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ABSTRACT

Thiz peper describes the ©basic concepts, design and
implementation decisions, atandpoints and significance of the
database machine Delta in the scope of Japan's Fifth Generation

Computer Project. Delta is planned to be operational in 1985 for

researchers? uze az a backend database machine for logic
programming software development. Delta iz basically a
relational database machine system. It combines hardware

facilitie=s for efficient relational database coperations, which
are typleally represented by relational algebra, and software
which deals with hardware control and actual database management
requirements. Netable features include attribute-based internal
schema in accordance with the characteristies found in the
relation accesa from a logice programming environment. This 1is
alse useful for the hardware relational algebra manipulation
algorithm based on merge-sorting of attributes by hardware and a
large-capacity Semiconducter Disk for fast access to databases.
Variocus implementaticn decisions of database management
requirements are made in this novel systenm configuration, which
will be meaningful to give an example for constructing a hardware
and software combination of a relational database machine, Delta

is in the stage between detailed design and implementation.

1. Introduction

Delta is a hardware-oriented relational database machine
which 1s in the detziled design stage and will be operaticnal in
1985, Delta is planned to be one of the software develcopment

tools 4in Japan's Fifth Generation Computer Projeet [MOTO 837.
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Ancther prineipal new hardware which will alsc be finished in the
rirst stage Project is the Sequential Inference Machine ({SIM),
which is construeted in order te support efficient logic
programming language processing [UCHI fz]. Delta will be used as
a backend database machine in a local area network environment.
A number of SIM's will be connected to the Ethernet-like network

as the hosts of Delta.

2., Delta Architecture

Delta's global architecture [SHIB 82] is shewn in Fig.1.
This figure, however, does not show the icmplementation details of
an actual machine. In that sense, Fig, 1 shows the conceptual
funotion distribution of a database machine. The concept behind
the architecture is that functions needed for a database wmachine
should be distributed to efficiently construct a full system.
Important functions which are mapped on Delta subsystems are
deseribed 1in the following chapters by means of subsystem

descriptions,

2.1 Interface Processacor

The Interface Processor (IP) manages interfacing functions
to connect a database machine to the overall computing
snvironment such as host machines or local area netwerks. This
portien should be independent of the control portion for flexible
interfece reguirementa. Some interruption type database commands
could be analyzed here to aveold the rather time-consuming command
analysis process performed in the control portion and make it

responsive for users.
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2.2 Control Procesaor

As the funetionally distributed database machine is=
comprised of several separately working processcors, a certain
central control funotion which managesa the coordinationm of each
subsystemnm is needed, Distribution of contreol as well as
distribution of coperation is required for a regularly-structured
highly=-parallel machine. However, database operations include
not only data intensive operations (join operation i= the typical
one} but database rmanagement facilities such as recovery
funetions, security econtrel and transzaction management to
maintain data consistency. These should be fulfilled in =
working database management s=ystem and also in a databasze machine
cnce 1t begins to be actually used. Proposed highly-parallel
architectures perform these functions poorly and in some cases deo
not even consider them. uery analyzis or command cempilation
are also time-consuming Jobs for a database machine if it
receives a high-level user language such as 8 L [CHAM T6].
Considering these functilons, database wachines which are
constructed only of data intensive coperation-oriented resources
are unlikely to tolerate real 1life database manipulations. To
perform these tasks, & controcl porticon, which is constructed upon
a4 general-purpoese computer, is necded. What kind of processor
can complete the=e jobs efficiently is a subject for debate in
future database machine research. This could be a conventional
von Neumann machine or an inference-based new architecture

machine.
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2.3 Relational Database Engine

Eelational database operations pose a heavy computational
burden on conventional ven MNeumann architecture. This is=
particularly true when symmetrical accesses .ta database are
reguired. Indexed internal schemata will perform well only when
indexed keys (attributes) are handled. Te perform full-range
relational algebra operations In a reasonable time, =ome
dedicated hardware is needed. Bult the use of dedicated hardware
without considerations for =storage portion architecture will
hardly produce a good result. Relational databa=ze engine (RDBE),
the dedicated hardware for performing relaticnal algebra and
other Delta commands, should be considered in conjunction with
the Hierarchical Memory subsystem which supplies attribute data
to RDEE in a stream a2t a high bandwidth. There are various kinds
of hardware proposed for relational database operations [EBANC
82),[SCHW B2),[TANA 82],[KITS §3],[DEWI 79]. We think that the
following ©points are the properties required for & database

engine:

o Stream synchronous processing {does not disturb the data
stream flow)

o Processing a stream on-the-fly (pipeline processing)

¢ Processing a stream in one =can {repested strean transfer
should be minimized.)

o Regular architecture to exploit the use of VLSI technologies

o Applicable for wide range of database commands
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By on-the-fly we mean an operation in which overlapping of
data processing and the data transfer 1is carried out. A& database
engine should be designed to expleit high bandwidth date transfer
from the storage portion. Processing-bound database query
execution should be avoided a= mueh a=zs possible, enabling the
data to flow smoothly from storage, This means that we expect a
high-speed data transfer between the engine portion and the
storage portion ({possibly from the ecache and noet from the
moving=head-dizsk) and processing the transferred data without
delay. #An engine should perform better than the tranafer rate if
the storage subsystem becomes fest with architectural
enhancement, This feature reguires the capability of processirpg -
a data stream on-the-~fly from =storage, 1in combination with =
high=-bandwidth =storage hierarchy. And the other factor to make
query executiecn fast is that stream data should not be
transferred repeatedly to fulfill an cperation. Feor example, if
a database engine can perform a single condition selection at a

time, the 5 L guery:

SELECT employee_name, age
FROM employee_li=st

WHERE age BETWEEN 25 AND 35

will need te scan the age attribute twice to get the result.
There are two solutions to this problem. One is to make the
database engine cascadable and flow one data stream into cascaded
engines so0 that each of them c¢an operste on the sStream
differently. The other is to wmake a single database engine

perform multiple-condition operations 1like the example shown
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above. In our database engine algorithm, multiple condition
query can be handled, (see Chap.3 for details) succeeding 1in

suppressing the data tranafer freguency.

The other reguirement for an engine is that it should be
designed to explell the benefits of future VLSI technology. This
means that if the basie architectural features include some kind
of regular structure, 1t can be manufactured in mass quantity,
hence lowering the cost and Jjustifying the usze of a special
purpose hardware. The last regquirement is that RDBE should
support a wide range of database manipulation operaticns. This=
is somewhat contradietory to the requirement detailed just above.
As the engine becomes sophisticated enough %o support a wide
range of database wmanipulations, it will become complicated in
design and diffieult to be implemented with YL8I technologies.
However, if a dstabzae engine rperforms aggregate operations
peerly, for example, these should be done asomewhere in  the
database maechine, presumably at a slow speed. This will result
in uneven execution times in the database machine’'s command s8h,
which will be wunpleasant for users. Therefore, to attain this
feature, the database engine is expected to have some kind of
general-purpose processing capability such as ircorporation of
microprogrammed architecture or a general-purpose processing
portion, In our design, the hardware-intensive portion of the
EDEE is implemented in a regular form to Dbe implemented using
VL8I, while operaticns which need flexible data menipulaticon are
delegated to a general-purpose processor whiech also takes care of

detailed copntrol of the hardware portion.
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2.4 Hierarchical Memory

The database storage portion i2 a mo=t essential one in &
database machine. Conventionally, a2 one=level collection of
moving-head-disk devices constitutes a database storage.
Currently, incorporation of layers in storage are considered to
be promising for efficient database processing. The idea follows
the technology of cache memcories first considered and implemented
to enhance the processing power of CPU by compensating a main
memory access gap. The disk cache is the counterpart of the CPU
cache, assuming the locality of reference uwsing replacement
algorithms derived mainly from LREU (Lea=st Hecently Used)
strategy. In &8 database ¢gperation, however, data accessa patterns
fit LRU peerly. A database has the sequential access property in
its nature because database data often needs te be =scanned fer
search. One =somewhat artifieial but possible example where LRU

performs poorly is as follows:

i) Secan a (part of) relaticn which overflews the total cache

size by one page

By this, the cache i3 filled up with the relation, the [irst

page of whieh iz replaced with the last page,

11) HRe-=can the relation once again for another purpose

Caghe control looks for the first page in the cache, recognizing

the cache mis= and then fetehing it from a secondary device. The

feteched page replaces the second page (next to be searched in
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cache 1) with it.

Thus this process is repeated through the last page. In
this situation, apparently,; it does no good to have a cache,
however large i1t might be. We have to introduce a cache or a
hierarchy of «caches to enhance the performance. The algerithm
should be carefully chosen to fit the database access properties.
One candidate for a wise cache replacement algorithm iz the
object-oriented cache [SCHW 83] or an algorithm which makes use
of some kind of semantic infeoermation. That a {(part ef) relation
is needed likely means the whole of it and not random subparts of

it.

The lowest layer storage device should be constructed on
moving-head-disks. This 4{is today's most popular technolegy (it
has the best =toragescost factor with acceptable access speed for
on-line database wuse) and is widely accepted as a non-volatile
data =torage. ©Other cost-effective devices, sSuch as optical
disks, ocould be accommodated in a database machine storage, in
the sense discussed above, when they have gained good reliability
and become commercially available. Mass storage system (M33) is
a current technoleogy and offers a huge amount of on-line storage
using a tape-based technology. It can also be used as a low-end
storage, but M35 is somewhat special with its properties of the
amount of storage space and access time. When it iz used, it
should be used a5 a kind of loading device whiech iz activated
when the user needs a large new relatior for a possibly new

transaction. MSS will poorly perform if it is used like a2 disk.
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43 has been pointed out [BORA 83], the major bottleneck
which exists 4in the database operation is disk access time., To
overcome thisz, one idea iz to have a fairly large amount of cache
storage which <can contain ™all"™ the relations which are used
during a transactien. This is wirtually impossible [for every
query. However, by giving a large capacity fast storage space
with a wise replacement algorithm, most database tranaactions can
be carried cut within the fast storage. This 12 an expectation
and not a proven fact as yet. But we think that lowered storage
cost will justify the use of a very large semiconductor cache in

future.
2.5 Maintenance Processor

Az Delta is comprised of several subsystems, some care has
to be taken t¢ maintain reliabkility and serviceabhility. A
supervisory processor in a2 conventionmal large computer system has
a gimilar role. In Delta we prepared a Maintenance Processor
(MP) for this purpese, MPF has communication channels te each of
Delta's s=subsyatens. When &amn erropr ocoure in a processor, it
reports the status to MP, and MP will Jjudge the =state DFI the
entire =system and determine whether Gto continue operation by

isolating the error or to shut the system down.

3. Relational Algebra Processing Algorithm

3.1 Merge=-Sort Relational Algebra Algorithm
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There have been numerous algorithms to implement relational
algebra by hardware. We have chosen a merge-sort algorithm for
Delta's hardware algorithm. The hardware portiom for the
relational algebra execution is done in RDBE. The basic RDEBE
command set concept is related to the fundamental RDEE processing
hardware algorithm. Unless the command set is e¢losely associated
with the hardware implementation algorithm, efficlent processing

of that command set will be difficult,

Merge-szort is a well-known algorithm to efficiently
manipulate the strings of two or more pre-sorted stringse te form
a longer sorted string. Logiecally, there are two or more FIFD
memaries which contain pre-sorted shorter streams. In the
ascending sort, a processor compares the top elements of those
FIFO's and outputs the smaller element, at the =same time
advancing the FIFO which contains the smaller element. This
algorithm only outputs each string top as the compared result to
form a longer scorted string. If the output is properly
controlled by another ecriterion, most relatienal algebra
cperations can be implemented using this algorithm. Far exanple,
in two-way merge-sort, if one string.is a selection criterion and
the other string output is controlled such that those values
which match one of the upper strings are output, (note that the
two strings are both scorted) selection to the criteria is

accomplished.

Lz shown in this example, if proper output control 1s
accommodated in the course of the merging process, varlous useful

selection and join slgorithms can be realized.
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3.2 Merger Algeorithm

The merger unit in the RDBEE is the pertion whieh performs
the algorithm described in the previous chapter. The merger is,
basically, similar to a merge sorter, as the algorithm inherently
contains the merging proceas. The merger has two stream bulfers
which are placed before the comparator unit, and performs two-way
merge=zorting. The comparator unit must have several fundamental
commands to perform elasses of relational algebra operations. We
will briefly deseribe the principal merger functions in the

following chapters.

3.2.1 Simple 2election

A simple selection is defined as & selection against a
single e¢riterion, for example, selecting all attribute items by
the gualification of "greater than C." This operation is done by
placing the constant value in the top of the first FIFO, flowing
the stream through the second FIF0O and outputting those items
which =atisfy the criterion. The time reguired to perform this
is N®*T where N is the length of the attribute and T 1s the
transfer unit time. Criteria =ueh as "lezs than", and "equal"
are eazjily carried out by simple modification of the output

control.

3.2.2 Range Selection

Fange selection ig a little more ocomplex than the simple
selection. Hange selection iz defined as selection of attribute
items by the range specified by twe wvalues C1 and CZ. First FIFO

contains the two values in zorted order (C1 at the top if it 4is
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smaller), The process 1= as feollows:

{1} Flow=s the target attribute items in the =z=econd FIFO
(2) Discards the item= until the top element exceeds (1
{3) Advances the first FIF( to make C2 appear at the top

(4) Outputs the s=tream until the top element exceeds C2

it is obvious that range selection which has the form ((X <
C1) or (X » C2)), where C1 £ C2, is easily done by medifying the

control in a2 reversed manner.

3.2.3 List Selectlion

List selection i= an operatien in whieh gualified attribute
items are selected against a list of constant values. Sorted
constant values C1, C2,.., Cn are stored in the first FIFO. The

cperation is carried gut by the following procedure:

{1) Target attribute items in the second FIF0 are forwarded

{2) Items they are smaller than the top element in first FIFO
are discarded

{3) If a mateh is found, the attribute item (at the tep of
FIFD) is ocutput

{4) If the top element in the =second FIFD exceeds the top

element in the first FIFQ, the firat FIFQ i= advanced.

3.2.4 Synchronous Comparison
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Synchroncus comparison is an operation where both first the
FIFQ and second FIFD are advanced synchronously and the top two
ltems are compared with each other. Thisz 1s wuseful when
selecting attribute items which have a value which iz greater or
smaller than the other attribute items. The two streams should
be sorted beforehand by tuple-identifier (see Chap.5) to

correctly correspond the attribute item values.

3.2.5 Join

Egui-join operation is performed by the following procedure:

(1) The first FIFO is filled with sorted attribute items

{2) The second FIF0 1is forwarded with the other sorted
attribute items

{3) The top twe items in both FIFO are compared

(%) If the firast FIFO top iz greater than the second one, the
firset one is advanced

{5) If the second FIFC top is greater than the first one, the
second one 1s advanced

(6} If & mateh ie found between two items, both are output or,

Just 4o the case of a natural Join, only one of them is.

A general join can be performed by modifying the control of
the FIF0) advances, There i1s a problem hére that when there are
duplicate i1tems d1inm an attribute stream, all the possible
combinatiens should be eobtained din Jjoin operations. This i=s
solved by the tag fileld in the attribute items. If there are

duplicate values, the tag field of the duplicate items are set by
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the sorter. The merger portion recognizes duplicates, controls
FIFO advances and produces all possible combinations in join

operations.

There are other commands din addition teo the relational
algebra operations. However, they all fall inte one of these

categories,

4, Delta Command Set

The Delta's command set is shown in Fig.2. It consisats of
ceveral classes of commands. Host software is responsible for
converting user queries to the Delta command sequence. We named
the sequence a command-tree, because a set of relatienzl database
query commands forms & tree structure of Delta conmanda., Ir the
next section, command=tree and the transacticn concept provided
in Delta are described. The following sectiens are orief

descriptions of the categorized Delta commands.

4,1 Command-Tree and Transaction

4 pommaend-tree is a set of Delta commands which represents a
meaningful query. L command-tree example iz shown in Fig. 3.
In this example, the permanent relation 1 and the permanent
relation 2 are semi-joined to produce the temporary relation 1
from the permanent relation 1, while the temporary relatiosn 2 1is
selected from the permanent relaticn 3. The temporary relaticns
1 and 2 are then natural-jeined te¢ produce the intermedinte
relation 1, which 4is the result relatien of this commend-tree.
Locording to Delta's terminocleogy, temporary relations are erased

when the command-tree has produced a result relation



Page 16

(intermediate relation). Intermediate relations are given a name
and e¢can be used across the command-trees, They are, however,

erased at the end of the transaction.

There is a notion of tramnsaction in Delta. A transaction is
composed of a set of ecommand-treez which are enclosed by a
start-transaction command and an end-transaction command. The
command pair groups a set of command-trees 1in between as a
transaction. Delta will aupport update consistency by user's
speclfication of thesze transaction control commands. This means
that updates to the database can be undene by aborting the
transaction {(abort-transaction command) in which the updates took
Flace, or can be committed alsc by committing the transaction
{commit-tranzacticn command). Foer read-only database accesses,
committing a transacticon means that the result relation can no
more be used as &n intermediate relation, inhibiting subsidiary
gueries. The only excepticon te this 12 when it 418 wused for
output. Before a commit-transaction command, intermediate
relations can be used as source relations of the command-trees to

follow.

4.2 Relaticnal Algebra

Relaticnal algebra-type commands come directly from the
original relational algebra. Usually duplicate tuples are not
eliminated automatically. Duplicate elimination can be
explicitly specified by Unique command {see 4.12 Miscellaneocus
Commands)}., Relational division iz not included imn the command
zet because 1t can be done by & combination of other commands and

the freguency of the divide command 4i= not very large. We
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provide three types of Jjoin commands; natural-joln which is
considered to be most useful, theta-join for general «classes of

join and semi-join for efficient use of Delta.

4,3 Set Operation

Set pperations between twe relations are fully Jioplemented.
We have decided to implement Cartesian Produet command for
pptimization reasons, Relaticnal =algebra gueries with some
specific execution ordering are sometimes more elegantly
reprezentaed using Cartesian Product operation. In Unien command,
resultant duplicatez of tuples are auvtomatically eliminated in
pontrast to the other commands. If duplicate elimipation is not
required in Union command, it is no more than an append cperation
of oene relatien to another. Specification of Union command is

ponsidered to be an explicit duplicate eliminsgtion intention,

4.4% Set Comparison

Set compariscn commands are useful when checking two zets of
objects. In Prolog language, meta-predicates such as set-of or
bag-of are provided, These predicatea are uszeful for interfacing
logie programming language and relaticnal database [KYKM B83].
Set comparison ecan operate on those set results, Contain command
can also be used to perform least-fixed-point operations. By
explicitly checking the set equality between source relation and
result relatien after a join operation, a least-fixed-point set

can be obtained.
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L.5 Aggregate Function

Aggregate functlons are often needed in an actual database
cperating environment. They are alse useful for obtaining
statistical database characteristics, Of course, this ecan be
done by selecting all the tuples, sending them to the host, and
letting the host caleculate the sasggregate wvalues. However,
communication between host and Delta is deonre via a2 local area
network, =o it would be costly to send all the tuples every time
when =such aggregate operaticons are issued. Furthermore, the
hosts are logiec programming based inference machines, which are
not wvery good at arithmetic apeed. This is the reason why Delta

supports aggregate type commands internally.

4.6 Arithmetic Operation

Arithmetic operations on numerical values are not essential
for a databasse machine, However, there is certainly a class of
update querlies, for exesmple, increasing the salary for all of the
employees by 20 %, which needs ealcoulation throughout the
attribute values, Because of loecal area network transfer
overhead, we &also provided +this command set. (Note that the
arithmetiec type update shewn in the example requires the

attribute transfer twice.,)

4.7 Definition

Definitien-type commanda are classified into two categories.
One deals with definition and deletion of relatiocns and the other
deals with attribute appending and dropping. The latter is added

to easily manipulate relation schemata.
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4.8 Update
Update-type commands are T"delete?, finsert® and fTupdate"”
commands, The format and syntax of update commands are somewhat

speeifiec. The following is the delete command syntax:

[cN,del ,TRN1,TRHN2]

CN stands for command number, the identifier of a Delta command.
The ‘'del' specifies the command and TRN1 specifies a target
relation (the relation from which tuples are deleted) and TRNZ
specifies another relatioen which contains the tuples {derived
from TEN1) to be deleted. There is an alternative way toc speclfy

the criterion in the command to delete tuples like this:

[CN,del,TRN1,attributel < 300].

In this case, only those tuples which ecan be =zpecifiled by the
condition field of the command can be deleted, We decided to
choose the former syntax to enhance the power for specifying the

update criteria.

L,9 Trensaction Control

Transaction control-type commands are used te contrel the
update consistency as well as freeziog the result relations.
Freezing means that the transaction can no more issue commands to
Delta except Input/Output commands, in effect, guarding the
intermediate relastion from further modifications. This 1is done

by commit-transacticn command a8 well as the update commitment.
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Abort-transactien command means the rollback of updates done
previously in that transaction scope. Concurrency control is
al=so done behind the transaction control command. Delte adopts a
two-phase lock method to meintain concurrency control. The user
can specify a relation list teo loeck during the transaction in
atert-transacticn command, or the system avtomatically locks the
concerned relation when 1t 1=z needed to keep the c¢onsistency of
updates in a transaction. All the locks are undone upon the

recelpt of commit-transaction or end-transaction command,.

§,10 InputfOutput

Input/Output commands are used to transfer relations between

hosts and Delta. Theze c¢commands form a command-tree in one
command. Only Input/Output commands are valid after
commit-transsection command. (0f course, Input/Output commands

are good anywiere in & transaction.) "he "get" command has the

effect of retransferrig the result more than once.

.11 Asyncaronous Commands

Asynchronous=-type copmands are used to dinterrupt Delts,
These commands expect a fast response from Delta. One of these
is the abort-preocessing command which terminates the current
caommand execution, The other iz the sense-status command to
sense Delta's execution status., Normally, Delte commands are
cxecuted by the arrival orderp. However, dgaynchronous=type
commands are executed as scon as they arrive at Delta.
Lbort-processing provides wusers a faecility 1like Control-C or
Break in a usual program run. However, if an update-type command

has beecn crecuted in the transaction to which the
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abort-processing 1s lssued, the host has to command Delta to
abort that transaction. This is because abort-processing
terminates a2 command execution at a point where data might be

inconsistently dirtied.

4,12 HMiscellanecus Commands

Miscellaneoue~-type commands are a collection of utility-type
database commands. One very important command here is the "sort?
command, which is oftemn used feor output. The "unigque" command 1s
used 4in combinatiom with other commands when the user wants a
duplicate-free relation. Group-by type commands are provided *to

perform functions known by S L's group-by cperation.

5. Internal Schema

5.1 Tuple-Based Schema and Attribute-Based Schema

The methead of choeosing physical or internal schena
influences a database mechine's performance as nuech as its
internal configuration does, There are two major methods on how
te physieally store a relation. One 1is to store it in tuple- cr
row-based form and the other iz to store it 4in attribute- or
column-tased form. In Delta we have chosen the attribute-based
schema as the internal representation of relations. There are

merits and demerits in each schema.

¢ Merits of tuple-based =chema >

o Fits original relational database (set theory) concept

o Read-out of tuples is smooth from sequential storage device
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¢ Demerits of tuple based schema »

o HNeeds to =access extra informetion such A8 Uunhecessary

attributes in a query

o Symmetrical access to attributes {Ls difficult (secondary

indices to many attributes are hard to make and maintain)

¢ Merits of attribute-based zchema »

¢ Only concerned attributes should be read

0 Symmetrical manipulation of attributea can be easily done

< Demerits of attribute~based schema >

o Needs tuple reorganization {(tuple reconstruction) for output
o Needs tuple identifier (extra storage space) for tuple

reconstruction

hs mentioned in the firat chapter, Delta will be uaed in a
logie programming language environment., It is highly desirable
to handle almost every attribute in a2 symmetrical way. In other
words, a aystem can not gueasas a predetermined sccess path te a
relation. This 1is closely related to the non-deterministic
behavior of logie pregrapming language execution, typicelly when
backtracking of literals ogccurs, This fact made wus select the
attribute-based schema. The other strong reason why we chose it
iz that the =zchema isz apprepriate fer our RDEE's merge-scrt

hardware algorithm. We did neot want to flow unnecessaary
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attributes through RDBE, which would result 4in an increase of
data transfer time between RDBE and HM. We also considered the
diffficulty HDBE has in recognizing the boundaries between & [leld
ta be sorted and coppared and cther trailing attribute(s) in
RDEE. Later, however, the latter reason proved tc be of 1ittle
significance. There =till exist reasons for RDBE to recognize
the field boundaries even if we had cheoesen the attribute-based
schema. One obvious example is the existence of tid (tuple
identifier) field and the other is the fact that at times RDBE
5t111 has to handle some tuple<like streams called concatenated
attribute class data whieh is considered as a part of relatlion
projected on =scme attributes. In the case of tid field, the
situation is better because there are cnly twe distinet flelds 1in
a date stream (like birary relation) and it makes the hardware
design much simpler. However, to perform =2set operations, the
tuple should be reconstructed before processing by RDBE. In this
case, & usual tuple-based relation i=s ferwarded through RDBE.

Unnecessary attributes, however, need not be transferred.

E.2 Clustering

A naive relational database machine design might secan a
relatien {(or attributes in attribute based schema) every time a
query 1s issued. Certain clustering i= necessary for narrowing
the search space before brute-force searching takes place. This
18 partieularly true in an environment where & storage hiersrchy
is accommodated in a datazbase machine system. If a cache (or =
similar smpaller but faster storage) is filled wup with relations
mest of whieh are only staged up to be disposed, the significance

of that expensive storage can noet be justified. Mueh works has
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recently been done on effielent elustering of relatiens [TANA
83]. 1In Delta, however, we decided to wuse an attribute-based
schema. In & tuple-besed schema, it might be difficult te access
several attribute values evenly. {This i the reason why a smart
indexing method iz needed.) An attribute-based =chema has only to
consider two fields, namely attribute value field and tid field,
for clustering. We therefore adopted a simple two=level
clustering method., An example of thils clustering 1s shown in
Fig. L, Firat, the attribute 18 sorted according to the
attribute's wvalue, divided in multiple first=level clusters
according to the range of values, Secondly the first-=level
clusters are separately =zorted according to tid wvaeluez 4in esch
item, (An 4item, 4in our terminology, is a pair of tids and a
value of attribute.)} Thus one leaf of this schema (which
corresponds to a physiecal page in storage) contains items the
values of which are in a certain attribute value range and alseo
tid wvalues whiech are in a certain tid value range. Though the
access patterns are dominant in deciding the effectiveness of a
clustering scheme, we observed that this clustering is effective

in symmetrical access pattern guerles [MESY B83].
6. Felational Database Engine (RDEE) Details

ADBE is the key component for the.procEﬂsing of relational
algebra in Delta (Fig. B). RDBE incorporates the baszic
merge-sort algorithm desoribed in the former chapter. In a word,
RDBE is a hardware implementaticn of the merge-sort scfiware
algorithm. However, to implement it to work im the actual
proceasing atage 1in & database machine, various difficult

problemsz must be solved.
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As discussed 4in the architecture chapter, RDBE haz =a
general-purpose processor portion which eontrols the hardware
portion (Engine Core) and processes certain olaszes of Delta
commands such as aggregate funcetions and arithmetic operations.
Engine Core 1s a piece of new hardware which is comprised of a
first stage input aligner, second stage pipeline sorter and last
stage merger. The second stage sorter is further comprised of
smaller stages c¢alled sorting stages. The sorter fallows the
idea of hardware pipeline merge-sorting by [TonD TB]. A sorting
stage is cascaded to ancother one, forwarding a partially sorted
stream to it. An N-th sorting stage (starting with 11 has two
FIFO memories which c¢an contain 2%#(N-1) items. The first
sorting stage sorts one item from one FIFO and one item from
another, producing & two-~item partial sort result into the second
stage FIFO, The second sorting stage compares the two two-item
streams, producing two four-iten streams. This process is
repeated until the laat stage, in effect producing a 2%**N-item

sorted stream.

L sorting stage does not have to walt for the arrival of two
completed streanms. Upon the arrival of the [irst item in the
second stream, the first item can be compared with the tep i1tem
in the previously stored first stream. {(The first item of the
cecond stream is the smallest item in the =eccond stream.) The
sorting time eof this sorter i3 (ol 2®2 4T where N 1s the
sorting stage count and T is the time unit to transfer an 1ltem.
In aectual attribute sorting, the 1length of an item varies in
magnitudes of range (for example, 2B to 2EB) . Toe handle

varieties of length, each =sorting stage has a fixed size of
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memory and sirulates the FIFQO operation by the wuse of pointer

registers,

The sorter has twelve sorting stagez and the last sorting
stage has two 64KB-memories. This sorter can sort either (1) 4K
items if each item 1is smaller than 16B (GUE/LUK) or (2) 2N items
where N is 6GU4K/item~length. The =zcrting stage comparator part
will be implemented by discrete components initially and replaced

with LSI ipplementation in the final conflguration,

The input eligner portion rearranges the field orders before
a s&atream of items is sent to the scorter peortion. As a stream is
composed of several filelds such as value fields and tid fields,
the filelds should be rearranged so that the sorting key field
will appear at the tep of ezch item to mateh the sorting
algorithm. The last stage merger, after performing the proper

operation, arranges them back to the right fields order.

The merger is & unit which performs relational algebra and
other Delta-command-related operations on a sorted stream. The
fundamental structure of the merger is the same as the sorter.
The merger has twoe FIF0 memoriez snd a comparator. The
comparator, however, is more complex than the sorting stage. in
addition, the FIF0O controller has the capability to point to scome
item in FIFO in a more flexible way. For example, when merger
performs @& natural-join operaticen, the control procedure proceeds
as follows (here, no duplicates are assumeéd in joined attributes

for simplicity):

{1} FRepeat until the first attribute is exhausted
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(2) 5end a bufferful of the first attribute to RDEE

{3% Sort the first attribute and load the merger's firat FIFO
with it

(4) Continue until the sececnd attribute 1s exhausted

{5) Sort a bufferful of the second attribute and supply it to
the merger's second FIFO

{6} Firast FIFD rewind (set to originally leoaded state)

{7) Continue until a bufferful of the second attribute is=

exhausted

if top of second FIFO i3 greater, then peop second FIFO

if top of second FIFO is equal, then output it and pop

second FIFOQ

if top of second FIFD is less, then pop first FIFOD

The time required to perform this operation is as follows

{ne elustering effeect is assumed here):

{ M/B ®* (3 ® L + log(L) + N) ) ® T

where M is the =lze of the first attribute, N is the size of the
sepond attribute, B is the merger buffer size, L i3 the FIFQ size
and T is the unit item transfer time. Note that if M is amaller
than B, the Jjoin can ©be esccomplished by flowing the second
attribute once through the merger, This deoes not depend on the
sige of the pecond attribute, because the second attribute can be
divided 4in the merger and the divided subparts can be

continuously Joined without disturbing the stream flow.
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The merger wumnit 13 =aessociated with a general-purpose
procassor for performing agpgregate functions, arithmetic
operations, complex condition seleetions and a subzet of set
cperationa. Dedicated pieces of hardware for performing these
operations are required for higher performance. However, time
did neot allow us te design those ones. We decided to concentrate
on the Engine Core teoe perform relatiocnal algebra. When RDBE is
commanded to perform an operation which should be done in the
general=-purpoze processor, the data stream iz forwarded te the
processor after the stream flows through the merger. In this
case the stream flow speed 1is limited by the processor's

processing speed.
T. Hierarchical Memory Subszystemn

The Hierarchical Memory subsystem (HM) 4is responsible for
storing, accessing, clustering and maintaining relations. HM'=
configuretion is shown in Fig, 6. The lowest storage deviece is
state-of=the-grt poving-head-disks, the total capacity of which
will ke 20 GB in the final Delta configuratioen. HM i=s provided
with a large eﬁpacity Jemicanductor Disk (SDK)}, the capacity of
which will be 128 ME also in the final configuration. SDKE iz a
semiconducter RAM memory systen which is protected against power
failure and hence appears to be non-voelatile, When power failure
iz detected, emergency power is supplied from the battery of the
power supply system until dumping of SDE content te MHD is
finished, The controller of KM iz a general-purpose computer
named HMCTL. HMCTL i=s the brain in HM and 1t performs the tasks

assigned to HM. HMCTL's roles are as followsa:
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o Memory management in SDK and MHD
. SDK and MHD data staging and destaging
. CP directory area management

., 3DK power failure management {non-volatility)

¢ Stream preparation for ROBE
. Buffer assignment in SDK
., Clustering search

. Stream arrangement (page fragment elimination)

& Stream transfer between HM and RDEE
. Channel activation

., Multiple stream management

o Transaction rollback
. Shadow management

« Update logging

¢ Tuple and attribute transposing
. Transposing to tuple
. Transpoaing to attribute

{ For bidirectionpal tuple and attribute conversions )

4 general procedure where HM prepares and forwards streaoms

to RDBE is as follows:

{1) Buffers {output gqualified buffers gand result receiving

input buffers for RDBE) are prepared.
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(2) The stream {(data in the output buflfers) i1z forwarded to
HDEE

(3) The input stream from RDBE (result of the RDBE processing
derived from output stream) is received

(4) Buffers no longer usable are released

Theze are directed by CP or RDBE wia HM subcommanda.
Usually HM subcommands are the principal command communication
means between HM and other Delta subsystems. HM is almest always
passive in the sense that it is directed by other subsystems.

HM's most principal role is the stream preparation and transflfer.

In the stream preparation process, HM 1= typically commanded
by the prepare-gualified-buffer subecommrand. This subcommand
means that HM should prepare an attribute in & stream buffer
using the qualification =pecified im the subcommand. The
gqualification example is value range specification like " greater
thar 1000 ™, &z 1z described 1in the clustering chapter, HH
maintains a two=level elustering directory and looks for
qualified pagez when it receives the subcommand. It is not
required that HM should Cfilter out attribute items whieh de not
satiafy the qualificaticon. This qualificaticon is a static one
and HM fetehes sueh pages whiech may contain attribute items

satiafying the gualification.

Another important role of HM is the data recovery function.
HM is the central portien for storing databases, it makes shadows
of the update pages directed by CF for later possible transaction

rollback specificaticn. HM is further responsible for
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transposing tuples to attributes and vice versa. Sending result
tuples to the host is domne by meking buffers which contain
necessary attributes te constitute the tuple, transposing them
into a tuple buffer and tranaferring i+ via IP to the host. The
transposing, in either direction, is done as much as pc sible in
apKk to reduce the overhead associated with the attritute-based

schema.

8. Implementation Designs [SHIB 83]

Delta haz adopted new pleces of hardware in its
architecture. The most notable cnes are RDBE and non-volatile
large capacity Semiconducter Disk. Other subsystems are

basically built up with off-the-shelf components such as
minicomputers or general-purpose computers. The Interface
Processor will be implemented using a one-board minicomputer with
on=-board 512KB main memory. The Control Proceszscor will wlzc  be
implemented by the same minicomputer with 1 ME main memory. The
Relatienal Databese Engine (RDBE) is & new plece cof hardware, our
idea being based eon an algorithm using the hardware supported
merge-sorting implemented by the RDBE. Most hardware dintensive
efforts are being done for the implementation of RDEE, in the
sense that it will become the first practical hardware relational
database engine. EDBE will also use a minlcomputer to control
the RDEE's hardware rescurces, In erder to manipulate various
relational database procegsing requirements, for instance,
floating-peint data calculations, RDBEE could neot help but become

a little =mophiasticated,.
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The Hierarchical Memory (HM) subsystem is implemented  using
a general-purpose computer as a contreller (HMCTL), a large
amount of fast semiconductor random access memory in the form of
a semiconductor disk (SDK) and large capacity moving head disks.
The SDK is used for temporarily storing classes of relations
generated and panaged in Delta. The SDK will be non-volatile (at
ljeast from a software point of view) to avoid disk accessesz
invoked by write-through storage management. We realize there
remains a lot to be investigated and researched tov make a real
hardware-oriented EM. S50 we decided to simulate the HM using a
general-purpose computer system for collecting performance data
and making the points to be improved clear in this research. One
ef the mo=t deciegive factors in choosing a general-purpase
computer as the HM is that it provides an cperating system
containing contrel software on state-of-the-art disks, the

capacity of which is over 2GB per unit.

a. Performance Estimation

The performance of a database machline or a database
management system is greatly affected by usage patterns, or how
the database iz accessed by users. Our preliminary assumptions
for the acces=zes whieh will be pmpade 1n a logic programming

environment are as follows:

{1) Relations are of only = few attributes.

This 15 becausze the databazez are closely associated with
the "facts" of logic programming languages. Usually logile

programming language programs contaln only a small number
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(3)

(4)

(5}
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of arguments,

Attributes are accessed in a non-deterministic manner.

This 1is a property of logie progracming languzges.
Especially when backtracking takes place, we can not tell
which one of the arguments 1s ipatantiated. There are
classes of arguments whieh are only subsidiarily accessed.
However, compared with  usual key-based anpncesses te
databases, there may be a lot of attributes from which the
acnesses are made, This is one of the reasons why we

adopted an attritute-based schena,.

Databazes are divided into two usage categeries.

As the environment is research oriented, the usage
categories inelude personal database usage as well as

shared database.

High degree of concurrency may manifeat when the total
system (S8IM's, local area network and Pelta) are used in a

T8&5-11ike manner.

Seleet, Join and Projeet are the high freguency commands.

Because they are frequently found in our interfacing method
between logic programming languages end relational

databases.
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fipparently, the 1leoccal &area netwerk is not a very
high-bandwidth one. We will have a transfer rate around 10M bit
per second. This can be a bottleneck i1f heavy query traffic is
always flowing through this path. We will not discuss the loecal
area network problem further here. It has to be taken account of

in the total system configuration.

8.1 A Delta Performance Estimation

Delta's command=-tree execution steps are divided inte the
following substeps neglecting the host-to-IF command-tree and

respoense transfer time:

(T1) IF software overhead to invoke IF=to=-CP command-tree
transflfer

(T2) IP-to-CP command-tree transfer

(T3) CP software overhead to invoke command-tree analysis

(Th) Command-tree analysis, generating subcommand zequence

(T5) Bubcommand sequehce execution

(TH) CP software overhead to inveke response transfer to IF

(T7) CP te IP response transfer

(TB) IF saftware overhead fto invoke response transfer te host

Among these, (T5) is the actual database access operation. 3o

(Ts) is further divided inte the fellowing procedures:

{T5,1) HEDEE subcommand executieon
{T5.2) EM subcommand execution
(T5.3) CP to RDBE subcommand transfer overhead and transfer

time
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(T5.4) CP to HM subcommand tranafer overhead and transfer time

There is no HM to RDBE data transfer time ineluded here. This is
because 1t 41is hidden in RDBE subcommand execution time, a
processing scheme we adopted. Besides the transfer time, some of
these =substeps are partislly done in parallel., So the mera
amount of execution times of these substeps will give wus an
underestimate performance figure, Buft as the details of these
substeps are not sufficiently clarified, it will suffice to have

g simple sum for rough estimatien.

9,2 A smelection example

We now consider an example selection query in 5 L form:

SELECT a1, a24+.., an
FROM &

WHERE ai IN [value list]

where A is a relaticon composed of 10 attributes, havipng 10000

tuples, The al, a2 and =o on are the attributes among the 10

attributes. We assume 10B for each attribute here.

The execution time characteristie for selectivity according
te a deterministiec simulation is shown Lin Filg, 7F. This figure
assumes a high semiconductor disk hit ratic. For certain ranges
of aelectivity, there are different dominating factorsa. Feor the
selectivity range between 0.01% to 1%, the dominating factor is
the inorea=zing tid join time. Buffer preparation in

semiconductor disk is nprot s8¢ time-consuming, because the
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intra-semiconductor disk transfer is falirly fest compared with
tid joins. For selectivity factors between 1% and 10%, the
estimation curve shows a plateau. In this area, the processing
time iz dominated by the full tid Jjoining. All the attributes
should be adann&d for tid join 4in this area. For selectivity
range between 10% and 100%, along with the tid Joiln time which
form the plateau, tuple reconstruction time becomes influential.

The effect of tuple reconstruetion rapidly becomes great.

This result, though still not sufficiently guantitative,
indicates that the incorporation of a large capacity
semiconductor disk is effective for a high performance database
machine. The effort to inerease the hit ratioc by the wise
replacement algorithm is the key to effectively utilize the
zemiconductor disk. We assaume that the performance of Delta in
the high hit ratie range will be arcund several hundred

milliseconds in the selection example.

10. Towarde a Enowledge Base Machine

The final geal towards whieh Delta's research line aims 4is
knowledge base machire construction. The Fifth Generation
Computer Project has adopted logic programming language az a
kernel programming language. This will be the basis for all the
research (o be carried out during the Project. We think that the
knowledge representation problem iz the key te construct a
knowledge base machine. The relaticnal model has a good affinity
to logic programming language because both of them have logiec in
their foundation. Some attemptas have been made to combine

relational database and legie programming language [CHAK
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821,[TAHO 83]. We  have presented a compiled appreach which
defers the evaluation of literals in Prolog when the literal has
alternatives in the external database (database machine) 4in the
form of faets [YOKU B31. Besides this approach, there may be
various other approaches towards attainment of the final goal of
a2 knowledge base machine. Our standpoeint 1s based on the
amalgamation of legle programping language and relaticnal
database. We do not think that the relational model is
sufficient for & general eclass of knowledge base machine
achlievement, However, the combination of a relational database
machine and inference mechanism 1s a good candidate for a future
knowledge bese machine [MEMS 83]. To more closely combine the
database and logic programming language, rules {unit clauses with
variables and non-unit clauses) should be manipulated in database
machines. Thie implies that the database machines should be able
to handle structured data in general and have the mechanism to
perform a unification operation as a relational algebra level
database operation [YOKO E3]. A unification engine, which
operates on a data stream whieh represents a set of structures
instead of an attribute, 1s one method of performing efficient
knowledge base unifiecation. This 1is easily applicable in Delta's
architecture. All that is needed 4is to place & unificaticon
engine along the RDBE. In this case also, some Lknowledge
clustering technigque should be accommodated for the efficient use
of knowledge space, which is still in the elementary research
stege. We think that, 1like +the relational database case,
semantie information should be wused in the clustering of
knowledge bases. For research purposes, Delta will be connected

to a sequential inference machine via a shared commounicaticn
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memory. This will provide a powerful research toocl for the

pursuit of & knowledge base machine.

11. Conclusion

We have described the architecture of Delta, its commands,
subsystem roles, and to some extent RDBE and HM detailed
considerations. Delta's new architecture and majeor declszions
such &as pipeline relational algebra processing, incorporaticon of
a large capacity non-volatile Semiconductor Disk, and
semantics-bpased clustering will enable it to operate efficlently
in relational algebra based commands procesaing, particularly
when symmetrical accesses to the database are frequent. From a
database management viewpoint, Delta has many features which
purrent software detabase panagement systems have, More detailed
implementation decisicns are now being made in the course of the
detailed software design and manufacturing afteps. When
completed, experiment and collection of performance data in
actual usage, not only as a databuse machine but also as a
research tool for a knowledge base machine, will ©be the next

research astep.
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Fig. 3 A Command-Tree Example



Value Range

1-99

100-199

200-2949

=

att 1

att 2

att 3

SRS

HNote:

Fig.

Tid VYalue
Tid Hangel_#/f,b 2 3
1-19 10 T
20-39 11 22
40-59 ¥ 17 g1
L]
2z 5o
1=-35
26 90
3hH-4E
28 B4
yo.a3
R 33 | 11
1=24 3 121
25~55 * 16 184
EE-T2 ¥ 30 165
* " 35 169
=33
J4-673 r:\\\ﬁ, 4 ae
E4-80 . 10 ah
T . 19 | ab
: 21 ah

haterisks indicate pointer abbreviations.

4 Internmal Schema of Delta



Input

Aligner

[Pipeline

sorter

Merger

Unit

General

—— Purposzse

Frocessor

v/

Fig.

& RDBE Schematic Configuration




to MP

to CP to IP te RDBE's ..
cp ip RDEE MFP
channel channel channel channel
Silicon
EM
Diszk Controller
{HMCTL)
(128 HB)
I .
Disk Disk Disk
Cont. Cont. Cont.
]
Disk Disk Disk
Disk Di=k Disk
Fig. 5 HM Schematic Configuration




Processing time (Ratio)

i
1iﬂ Jil

Tuple 3electivity

20lid Line : Total Processing Time
Broken Line : Tuple Feconstruction Time
Chain Line : Tid Join Time

Fig., 7 & Simulation Result



