ICOT Technical Report: TH- 045

TR-045

The Design and Implementation of
a Personal Sequential Inference Machine: PSI
by
Minoro Yokota, Akira Yamamoto, Kazuo Taki,
Hiroshi NMishikawa, and Shunichi Uchida

Febrary 1984

1984, 1COT

Mira Rokusal Bldg, 21F 031 456-3191 ~ 5

!{:DT 4-28 Mita 1-Chome Telex ICOT 32064

Minato-ku Tokyo 108 lapan

lnstitui; for New Generation Computer Technology

The Design and Implementation of
8 Personal Sequential Inference Machine: PSI

Minoru Yokota, Akira Yamamoto, Kazuo Taki,
Hiroshi Nishikawa, and Shunichi Uchida

ABSTRACT

A Personal Sequential Inference Machine, called
PSl1, is a personal computer designed as a software
development tool for the Fifth Ceneration Computer
Systems(FGCS) project. PSI has a logic based,
high-level machine instruction set, called Kernel
Language Version 0 (KL0). The mochine architecture of
P51 is specialized for direct execution of KLO.
"Unification” and “backtracking” arc the principal
operations in Logic Programming, and they are
efficiently performed by PSI hardware/firmware, Its
estimaled execution speed is 20K to 30K LIPS. The
machine is also cquipped with a large main memory with
a maximum of 40 bits x 16M words This paper presents
the key points of its desipn and the features of ity
machine architecture.

1. Introduction

The Fifth Generation Computer Systems (FGCS) project{l] has
actually started to realize a Knowledge Information Processing System,
KIF5. The initial three years of this project is the fundamental
research and development stage. During this in‘tial stage, many
experimental systems and tools will be developed for the next stage.
PSI has been designed ss a po~erful software development tool to
achieve this aim.

The major motivation for the development of PSI is to establish a
good programming environment (or logic programming. This means that
PSI should achieve high execution speed for logic programs and should
be equipped with a good man-machine interface. This is why a totally
new machine was designed, in spite of the short research and
development period of about one and a half years.

To fully specialize PSI for logic program execution, it is not
adeguate to utilize ready-made micro-processors or ready-made
microprogram sequencers. The CPU of PSI is constructed from about
20000 commercial TTL SSIs and MSIs. Since design efforts were
concentrated on the CPU and the memory system, the input/output
interface is designed as simply as possible, and the standard 1/0 bus
interface, IEEE-796 BUS, is adopted. However, this interface has
Ell:mi’ggl.‘wsamit? and many commercial I/O devices can be connected to
the

Fig. 1 shows the PSI system configuration. PSI is designed as a
personzl tool, and is connected to the local area network as one of
the work stations.

The intention of this paper is to discuss what functions PSI
offers and how they are implemented. The following two sections
describe the required architectural features of PSI, Section 4, how
PSI machine instructions are designed, Seciion 5, their
implementation, Section 6, internal data representation, and [inally,
Section 7, the addressing mechanism.

PSI Loeal Area MNetwork

General Purpose

Parallel 1/0 Por Nl emory]
o LLia |

Common 1/0 Bus
IEEE-79%6 l'r:terfav:rf- 1

1

4]

i
Memory .;‘:{:

Hard @ L_/—J

sk

Mouse Hev Hoard Bit-Mapped
Dasplay

Fig. | PSF svstem configuraiion.

2. What is a Machine Architecture for Inference?

Since a machine architecture should reflect the computation model
on which the target languages or apmication systems are based, the
definition of "inference” must be made clear at first. However,
answering this question is one of the main objectives of the FGCS
project. At the beginning, logic programming language like Prolog was
chosen for the kernel language of this project is considered to which
involve a primitive inference mechanism. Therefore, "inference” here
means such mechanism that is uvsed to execute a propram written in
logic programming. Prolog was the starting point of our inference
machine.

Two essential operations gre required to execute Prolog programs;
one is "uwnification", and the other is "backtracking”. These
operations bring in the main advantages to logic programming.

2.1 Unification
Unification consists of the following primitive operations.

o To search for the called clause.

o To fetch the arpuments of both the caller and callee
predicates.

o To examine the equality of the arpuments

When a query is issued as shown in Fig. 2, 2 Prolog system
searches for the corresponding clause which has the same predicate
name on its head (left part of “:-") as the caller goal predicate.
Each variable included in the called clause is independent of those in
other clauses, even if they have the same variable name. Furthermore,
the wariable can have different values at the same time by virtue of
its recursive call. Because of these characteristics, they are
similar to the local wvariables in conventional subrcutines.
Therelore, a dynamic memory allocation mechanism is required in order
to create cells in which the value of the variable is stored. This
cell is called a "variable cell”, and it may be implemented generally
by using a stack.

To quickly fetch the value of an argument, fast memory access is
required, and a cache memory is generally useful to achieve this. In
addition to it, a fast data type checking mechanism is necessary to
gquickly examine the equality of the contents of both arguments. To
satisfy this need, a tagged data form is very effective.

*-father 1t1:-I‘r! ‘."-hnfl

"

llk n:.c-l'.hm (RLY - r"/
\ {a1heri.:'§.q';'_i'-- manl X1, ehildi Y. XT.

grand _fatheri X, V1=

Fig. 1 VPredicate call.

2.2 Backtracking

In the Prolog system, program execution is carried out
determining whether the predicates are true or false. In other words,
the Prolog system sets some velue to an argument to make the predicate
true. If there zre several clauses corresponding to the goal
predicate, several possibilities exist to make the predicate call
true. Since the sequential machine selects only one of the
possibilities at one time, the machine has to try another alternative
when the previous selection fails. This retry operation is called
“backtracking”, and includes undo operations to reset variables to
their previous status. To realize backtracking, the machine must
obviously keep track of each choice point and the binding environments
of the wvariables. Roughly speaking, the machine should hold the
entire execution history. Therefore, this feature requires
compiicated execution control and a lot of memory.

A large memory space is necessary for backtracking, and stack
mechanism is common for its control. Although it is effective to
eliminate meaningless choice points, the establishment of a useful
algorithm to intelligently perform backtracking is now being
researched.

The following is a summary of leatures of the inference machine
now being considered.

o The inference mechanism is based on Prolog.

o Dynamic memory allocation is required for fast creation and
deletion of variable cells.

o Fast memory access is required for fast argument value
fetching.

o The tagged data form is required for fast argument type
checking.

o A large memory space is rcquired to maintain a large execution
environment.

3. PSI Design Objectives

In addition to satisfying the minimum requirements described
above, there are several other requirements from the user’s point of
view. PSI has two characteristics, one as a tool and the other as an
experimental machine. Their requirements sre described below.

3.1 Requirements as a Tool
The main role of PSI is to be & computing tool in the

intermediate stage of the FGCS project. To satisfy this aim, PSI
hardware and its operating system should be designed as a practical

system and thus, the hardware system should be implemented as soon as
possible. The key points in designing PSI are summarized as follows.

o Practicality

o Ease of use

o Personal computing

(1) Practicality

Since PSI is a real tool, it needs to have high cost performance.
It is desirable to discuss about the performance on the basis DEC-10
Prolog[2], because it is the most successful and practical logic
programming language and its compiler can generate very fast object
codes. The execution speed of a compiled Prolog program is estimated
at about 30K LIPS (Logical Inference Per Semndﬁl on DEC-2060.

On the other hand, the DEC-10 Prolog system provides its user
with only limited memory space (256K words), which is usually too
small for actual Prolog applications. The lower execution speed might
not be fatal defect because it would be compensated by longer
processing times. However, there is ne way to continue program
execution if the system has exhausted ils memory space.

Since the limitation of memory space is crucial, the design of
P51 is intended to provide a larger memory space as well as fast
execution speed. Qur experience with the DEC-10 Prolog system has
shown that at lest 10} times larger memory space available at present
is required. As a result of these considerations, it was decided that
PSI should have a large main memory with maximum of 16M words and an
execution speed nearly equal to DEC-10 Prolog compiled codes

In addition to the speed and memory space, reliability is also an
important aspect for a tool in that the system must operate
continually for a long time without failure. Consequently, PSI is
equipped with enough error checking and correction mechanisms.

(2) Ease of Use

As a tool, a good man machine interface is the most important
feature. To achieve this aim, both hardware and software facilities
should be provided. Accordingly, P'SI is equipped with special
hardware such 23 a bit-mapped display and a poinling device {2 mouse).
In addition, 1/0 devices for Japanese characters will also be
installed in order to communicate with P5I in our tongue.

Software facilities include a PSI operating system with
sophisticated programming systems. A multi-window system is one of
the important facilities.

(3) Personal Computing

Since computer hardware was expensive, a large and centralized
computer system has been common in the past. However, personal
computing becomes desirable by decveasiug hardware costs and
increasing computer utilization. For smoeth man-machine interaction,
localized data processing will be essential rather than using
conventionzl centralized time sharing systems.

To provide 2 user with PSI's powerful computing power, PSI was
designed as a stand-alone, personal computer connected to the local
area network. Through the network, several PSls can communicate with
each other and establish a distributed system. Since PSI can also
communicate via the network with different machines, such as a
Relational Data Base Machine, it can be regarded as an open-ended
system.

3.2 Requirements as an Experimental Machine

Although P51 is intended to be a practical machine, designing its
architecture involves a lot of research hecause no one has built such
an inference machine before and there are few evaluation data on
Prolog program's behavior.

As the first specialized machine for logic programs, it was
considered that the following needs should be saiisfied.

o Support for fast unification

o Support for multi-processing

o Support for low level system description

o Support for evaluation and measurement of logic programming
characteristics

o provision of flexibility in language support

(1) Fast Unification Suppart

As described in Section 2, uvnification is one of the most
essential opcrations in an inference machine. If a machine
architecture is dedicated to inference, it should support unification
at the machine level through its hardware and firmware.

{2) Multi-Processing in Logic Programming

A Prolog program is composed of single layered relations. They
can be referred from any portion of the program. That is, a program
is seemed a large, single module. This feature of the Prolog program
is not suitable for the programmer, and the lack of program
modularization makes it difficult to bueild large, complex programs

However the introduction of modularity and concurrency into
Prolog is under research, our oririnal motivation was to establish
conventional multi-processing environment in logic programming. It
was imagined that, for example, a user of PSI will use an editor,
compiler, and debugger st the same time through 2 multi-window system.

All these software products are written in a Prolog-like logic
programming language. This situation requires a few relatively large
processes.

On the other hand, the description of parallel processing in
logic programming is becoming attractive research theme and is one of
the important research targets in the FGCS project. In this point of
view, a lot of small sized processes such as in Concurrent Prolog[4]
should be efficiently supported. In this situation, the size of
process is very small but the number of processes is over a thousand.
To support this type of multi-processing, the machine architecture may
become different from PSI. Although PSI e¢an not support a larpe
number of processes, it can be used to experiment such a multi-process
environment.

(3) Low Level System Description

Since PSI is desizned to be a stand-alone, personal machine, it
must be [urnished with its own operating system. In general, the
operating system does not fit high-level languages because it deals
with physical resources though the latier deals with logical ones.
Logic programming language is also regarded as being undesirable for
wriling operating systems. One of the advantages of using a logic
programming langnage is its non-deferminate operation. It makes
progrummers to be zble to guit specifying the entire perfect
proced.res. In spite of this, the machine finds the answer by
examining the possible alternatives using fragmentary rules. On the
other hand, the procedures in the operating system are usually
deterministic, and efficieney Is the most important factor in its
execution.

Further, variables in a logic programming language are logical
varizbles and not objects of an assignment operation. That js,
rewriting the value of a variable is basically not allowed in logic
programming. However, the checking and rewriting entries of cominon
tables are frequent operations in an gperating system.

Even though there are such difficulties, the uniformity of the
system is very important especially in a personal machine[S] If a
different lanpuage is introduced for system description, the user must
be familiar with both the low-level system language and high-level
user languages. This situation makes it difficult for the user to
understand the operating system and to maintain its system software.
Az for the machine architecture, this situation leads to incomplete
optimization of both the system and user language, because each
languspe requires different characteristics. Therefore, it is
desirable to unify both the operating sysiem and user applications in
the same languape concept.

Because of this consideration, it was decided to make the
operating system in logic programming. To achieve this aim, a
low-level system description capability was introduced into Prolog.

Furthermore the concept of object oriented programming was also
introduced for description of the PSI operating system.

(4) Evaluation and Measurement

To evaluate PSI machine architecture design, the measurements of
the detailed characteristics of machine's behavior is necessary. And
its evaluation results will become quite important to improve the PSI
architecture and to develop the next advanced inference machine. It
will also be quite useful to measure the profile of the logic programs
on PSL. PSI has the evaluation support mechanism both at the hardware
and firmware levels, and detailed information can be gained without
measuring overhead.

(5) Flexibility

Since the authors do not have enough experience in logic
programming, the P51 target langusge may be revised in the future.
Further, ¢o design better logic programming languages is one of major
subjects of our project. Therefore, the machirc architecture should
support the execution of several languages, one for a tool and the
other for ecxperiments. The microprogrammed implementation of a
language interpreter makes this possible.

4. Machine Langoage

Onz of the key factors in determining machkine architecture is the
level of its machine language. PSI is designed for effectively
executing logic programming languapge, and the FGCS project chose
Prolog as a starting point. After that, the several extensions of
Prolog were required as described inm section 3, such as a low-level
systcm description capability. Therefore, FGCS Kernel Language
Version 0, KLO[6], was designed as a uniform programming language to
satisfy the requirements from low to higher application levels.

4.1 KLO

KLQ has syntax similar to DEC-10 Prolog except for internal
datiabase operations such as assert and retract operations. KLO is
used to describe the PSI operating system in order to achieve a
uniform, self-contained personal system. Therefore, KLO includes many
built=sin predicates which can directly manipulate the hardware
resources, refer to arbitrary memory locations, and perform system
control functions. The features of KLO are summarized as follows

o a subset of DEC-10 Prelog
o a reinforced execution control ability
o an extended ability for hardware resource handling

o an extended ability for interrupt handling and process control

4.2 Mzchine Instruction Level

In designing PSI, two possible implementations were considered.
One is to design its machine instructions as low as possible and to
generate optimized object codes by compiler. The other is to design
them as high as possible and to execute them directly by PSI hardware
and firmware. TF the target language has static features and if the
compiler can generate as effective object codes as in FORTRAN, the
former approach is better. However, Prolog has many dynamic features,
including unification and backtracking. Since the complex operation
can be optimized by hardware/firmware, it is appropriate that they be
condensed into one machine instruction as much as possible.

Furthermore, the main part of unification and backtracking is
composed of simple memory access operations. It is undesirable to
divide their operations into small codes because the machine must
fetch those codes from the memory simultaneously with operand data
fetching. To effectively fetch both small pieces of code and operand
data at the same time, a sophisticated instruction prefetch unit is
nNecessary.

Because of the above considerations, it was decided that PSI
machine lanpuage level would be slmost cqun! to KL0. In other words,
PSI was designed to directly execute KLO.

Fig. 3 shows the language hierarchy of PSI. For end-users, a
high-level, end-user language is provided and its compiler written in
KL(0. At the system designer level, a macro assembler language of KL0,
called ESP{7)}, is used and its compiler is also written in KL0O. All
these programming languages are compiled into internal object form and
then executed directly by PSI firmware system.

PSI firmware system consists of two parts. One is a KLO language
interpreter, and the other is system control routines for operating
system support. Process switching, interrupt handling, and exception
handling are involved in the latter group.

B ey

'
r
.]
Svstem M“" Interpreter
Programmer Caompiler !
f
/

i '
Compiler ’

&
\ -
=
L
-

":-!-h1 ernal Object F-n!:r'.\

W

Firmware m"

[tesigner

Micro
Frogrammed
kL

Inrerpreter

Svstem Contruol

Micro Program
Houtines

{M-H: ro Instruciiung }

Fig. 3 P56 lanpuage herarchy

&

5. Interpretation of KLD

Since KLO is similar to DEC-10 Prolog, the interpretation
mechanism is also similar{8] FEssential operations reguired for
executing Prolog are clause invocation, unification, and backtracking.
These operations could be implemented in various mechanism. However,
if their effective execution is emphasized, a stack mechanism may be
most practical in the current state of the art. Since PSI is intended
to be a practical machine, it was decided that it would be designed to
be as simple and effective as possible.

5.1 Stack Oriented Interpretation

As a result, the interpretation of KL0 is performed by using 4
independent stack areas; control, local, global, and trail stacks.

The control stack is used for keeping track of execution
environment, and various control information is saved into this stack
in order to control the execution seguence of clauses and to reset the
environment during backtracking.

The local/global stacks nre used for locating variable cells
dynamically. The scope of each wvariable is localized within the
clause, and its variable cell is allocated in the local/global stack
areas when that clause is called from some other clause.

There are two types of variables, local and global. A global
variable is one which is an argument of structured data. Since
structured data is shared among clauses, this type of variable can not
be deleted until on execution fails or garbage collection. This is
the reason for isolating local and global stacks

The trail stack is used for saving the cell addresses each of
which the value is bound to. When backtracking occurs, the values of
the variables are reset to unbound status using these saved ccli
addresses.

Fig. 4 shows the KLO execution environment. The object codes
are loaded into a heap area. The PSI microprogrammed interpreter
fetches both the caller and callee codes and executes unification
between them by creating environments in 4 stacks.

In this interpretation, several stack frame base addresses should
be kept in working registers. They are local stack frame base, global
stack frame base, object code address, and so on

The detailed usage of stacks is similar to DEC-10 Prolog.
However, since KLO has more complex execution control features, such
as remote cut, stack control is more complicated than in DEC-10
Proleg. For this reason, control stack is separated (rom local stack

in PSL.

P QR 5.
’_,-"/L!’I"I'”Il'ﬂ'lit‘h
R - T.U.

- Frame Hase
of Cailer

" Frame Base
of Calles

+ Top of Stack

« Imstruction
Counter aof

Y,

Ohject Cnde

Insiruction
Counter of
allee

Caller

Heap Area

Trail
Caontril

=
o

R T
o

Fig. 4

; k
Glabal i Stacks

Luecal

Erxecution envirenment of KLO

5.2 Structure Sharing

Another key point affecting the machine architecture is the
manipulation of structured data. There are two methods of
representing structured data, one is structure sharing[9] and the
other is structure copying. Fig. 5 shows typical data structures for
each data representation. The characteristics of those two methods
are opposite as shown in Table 1. Superiority of one method to the
other depends on the characteristics of the program. That is, sharing
is suitable for programs that frequenily use large structured data and
do not frequently access their elements. However, if programs use
relatively small structures, such as lists, and frequently access
their elements, the copying method is suitable. Althoush the copying
method is simple, the sharing method has been chosen for PSI because
of the following reasons.

¢ Since structured data can be easily manipulated in Prolog, the
usage of large structures will be expected high.

o The average copying overhead might be larger than access
overhead of shared structure elements.

o For large structured data, the sharing method is very efficient
in terms of memory utilization and execution speed.

Using structure sharing, 8 structured data is represented by
actual vazlues gnd its structure. Therefore the variable cell should
have two pointers, one points to the value area in the global stack
and the other to the structure representation. In DEC-10 Prolog, each
variable cell has these two pointers. In this implementation, the
size of each pointer is limiied to only a half word, 16 bits in PSL.

As it was intended to make full use of the large main memory with
maximum of 16M words, the packing of these two pointers into one
variable cell was abandoned. Therefore, this pair of pointers is
allocated in the global stack as shown in Fig. 6 whenever the
variable binds to the structured data.

Sirucivre Copying

F
Value Cell x
Value Cell Y

Structure Sharing

Frame Address -

Skeleton Address =,

7

DNata Structure
with Yalues

F Value Cell X
X Value Cell Y
Y Value

[Jata Suruciure

Fig- 5§ Empiementing struciured duta FIX YD

Table 1 Struciure sharing v.s structure copying.

Shurning Coming
s EUETES s . I
Limly to Mo copy operanion” Copy struciure i
unhound varahle | (Share the same siructure}
Lomify 1o the Ageess glemem throueh skeleton [nrect access 1o the clement® |
wme siruciure findirect dccess) !
Il - "

® This a=pect i regarded s 20 advinusge

Global S1ack

Rkeleion Addresz o

7\

Fip. & Srructure sherng m PSE

6. Internal Data Represcntation

This section summarizes the internal representztions of daia and
clauses in PSL

6.1 Data Representation

As described in Section 2, Tag bits is adequate for interpreting
logic programming language. Although the word size is usually 32 or
36 bits in conventional computers, it is short to include tag bits.
Including the tag bits for garbage collection, B bits is required for
a tag part. If the machine is desipned as a 32 bit machine, this only
leaves 24 bits for the data part, which is insufficient for
representing numbers and addresses. Thercfore, PST adopts 40 bits for
word size, 8 bits for the tag and 32 bits as the data part. Although
the word size is incompatible with conventional machines, this causes
no problems because only the 32 bit data part is usually transferred
to/from the outside of PSIL.

Fig. 7 shows PSI word format. The tag part consists of two
parts, GC tag and Data teg. GC tog is used during garkage collection,
and data tag is used to identify the contents of the data part. For
fast data type checking, PSI Is equipped with special hardware to
dispatch micro program control according to the datu tag.

'Sl could have a maximum of 64 internal data types which are
directly manipulated by herdware/firmware.

One group represents data types defined in KLO. They are listed
in Fig. 8. For practical requirements, PSI can manipulate floating
point numbers and several types of string data. Especially,
double-byte string data is prepared for representing Kanji characters.

A vector data type is used to represent slmost all structured
data including list structures, and its length is shown in a extra
descriptor. Since small structured data may be frequently used in
programs, it can be represented without the descriptor. In that case,
3 bits of the data tag are used to indicate the vector length as shown
in Fig. 9.

Another group is used for representing the object form of clouses
as described next. The other growp is prepared to control
interpretation of KLO. Some examples of them are an invisible pointer
or a frame base pointer.

% a7 31

Data
\ Tag Data
(2 e\-‘ﬁ - £32)
GC Tag

Fig. T Word forman.

— Priminave Dats Types
Alom
—— inteper
] --- Floanng Powmt Number
| — Liig Integer
| — Hig Flodting Point Mumiber
— Locanion
Wariables
- Srructured Data Types
— Vectior
— String
-= Bit String
Hvie String
~ Double Byvies String
- Code

Fig. & [ata twpes in KLO.

EE‘EM .-.—--"""d_._'_“

‘—'—-\..v——"
Data Tag

Fig. 8 Representation of 2 small vemor,

n elements

Onad

6.2 Ciause Representation

The general form of a clause in KLO is the same as the Horn
Clauses in First Order Logic as shown below.

F{:’:ltxl—-] = Q{YLYIML HZ1,Z2,)

There is at most one predicate appearing at the left part of "-"
which is called a head predicate. The right part of “:-" is called
body goals which consists of an arbitrary number of predicates,
including zero.

These KLO clauses are translated into internal object forms by
the compiler written in KLO. The basic representation of an object
form is shown in Fig. 10, Each clause is packed into & block of
contiguous memory cells. A "procedure” is defined as a collection of
clauses whose head predicate names are the same, and the object form
is gencrated in the unit of a procedure. Therefore the PSI object
code consists of a procedure header and the number of blocks of
clauses. The procedure header represents the number of its arguments
and the size of the object code.

Each clause is represented by a clause header, head arguments,
and combined body goals. The clause header represents the clause type
and the number of the variables included in the clause. Each argument
in the head predicate is compiled into corresponding one word internal
form. In the case of such constant argument as an atom or an integer,
it is represented in the immediate value.

Procedurs MNarg | Code Size
Header Heserve
[| Type [Narg j.\'mcal JN;'in':ul }C[ause Header
Clause Head Arguments]_.’Hr.ad
!
Fredicate Call
Clause < User-defined
Representatien ATRuienLs Fredicare Call
Add | Argl Ared [Argd }Eulli-lnl“rcdicatt Call
ledirect Predicate Call]
Indirect
fpre-d:cale Call
Arguments

Mext Clavse

Fig. 10 Representation of & procedure.

i

The representations of body coals are placed following head
arguments. They are used to further predicate calls. There are three
types of predicate calls.

(a) User-Defined Predicate Call

This predicate call invokes a user-defined clause. A goal
predicate name is compiled into the pointer to the code corresponding
the called procedure and goal arguments are placed continuously after
this pointer.

{b) Built-in Predicate Call

This predicate call invokes a built-in predicate. The function
of built-in predicates is to efficiently perform primitive and
frequently used operations such as arithmetic and logic operations,
string data manipulation, system control operations, and so on. Most
built-in predicates are packed into one word to make the
representation compact. It consists of an 8 bit operation code and
maximum of three 8 bit operands

{c) Indirect Predicate Call

This predicate call invokes some user-defined clause through an
indirect pointer. Since this indirect pointer can be modified by the
program, it is possible to dynamically change the procedure to be
called.

Each body goal of a clause can be regarded as the condition which
makes the head predicate true. They are connected in tree different
types; AND, OR, and CASE connections.

{a) AND Connection

The AND connection indicates that the head predicate is true if
and only if all body goals are true. Each goal is continuously placed
as shown in Fig. 11-(a). The AND connection means that each goal is
executed sequentially and if a goal is failed, backtracking occurs

(b) OR Connection

The OR connection indicates that the head predicate is troe if
and only if one of the body goals is true. This connection is
represented by an OR instruction as shown in Fig. 114b). At the
first execution, the first poal is tried. If it fails, the second
goal is tried next. Each branch of the OR connection may be composed
of several gosls. Therefore this branch is the same as an ordinary
alternative clause except that it is included within a clause and
sharing the same environment with it.

{c) CASE Connection

The CASE connection can be regarded as a case branch operation
Fig. 11-{c) shows the internal lorm of a CASE coancction. It is
different from the OR connection, in that if one of the goals
consisting of a case connection is selected, the remaining goals are
never tried.

As described above, each clause in KLO is directly translated
into 8 sequence of words which include all the information of the
original clause. There are no explicit machine instructions to
perform unification and backtracking. All of them are implicitly
executed by the PSI microprogrammed interpreter.

H:=Rl K7 K31, H:- B1:B2 B3 H:-case Inds, 31,182 . B2
Header Parg Header 1*arg Header Bart
= - -
Arguments - - Arpuments - - Arpuments -]
- of Head e - ol Head - L. of Head -
e | = Lol
i 17 Gaal B1 ALl °
Goal B2 [““] &]
— L -
e =] i Gual B2 Goal B
. i % T |
Goal B2 | BRI - —
l Goal BI ’l
Gozl B2 J
I-H"'-f
(inal B2
La ' AND Cannecevion b 0O Connection tc CASE Connection

Fig. 11 Hudy pnal conpection

7. Addressing Mechanism

For the machine architecture specialized in logic programming
language, it is desirable to logically provide 2n infinite memory
space, and from this point of view, a virtual memory sysiem is
attractive. To introduce it into the inference machine, however, it
is necessary to resolve the problems rclated to garbage collection
within the virtual memory space[l10} Since it is impossible to
collect garbage in the infinite memory space, some new algorithm might
be required to localize the operation of a garbage collector. In
addition, the substantial memory capacity required for practical
applicstions is not well known. In consideration of present research
status, it was decided that PSI would be equipped with a large main
memory instead of a virtual memory system. A 16M word main memory was
chosen, being based on experience with DEC-10 Prolog.

7.1 Area Based Logical Addressing

Although PSI incorporates o real main memory, it has a 32 bit
logical address space. This logical addressing is introduced for the
following reasons.

o Since PSI microprogrammed interpreter uses the four stacks described
in section 5., it is desirable to be able to expand each stack area
independently. If the same space is allocated to cach of these
stacks, a collision between stack areas will occur. At that time, one

of them must be moved to znother locaticn. This cavses serious
overhead.

o Since PSI supports multi-processing, areas as for each process
should be separated from those of other processes.

PSI logical address space is divided into 256 independent areas
The concept of “area" is the same as in segmentation. The size of
each area can be logically expanded to a maximum of 16M words.
Obviously, the total area size is physically limited to a maximum of
16M words.

Area usage depends on the memory managemert system. However, it
may become a heap area or one of four stacks.

The area is managed by the unit of a page, and page size is 1024
words. Therefore, each area can have a maximum of 16K pages. Il the
page size was smaller than this, the memory space could be more
effectively used. However, the page allocation would occur more
frequently, and it would increase memory management overhead.

As a result, the memory cell in PSI is accessed by an area
number, 8 page number, and inner page offset as shown in Fig. 12.

As the interpretation of KL0O requires four stacks, each process
consumes at least four areas for its execution environment. Since PSI
has 256 areas and processes share heap areas, a maximum of 63
processes can exist in PSIL.

L) 3l 23 2

G| Data Area

c| Tag % umber Fage MNumber |Inner Fage Offset

13 b TR (14 105

Fig. 12 Arca based lopical address forma

Logical Address Az PG=

B CArea Table
F14 410
A=

t TTE - _
}]3 Page Tahle

Area Tahle Memory
256 entries 1

Ttage Tahie Memory
32K entries:

Physical J"Ld'd:rcss[PPG = l OFFSET

Fig. 13 Address transbation mechansm.

20

7.2 Address Translation

The address translation mechanism is shown in Fig. 13,
Translation from a logical to a physical address is performed with two
tables: an arca table and a page table. Each entry in the area table
specifies the base address of a corresponding page table allocated
within the page table memory and each entry in the page table
represcnts a physical page address corresponding to the logical page.
As a first step in address translation, the area table is accessed
using the area number, and a page table base address is obtained.
Then the page table is accessed using the sum of the obtained page
table base and the page number. Finally, by concatenating the output
of the page table and the page offset, 8 24 bit physical address is
obtained.

Since PSI did not use a virtual memory system and the capacity of
its main memory is physically limited to a maximum of 16K pages, the
sum of whole page table entries is also limited to 16K entries. For
this reason, PSI holds whole page tables in a fast memory, called a
page table memory in addition to 2o area table memory for the area
table. Using their hardware, the address translation described above
is performed in only one machine cycle.

The total amount of page table entries is limited, however, the
size of each page table is dynamically changed. That is, it is
impossible to predict how many pages are required for each area. This
means that the system can not determinately allocate each page table
in the page table memory. To resolve this problem, the PSI memory
manager accomplishes housekeeping of the page table memory.
Initially, each page table is allocated scatteringly in the page table
memory. When a new physical page is allocated to an area, its page
table will be extended by one entry. At this time, if the page table
has been adjacent to the next page table and there is no room for
adding the new table entry, the memory manager performs rearrangement
of page tables. To reduce the occurrence of this pnpge table
collision, an arrangement algorithm must be considered and the size of
the page table memory should be as large as possible. PSI is equipped
with a 32K entry page table memory which is two times larger than the
required capacity.

To manage a lot of page tables, it is common to use a Translation
Lookaside Buffer (1LB) in conventional machines. Although above page
table memory management is a little complex, PSI did not adopt TLB for
the following reasons.

o Since TLB is regarded as a sort of cache memory, the
translation table in the main memory must be accessed when the
required logical-physical address pair does not exist in TLE.

o0 Since the garbage collector must search all memory space, the
locality of memory access is expected to be mot so high.
Therefore, TLB might not work well during garbage collection.

o Implementation of TLH is complex in itself, and requires a
complex interface mechanism between itself and the main memory.

8. Conclusion

Compared with conventional machine architectures, the main
features of I'SI is summed up in iis machine instruction set based on a
Prolog-like logic programming languspge, KL0O, which is executed
directly by 2 microprogrammed interpreter. Many architeciural
features are arranged sround to effectively support direct execution
of KLO. This paper focuses mainly on this aspoct.

Another feature is that the PSI operating system is to be
entirely written in KLO, and PSI itsell is equipped wilh support
facilities for it at the machine architecture level.

The detail hardware design is almest finished and design of its
microprogrammed interpreter has already begun. To evaluate of PSI
machine architecture, several experiments and measurements are
planned. Since many software products will be made on P5SI, it will be
possible to gather program profiles of the logic programming. This
eviluation data will be useful for designing the next advanced models.

ACKENOWLEDGMENTS

The authors express their grateful thanks to Dr. Takashi
Chikayama [or his valuable advice, to Mr. Kazubiro Fuchi, Director of
the ICOT Research Center, and Dr. Toshio Yokoi, Chief of the Third
Research Laboratory for their continuous encouragement, and to other
members of 1007 for their useful comments and discussions.

REFERENCE

[1] "Outline of Research and Developments for Fifth Generation
Computer Systems”™
ICOT Research Center, April (1983)

[2] Pereira, L.M., F.C.N. Pereira, and D.ILD. Warren
"User's Guide to DECsystem-10 PROLOG"
Department of Artificial Intelligence, Univ. of Edinburgh (1978)

(3] Murakami, K., T. Kakuta, T. Miyazaki, N. Shibayama and H. Yokota
“A Relational Database Machine: First Step to Knowledge Base
Machine"
Proc. of 10th International Symposium on Computer Architesture
(1983)

[4) Shapiro, E.Y.
“A Subset of Concurrent Prolog and Its Interpreter”
ICOT Technical Report TR-003 (1983)

[5] Ingalls D.H.H.
“Design Principles Behind Smalltalk”™
Byte Vol. 6-8, August (1981)

[6] Chikayama, T., M. Yokota, and T. ilattor]
"Fifth Generation Kernel Language”
Proc. of the Logic Programming Conference "83 (1983)

[7] Chikayama, T.
"ESP - Extended <elf-contained Prolog - as a Preliminary Kernel
Language of Fifth Generation Computers™
New Generation Computing, Vol. 1 No. 1 (1983)

[8] Warren, D.H.D.
“Implementing PROYLGG - compiling predicate logic program”
Vol.1-2, D.AI Research Report No.39-40,
Department of Artificial Intelligence, Univ. of Edinburgh (1977)

[9] Bayer, .S and J.5.Moore.
"The Sharing of Structure in Theorem Proving Programs”
Machine Intelligence Vol.1-7, Edinburgh Up {1972)

[10] Cohen, J.
“(zarbage Collection of Linked List Data Structures”

Computing Surveys, 13-3 (1981)

[11] Uchida, S, M. Yokota, A. Yamomoto, K. Tuki and H. Nishikawa
"Outline of the Personal Sequential Inference Machine: PSI"
New Generation Computing, Vol.l No.l (1983)

[12] Nishikawa, H., M. Yokota, A. Yamamoto, K. Taki end 5. Uchida
“"The Personal Sequential Inference Machine (PSI) fts Design
Philosophy and Machine Architecture”
Proc. of Logic Programming Workshop "83 (Portugal 1983)

