ICOT Technical Report: TR- 056

TR-056

The Concepts and Facilities of SIMPOS Supervisor

by
Takashi Hattori and Toshio Yokoi

April, 1984

©1984, 1ICOT

Mita Kokusar Bedg 21F (03) 456-313~5h

H :[:] | 1 28 Mita 1-Chome Telex 1COT J32964
Minato-ku Tekvoe 108 Japan

_Iﬁstitute for Néw Generation Computer Tec:hnbiog)f

The Concepts and Facilities of SIMPOS Supervisor

Takashi HATTORI and Teshic YOKCI
Institute for New Ceneration Computer Technology
Mita Kokusai Building 21F

1=4-28, Mita, Minato-ku, Tckyo 108, JAPAN

Abstract

This report describes the design approach and some implementation aspects of
the supervisor part of SIMPOS (Sequential Inference Machine Programming and
Operating System) for PSI, a perscnal Prolog machine which is now under
development at ICOT. The supervisor is a layer in SIMPOS which takes care of

software rescurce mansgement, execution eontrel, and other tasks.

Table of Contents

1. Introduction

2. SBupervisor

3. Object Storage -- Peols

4, Object Flow -- Streams

5. Execution -- Frocesses

£. Environments -- Directories and Worlds
7. Permanent Objects

B, Remote Objects

0, Conclusicon

1. Introduction

SIMPOS is an operating and programming system on PSI, a personal Prolog machine
[1], whiech is now under development at ICOT. When we began the design of
STMPOS, we had in mind that bath the machine and the software would be
prototypical and that the development schedule would be tight., Hence we have
chosen simplicity, extendability, and ease of change, as the design objectives
af SIMPMS, and we pursued them from the standpoints of programming methodology

and system structure.

{1) Object-oriented approach

We have adopted an object-oriented programming approach to build SIMPOS. We
believe that this approach provides both a modular progranming framework and
z2ide effects on data, which we need to write an cperating zystem in a zingle
language. The esystem deseription languzge for SIMPOS, called ESP [3], is a
Prolog with class mechanism. All the faecilities of SIMPOS are provided as

objecta in ESP.

A elass definition in ESP gives a specification on both a class object and its
instances with elass/instance predicate definitiens, class/instance slot
declarations, and local predicate definitions., An instance predicate defines

an gperation on an object a=s

roperation(Chject,...) 1= ...

where 'Object' is of this elass. A class predicate defines an operation on a

class object as

:operation{Class,...} 1= ...

where 'Class' is either a class object or a class name of #<plass name>. One
of the class predicates often used is the one to create (instantiate) an

object:

:new{ #<class_namer,0bject)

A local predicate is an ordinary Proleg predicate defined as

predicate(...) 1= ..

and it can be called only within the class definition. & slot declaration
gives a class/instance a szlot for its comporent object. A& slot is refered to

by

Object!<attribute_name>

Note that all the interfaces which are visible from the putzide of an object

are the class/instance predicates, so as to hide the implementation details.

{2) Overall structure

We have constructed SIMPOS in several layers, between the hardware layer and
the user {application} preogram layer. Each layer provides some facilities to
the higher layers by using some of the facilities supported in the lower
layers, This layered approach reduces the complexity of the entire system,

though scmetimes it may increase interface averhead.

SIMPOS is largely divided inte two parts -- an operating system part which
provides an execution enviromment of & program, and a programming system part
which gives an programming enviromment for program development. The operating
system part has three layers -- a kernel for hardware resource management, 2

2

supervisor for software resource management, and i/o medium systems for
input/output management. The overview of these layers is explained in [4]. In

this report, we Wwill describe the supervisor in detail.,

2. Supervisar

The supervisor is a layer of the operating system, which manages software
resources, controls program execution, and provides utility facilities.
Execution model are important for deciding what kinds of features should be
provided in a superviscr layer. Our medel iz that a system consiste of objects
and processes, =0 that each process performs operaticns on objects, and if
necessary, communicates with any other cocoperating processes, according to a

given program under a specified environment which keeps globzl objects,

The supervisor, just zsz the other layers of SIMPCE do, lmplements its
facilities as cperations on objects. What the supervisor really provides is a
collection of class definitions. We can view these supervisor-defined objects
{(or claases) as the basic construets of the operating system. Some of them are
uzed internzlly in the supervisor, some are used both by the supervisor itself
and user programs, and others are intended for use by user programs as
utilities. VUsers can easily customize the supervisor by adding new classes and

moedifying existing classes.

Now we divide the supervisecr into four subparts =-- object storage management
which supports collections of objects, object flow management which supports
inter-process communication, execution management which controls processes
executing programs, and enviroment management which manages process execution

environments. We will deseribe these fapilities in the following secticns.

Note that since PEI does not suppert virtual memery, some software supports are

necessary to deal with data in file storage.

3. Object Storage -= Pools

An object storage, which we call a poel, can keep objects in it. A pool is
usaful for dealing with a eollection of abjects azs a whole. Since any objeot
2an be defined as having other objects as its components with accsssing
cperations for them; a peol is simply & general object which is provided only

for storing and retrieving objects.

(1) 4As pools

Class 'as _pool',; which is & mixin c¢lass Lo be inherited by any pools, defines

the general aperations on a poal, such as

o To add an object into a pool
radd(Pocl,0bject)

o To remove an object from a pool
iremove(Pool,Object)

¢ To retrieve an object from a pool

tget(Pool,0bject)

A pool iz illustrated in the figure below, where an '0' represents an object.

pool

add get

Figure 3.1 Pool

(2) Segquence

& pool of class 'sequence' allows accessing an element with its position in it.

This means that each element is identified by its peosition in a pocl. 4

sequence can be illustrated in the following figure.

sequence

o

oo
010
(N

L]
L=

0 1 2 3 4 ... (position)

Figure 3.2 Secguence

There are two major subclaszes of class 'seguence! -« class 'array' and class
tlist'. An array can keep & fixed number of elements in it. Some operations

to an array are!

o To put an ecbject in 2 position
sput.at(Pool,0Object,Position)
o Toe get am object from a positicon

:get_at(Pool ,Object,Position)

Any element of an arrey can be accessed with the szame overhead, independently

of position.

A list can keep any number of elements in it. The position of each element is

changed by adding and removing other elements in the list, Several of the

cperations on a llist are

o To add an object at a position
radd_after(Pool,Object,Pozition)

5

:add before{Pool,0bject,Fosition)
o To get an object at a position
:get_at(Pool,C0bject,Positicn]
¢ To remove an object at a position

rremove_at{ Pool,Object, Position)

Some demerits of lists are that the accessing overhead depends on the positich
of an element in a list, and that some memory words are left as parbage, after

an element iz removed from the list.

(3) Index

An index is a pool whose element is identified by its assoceiated key value. A
key value is either an atomic term or a string. Some of the operations on an

index are:

o To add an object with a key
tadd_at(Peeol,0bject ,Key)

o To get an object with a key
tget_at(Pool,0bject ,Key)

a Toe remove an object with & kKey

:remove(Pool,Object Key)

Lpn index is illustrated below.

index

Key
0 ===3
add

key1=0
key2=0
key3=0

Eey
———2 0
get

Figure 3.9 Index

An index i= implemented as a hash array which is an array of lists. Each entry
of these lists has & key and an objeet. A key value is hashed by a standard
hash function to caleculate & position in the array. Then the list is searched

for a mateching entry with the given key.

Nete that since a position of an element in a zequence is considered as a
special type of key value, a sequence is thought as a type of index. However
in ipplementation, class 'index' inherits class 'array', which is a subelass of

class 'sequence', through class "hash_array'.

A sparse array is an array where the number of stored elementzs is expected to

be much less than the largest position of the elements, It is implemented as

an index in which a position of an element i= uzed as & key.

(4) Bucket

It is often useful if we have a multi-layer (multi-dimensional) =zequence, A

bucket iz such a sequence, whose elements are also sSequences,

First, to identify an element in a bucket, we introduce & path-position which

is represented as

[Pesitionl, Position?, ...]

where 'Positiond' specifies the position in the N-th layer of the bucket.

Now in order to define a bucket, we have only to add a few new predicates to
each sequence class. We define a mixin class 'as bucket'. For example, it
defines a get cperation as

:get{Bucket,Object,[Position{Path_position]) :-

:get(Bucket, Sub-bucket,Position),
:get{Sub_bucket,Object,Path_position).

When a sequence class has a get operation defined az

iget(Sequence,Object, Position) = ...

a hucket can be defined by inheriting class "as_bucket' first, and a sequence

vlass next. Then a get operation of this bucket works as it is supposed to do.

Furthermore, we can have a multi-layer index by defining a path-key as

[Eev1, EKey2, ...l

and letting each layer of a bucket decide what it should do with its key or
position in the path-key. WNote that a path-Key may contain a position as its

component.

(5) Other pools

Other pools will be alse defined. Seme of them are bags and sets, and sorted
sequences, A bag is an unerdered pool, where an element iz pnot identified by
its position, and a set is & bag which does not allow any duplicated objects.
£ sorted sequence is a sequence where each element is sorted according to its

predefined order,

{6) Tap

Accessz to elements in & pocl by specifyving their positions is called direct

access, which is so far described. Another accessing mode is sequential, where

elements in a pool are accessed one after another without specifying their

positlon each time., A tap is an object which supports sequential accessing.

A tap, which is attached to a pool, pours out objects from the pool. It i=

shown in the figure below.

pool

0 o 0 o

" tap {:) ==>

*

o

— e ma

Figure 3.4 Tap

4 tap 1z created on a pool by

ttap(Fool,Tap)

and we canh nall

iget{Tap,0bject)
or

:put(Tap,0bject)

on the tap to get or put an object at the next position.

tap to a =pecific pesition by

imove{Tap,Position)

Also we can move a

A tap can be implemented in general for any class of pool, if a pocl knows the

next positicn asz:

:next(FPool, Current_Fosition,Next Position)

Then a get operation is defined as

iget(Tap,0bject) :=
:position{Tap,Current_Position),
:pool(Tap,Pool),
rget_at{Pool,Current_Position),

:next(Fool,

Current_FPoszition,Next_ Position),

:set_position(Tap,Next_Position).

However, if we want a more

tap class specific to each

4. Object Flow == Streams

An object not only remains
another through a stream.

and mutual exclusion among

{1) Streanm

4 stream is a pipe through
though cbjeets in a stream

are

efficient implementaticon of a tap, we can define a

peal olass.

in a storage, but alse flows from one storage to
A stream is used for synchronigzation, communication,

processes.

which objeets flow. It looks like a tap on a pool,

are not pooled., Two mejor operations on a stream

¢ To insert an object inte the stream

:put(Stream,Cbject)

o To remove an object from the stream

:get(Streanm,Object)

10

Iff the stream is empty, a get operation causes a calling process to be

zuspended until ancother process puts an cbject. This feature of streams is

ezsential for process interacticons. A stream is shown in the following figure.

stream

put _ . Eet
O => | 0o__ 0 o 0 i => 0

Figure 4.1 Stream

A sbream can be shared by multiple processes. Each process can put or get

objects from it at any time, and is served on a first-ip=-firast-out ba=sis.
A stream can be used for several process control mechanisms.

o Semaphore

4 semaphore and p/v operations on it can synchronize processes,

:pl(Semaphore) :=

iget{Sepaphore, Token) .
sw(Semaphore) :-=

iput{Semaphore, token}.
tinit({femaphore)

tput{Semaphora, taken) .,

An integer semaphore can be implemented by initializing a2 semaphore

s0 that it includes the specified number of tokens:
rinit(Semaphore,Count)

o Event

An event synchronizes processes by passing an event code,

post{Event, Code) ==
sput(Event, Code) .

iwait{Event,Code) :-
sget(Event, Code).

11

o Message communication (as discussed later)

A strear with additiomal features will be defined by inheriting class 'stream’
and some mixin elasses. For example, priority control and bounded buffer

control may be added.

(2) Channel

A channel providez a basic means for inter-process copmunication, as a stream
of messages. An object which is to be sent through the channel, iz packed into
a message, and it is unpacked to an object on belng received, A message is
intended to be self-deseriptive and has a sender slot (a channel for reply, if
available), a receiver slot {a channel to receive it), and a body {an object Lo
be sent). Class 'message’ inherits class 'as_message' to include the first two

slets. This mixin class can be used for any other message classes.

flass 'channel' inherits elass 'stream' and has two basie operaticns for message

transfers:

o To send an object to a channel
;send(Channel , Object)
o To receive an object from a channel

rreceive(Channel ,Object)

The other set of operations on a channel is also defiped:

¢ To send a message
rzend_meszsage(Channel ,Message)
o To receive a message
:receive message(Channel,Message)

12

ao that a user program can deal with messages directly.

L channel is illustrated in the figure below, where 'M' represents a message.

channel
sand — recaive
0 => 1 M M__HM M I =» 0
send_ channel receive_
mess. mess,
M-=> | M M__HM M I => M

Figure 4.2 Channel

Note that in our model, a message is not sent directly te a process, but to a
channel from which a process can receive it. This separation of a channel from
a process has been taken, because we want to make a process to be able to

receive messages from multiple message sources.

(3} Port

A port is a keeper of channels, so that & process can do two-way communication
with a =ort of virtual eircuit. Two ports are connected before the
copmunication begins between them, and they are disconnected when the
communication ends. We allow a port to be connected to many ports. A send
cperation broadeasts a message to all connected ports, and a receive cperation
receives a message from all the ports in the order of arrival., Some operations

on & port are

o To connect to another port
reonnect{ Port, Another_port)

o Te disconnect all the aonnected ports
:diseconnect{Port)

13

o To disconnect a specified port

:disconnect (Port,The _other_port)

Class 'port' inherits class 'channel' for its input channel, and holds a list
of cutput channels, A& connection 1s done so that each of the two ports is
included into the list of output channels of the other port and so is the other

way round. A port and its connection are shown in the following figure.

channel
receive _ _ aend
0 <= | Ju=e=f__ M M M M | <= i Ir Cu 0
L |
send bl R I 1 receive
0=>_|=>1_M M M M |s===j_|=->0
channel
port port

Figure 4.3 Port

{4} Stream pool

Although a single stream can serve for a preocess to get objects put by other
processes in a first-in-first-out order, it iz often desirable that a process
pan get objects from one of multiple streams by merging them. But it is not
possible to implement such a multiple receive cperation with the facilities sc
far introduced, because a get operation on each stream causes 2 calling process
to wait until an object is put, if the stream is empty. Therefore, we define a

stream pool which takes care of merging streans,

4 stream pool (see the figure belcow) is & pool of streams with a multiple get

operation defined as

:get{3tream_pool,Object)

or

14

:get{Stream_pool,0bject,Stream)

We do not define a send operation on & channel pecl, though.

stream pool

_ atreams
L put
b=l 0 _0__0_ 0 | <=0
get | | _
0 €=) 1=l 0o__0 = 0
i

T T |

Figure 4.4 GStream Pocl

Note that a channel pool is defined just as a stream pool, =so that a process

can receive a message from multiple channelsz,

(5) Source/sink channel

The input/output operations on i/o devices are supported by the i/o medium
systems of SIMPOS. They are implemented as operations on a certain object,
such as & file and a window, and are not considered as channels. However, at
a certain higher level, these i/c operationz must be also regarded as channels.

Source/sink channels are the specizl chanrel for doing so.

& source channel is & channel to read data from an input device, and a =sink
channel is a channel to write data o an output device., An example of source
channels is an input character strean from a keybecard, and an example of =ink

channels i= an output character stream to a screen.

5. Execution -- Procezses

15

9s far we have not mentioned what execubtes operations on objects, Here we
define a process and a program. At the supervisocr level, we separate & process
from a program, such that a process does what a program says. The reason is
that the separation makes the structure and manzgement of the supervisor

clearer and easier.

{1} Process

In SIMPOS, a process is an active entity which executes a program. A process
haz four states == running, ready {te run}, suspended, and dormant. The
dispatcher and the scheduler controls the slates of processes. A running
process is the one which is currently executing & program on a pProceéssor. A
ready process is in a ready gueue waiting to be run by the dispatcher. A
suspended process is not in the ready queue., TIts execution hasz been suspended
for some reason, ordinarily when it tries to get an object from an empty
stream, and when those reasons are removed, it becomes ready and is put into
the ready gqueue by the scheduler. A dermant process is not managed by the
scheduler. & process is in this state when it has just been created or
termipnated. An activation of the process is= necessary to make it known to the

scheduler.

& process ils also defined in SIMPOS as an object which accepts cperations to

control the state of processes:

o To activate a process
ractivate{Process,Program,Goal)
o To suspend a process

:suspend{ Proceas, Reason)

16

o To resume A& pProcess
iresumel Process, Reason)
¢ To terminate & process

tterminate{Process)

When implemented on PSI, each process is given a hardware process environment
of PSI, such as a reglster =zet, a atack group, and heap memory. The
architesture of PST restricts the number of processes in a system to 63, Out
of these several processes are allocated to interrupt processes, so that the

available number of ordinary processes is around 50.

{2) Program

L program says what a process should do, A program definition is nothing other

than & olaas definition, except for a few conventions made on it.

First, a program which a process executes is an instance of & program class,
not a elass object itself. This is because the same program should be executed
independently by many procezses which share the code but have different data
for each instance. The instance =lets of & program instance are local to the
program and are accessible at any peint of the program, whereas the claass slots

are shared by all the instances of the same program,

Secondly, a so-galled main program is defined as an instance predicate of a

program. The body of the program can be a general Prolog program, which calis

loecal predicates defined in this class, or class/instance predicates defined in

this eclass and others. For example, a goal predicate, which is a default

predicate for the main program, is usually defined in a program definiticn as
instance

17

igoal - p(X), (X¥).
locel

p{d) = ...

gixX) = ...
4 program must be instantiated as an instance of a program class, and then it
is given to a process to be executed. This is called a program invoeatien. To
keep track of program invocations, a process has an invocation stack. Each
time a program is invoked, it is pushed into the stack, and becomes the current

program of the process. A predicate for a program invecation 1s defined as a

class predicate of class progranm

sinvoke(fprogram,Goal)

where 'Goal' specifies the main program. When this predicate is called, a
program instance is created and pushed inte the invocation stack of the calling
process, However, when a process is activated with a given program, a

different predicate, which is defined as an instance predicate on a process,

tantivate(Process, #program,Goal)

iz to be used instead. this iz because a program instance should be pushed

into the inveecation stack of the process to be activated.

[3) Interrupt process

Some processes in the system are alloeated to interrupt processes, such as trap
nandlers, device handlers, and the garbage collecter. These interrupt
processes are not dispatehed by the supervisor, but by the hardware at an
interrupt or trap. Therefore, another process class, 'interrupt_process', is

defined to manage them differently. Some of the differences between an

18

ordinary proecess and ap interrupt process are that

¢ When an interrupt process is activated, a trap is reised to dispatch
it by hardware. When an ordinary process is activated, it is placed in
the ready gqueue by the supervisor.

o When an object is put into a stream on which a process waits, it is
reaumed. For an interrupt process, & resume operation causes a trap to
dispateh it. Fer an erdinary process, the same resume operation calls
the software scheduler. Note that a stream does not have to

distinguish the class of the process,

{4} Boot process

Another zpecizl kind of process is a boot process. It is a process which is

created end activated by the hardware when the system is bootstrapped, befaore
the supervisor knows it. We define clazs "boot _process' which inherits class
fprocess', but overrides a cereate and an activate operations, s¢ that the beoot
process comes under controel of the supervisor after the system has started, by

the boot process itself calling these operations.

6. Enviromments -- Directories and Worlds

Mozt exi=sting programming languwages support beth loecal and glebal enviromment
for a program execution, A& locsl envircrment is cne local to an invocation of
a given program and may be either temporary or permanent during the invocation.

& global enviroermment i= one global to all programs, and is usually permanent.

Proleg has a local and teéemporary enviromment of a predicate as its calling
parameters and a global cnviponment as aaserted clauses. In addition, Prolog

19

has & few implicit global emvirorments, for example, to keep standard
input/output files which are refered to by default. But in general, it is not
probable nor efficient for each pregram to keep an envircemment as its ealling
parameters and to pass it around to its subordinate programs. It is much
easier to kKeep an object in a global enviromment which can be refered to at any
point of the program, even though gleobal enviromments make a program less

understandable.

In SIMPOS, we support glebal environments which keep objects accessible to a
process at any time. Each process has within its execution enviromment -- a
program invoeation, a library, and a directory. The first of these was
explained in the previous section. It provides 2 local environment to a

process, not te a predieate call. The latter two are defined below,

{1) Library

4 library holds a colleetion of classes, A class object can be retrieved with

itas elass name, These class objects sre in z global enviromment, because they

can be accessed by all processes.

Furthermore, & class object can keep an ordinary object in its attribute slot.
" Theze cbjects in class slots are also considered to be in a global environment.
For example, if class 'directory' has a class slot of the name 'root', a root

directory can be retrieved by the class predicate

iroot{ fdirectory, Root_directory).

Note that the eclass slots defined in each salass eannot be inereased in number at

runtime,

20

(#) Directory

& directory is a pool (an index), in which each object is associated with its
name. The number of objects in a directory is not fixed and can be increased

at runtime.

On a given directory, a usepr can perform operations such as

o Te retrieve an object with name
:find{Directory,O0bject,Name)
o Te add an object with name
:bind(Directory,Object ,Name)
¢ To remove an object with name

rremove(Directory,0bject , Name)

Any clasa of object can be included in a directeory, and even another directory
can be included. By doing so, a tree structure of directories can be
constructed. We call this a directory tree. A pathname iz used to identify an

objeat in this directory tree. For example, a pathname can be represented as

"Namel>Namez>, , "

~and is used in a retrieve aperation

rretrievae(Directory,0bject, "Hamet sName2>. . . ")

A specified cbject with the above pathname is retrieved in the following steps.

o First find an object with Namel in Directory,
o Then find an object with Name2 in the directory found above.

o Repeat a search for an object until the path-name is exhausted.

21

L user process may keep a directory (tree) to insert and retrieve any object

for its own uses.

{3) System directory tree

The supervisor keeps the system root directory in a elass slot of class
tdirectory’'. A directory tree, whose root is this directory, is said to be a
gsystem directery tree and is & global environment to all processes in a

system. A pathname is extended to allow the form of

">Namel>Name2>..."

where the first '>' means the system root directory. This type of pathname
iz used te retrieve an object without specifying a directory explicitly. For

example, by calling a class predicate

:retrieve(#as_global_cbject,0bject, ">Name1>Name2>...")

an object will be retrieved in the system directory system. On the other hand,

if the first '>' of & pathname i= omitted as in

this predicate assumes a world of the calling process as a specified directory

tree. (Sea World.)

(4) World

A world keeps a dynamic and global environment of a process. It is constructed
as a sequence of directories, providing the same interface with a directory.
Note that an element of a world is not necessarily a directory, and that it can

22

be any object, for example, another world, as far as it supports the =zame

interface as & directory.

With a world, we can have many objects with the same name in a single global
environment, When retrieving an object with the name, we will get the one
which is ineluded in the firat directory wilh such an object. Assume that a

world includez two directories such as

World = [..., Directoryl, ..., Directory2, ...]

where 'Directory2' includes an object with a name 'input'. As long as a
process is under this world, retrieval of an object with this name produces
this object. But if a process inserts another object with the same name into
'Directoryl', this object will be retrieved later with the same name. This
looks as if an object with a name is overridden by another object dynamically,

yet preserving the old object.

A= mentioned before, each process has a working world which is a loeal

enviromment of the process and is used as a default user directory tree when an

object i=s retrieved with a pathname. The working world is kept in an instance

slot of the process and is retrieved at any time by

iworld(#process,World)

Though this is a elass prediecate, this eall returns the working world of the

calling process.

{5) Global object

We ecall objects, which can be inserted in the system directory tree or a world,

23

global cobjects. They have additional operations and information for them such
as pathname retrieval, protection, profile, version, and mutual execlusien, by

inheriting a wixin class 'as_global object' in general.

o Protection
& global object should be protected from illegal use in processes.
Protection of &n ebject is controlled by the access permission of
the object to accessing processes., Each global object has an owner
and protection =eals for uzer types, which are owner, members of
the same group as the owner, public, super users. HNote that claas
tuser' and class 'group' must be defined to describe users and
groups of the system,

o Profile
L profile of objects gives some information such as creatlon date,
modification date, and reference date, These are to be initialized
and updated from certain instance predicates,

¢ Version
Users often want to name the wodified object with the same name,
and yet to distinguish it from the old {original) object. Giving a
version number, together with a name, to an object accomplishes
this.

o Mutual exclusion
The mutual exelusion of operations on an object is necessary if an
object is shared by many processes and kKeeps its consistency. It
is implemented by an object lock, so that each objeet has a streanm

for a lock.

The actual implementation of these facilities is still under conszideration. It

2l

is partly because some hardware supports are preferable to achieve them in
reaszonable overnhead, and partly becesuse we think that they are impertant but

not crucial to our prototype system yet.

7. Permanent Objects

The objects, described so far, are created {(or ipstantiated) in main memory.
Fach time the system goes down, these objects vanish. In this sense, they are
temporary. Sometimes we want to create a8 permanent object which will exist
even after the system goes down. It is poszsible but inconvenient that we have
a permanent object by creating it each time the system is brought up. In
SIMPOS, the supervisor, with the aid of a file aystem, supports permanent

cbjects by storing them in file storage.

An object iz stored in file memory as= a recerd of a file, which i= ecalled an
inatance file., Tt is not possible, in general, to store an object the same as
it is in main memory. Data convertions between object and record muat be
defined. In the current version, we assume that each eclass, whose inatanpces
are to be permanent, should defire its own conversion predisates, =o that the

supervisor calls them when accessing a record.

We define & mixin class 'aa_permanent_objeet' to be irherited by any permanent
object class. This provides an instance file as a class attribute, a record

pointer as an instance attribute, and acocess operations to file records.

{1} Inatance file

An instance file is & table (fixed-length record) file, where the receord of an
object is atored, Usually it i= kept in & class attribute of each permanent

25

objeat class.

A record in an inatance file 1s identified by a record pointer, which
corresponds to an object pointer in main memery. A record pointer consists af
a file iderntifier and a file marker, 5o that a receord is uniguely identified in
file memory. & file identifier is represented as a file number when in file
memory and as a file object when in main memory. A Tile marker indicates a

record position in the instance file.

The file system supports directory files, & directory file is a file which
associates a record (pointer) with its key (name). The ¢perations on a
directory file is just like those on a directory in main memory. For example,

a record with a given name can be found as

:find({Directory_file,Record_Pointer,Name)

{?) Permanent directory

4 permanent directery is a directory which is linked to a directory file and
works as its temporary copy. When a user tries to retrieve an object with a
specific name in a permanent directory, it first tries to find an object with
the name, and returns the cne found. Otherwise, it will find an object (a
record} in the assscizted directory file with the pame, and read in the record

and convert il to an object.

By binding a permanent directory into a system directory tree, we can retrieve

a permanent obiect just as a glebal object.

B, Remote Objects

Remote objects are those which exist in other machines connected via a network
system. An operating system, which supports a personal computer network,

should deal with these remote objects, just as objects in a zell node.

{1) Object identification

An object in a self node is identified by an object pointer, which iz given at
creation time. However, an cobject pointer is effective only in the same
machine, since it might be changed during garbage collection. Hence, to point

to & remcte object, we have to use another metheod.

A remote object will be identified by a pair of a node and an object number. A
node 1= an object which represents a network node. A&n object number is a
unigue number to identify an object in that node. (The node objects are stored
as permanent objects in each node and can be retrieved with their given
pathnames.) An objeot table whiech associates the object pointers with their

object numbers must be maintained in each node by the network manager.

An operation on a remote object is encoded to a message whose body consists of
an operation identifier {represented by a string), an object number, and
parameters (including objects and terms). Then it is sent te the network
manager which in turn sends it to the remote network manager on the node. When
receiving this message, the remote network manager decodes it to the operation

and performs it on the speecified object.

We define a mixin class 'as_remote object' to be inherited by any remote objeet
class. It provides cperation-to-message encoding and message sending. Also we
define another mixin elass 'as_pervasive cbject' to be inherited by any cbject

class whose instanees are accessed from other nodes, It providez message-to=

27

operation decoding and operation executicon.

(2} Remote directory

& remote directory is & directory which is linked to & directory on another
node. An object which is retrieved from a remote directory is a remote object

which renresents the corresponding objeect in the remcte node.

After connected to another noade, the manager creates a remote directory for the
gystem root directory whose object number is assumed as 1, and gives it to the
node object. If necessary, this remcte directory can be inserted into the
system directory tree of the self node, so that any cblect in it can be

retrieved with its pathname, Just as a global object,

(3) Hemote channel

4= a useful remote object, a remote channel is defined by a nelwork system. As
mentioned before, a channel is & means for inter-process communication. When
= system is connected to another node, inter-process communication should be
allowed in the szame way even between processes on different sites. A remote

channel does this job.

£t remote channel represents a charnel on another node. Sending a message
through the remote channel on the self node is effectively sending the message
to the channel on the remote node. HNote that receiving a message from a remote
channel is not allowed, because it will complicate the implementation of remote

channels.

Of esurse, before the remote communicaticon begins, a sender process must know

28

the channel which a receiver procezs has in a remcte site., I is possible if
& receiver process, after creating a channel, inserts it with an agreed
pathname into the system directory tree, or if a sender process retreives an
remote channel for it with the agreed pathname through the remote directory
tree, HNote that thiz is nothing other than the way which is taken by the

processes hoth at the same site.

9, Conclusion

We have described the supervisor of SIMPOZE in the above sections, where all the
aconstructs are defined as olasses, Aoccording to these ideas and
specifications, we have now Tinished the functiconal design and the coding.
Although we have never implemented an operating system with an cbject-criented

approach before, we have found that the classz mechanism tegether with

inheritance greatly reducesa the specification and implementation effortsa,

Currently the number of claasses in the supervisor amnd the estimated code size

are aa follows,

| No. of elasses | Line=s of nodes

pool | 61 | 2,000
............ e T

stream | 37 BOC
---------------- AP L SO ——————

execution | 11 | 1,100
---------------- e e

envirooment® | 15 ! 1,500
________________ B P T ———

timer*#® | 11 600

total i 135 | &,000

B} 4 library is not ineluded.
%) Timer menagement has not been discussed. It supports
clocks and walches.

29

We should say that there are still some remaining problems in the current
design. Some of them are about global cbjects mentioned before. We expect

that they will be sclved and implemented in the near future.

Aeknowledgements

We would like to thark all the researchers of ICOT 3rd Lab, for their comments

on the current design, and the implementation group for the detail design.

References

[1] H.Nishikawa, et al,, "The Personal Inference Machine (P5I): Its design
philosophy and machine architecture™, ICOT TR-013 (June 1983).

[2] T.Chikayama, et al., "Fifth generztion kernel language version 0", ICOT
internal document (June 1983).

[3] T.Chikayama, "ESP Reference Manual®™, ICOT TR-O44 (Feb, 1984).

[4] T.Hattori, et al., "SIMPOS: An operating system for a super personal
computer PSI and its design overview", to appear as ICOT TR.

[5] T.Hattori, "The concepts and facilities of SIMPOS file system™, to appear

as ICOT TH.

30

