyt (The symbol
2, repregents a derivation sequencze with
respect to H;).

Froaf :

The ounly-if-part is obvious. We prove
the if-part. Let u and v are confluent
with respect to Ky, i.e., there exists
a term ¢ such that us gt and vl
From the condition of the lemma, there
exist wy and vy such that wdqu,

Eouy, vgry, and t2gvy. Since Ry is
confluent, uy and vy are confluent with
respect to Mz, and therefore, u and v
are also confluent with respeet to Rj.

Proposition 2.3

Let Ky and By be confluent and ter-
minating TRSs. The lollowing condi-
tions are equivalent:

(1) Hg weakly implies Ky

(2) i My (t)em Ny (), then A(t)=Na(s)

(3) Nal{Ny(t))=Na(t)
where N;(t) repregents the normal form
of t with respect to R;

Proof

{1)-(3): Since #2, K;[l), there exists a
term # such that 255 and Ny(t)&gs.
Therefore,

Na(t)=Ng(s) = Nz(HN,(t))
(3}—={2): If Ni(t)=N;(2), then
Na(t)= Nz (N1 (t))= Nz N1 (8))=Na(s)

[2)-(1): If t&qa, then Ny(#)=Ni[a).
Therefore, No(t)— Nal(8)—u. Thus
tou and sdaqu.

Corollary 2.4

Let Ky and R; be confluent and ter-
minating TRSs. Then R, weakly im-
plies Rg il and only if T(H;) implies
T(Rz).

Definition 2.5

Twa THS: Hy and Hz are said to be
weakly equivalent, if they weakly imply
each other

Corollary 2.6

Let Ry and Rz be confluent and ter-
minating TRSs. Ry and Ry are weakly
equivalent if and only if T'(H,)="T1{Hz).

Fven if two confluent and terminating THESs
are weakly equivalent, their normal forms
arc not pecessarily the same. We will now



define strong equivalence, which makes the
pormal forms the same.

Definition 2.7

Let Ry and Ry be TRSs. R, is said
to strongly imply Rg, if Rz weakly im-
plies Rz and any irreducible term with
respect to Rz is also irreducible with
respect to Hy.

Lemmas 1.8

Let R; and Ry be confluent and ter-
minating TRSs. Then, g strongly im-
plies By if and only if
Ny(Na(t))=Na( Niit]) = Nalt)
for any term ¢.
Proof :

Immediate form Propesition 2.3 and
Definition 2.7.

Deflnition 2.9

Two THSs H; and f; are zaid to
be strongly equivalent if they strongly
imply each other.

Theorem 2.10

Let R; be a confluent and terminating
TRS and 2 be a terminating TRS.
Then the following conditions are equiv-
alent:

(1} Ry and Fy are strongly equivalent.

{2y Ry weakly implies Rz and any term
irreducible with respect to Fg 13 also
irreducible with respect to Hy.

(23) Ry is confluent and Ap{t)=Nz(t) for
any term {.

Proof :

[1}—+{2): Clear.

{2)—[3): Let t23ge and t3zv.  Siooe
Itz is terminating, there exist terms
ug and vy that are irreducible with
respect to Fz such that usgu, and

Uity Sinee Ry weakly implies

Ry, there exist terms vy and uy

guch that 2 u;, o2 0y, {2v; and

Sinee £, is confluent there
exists a term #p such that w,le
and v, %t,. However, wy and vy is
also irreducible with respect to R,
and, therefore, fp=tg=tg. Hence
u and v are confluent. Therefore
Ni(t)= My Nz(t))=Nz(t).

(3)=(1): Since Ni{Mz2(t))=Nz(Na(t))=Na(t)
and Na(Ny(t))=Na(Na(t)) =Nalt), Rz
strongly implies F,. The symmetric
discussion proves that R, strongly im-
plies Ra.

Unlottl'l.

Definition 2.11

B2 is said to trace I, il ufev for aoy
u and v such that us v,

Clearly, if Rz traces R;, then Hz weakly
implies J2;. The following corollary of
Thecrem 2.10 is convenient.

Corollary 2.12

Let R, be a confluent and terminating
TRS, and Rz be a terminating THS.
R i3 confluent and stropgly equivalent
to Ry, if Ry traces Ry, and any term
irreducible with respect to Hz is also
irreducible with respect to H,.

3. Kouth-Bendix Algorithm

Definition 3.1

A relation p on I(F, V) is said Lo be
stable it p has both the substitution
property and the replacement property.

Proposition 3.2

Let (T(F, V), =) be an ardered set such
that < is stable, and [ be a TRS such
that {=r for all rewrite rules [r. Then,
te=u for all t=u.

Corollary 1.3



Let (T(F,V), =) be a well-founded set
gsuch that < is stable, and R be a TRS
such that [=r for all rewrite roles {—r.
Then, R terminates.

Deflnition 3.4

The two terms #; and t; are gaid to he
unifiable if there exists a substitution
o such that oft,)=o(ty). The substitu-
tion o is called a wmifier of ¢, and ;.
A unifier g of t; and ty iz said to be
most general if for any unifier v of
and t; there exists a substitution ¢ such
that ¢op—w. (The composition of fune-
tions f and g is represented by fog, i.e.,

feglz)=fl9{z)).)
Unifleation Theorem [Roblnson 65]

There exists an algorithm that deter-
mines whether two given terms are
unifiable, and that finds a most general
unifler when they are.

Superposition Theorem [Knuth T0]

A terminating TRS is confluent if
and only if the following condition is
satisfied for all pairs of rewriting rules
ly—ry, lz—rz, and all non-trivial sub-
terms & of [z such that [y and & have
o most general unifier

Let la=c|s]. If p{c[ry])®t, plra)su for
irreducible terms t and u, then f--u.

The term w(lz) is called the super-
position of Iy on ¢ in {3. The pair
p{e[r1])~p(ra) is called a critical pair
geoerated by §—ry and lzors. (A term
is said to be non-trivial if it is not a vari-
able )

Let (T(F, V), <) be a well-founded set such
that = is stable. If it is decidable whether
t <ts for any two terms ¢y and ¢z, the super-
position theorem, together with Corollary
3.3, suggests that there iz an algorithm
(possibly non-terminating and possibly un-
successfl) for constructing a terminating

and confluent TRS that solves the equality
problem of T(E) for a given axiom system
K.

Knuth-Bendix Algorithm [Kouth 70]

Step 0: Set E to be the initally given set
of equations. Set R to be empty. Go
to Step 1.

Step I: If E is empty, the current value
of R is the desired THS., Otherwise,
go to Step 2.

Step I: Remove a pair t —u from |, and
find irreducible terms ¢, and u, such
that $f¢,, uthu, with respect to R.
If ty=uy, go to Step 1. Il ty=u, or
t)=uy, go to Step 3. Otherwise, stop,
the procedure is unsuccessful.

Step 3: We can assume i >=u; without
losz of generality. Hemove all the
roewrite rulez [—r from K such that
either [ or r is reducible by the rewrite
rule t;--4;, and append l-r to E in-
stead. Append the new rule ) —u,
to [2. Construct all the eritical pairs
generated by each two rulez in K and
append them to E. Go to Step 1.

It is easy to verify that 1 is always a ter-
minating TRS, and that T(£|JR) is in-
variant for each step in the above algo-
rithm. Moreover, if the algorithm completes
successfully, the resulting TRS R satisfies
the condition stated in the superposition
theorem. Therefore, H is confluent and
T{E)=T{R) for the initially given E and the
resulting B. Thus, the partial correctness of
the algorithm follows from the decidability
theorem.

Neflnitlon 3.5

Rewrite rules {y—ry and ls—rg are said
to be mutually irreducible if neither [y
nor ry can be rewritten by [z—rz and
peither [ nor re can be rewritten by
{y=ry. A THS 13 said to be irreducible
if any two distinet rules are mutually



irreducible.

Let R be a confluent and terminating TRS
and the left-hand side [ of a rewrite rule [—r
in /i be rewritable by another rule in R.
Consider the TRS § to have been obtained
by removing the rule [—r from R. Then, S
satizfies the following conditions:

(1) § is terminating
(2) R traces §

{3) An irreducible term in § is also ir-
reducible with respect to R

Therefore, 5 is confluent and strongly equiv-
alept to K by Corollary 2.12.

If the right-hand side r iz rewritahle, con-
sider the TRS § to have been obtained by
replacing the rule |—r with [=A(r). Then,
& again satisfies the above three conditions
and, therefore, iz confluent and strongly
equivalent to 2.

Thus, by removing the reducible rules one
alter another, any confluent and terminat-
ing TRS can be transformed into its strong
equivalent which iz, moreover, irreducible.
Therefore, in order to search for a conflueat
and terminating TRS, we can restrict the
search for an irreducible one, In fact, the
Knuth-Bendix algorithm stated above works
in such a way that the rewrite rules are
mutually irreducible and, hence, the result-
ing THS is always irreducible,

4. Well-founded Orders on T(F', V)

As shown in the previous section, the key
point of the Knuth-Bendix algorithm is the

existence of a stable and well-founded or-
dering of E(F, V). We will discuss here a
sullicient condition for a stably ordered set
(Z(F, V), =) to be well-Tounded.

Defnition 4.1

A relation p on T(F, V) is said to have
the subterm property if spt for any term

t and any subterm s of £.

Theorern 4.2

An ordered set (T(F), =) such that =
has the replacement property and the
subterm property iz semi-well-ordered.

As shown by Dershowitz [Dershowitz B2,
this theorem is easily obtained as a spe-
cial case of Kruskal's tree theorem [Kruskal
60]. However, we prove this theorem directly
using the technique introduced by Nash-
Williams for his shorter proof of the tree
theorem [Nash-Williams 63]. First, we show
the following lemma.

Lemma 4.3

Let (X, <) be an ordered set. An
infinite sequence zy,zz,-- of elements
of X is said to be nowhere-ascending
if there are mo ¢ and 7 such that
z;=z; and i< 7. If a sequence z,, 2, ---
does not contain powhere-ascending
subsequences, it contains an ascending
subsequence Ty, <Tk, 5.

Proof :

Assume that a sequence =,,zg5,- i3
given. Let ns call an index i neon-
ascending if there is ne j such that
z;=<zy and f<j. If a sequence com-
tains infinitely many non-ascending in-
dexes, the subseguence jndexed by
all apd only ponp-ascending indexes
clearly forms a nowhere-ascending sub-
sequence, Therefore, the sequence
ry, %y, - can have voly a finite num-
ber of non-ascending indexes. Select
an index &y Lo be larger than any non-
ascending index. Since ky is ascending
[not nop-ascending), select an index ks
such that zx, <zy, and ky<ks. Sioce
kz is ascending again, by repcating this
process we can oblain an ascending sub-
SRQUENCE Ty, =Tk, =Tk, ="

Lemma 4.3 iz very useful. For example,
it iz abvious from the lemma that an ar-



dered set is semi-well-ordered if and only il
every infinite sequence contains an infinite
ascending subsequence, and therefore, the
Cartesian product of a finite number of semi-
well-ordered setz is a semi-well-ordered set.

Proof of Theorem 4.2 :

Aszzume that there iz a nowhere
ascending sequence.  Select a term
#; such that &, is the first term of
a nowhere-ascending sequence and no
proper subterm of #; can be such a
term. Then, select a term s; such that
#; and #; are the first two terms of
a nowhere-ascending sequence and no
proper subterm of s can be such a term.
Proceeding in this way, we can obtain a
nowhere-ascending sequence &y, £z,

Since F is finite, there exists an f in F

and a subsequence aj,, 23, , -~ such that

all ay. bave the form f(s} -, s} ). If
¥ *

the sequence #; , ) , - has a nowhere-
ascending subsequence a:n o s;“, s+, then

1 1
Bl 82,0 8my—1, 'ﬂmi.l ar1-1.:|r“'+

forms a nowhere-ascending sequence,
since, if a;=<s} , then 8idm, by
the subterm property. This, however,
contradicts the definition of Fmy

Therefore, aL,lL,m cannot contain
nowhere-ascending subsequences and,
from Lemma 4.3, must contain an as-

' 1 -
cending subsequence 8, <s; <---.

Let us now consider the sequence
azl,sgil The method discussed
a{mve again coostructs an ascending
subsequence s2 <s? <... Repeating
this process n times, we finally arrive
at a subsequence s, , 8., such that
8] <2l <o for all j=1,-n. Since <
has the replacement property, it follows
that s, <s,, <---. This, however, is in-
consizstent with the sequence &, ag,+
being nowhere-ascending.

Theorem 4.4

Let (¥(F), =) be an ordered set such
that = has the replacement property.
Then, (T(F), <) is well-ordered if and
only if < has the subterm property.

Proof :

The if-part of the theorem iz a special
case of Theorem 4.2. Here we prove the
only-if-part. Assume that there exists
a context ¢[f}] and s term & such that
exc[(ll. Since = is a total ordering,
cfl]=s. Let ty=s, t,41=c[t;]. Then,
the replacement property shows that the
sequence fyxtawfax-- is descending.

5. Lexicographic Subterm Ordering

In this section, we present a method of well-
founded ordering based on the discussion in
the previous zection. For the purpose of ob-
taining a terminating and confluent TRE, at
Step 2 in the Kouth-Bendix algorithm, the
two terms f; and u; are desired to be com-
parable. Therefore, the stronger ordering is
considered to be better for the above pur-
pose.

On the other hand, Theorem 4.4 says that a
stable ordering of T{F, V), which iz stropg
enough to become total when restricted to
T}, iz well-founded if and only if it has the
subterm property. Thus, poszezion of the
subterm property is a good criterion for well-
foundedness. In fact, the ordering method
introduced by Knuth and Bendix {Knuth T0]
defines a stable apnd total ordering of (£
with the subterm property. Their ordering,
however, is predicated on the somewhat ar-
bitrary cancept af the “weight” of function
symbols,

Various methods for proving that an ordered
set of terms is well-founded or that a TRS
terminates have been suggested in recent
years, Among these, the recursive path or-
dering |Dershowitz 81] is one of the best, but
it is not total on Z(F).



We here define a stable ordering on T(F,V)
ihat is total on T[F) and stronger than the
recursive path ordering, without assigning
“weights” to funclion symbels.

Definition (lexicographie subterm ordering)

Let F be a finite eet of function sym-
bols, and (F, <) be a totally ordered set.
The lexicographic subterm ordering <
of T(F, V) is then defined recursively as
fellows:

{1) For a trivial term (i.e., a variable) v,
there are no terms ¢ such that t<uv,

(2) For a non-trivial term t=g(ty,+, tn)
and a term a, s<t if and only if

{2-1) there exists j such that s<¢; or
(2-2) 8=/f{8y, -, 8m) and 8;<tfor all { and
(2-2-1) f<gor

(2.2-2) f=yg and there exist 1 such that
31=tlr“*rﬂ|’_|=-ti_'| and l:‘-(t.“a

For the reader's reference, we define
recursive path ordering below. It was
originally defined for the ground terms
constructed from possibly infinite function
symbols without fixed arity of arguments
[Dershowitz 81). However, for the purpose
of applying it to the Knuth-Bendix algo-
rithm, it is enough to consider only a finite
set of function symbels with fixed arity. We
will, therefore, modify it for the terms con-
structed from such a set of function symbols.

Definition (recurtive path ordering)

Let F be a finite set of function symbols
totally ordered as above. The recursive
path ordering << on T(F, V) is defined
recursively as follows:
(1} For a trivial term (i.e., a variable) v,
there are oo terms ¢ such that f<<w.
{(2) For a non-trivial term t—=g(ty, =, tn)
and a term &, #==¢ if and only if

(2-1) there exists 7 such that s=={; or
(2-2) 8=f(51, ", 8m) and

[2-2-1) f<gand 8;<<{ for all { ar
{2-2-2) f=yg and s;<<t; for all 1.

It is easy to verify by induction that lexi-
cographic subterm ordering is stronger than
recureive path ordering.

We hope to show that lexicographic subterm
ordering possesses the desired properties dis-
cussed in the previous section. The proofs
mainly involve induction on the construction
of terms; the symbol ** is used to represent
the induction hypothesis.

Lemma 5.1

Let = represent lexicographic subterm
ordering. Let &=f(8;, -, 8,) 8nd ¢ be
terms such that s<t. Then, 5; <t for all
.

Froof :

If s=t, then s;<t is straightforward by
definition. If #<t, then, since ¢ cannot
be a variable, let t=g(ty, -, tn). In the
case of (2-1), s;<t; from ** and &; <t for
all 1 by definition. In the case of (2-2),
syt i3 itself the condition of the case.

Theorem 5.2

Let =« represent lexicographic subterm
ordering. Then, (E(F, V), =) is an or-
dered set.

Proaf

We show that if s<i, and t<wu, then
s<tu and s#u. Sioce neither ¢ nor
u can be a variable, let t=g{ty, -, tn)
and u=h{ty, -, tp). In the case that
sty or t<uy, it 15 easy to show that
s<u by definition, Lemma 5.1 and **.
Moreover, if s=u, from Lemma 5.1, it
follows that £;<s and ue-=i, and con-
tradiction follows from **. Let us con-
sider the case of (2-2), both for s<¢ and
t<u. Let suf(sy, == 8], 6;=<t for all s
and t;<u for all . From **, it follows
that s, <u foralli. If f<gor g<h, then



f<h and, therefore, s <u by definition
and s#u. Assume that f=g=h and
there exist + and 7 such that

fyemty, =, 8i_1=t;_1,8;<t;, and
I]ﬂ'!.[h - t:‘_l—uj_h t:,--du_,-.
If we let k be the minimum of ¢ and j,
then

Bemtiy, ==y Sp—1—Ug—1, S~ Uk,

and &, 7&, from **. Thus, we conclude
that #<u and ssu, for any case.

Theorem 5.3

Let = represent lexicographic subterm
ordering. Then, < is stable and has the
subterm property.

Proof :

We show here on!ly that < has the
subterm property., That it has the
other two properties, namely, the sub-
stitution property and the replacement
property, is also proved easily by in-
duction. If ¢[Ql]=101, then s<s=c|s].
Let e[fl=f(s+, d[{1], +~)} for a context
d[z]. Sinee e[s]=f(-+, d[g],+), ** and
the condition {2-1) of the definition as-
sures that s-c[s].

Theorem 5.4

Let =< represent lexicographic subterm
ordering. Then, (T(F), <) is a totally
ordered set.

Froof :

Let # and t be in T(F). We will prove
that if ss£t, then s<f#, or t<s Let
s—f(8y, 0, 8m) and t=g(t;, -t} If
there exists £; such that #<t;, or &, such
that t=s; then s<t, or t<s, respec-
tively. Therefore we can assume that
a£t; for all § and 224 for all . From
#* it follows that a»¢;, and &> s; for
all 1+ and j. Therefore, if f<yg, or g= 1,
then s=<t, or t=s, respectively. Let us
assume f=g. Since s=4t, there exists the
least ¢ such that s;z£t;. Then s;<i;, or

—10 —

g;-t; from **. Therefore, s<t, or axt,
rezpectively, by (2-2-2) of the definition.

8. Applications

In this section we report the results of some
computer experiments. Here, we represent
variables by character strings begining with
an upper cate letter, and function symbols
by those begining with a lower case letter.
We also sometimes use infix notation, such
as A+ B, in place of prefix notation, such as
+{4, B).

The Knuth-Bendix algorithm using lexi-
cographic subterm ordering was programed
in Prolog on a DEC 2080 computer. In the
implementation, we adopted the following
additional strategies:

{1) Choice of Minimal Term

Al Step 2 of the Konuth-Bendix algoe-
rithm, choose a pair t ~u to minimize
maz(|[t1]], [lu1]), where the notation |[t]
represents the number of function sym-
bols in t or, in other words, the number
of non-trivial subterms of t.

There are three rcasons for the above
strategy. The first iz, roughly speaking,
that the fewer a term’s function symbols,
the more general it is and the strooppger its
rewriting power. Therefore, we can expect
that the algerithm will construct a more
efficient TRS (in other words, one with fewer
rewrite tules) in a shorter time. The second
reazon iz that the fewer a term’s non-trivial
subterms, the fewer the eritical pairs that
will be generated. Thus, at Step 3, we
can witigate the explosion of pairs in E.
The last reason is that the strategy iz fair
[Huet 81 in the sense that it will ultimately
choose any pair in K if the pair remains in E
without being reduced, because there exist
only a finite number of terms having fewer
function symbels than a given number.



{2) Generation of a New Function Symbol

According to the original algorithm, if
neither ¢y -ty nor ¢=u; at Step 2, we
cannot go aoy farther. Let Vi, -V,
represent all the common wvariables in
ty and u4;. We modify the algerithm
such that, in this case, it generates
a new function symbol F  and ap-
pends the pew pairs & ~FAVy, -, Vi)
and uy~FAVy, -, ¥,) in E instead of

i]-—uﬂ:_.

For example, let t,—f(A, f(B,C)) and
uy—f{A, f(B, D}}. Then, neither t; <u; nor
£ =1y are true. However, it is clear that
flA fIB,CY) is really a binary function in
gpite of its appearance, and it is very natural
to introduce a new Tumction symbol 7 for
expressing both ¢, and u; az 74, H).

Fxample 6.1

The first example is taken from Knuth
and Bendix [Knuth 70]. The program
was given the three axioms of group
theory:

(1) 04+A=A
(2) (—A}+A=0
(3) (A+B)+C=A+(B+C)
The ordering on the function symbols

was given at O<t+<—. The program
stopped after the following output:

1: 0+A=A w0

2: [—A]-I-—A—U' =0}

3 (A4 B)+C=A+(B+C) =0
4: [—A)+[A+H)=B =2/3

5 (—0)t A=A =1/4

6 (- (~A)4B=A+8 =4
T A+D A =3/4

8 —(—A)—A =T/6

delete 8

9 A+(—A)=0 +8/2

10 —0=l =9/1

delete &

11: A+{{—A)+B)=B «9/3

12: A+(B+{—(A+B)))=0 +9/3
13 As(—(B4A))=—B ~12/4
delete 12

14: (—(A+B))+A=—B =13/13
15 —[(—A}+B)=(-H)+ A «11/14
16: —{A B)=(—-0)+[—A) <8/15

delete 15

delete 14

delete 13

1: O04-A=A

2 (—A)rA=D

3 (A4 B C=Ar(D4C)
4: (—A)+(A+B)=B
T A40=A

8 —[—-A)=A

9. A4[—A}=D

10: 0=

11: A4({—-A)+B)=H
16: (A B)=(—DB)4(—-A)

Each eguation in the output should
be interpreted from left to right as a
rewrite rule. The symbol &0 means
that the equation was obtained from the
given axiom set. The symbol &=n/m
means that the equation was obtained
from a critical pair generated by the pre-
vious rules n and . The lipe “delete 1™
shows that the rule n was removed at
Step 3 because the left or the right side
of the rule was reducible by the newly
obtained rule. The set of equalions un-
der the horizontal line is the final TRS,
which is terminating, confluent, and ir-
reducible,

Though the resulting set of rewrite rules
is the same as Kouth and Bendix's, it
secms that the strategy of choice of min-
imal term is efficient, because the al-
gorithm generated only six superfluous
rules, many fewer than the ten reported
by Kouth and Bendix,

Example 6.2



This example is the same as Knuth and
Bendix's Example 3. We used a sym-
metric axiom system having right iden-
tity and right inverse, namely:

(1) A+0=A

(2) A+(—A)=0

(3) (A+B)+C=A+(B+C)
The program obtained the same set
of rules as in Example 6.1 alter out-
puting a list of rules:, inecluding nine
superfluous rules, again, fewer than the
14 superfluous rules obtained by Knuth
and Bendix.

Example 6.3

This example is the game as Kouth and
Bendix’s Example 11. Group theory can
be defined with weaker axioms than the
axioms given in Example 6.2. Besides
the associative law, we postulate the
existence of an idempotent element 0.
Furthermore, each element has as least
one right inverse with respect to 0.
Finally, we postulate that each element
has at most one left inverse with respect
to 0, Kputh and Bendix axiomatized
these conditions as follows:

(1} (A4B)+C=A+(B+C)

(2) 040=0

(3) A+(—A)-0

(4) f(0,A, Bj=A

(5} f(A+B, A, B)=¢g(A+B, B)
Az noted in their paper, a binary funec-
tion f{A, B) could have been used in
place of f4, B, C). A terpary operator
was used because the terms f{A+ B, A}
and glA+ B, B) were not comparable
with respect to their ordering. In lex-
icographic subterm ordering, howewver,
we do oot encounter this difficulty. We
gave the program the following axioms
instead of (4) and (5), and specified the
ordering as D=+ <« —=<g<f.

[431 I{Da A]=-"!-

(53) /(A+B, A)=g(A+ B, B)

The program terminated after finding
the following 12 rules, including the 10
rules found in Fxamgples 6.1 and 6.2.

2 Ap(-A)=D

: (A+B)+C=A+(B+C)

—0=0

04+ A=A

A+((—A)+B)=B

(—A)+{A+B)=8

(—A)+A=0

A+D=A

—(—A)=A

9(0, A)=—A

30: f(A, B)=g(4,(~B)+A4)

33: —(A+B)=(—B)+(—4)
Az shown by Kaouth and Bendix, if
axioms (1) through (5) had been given,
the computation would have continued

to generate new rules forever after the
10 rules had been derived.

14:
1T:
20
21:
24:
25:
26:
27:

Example 8.4

This is the same as Kpouth and Bendix's
Example 12. The axioms of (Lr)-
systems were given together with the or-
dering specified as 0«4 < —.

(1) (A+B)+C=A+(B+C)

(2) D+A=A

(3) A+(—A)=0
The program output is as follows:

D+A=A =0

A+ (=A)=0 =0

—0=0 &2/1

(A+B)4+C—-A+(B+C) =0

At((-A)+B)-B <2/4

—({—=A)=A+0 =2/5

(—A)+({A+B)=B «6/5

(—A)p 0= A =27

—(A+0)=—A =6/6

A+ (B+(—{(A+B))=0 =4/2

11 —-({—A)+A)=0 <10/T

12 Ap{—(B+A))=—HB <107

delete 1D

TR AT MWy

i0:



13: —(A+B)=(—B)4(--A) =12/7
delete 12

delete 11

delete 9

1: O+A=4A

2 A+[—A}=ﬂ

3 —0=0

4 (A4B)+C=A+(B+C)
5: A+((—A)+B)=B

6 [ A)=Az0

7. (A {A+B)=B

B [—A)40=—A

=
(]

. —[A+B)e=(—B)+[—A)

This computation contains only four
superfleous rules, and the resulting set
consists of nine rules; some of which
are dilferent from Knuoth and Bendix's,
That is, their rule, A+0=—(—A}), was
replaced with rule 8, which has a
different orientation, and thercfore, the
rule —{—(—4)))-+—A was replaced witk
rule 8, and the rule —(—-{A))4+ B—~A+B
became unnecessary. The other seven
rules are the same.

We also experimented with Knuth and
Bepdix's Examples 13 and 14 and obtained
& set of 12 rules for each, Comparing our
gset. with Kouth and Bendix’s for each ex-
ample, we again found they have rules with
different orientations. Kouth and Bendix's
set in Example 14 conzisted of 21 rules. This
shows that the orientation of rewrite rules
considerably affects the number of rules.

Example 8.5

This iz the same as Knuth and Bendix's
Example 16, in which they define two
unary functions, { and r, as follows:

(1) (A4+A)+A=I(A)

(2) Ap{A+A)=r(A).
These were given to the
togetber with the basic axiom

PrOgram

(3) (A+B)+(B+C)=B,
which defines a central groupoid,
together with the further axiom,

(4) r(A)4+H=A+B
in order to determine whether these

axioms would define a “natural™ central
groupoid. The resulting rules were

(HA))-1A),  I(r(A))=l{A),
r(i{A))—r(A),  r(r(A))-r(4),
HA+B)-r(A), r(AsB)-l(A),

A({ByCl=A+r(B),
(A+B)+C-iB}+C,
F{A:I-I- B+A }-H, A—|—I{H}—¢A+B,
Avr(A)—r(d), {A}+A-1(A),
I A)+r(A)—A.
We experimented with the st consisting
of the basic axiom (3) and the axiom

(5) (A+({A+A))+B=A+B,
which is equivalent to (4}, without using
definitions (1) and (2). After generating
the first four rules, the program stopped
with the following message:

50 FA)={A+(A+D)F(A+{A+A)) =4/2
Since the newly introduced function 7
wai the same as r, we let the program
continue. After a short while, it stopped
again. To our surprise, the message was

17T: §(A, B)=((C+A)+B)Z((D+A)+B)

=16/13

The function § was not equivalent to the
unary function {, but a binary operator.
Nevertheless we let the program con-
tinue. It then completed the computa-
tion without any more stops and the
resulting set consizted of the following
seven rules:

8 FAA))=AA)

19: G(A, A))=A

21 §(A, §(B, C))=4(A, B)
22: §(6(A, B),C)=6(4,C)
23 A+B- 4{7(A), B)

24: G(7(4), 7A))=7(4)



29: ﬂg{AJ B}J -E{Bi -B.:'
It cao easily be shown that the two sets
of rules are equivalent to each other by
defining:
IEA] = 5’{""4 A.}t T{A}: :;{AJ ar

In fact, examining either of the above
two sets, we find that the free system
oL 1 generators has 4™ elements.
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