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ESP is a logie programming language based on PROLOG and is
intended to be used on sequential inference machines currently belng
developed at ICOT research center, ESP is designed for ease of
writing systems software ineluding the operating system of the
sequential inference mechine itselfl.

ESP is compiled into ELO, the machine languege of the sequential
inference machine. FLO iz =a PROLOG-like langeage with several
extensiocns. Various features of KELD are almost directly available in
ESF. They include:

o Onification, a= the hasic parameter passing mechanlsm,
o Backtracking, as the basic contrel structure, and
¢ Various Built-in Fredicates.

Main features of the ESF language, aside from those provided by
ELO, are: :

o Object Oriented Calling Mechanism,
¢ Class and Inheritance Mechanizm, and
o Macro Expansion Mechaniam.

This manual describes language Cfeatures of ESP gxcept the
features of KLO.
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CHAPTER I

INTRODUCTION

I.1 Language SUummary

ESP is a logic programming language based on PROLDG and is intended to
be wused on sequential inference machines currently being developed at
100T research center [Uchida 83]. ESP is designed for ease of writing

systems software including the operating system of the sequential
inference machine itself [Hattori 231.

ESF is compiled inte ELO, the machine language of the =sequential
inference machine [Chikayama 84]. KLO is a PROLOG-like language with
several extensions. Various festures of KLO are almost directly
available in EZP. They include:

o Unification, as the basic parameter passing mechanism,

o Backtracking, 2s the basie control structure, and

o Various Built-in Predicates,

Main features of the ESP language, aside from those provided by KLO,
are:

& Object Oriented Calling Mechanism,

¢ Classz and Inheritance Mechanism, and

o Macro Expansion Mechanism.

This manual describes language features of ESP gxcept the features of

¥LO. For about KLO, a summary of the KLO built-in predicates is given
in an appendix. For more details, see [Chikayama BA4].

-1 =
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I.1.1 Object

in objeet in EZP represents an axiom set, which is basiecally the same
econcept as "worlds™ in some FROLOC systems [Caneghem 82]. The same
predicate call may have different semantics when applied in different
axiom szets. The axiom set to be used in a certalin call can be
specified by giving an object as the first argument of & call and
preceding the ecall with a ecolon (:) to notify the set that the
semantios of the gali should depend on the first argumesnt,

4n object may have slots each of which has its name and 1its value.
Suck wvalues can be examined by certain predicate using Ltheir names,
i.e., the slot values defines a part of the axlom set. The =lot
values san also be changed by certain predicate calls. This
correspends to altering the axiom set represented by the object. This
pechapism is similar to "assert® and "retract™ of DEC-10 FROLOG. The
difference is that only the slot values can be changed in ESF, while
any a2xioms can be altered in DEC-10 PROLOG.

I.1.2 Class and Inheritance

in objeet class, or sipply a class, defines the characteristics common
in a group of sipilar objects, 1l.e., objects which differ only by
their =let values (only values; slot names are common in the objects
of the same class). An object belonging to a class 1s said to be an
instance of that class. A claas itself is an object which represents
a certain axiom set.

b elass definition consists of a mature definition, s=slot definitions
and clause definitions. There are two kinds of slots and clauses.
Slets and clavses for the class itself and those for the instances of
the ¢lzas, The former ones are czlled elass slots and class clauses,
while latter ones are called instance slots and instance clauses,
reapectively.

The nature definition defines the ipheritance relationship concerning
the class. Multiple inpheritance mechanism similar to that of the
Flavor system [Weinreb 81], rather than the single inheritance secen in
Smalltalk-80 [Goldberg 83], is provided in ESP.

The most remarkable feature of the inheritance mechanism of ESF 1s
methods are oconsisting of 2 ecertain AND-OR combination of predicates
defined in inherited eclasses. By this inheritance mechanism, c¢lasses
ferm 2 network of "IS=A" and, with the aid of slots, "PART-OF"
nierarchy can a2lso be formed,

Clause definitions are used for defining a PROLOG-like clause, In a
declaretive point of view, a2 clzuse expresses an axiom in & form of a
Horn olause. In a procedursl peint of view, a clause specifies
procedural steps to be taken when a predicate is ealled. Like slots,
there are elass elaupses and instance clauses. There alac are local
clauses which define non=cbject-criented locel predicates.
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Clauses for methods are further classified into three types, namely,
before demon clauses, primary eclauses and after demon clauses. Before
demon clauses with the head having the same functor and same arity
form a before demon predicate; primary clsuses and loecal clauszes form
a primary predicate, and after demon clauses form a after demon
predicate, respectively.

Predicates are not called directly, except local predicates,
Predicates &are called through methods. A method is 2 certain AND-OR
combination of these predicates defined in a o¢lass or its super
classges.

I1.1.3 Hacro Expansion

Macros are for writing mets-programs which speeify that programs  with
80 and =m0 structure should be translated into such and such Programs.
Macros can be defined in 2 form of an E2SP program, fully utilizing the
pattern matching and logical inference capability of logic programming
languages.

A macro invocation in ESP 1s not only expanded to the specified
pattern &t the place where 1t is given, but may also affect the
program ground it, by inserting certazin goals specified in the macro
definition. This gives a very flexible ability to the macro expansicn
méchanism of EZP,

I.2 Syntax Description

L somewhat extended BNF is employed in this manual for deseription of
the language syntazx. Extensicns are:

o ®X® indicates a terminal aymbol X. Within X, consecutive two
double-quotes mean one double-quote, i.e., """" means & terminal
symbol consisting of a single double-quote;

o { X} indicates arbitrarily many (including =zera) repeated
aAppearances of X;

o [ X J indicates X eor weid, i.e., ¥ is optiopsl.
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LEXICAL STRUCTURE

This chapter describes the lexical structure of

I1.1 Characters

Characters used in ESP programs are categorized

SYNTAX

ESF programs.

az follows:

¢lowercase letter? ::=
<kanji character>

| Nyt l apt | LT i ndgn : namn = L I
: mhRH 1 nym : ﬂjﬂ = At | nym 1 g™ |
| ngn I npn I g™ | "pt i ngm | LEAL |
J Nyt : g™ I gt | Hrﬂ | hzﬂ
<uppercase letter> :i:i=
F L | ngn : Ll I apw [ RER ] L i
: A" i L ; njn | mE® i L3 LU LI
J ngn r mpm | ngm | nRA | nge | LL L] ]
E ngn F nio { L 4 | nyn l ngn
digit> ::=
ngn I nyw I nan | H3H i nun
| msm | mgm | nwyn | mgw | mgn
¢special character> ::=
nyn : “E“ : ngn I u*n [ nen | ngn |
P oaam | nzm | oA=m | nn | ngr |omsn o
I rgM o [omum

{formatting character> ::=

Hsﬁ
"n"
Uit

ngw
nym"
L | L

nEn [ H*H
LAY = LI

nom | ¢line separator?» | <tabulation codel

<delimiting characters ::is
LT H}H | n{n ! H}ﬂ | n[n | H]ﬂ
: HlH ] n;n ] FERH [ mER ] H!H

— S

T
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IT.2 Lexical Element

ESP programs consist of lexical elements. They are names, numbers,
charaoter strings, variebles, and delimiters.

SYNTAX

{lexival element> ::i=s
<name’r

<numbers
<character string>
<variable?
<delimiter:>

Examples of lexical elements:
icot 123 Fabaol X 1

Each adjacent lexical elements must be separated by formatting
characters or comments when otherwise ambigucus. An arbitrery number
of fermetting characters or comments can be inserted between two
lexical elements without changing the meaning of the program, unless
explicitly stated otherwise in this manual.

% comment starts with a percent character ("$") and is terminated by a
line separator. Any characters except a line separator can appear in
a commernt (including percent characters).

Example of a comment:

% This is a comment.

No formatting characters are ellowed inside a lexical element except
as a name string character or a string character, eppearing in quoted
cherascter strings (see balow). Comments alsc are not zllowed inside a
lexical clement.

IT.2.1 Haoe

Zome entities in ESF programs are accessed using thelr names.

fhame? :i=
{lowercase letter» { <letter> | <digit> | "_" |}
| ¢special charaeter® [ <{specizl chzracter> }

| fquoted name>

{gucted rame> tis
#tin § {name string character> } "'7
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<name string character> iz
<any character except apostrophes» | min

Examples of names:

icot name_with_undersacore "A Quoted Name'
Names zre associated with a character string called name string, which
conaiats of characters used 4in the name. For quoted names,

apostrophes in both sides are omitted and amy duplicated apostrophes
inside are contracted into one.

I1.2.2 Number
There are two types of numbers in ESP, namely, integer mumbara and

floating-point numbers.

SYNTAX

<number» ::= <(integer mumber» | <flcating-point number:
tinteger number> ::= <digit sequence>
<fleoating-point number> ::i=
<digit =equence> "." J{digit sequencel
[ <exponent part» ]
<digit sequenced ::=z <digit> { <digit> }

<exponent part> ::=
wEm o[ omar §oran ] (digit sequenced

Examples of numbers:
1984 3.14159265 £1.278
Hote that only positive numbers are provided &= a lexdcal element.

Negative numbers can be represented by complex structures consisting
of & prefix operator "=" and a positive number.
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I1.2.3 Character String

There are three kinds of strings in ESP. They have 1=bit, B8=bit and
16-bit elements and are called bit strings, byte strings and double=
byte strings respectively. Only double-byte strings have a character
string format in lexical element level %o denote their values,
Strings of other types can be dencted using a vector-like compound
syntax (see below).

B SINTAX

<character string?» ::=
rawi | <string character> |} mwww

<string character> ::=

<any character except double-guotes:
: AAAE HAANN

Examples of character strings:
"This is a string® "ENEBC"T {5 a string."

Double-quote characters pust be repested twice in a character string.
They are interpreted as a single double-quote character,

II.2.5 Variable

SYNTAX

cvariabled ::=
<varizble beginning characters
{ <variasble trailing character> ]

<varieble beginning character> ::=
{uppercase lettepy | "_"

<varisble trailing character® ::=
{lowcrcase letier)
| <uppercase letter®
| <digit>

Examples of variables:

X P3C &8 _variable
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£11 the cccurrences of variables denoted by the same character string
appearing within a meacre definitien, = clause definition or a slot
definition item designates the same logical variable. The only
exception is that occurrences of variablez dencted by only one
underline character are considered to be designating independent
logical variables. Sueh variables are called ANONVIOUS variables.

1I1.2.5 Delimiter

Delimiters consist of & single delimiting charecter and are used for
verious purposes described below.

STNTAX

¢delimiter> ::= <delimiting character>
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STNTACTICAL STRUCTURE

& program of ESP consists of one or more definiticns, each being
represented asz a ternm. A term 1z constructed uzing one or more
lexical elements according to the syntax rules given in this chapter.

III.1 Term

Baszically, the syntax rules of ESP are those of an operator precedence
Erammar augmented with speciel notations for wvectors, strings,
compound terms and linear linked list struetures,

SYNTAX

cterm» :::=
l'r[h <term) 'I'I]l'l'
| <variable>
! <atomic literal>
| <compound literald
| <elass ohject>

<oompound literal) ::s
<vector>

<atring>

<compound term>
<operator applicationZ
£iist>

Examples of terms:

& N fix, ¥J {a, b, o} i+Y (3%%+Y)
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ITI.? Atomic Literal

An atomic literal is either a name representing a symbecl or & number.

SYNTAX

¢atomic literal} ::= <symbol> | <number>

<gymbol> 1:= <name>

Examples of atomic literals:
ieot 1964 3.14159
in atomic literal itself is =ometimes called the pripeipal functor of
itself. The arity of an atomie literal 1is 0.
III.3 Vector
The veector notationm is one of the most basic notations for compound

literals. Apother basie notation 1= that for strings. Others are
merely shorthand nectaticns of this vector notation.

e e @\ SYNWTAE __ o
<yectord ::= <null veetor® | <non-null vector>
<null veetor> ::z M{}"

<non=null vector® ::= "{" <term list>» "}"

{term list> ::= <term> { "," <{term> }

e ———————————— a—

Examples of vectors:
{} {1, 2, 3}

Elements of a non-null vector written in this syntax are the terms
which appear in the term list. Their indicea begin with zero and go
up to the number of the elements minus cone, from left to right.

The first {index 0} element of 2 nen-null wvector 415 called the
principal element of the vector. When the prineipal element of a
vector is a symbol, it is sometimes called the prineipal funetor of
the wvector. When the principal element is 2 symbol, a vector can &lso
be denoted in 2 form of 2 compound term. In such a case, the number
of elements of the vector minus 1 is called the arity of the wvector.
Note that an atomie literal is said to ke the prineipal functor of
itself, in which case the arity 1is 0.

- 10 =
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ITI.4 String

There are three kinds of strings in ESP. They have 1-bit, 8-=bit and
16-bit integer elements and are called bit strings, byte strings and
double-byte strings respectively. Double-byte airings have a
character string format to denote their values. 3trings of all these
three types can be denoted by specifying their components one by one
as integer values.

STNTAX

<stringr ;=
{character string>»
| <string type specifier> ":" <string elements>

<{string type specifierd ::s
"bit=" | "bytes" | "double bytesa"

<sztring elements» ::=
m{}m | "{" <integer list> "}»

<integer list>» ;:=
<{integer number> { "," <integer number> }

Examples of strings:
"a string" bits:{1,0,0,1,1]
Values allowed az integer numbers appearing in string elements are;
1. 0 or 1, for bit strings,
2. between 0 and 255, for byte strings, and
3. between 0 and £5535, for deuble-byte strings.
These integer numbers are the elements of the string with their

indices zero through the number of elements minus one, from left to
right.

- 11 =
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11I.5 Compound Term

SYNTAX

{compound term? ::= <functeor> "(" <argument list> ")"
<functor® ::s <symboll
{argument list» ::= <argumemnt> { "," <argument> |}

carguments fi= <Lerm:

Examples of compound terms:
f{X) glM, B+3)

No formatiing characters nor comments are allowed between the [functor
and the left parenthesis of a compound term. This exception to the
general rule 1s for discriminating & prefix cperator applieation from
a compound tTerm, A term "+ (X, Y)" is not a compound term with two
arguments "X" aznd "Y', rather, it is an application of a prefix
operator "+" to a2 term "X, I".

Compound terms are a shorthand notation for a weetor whose principal
element 1= & symbel. The length of the vector is the number of
arguments in the argument list of the compound term plus one. Its
principal {index 0) element is the functor symbol and following
elements {index 1 and up) are the arguments of the compound term. The
index 1 element is the first argument, index 2, the second, and 2¢ on.
For example, & compound term of the forom "a(b,e)}"™ is interpreted as a
vector "{a, b, e}", whose principal element iz "a"™ and arity ls 2.

III.6 Operator Appliecation

STNTAX

<operator application» ::=
<prefix operator applicaticn>
| <postilix coperator applicalion>
| <infix operator applicationd
¢prefix operator application> :i=
«prefix operator> <term>

{postfix operator spplicationy ::=
<term» <{postfix operator>
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cinfix operator applicationy ::=
cterm» <infix operator?> <term>»

<prefix cperatorr> ::= <{zsimple name>

<postfix operator> ::= <namel

{infix operator? ::= <{namel>

Examples of operator applications:
£y} gly) a3 -15.3 plX) = g(X), r{X)

Operator applications also are shorthand forms of vector notations., A
prefix or a postfix operator application represents a vector with two
arguments with its prineipal (index 0) element being the operater
itself, and its second {index 1) element being the operand. An infix
cperator application represents a vector with three elements with its
principal element being the operator ditself, the left hand side
operand being its second (index 1) element and the right hand side
operand being its third (index 2) element.

Operators can arbitrarily be defimed by operator definition banks.
Such cperators must be used without any ambiguity. There are twe WAYE
to solve such an ambiguity:

{1} Parentheses

X+ T) + Z" 15 interpreted asz "+(+(X,7),Z)" and "X + (Y +
Z)}" iz interpreted as "+(X,+(Y,Z))".

(2) Precedence of operators

When there are two candidate operators to be applied, one
which precodes the other is applied first. Thiz precedence
relation is affected by whether one operator appears left or
right toc the cther operator. For example, the infix operator
"+" procedes "=" when "-" appears to the right of the
appearance of "+", but is preceded by "=" 1in a reverse
situaticn, This makezs "I + ¥ - Z" to be interpreted as "(X +
¥) - Z" and "X - ¥ 4+ Z" asz "(X - YI) + Z"., Precedence
relations can be declared in operator definitions.

- 13 -
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ITI.7T List Structure

SYNTAX

<limty» :s:= <null list> | <pon-null list>
<null list> ::= °[]1"

fnon=-null list> ::=
rlm <term listy [ "] <term>» ] "]®

Examples of lists:

[] fa, f(X), 3] [Head | Tail]

The list notatiomn alsc is & shorthand notation of the veotor notation.
A list netation of the form "[X | ¥]" iz a shorthand of "{Y, X}" {note
that elements are reversed), A4 list notation of the form ©[XI, ...1"
iz a shorthand of "[X | [ ... 1 17. A null list denotes a symbol

whoze print name iz "[]". Thus, a list "[a, b, ¢ | d]" i= a shorthand
for "{ { {4, <}, b}, al".

- 14 -
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CLASSES

4 class defines characteristics common in a group of similar objectas.
Here, ftwo objects are called similar when they differ only by their
slot values. When the characteristies of an object is desciibed in a
class, the object is said to be an instance of the clasa,

IV.1 Clas= Object

A class itselfl 1s also an object. Such an object is sometimes called
a elass object to distinguish it from usual instance objects.

Clase objects can be written dewn as a constant using the class names.
Only eclass cbjects are static objects which have the explicit literal
notation and directly accessible. Instance objects are always created
dynamically and should be bound to & certain variable or put into a
slot of anciher accessible object, if they ever are of any later use.

S . SYNTAX

<elass object> ::= "M <{class napmed

<elass namer ::= <{pame’

Examples of class objects:

fbazic_window fclass with_a_long name



CLASSES Page IV-2
Class Definiticns G3 Feb BY

Iv.?2 Class Definitions
& plass definition defires slots and predicates of the glazz  it=elfl

and those of the instances of the class. Class definition i= the form
of defining executeble programs of ESF.

SYNTAX

PR - -

{plass definition> ::=
fplass" <class name’
[ <macro bank declaration> ]
"hasa"
[ <nature definition> ";7 ]
{ <class slot definition> ";" ]
{ <¢elass clause definitien» ";" 1}
I "instance”
{ <instance slot defipition> ";" }
{ <instance clause defirition> ";" } ]
{ "logal™
{ <local clause definition> ";" } ]
nenﬂﬂ H'I'I

The macro bank declaration declares which macros are to be expanded in
the class definition. The mnature definition defines what other
~laszses should be ipherited by the class, Slot definitions and clause
definitions define the template of Lhe class: the template of a class
defines slots and predicates to be inherited tc the classes which
inherits the class, 1t is oalled = template because the class
template itself i= not encugh for making the cless chiset.
Especially, methods are only defined by gathering predicates concerned
from all the dnherited classes. For detzils, see the following
sections,

Example class defiritions are given in programming examples in an
eppendix.

I¥.3 Macro Bank Declaration

Macroas defined in & macro bank whose name appears in  the macre ba nk

declaraticn can be used in the clazss definition.

SYNTAX

{macro bank declaration> :i=
"with_macro®
<macro bank name> [ "," <macrc bank namel }

{maore bank namer 1= <namek

- 16 -
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IV.4 HNature Definition

L pature definition defines the set and the order of the inherited
clazaes of & class.

SYNTAZX

P — —_— = e P

fnature definition®» ::=
"nature”
<super class namer { "," <super class named |

{super class namer ::= <class name> | TED

The inherited classes and the order of the inheritance are defined by
the following rules:

(1) If no nature definition i= given in a elass defirition, the
currently defined class itself 1s the only inherited class.

(2) Ctherwise, all the inherited classes of the classes whose names
are given in the nature definiticon are inherited. The order of
the inheritance is such that the inherited ¢lasses of the class

whose name appears f{irst are inherited first. Exceptions to
this general rule are:

o When "¥" is piven as the super eolass name, the currently
belng defined class itself iz the inherited class.

o When a elass would be inherited twice by the above rule; then
only the first inheritance i= walid and the rest are ignored.

Note that, by the rule (2), when & e¢less a, say, 4is irherited by
another class b, and yet ancother class ¢ has the name of b in ita
nature definition, the class a is alsc inherited by the elass e,
becau=e it i® an inherited cliass of b.

The defipnitions of the inherited classea (execept the defined class

itself} should be given hefpre the definition of the class inheriting
it. This inhibits looped inheritance: whern a inherits b, b can
neither directly nor indirectly inherit a.

- 17 =
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IV.5 Clauses, Predieates and Methods

Clauses are defined by clause definiticns given in a class definition.
L set of elauses with the same clause type and heads with the same
functor and arity defines a predicate. Predicates may define 2 local
predicate, or, with predicates defined in inherited classes, define a
metheod.

IV.5.1 Clauses

SYNTAX

<elasz clause definition» ::= <method clause definition>
<{instance clause definition®» ::= {method clause deflinition>
{local clause definitiend ::= <plavse definitions

<method olause definition» ::=
[ ¢demon type>] ":" <(plause definition>

<clausze definiticn? ::= <head> [ ":=" <body> ]
¢demon type> ::= "before"™ | Mafter”
<head> ::= <term>
<hody> 1:=
<goal list>
| *{ <goal list> { ";" <goal list> } ™))"
<goal list» ::= <goel> { "," <goal> }

<goald iz <method eally | <predicate calll

Heade and gosls must be a term Wwith a symbel as its prineipal funetor.
Thus, terms such az "p" or "gl(a,XI)}" can be a head or a goal while
neither "17, ®[a, b, el® nor "{{a}l"™ can.

Three kinda of clsusea can be defined in a class definition: class
clauses, instance olauses, and local clauses, Class clauses define
class method which describe the charascteristica of the eclaszs {itself.
Inatzrnoe cleuses define instance method which describe the character-
istine of the instances of the olass, Locel elauszes defipne local
predicates.

There are three types of clauses for methods: Before demon clauses
preceded by the clause type identifier "before”, after demon clauses
preceded by "after® and primary clauses which have no clause type
identifiers.

- 18 -



CLASSES Page IV=5
Clauses, Predicates and Methods D3 Feb B4

I¥.5.2 Predicates

Examples of predicate calla:
reconc(X, [ 1, ¥} member({X, L)

Predicates are the form of executable programs of ESP. A predicate is
defined by a set of clavse definitions given in a clasa definition
having the same clause type and having heads with the same principal
funetor and the zame arity.

One class definition, thus, can have up to three different predicates
with the =ame functor and the same arity: a before demon predicate
consisting of before demen clauses, a primary predicate consisting of
primery clauses, and an after demon predicate consisting of after
demon clauses,

Locel elsuses form & local predicate which can only be accessed within
the elavees given in the same class definition. Loecal predicates are
the only predicates which ecan be directly called.

Predicates consisting of elasz clauses are called class predicates,
while predicatez consisting cof instance clauses are called instance
predicates.

Only calls for local predicates can be directly specified in the
program  text; other predicates, i.e., class predicates and instance
predicates will be parts of the class template and can only be oalled
via method ealls after censtructing a method by gathering such
predicates from templates of inherited eclasaes, Cnee called,
execution of a predicate in ESF is that of FPROLOG except for built=in
control forms specially provided by ELO {See [Chikayama BU4]).

A primary class predicate with one argument and the functor name "new"
iz implicitly defined for each class. The program may not expliecitly
define a cless predicate with one argument and the functor name "new".
However, demon predicates for "new™ may be defined.

—Tg-—
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IV.5.3 Methods
I¥.5.3.1 Demon Combination

L method is identified by the class it 1s belonging to, its name,
arity, and whether 4t iz a eclass wmethod or an instance method.
Methods of = elazs which is defined by class and instance predicates
of all the inherited classes of the elass (including the class
itselfl).

n method actually consists of an AND combination of the following
three:

{1} AND combination of calls of all the before demon predicates
defirned 4in templates of the inherited classes, in the order of
the inheritance.

{(2) OR combination of calls of 211 the principal predicates defined
in templates of the inherited classes, in the order of the
inheritance.

{3} AND eombination of ealls of =&ll the after demon predicates
defined in templstes of the inherited classes, 1n the reverse
order of the irheritanee.

The order of combinetion is opposite for before and after demons. By

this ordering, demon predicates defined in a class will be properly
nested.

Thi= combiration is sometimes celled a demon combination., As the same
arguments are passed to all of the predicates in a demon combination,
varicus sorts of copmunication is possible among demons. For example,
a before demon can pass some information to the primary predicate by
instentieting certzin parts of the arguments. It 1s alsoc pessible
that the primary predicates should provide several alternative
suceesses, only one of which should be accepted by the after demons.

IV.5.3.2 Method Calls

SYNTAX

{method call» 1:=
Lnormel method call>
<olass method call>
P <irstance method ecall>

<porgiel method calld :1:= P:7™ {term>
{glase method calld ::= <golass name> "M {term>
¢instance method eslld r:= W:f Cplaas name> "= {term>
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Examples of method calls:

f Normzl method calls
:refresh{Window)
routput{Window, Character)

f Class method calls
bamic window:create{Window_class, New_window)
list handler:append(Some_package, X, Y, I)

¥ Instance method callsz
rbasic window:refresh{¥Window)
:as_output_window:output(Window, Character)

In normal method calls, the methed actually called is determined
dynamically depending on the [irst argument of the call, Thus,
methods must have at least one argument,

The first argument of a method call must be an object, i.€., & class
object or an instance object of & certain class., It must be an object
gt the time of the call: it may be a wvariable which would  be
instantiated to an object at run time. If the first argument of a
normal method call is a class cbject, a class method of the class 1s
called; if it is an instance of & certain eclass, an instance method
of the class is called. In both cases, the called method i=s one with
the =ame name and arity as the call.

In class method calls in which a class name is explicitly given in the
program, a c¢lzss nmethod of the specified elass is called. In this
ca=e, the first argument of the method call must bBe & eclass object
{either literally or dynzmically instantiated to it) and that class
must inherit, either directly or dindirectly, the class explicitly
specified in the eazll.

In instahee method ealls, an instance method of the specified eclass is
called. In this case, the first argument of the method call must be
an instance object. 4= an instence object cannct be denoted as a
literal econstant, the first argument =should be a varizble in the
program text which will be instantiated to an inatance object. The

class of the instsnee object must dinherit, elther directly or
indirectly, the class specified in the call.

Iv.6 Slota
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IV.6.1 Slot Definition

Slot definitions are specizl forms of method definitions. They give

definitionz of implicitly defined methods "get_slot" and "aet_alot".

SYNTAX

<olass slot definitiend :1i= <slot definition>
¢instence slobt definition® ::= Calot definitiom>

¢slot definition» ::=
<slot type> <slot definftion item>
{ ", <slot definition item> }

<slot type> ::= attribute | component

{elot defirition item» ::=
¢slot names» [ <slot initiation> ]
i m(" <slot names> [ <slot initiation> ]
h:f salot initiation codel W)®

<alot names> f:=
<=lot names:
| m{" <slct name> [ "," <slot pame> } ")"

¢alot ipitiaticns i:=
A:=® Ltarm>» | "is® Jelass namer

<slot initiation coder ::= <goal list:

There are two types of siots, namely attribute slots and component
slots. Attribute slots can be accessed from wherever in the program,
while component slots can only be accessed inside the same class
definition, because impliecitly defined methods for component slots
cannot be acceszsed outside the class defipition.

A elzss has the following slots:

(1) All the component slots defined in templates of the inherited
classes.

{2} Attribuie slots defined in templates of the inherited classes.
If there exist more then one attribute slots with the same name,
only the first one when searched in the inherited order is
defired, Cther attribute =slots with the same name are
eliminated.

& elass mlot belongs to the class itself, while an instance aslot
belongs to the 4instances of the class: each instance has its own
inztance slots.
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A component slot name cennot glso be used for an attribute name. For
exanple, when & class copponent "x® is defined, instance attributes of
that class cannot have the name "x".

Easch slot has a welue, which is initiated by the value specified in
the slot dnitistion. If the initistion code is specified, it is
executed before the slot iz ipitiated. This initiation process is
effected as an after demen for the class predicate new,

The initiztion code for elass slet may contain built-in predicates
only. Thiz restriction 4is not applied to initiation of instance
slots.

When the slot initiation has the form ":= <term>", the term will be
the 4initial value, Otherwise, i.e., when the slot initiation has the
form "is <class name>", a new instance of the specified class is
created by calling the class predicate "mew" of the class, and the
slot is initiated by that newly created object. This initiation style
using Mis" i= only for instance siots and is not available for class
slots.

IV.6.2 Slot Access Methods

There are implicitly defired methodz npamed "get slot" &nd "set slot®
both a2 e¢lass methods and instance methods. They are for accessing
slots eof the class object and inatznces of the class, respectively.

nGet_slot™ examines the velus of the sleot, while "set _sleot™ alters the
value of the zlot. The first argument of these methodsz must be an
object just as in explicitly defined methods; the second argument is
the name synbol of the slot:; the third argument is the walue of the
slot:; ™Get_slot"™ unifies the third ergument with the slet value while
"set slot® sets the third argument to the =slot. For a component slot,
these method can orly be used inside the same class definition. Not
even in & cless inheriting the class which defines the component.

The method "set_slot" virtually zlters the definitien of the walue
getting method, like "assert" and "retract" in varicus FROLOG systems,
though in & much more restricted manner.

Example of 2lot access melhods:

fizszume that the clas=s a has a class attributes ¢ and an instance
attribute 4. Then the class a implicitly defines the following
four method clauses:

Clazs method clauzes:
get_slot(Class, ¢, Value),
set_slot(Class, ©, Value)

Inztence method clauces:

get_slot{Instance, i, Value),
set_slot{Instance, i, Value)
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IV.7 Implementing Semantic Networks

L semantic network can be easily implemented using the multiple
inheritance, object =slot, and demon combination mechanisms of ESP,
This section briefly describes a standard way of implementing such a
network using ESP.

It should be obvious enough that an "IS-A" hierarchy can be
implemented wsing the inheritance mechanism and the demon combination.
For example, to represent the fact that sparrows are a bird and birds
are a&n anipal, the elass sparrow should inherit the elass bird, which,
in turn, should inherit the class animal. By this way, for & certain
rpethod of sparrow, all the primary predicates defined in the class
animal, bird and sparrow are OR'ed together. In other words, all the
axioms applicable to animals &nd birds are maturally also applicable
Lo 3parrows.

& P"PART-0F" hierarchy is implemented using this "I3-A" hierarchy and
object slots. Assume that we want to make two instances of class wing
to be parts of an instance of class bird., First, the definition of
the c¢lass wing =should be given. Then, a class with wings should be
defined s¢ that instances of the class with _wings holds two inatances
of wing in its =sleots. Here, & method named fly may be defined.
Finally, the class bird is defined to be a subelasz of with wings
(and, probably, also a subelass of animal); 1in other words, the class
sparrow 15=L class of objects with_wings,

Note that the multiple inheritance capability of ESF provides a very
flexible way of implementing such networks. As the class with wings
can be defined separately from the eclzss bird, any chimera class,
pegasus for example, can be quite naturally implemented by inheriting
two clazsses, borse and with _wings.
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OPERATORS

Operatora are used to denote compound literals in the form of an
operator application. Cperator definitions, which give meta-
informzticn for the program are given separately in a ferm of operator
definition banks.

¥.1 Operator Bank

An operator bank defines g set ¢of gperatorz to be used in programs.

SINTAX

<operator bank> ::=
tfoperator _bank™ <{operator bank name> "haa"
{ <operator defirition> ";" }
nﬂnﬂﬂ I1"l

¥.2 Operator Definitiom

Three types of operators, namely prefix, postfix and infix operators
can  be defined (aleng with their precedence) wusing operator
definitiona given in cperater banks.

SYNTAX

{operator definition> ::=
<operator kind» <operators>
{ <precedence definition> }

<operator kind> ::=
fprefix" | "infix" | "postfiz®

<precedenece definiticon> ::=

{precedence relation?
[ <direction> ] <cperators>
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<precedence relaticn» 1:=
"precedes” | "is preceded_by"

{directions i:
"left™ | "right"

Loperaters> ::is
<operator:
| m™(" <operator list> M)W

<operator list>» ::= <cperator> { "," <operator> }

<operatory :is <name> | "(" <nzme}x ")"

Examples of operator definitions:

infix ',
precedes ;'
precedes left 7.’

infix (*, /]
precedes (+, ~)
precedes right (®, /)
is_preceded_by ~

Mote: By the definitions above, commas will be right associative and
plus and minus signs will be left asscciative cperators.

When more than one cperator are defined in a cperator definition, it
has the =ame effect as when the same cperator definition for all the
cperators are given separately.

¥When more than one operator are defined in & precedence definitien, it
haz the same &ffect a3 when the precedence definitions for all the
cperators are given, Aincluding cross  terms. Thus, a precedence
definition of the form "(Opl, Op2) precedes right (Op3, Oph)" is
equivalent with four precedence definitions "0p1 precedes right op3"™,
"Op1 precedes right Oph™, "Op2 precedes right O0p3"™ and "0p1 precedes
right Op4",

When the direction is omitted in a precedence definitien, it has the

same effect as wher precedence definitions for both directions are
given.
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V.3 Precedence Relation

Suppose two operators X and Y are spplicable at a certaln context IT
ne precedence iz taken Jor scopunt.  Precedence relations have effect
in such casez: If X precedes ¥, then X is applied first; ctherwise,
if ¥ precedes X, then ¥ iz applied first; 4if both are not the case,
the operator application is ambigucus and thus erronecus.

The precedence relation is affected by the textual order of the
oparators oconcerned. Wow, suppose X and Y appears textually in this
order, that iz, X sppearsz to the left of Y and Y appears to the right
of X. In thiz case, what matters is whether X precedes right Y, or T
precedes left X, or neither.

In such & case the precedence of operators X and ¥ is determined
according to the following rules:

1. Precedence Defindtions
If there iz & precedence definition for X stating that "X precedes
right Y", then X precedes right Y¥. Otherwise, if there is a
precedence defipition for ¥ stating "Y is preceded by left X7,
than X precedes right Y.

2. Transitivity

If X precedes right Z and 2 precedes right Y, then X precedes
right T.

Example of the effect of precedence relations

In "] + 2 = 3", without precedence relations, it 1is not sure
whether "+7 should be applied first or "% should be applied
first. However, according to the standard precedence relations,
"." precedes right ", Thuz, "+" is applied first, and the
original term 1s interpreted as "(1 + 2} - 3",

Note that "] = 2 & 3" {is interpreted az "{1 - 2) + 3", aa ©_"
precedes right "+" in turn. This is an example of the case when
the textual order of the operators are important.

To avoid cases where two operators precede each other, & precedence
definition resulting in 2 giroular precedepce is not permitted:
Defiring an operater X te he preceding ancther operater Y which,
according to already given precedence definitions and the transitivity
rule, precedes ¥, iz an error. The language processor should check
out such ar error in the eperator definitions given in the operator
parkz whoze narez are listed in the operator benk deeclaration in
module definiticne.
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MACROS

Macros are used for defining meta-programs which translate one program
to another.

¥I.1 Macroc Bank Defirition

L macro bank definition defines a set of macro definitiona. Macros
defined in a macro bank are effective in the class definitions with
the macro benk decleraticn havirg the name of the msere bank.

SYNTAX

{macro bank definitions ::=
facro_bank <mzcro benk name: "has?
[ ¢macre definiticn» m3® |}
"Elld" "- "

Vi.2 Hacro Definition

SYNTAX

{macro definition>» ::=
<invooztion pattern> "=>"
cexpanded pattern> { <runtime condition> 1}
"ra® Cexpansion conditions

<invocation pattern> ::=z <term>
<expandcd patternk 1i= <term>
{runtime conditiany :::=

"when" <generatorl
| "where™ <{checker>
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{generator> i:= <goal lisi>
<checker> ::= <{goal list>

<expansion conditiend ::=z <body>

The invocation pattern and the expanded pattern may inelude logiecal
variables. When one appears in both, they refer to the same entity.
4 sub-term in an invocation of this macro, which appears at the
pesitien corresponding to that wardiable in the invoecation pattern,
will be included in the expanded result at the position where that
same variable appears in the expanded pattern.

The runtime conditions can alsc be inecluded in the expanded result so
as to be executed in runtime, i.e., when the expanded result is
executed. The way they are expanded will be described in the
following secticns.

The expansion condition is also a condition assoveiated with the macro
expansien. It i= executed when a macre invocation i= expanded, rather
than included in the expansion and executed in runtime. The executicn
process  of the expansion condition is the zame as that of the body of
a elause, except that when one successful execution 1is found, no
alternatives will be tried later.

For examples of macro definiticns, sSee the paseudoe definitions of
standard maeros given in an appendix.

VI.3 Macro Invocation and Expansion

L maero invocationm iz any term which can be patehed with the
invocation pabtern of & certain macro definition and the execution of
its expansion condition terminates successfully. Matchine of an
invocation pattern and the (possibly) expanded term differs from
unifieation in that, a3z for patching, the variables in the expanded
tern is treated as copstants.

Invecations appesring in & geoal and those in & cleuse head are
expanded in different manners.
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VI.3

.1 Macro Expansion in a Goal

Meero invocations appearing ip a goal in a body, inecluding cases where

goal

(1)

(2)

(3)

= themselves are 2 macro invecation, are expended as follows:

The fnvocation is matohed with the invoecation pattern of  the
macrs definition.

The expansion condition of the macro definition, if any, are
exccuted in the same way as the body of a clause.

The goal including the invocation is preplaced by & legical
conjunetion of the following three parts:

1) the geperator,

2) the original predicate call with the iovocation concerned
substituted by the expansion,

3) the checker.

Example of macro cxpansion in a goal:

With a macre definition:
¥ = Y =» I when subtraect(X,Y,Z)
the clause:
repeat(F} :- repeat({N-1)
is expanded into:
repeat{N} :- subtract{N,1,M), repeat(M)
where "M" i= an arbitrary chosen unique wvariable name.

Vi.3.2 Haero Expansien in a Head

Maero invocations appearing in the head of & clause are expanded in @&
2lightly different manner:

(1)

(2)

(3)

The invocation is patched with the dinvocation pattern of the
macro definition (the same as when inveked within a goal).

The expanaion conditlon, if any, are gxecuted in the same way as
the execution of the body of a clause {(same),

The invocation in the head is replaced by the expanded pattern.
Ibe bedy of the elsuse is replaced by & logical conjunction of
Lhe following three in this order;

1} the checker,

2} the original body, and

3) the generator.
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Example of macro expansion in a head:

With a macro definition:
X = ¥ =» I whern subtract(X,Y,Z)
the clause:
subl1{H, N-1)
iz expanded into:
subk1(N, M) :=- subtract(N,1,M)
where "M"™ is an arbitrary chosen unique variable name.

¥1.3.3 Repeated Macro Expanszion

Expanded result of a macro may include another macro invocation as ita
sub=term which, in turn, will be expanded, including the cases where
the expanded pattern itself 13 ancther macro invocation.

However, macoro expansicns are tried only in a fop-down manper. Once a
term is examined and is not recognized as a macro invocation, it will
never be treated as & macro invecation even if & later macro expansion

of its sub-terms has made the parent term unifiable with a certain
macrs invocation pattern.

Macros are expanded when the term containing the Ainveocations is
sompiled. Even if a pattern looking like & macro invecation 1s
generated during pregram execution, macro expansion does not take
place,

VI1.3.4 Controlling Macro Expanzion

When a pattern uniflable with a macro invocation pattern should be
treated as it is rather than being expanded, it should be gugted uaing
s prefix operator "'", The term prefixed by "'" is never expanded
even if it is & macrec invocation pattern. The guoting cperater "™% is
eliminated: ™ XI" means "I". The pattern "'X" itself can be written
as n“xn.

Thiz quoting is effective only flor the top-level of the pattern.
Thus, Aif the quoted term has macro invocations as ite sub-terms, they
will be expanded as usual.

Example of controlled macro expansion:

With a macro definition:
£ =¥ =» Z when subtract(X,¥,2)
the clause:
p(M,N) := aq{ ((M-3)-(N-2)})
iz expanded into:
prlH:I HE
subtract(M,3.X),
subtract{M,2,Y),
alX-1)

-31 =



MACROS Page VI-5
Macro Invecation and Expansion 03 Feb BY

rather than into:
piM, N} :=
subtracti{M,3,X),
subtract(M,2,Y),
subtract(X,¥,2),
atZ)
where "X" and "Y' are arbitrary chosen unigue variable names.

¥YI.4 Standard Macro Defilnitions

£ set of macros are defined as standard and can be used without any
explicit declarations.

¥i.A.1 Accessing Object Slota

A notation of the form "Object!Slotname™ is expanded into & form which
refers the specified slct of the object.

A notation of the form "Object!Slotname:Value®™ is expanded into a form
which alters the specified slot of the object with the specified
value,

¥1.5.2 Sharp HMacros

The sharp symbol ("#") is used in various ways for convenlently
denoting varicus entitles.

¢ A notation of the form #Class_name denotes the class objeet with
the specified class name. The class name must be a symbol.

o A notation of the form F*Character® denoctes the character code of
the specified character.

© A notation of the form Radix#"Digit sequence™ denctes an  dinteger
whose notation based on the specified radix 1is  the digit
sequence. The radix should be in the range 2 through 36.

Vi.h.3 Functional Hotation

frithmetical and bit-wisze loglcal operators can be used in a
funetional way. For example, a goal "p(X+3)" has almost the same
semantics as a goal sequence "add(X,3,Y), p(¥)n.

fvaliabie operalors are:
o+ 532 a prefix no pperation operator and as an infix addition
SPLIEROr.
o = as a prefix aritbpetical complement operator and as an infix
2ubtraction operator.

o ® 25 ap infix gultiplication operator,
e f oas sr infix givision operator.

More detzlled description of standard macros i3 given in an appendix.
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mod a3 an infix remginder operator.

/\ as an infix bit-wise loglcal and operater.
\/ a= an infix bit-wise logigcal or operator.
\ as a prefix bif-wise copplepent operator.
<< asz an infix left shift operator.

»» ams an infix pight shiflt operator.

o T o T
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APPENDIX A

EL0 BUILT-IN PREDICATES

This appendix gives & summary of EKELO built-in predicates. Orly the
mnemonic names of built-in predicates &and their zargumentsz with
argupent category are given here, For deteils, see [Chikayama B4].
A.1 Categories of Argumentsa

Arguments to ELO built-in predicates can be classified inte four
categories depending on the reguired instantiaticn status at the time
the built-in predicate is executed., They are:

Input Arguments:

Input arpuments must already be instantiated at the time of

the execution of the built-in predicate; ctherwise, an
efoeption 1s raisaed. Input sasrguments are not sSpecially
marked.

Upified Arguments:

imified arguments are unified with a eertain reselt of
computation perfeoermed by the instructieon. Thus, they may be
cither instantiated or uninstantiated. In the description of
the built-irn predicates below, unified arguments are prefixed
with =°n,

Output Arpguments:
Cutput argument must not be instantiated when a beilt-in
predicate 1s executed; otherwise, an exception ia raised.
Output arguments are prefixed with "0,

Arbitrary Arguments:
Arbitrary arguments may be instantiated or uninstantizted when
the buillt-in predicate is exccuted, and are only checked their

statua and are never unified with anything. Arbitrary
argucents are prefixed with "W,
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Data Type and Attributes

A.2 Data Type and Attributes

atom( 7X)

integer=(7X)

fleating peint({7X)
heap_vector{?Vector, “Length)
stack _vector(?Vecter, “Length)
code( 7Code, “Length)
protected_type{?X)
protectiorn_key(X, “Key)
location(?X)

etring(?String, “Length, "Size)
unbound{ ?X)

type(?X, “Type)
value(7X, "Value)

number({?X)
atomic(?X)
structure{ 71

A.3 Object Creation

new_atom{ "X}

new_heap vector(~Vector, Length)
new_stack _vector(~Vector, Length)
new_code{"Code, Length)

new string(~String, Length, Size)
new_protected_object{~0Object, Key, Value)

bL.% Structure

i.q’.‘

Element Access

vector_element(Vector, Positicon, "Element)
firat{Vector, “Element)

zecond(Vector, "Element)

gtring element(String, Position, “Element)
code_element{Code, Position, "Element)
location element(Location, "Element)
protected_value(FProtected, Key, “Value)

Page A-2Z2
03 Feb B4

set_vector_element{Vector, Position, Element}

set_first{Vector, Element)
set_second{Vector, Element)

e e e e e

£) Fredicates with thelr names marked with a
predicates, Privileged predicates can only be executed if the
instruction is stored in a privileged heap area. See [Chikayama
Bu] for details.

##) Some of the predicates are not designed to be

ngn  are privileged

used by the user

directly and are intended to be used by a little more high level

macro provided by the language processor.

vet.
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A.B.2

set_string element(String, Position, Element)
set_code_element({cde, Fosition, Element)
set_location element(Lecation, Element)

set protected value(Protected, Key, Value)

Substructure and Location

subvector(Vector, Position, Length, “Subvector)
vector_tail{Vector, Position, "Subvector)
substring{String, Position, Length, "Substring)
string _tail{3tring, Position, "Substring)

set_subvector(Vector, Positien, Length, Subvector)
set_substring(String, Position, Length, Substring)

vector_element locstion{Vector, Position, “Location)
first_ location{Vector, “Location)
second_location(Vector, “Locatien)

A.5 Arithmeties

add(¥, ¥, "R)
subtract(X, ¥, "R)
multiply(¥, ¥, "R)
divide(X, ¥, “R)

divide_with_remainder(X, ¥, "¢, "R)
inerement(¥, "R

decrement{¥, "R)

minus(X, "R)

add_extended(X, ¥, "E1, "R2)
subtract_extended{X, ¥, "R1, "R2)
multiply_extended(X, Y, "Ri, "R2)
divide_extended(X?, X2, ¥, "R1, “R2)

A.6 DBit-wise Logical Operation

and({¥, ¥, "B}

orl¥X, Y, "R}

xor{X, ¥, "R}
complement(X, “RH)
shifc_ieft(¥, N, "R}
shirt_right(X, N, “R)

end_string{String, Position, Length, Mask_String)
er_string(8tring, Positicon, Length, Mask_String)

xor_string!{String, Position, lLength, Mask String)
complement _string(3tring, Position, Length)
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A.T Comparison

unify{ "X, "Y)

equall{?¥, 7%)

not_equal{?¥, ?Y)
equal_string(Stringl, String2}
not_equal_string{Stringl, String2)

identical(7X, 7Y)
not_identical(?X, 7Y)

less_than{7X, 7Y}
not_less_than{?X, ?Y)

hash(¥, “Hash_Code)

A.8 Type Conversion

..-g

L I

oM M oW R o W B K W W

LI I

integer to floating point(Integer, “Floating)
floating point_to integer(Fleating, “Integer)
vector_to_list{Vector, “List)
list_to_veector(List, “Vector)

Low=Level Primitives

wait{Wait_Code)
restart
halt{Halt_Code)

address(?X, "Address)
physical_saddress(Address, “Physical Address)
word( Address, “Tag, "Value)
set_word(Address, Tag, Value)

physical word{Address, “Tag, “Value)
set_physical word(Address, Tag, Value)

ares_flaga(ires, “Flag)

areg_top peinter(Area, "Address)
page_map_baze(Area, “Base)
ares_size(hrez, "Eize)

areg_size limit{Area, “Limit)
move_page_mwap( Area, New_Base)
set_area_flags{irea, Flag)
set_ares_top pointer{Area, Address)
set_page_map base(lrea, Base)
set_area_size(Area, Size)
set_ares_size limit{Area, Limit)

collect_garbage
procees_control_bloelk(Process, PCE)
set_process econtrol_block( Frocess, PCB)

initislize_process{Procezs, Start Code, Stack _Area)
change_process{Frocess)
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interrupt_index({Interrupt, “Process)
set_interrupt_index{Interrupt, Process)
interrupi_code(Interrupt, Interrupt Code}
trapf{Interrupt, Interrupt_Code)

ok & R

register{Register, “Tag, “Value)
set_register(Register, Tag, Value)
system_register{Register, "Value)
set_systern_register({Register, Value)
real_time_clock{"T1, “T2)
set_real_time_cloek(T1, T2)

A.10 Debugging Aid

ancestor(N, "Clause)
frame(N, Stack, “Frame)
read_conscle("X)
display_conscle{7%)

A.11 Program Control

true
fzil

selfl
appily{befinition, Arguments)

casel Index, Table Bize)
clause_indexing(Position, Table_Size)

level{™W)

successLevel )
sbsolute_cut{Level, Sizel
relative out(Level, Size)
gbzolute_cut_and_fail{Level)
relative_cut_and_fail(Level)
cut{Size)

cot_and_fail

or,_backtrack(Code)

bind_hook({?¥, Handler)

exception hook(Exception, Handler)
raize{Exception, Arguments)

* exception_handler_table{Process, Exception Table)
# setl_excepticn_handler table(Process, Exception Table}
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L.12 Tnput/Output

get_byte(iddress, “Data)

get double_byte(Address, “Data)
get_double_byte_swapped(Address, “Data)
get_vector(Address, Vector)
get_vector_swapped(Address, Vector)
get_string{Address, String)

get_string swapped(Address, String)
get_with_tag(I/0_Address, Memory_ Addrezs, Length)

e R % W Ok W W W

put_byte(liddress, Data)

put_double byte(Address, Data)
put_double_byte_swapped(Address, Data)
put_veotor(Address, Vector)
put_vector_swapped(Address, Vector)
put_string(Address, String)

put_string swapped{Address, String)

put_with_ tag(I/0_Address, Memory Address, Length)

oW & B W W W

® hus_reset
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STARDAHRD MACROS

This appendix gives the pseudo-definitions of standard macros.
pefiniticns listed here are intended to help understanding the
semantics eof standard maeoros. They may not (and, in some cases,
cannot} be implemented in the way listed here. Various subroutines
required in a practical implementation, both for expension-time and
run=time, including those for error checking, are also omitted.

B.1 3Slet Access

Obil8let => Value when :get_slot({Obj, Slet, Value};

(ObjlSlet:=Value) => :set_slect(0bj, Slot, Value);

B.2 Constanots
RadixfDigits => N
:- string(Digits, , ),
convert_to_integer(Digits, B, 0, N);
#£E3tring => Code
= string(String, 1, ),
string element{String, 0, Code);
#Class _name => Class_object

:- get_cless object(Class name, Class object];
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Arithmetics

E.3

Arithmetiecs

¥ + Y => £ when add(X, ¥, Z);

¥ - Y => I when subtract{X, ¥, Z);
X ® Y => Z when multipiy(¥, ¥, Z);
¥ / ¥ => I when divide(X, ¥, Z);

¥ mod ¥ => 7 when divide with_remainder(X, ¥,

X =» 2 when minve(X, Z);

Eit-wise Loglieal Operations

¥ /WY =» Z when and(X, Y, Z);

¥ W ¥ => F when or(X, ¥, Z};

% << Y => Z when shift_left(X, Y, Z);
¥ »> Y => Z when shift_right(X, ¥, Z});

“(X) =» Z when complement(X, Z);
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PROGRAMMING EXAMPLES

Example ESP programs are given im this sppendix,

C.1 Liat Handler

The exemple in this section shows how the class mechanism can be used
for encapsulation.

The eclaszs "list_handler® defined in the pregram below provides a
list-proces=zing suvbroutine package. Clasz methods of the class
Mlist_handler" are the entries of the package., Implementation details
are hidden in leocal predicates.

class list_handler has

rappend(_,X,Y,2) :- % Entry for append
append(X,¥,2);
ireverse{_,X,Y) :- 2 Entry for reverse

recone(X,[1,Y);

L

local
append([],X,X); {4 Definition of append
append ([WiX1,Y,[WIZ]) :=
append(X,Y,2);
reconc{[],X,%X); 4 Reverse is defined
reconc{[WiX1,Y,Z) := % by & strange reutine
reconc{X,[WiY],2);
end.
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C.2 FKRoom with two doors
The exsmple given in this =secticn is intended to show the ability of

the inheritance mechanism and the demon mechanism of ESP.

The example program defines a2 class of rooms with two doors. Each
door has a lock. A room can be entered through a door only when it is
not locked. One can enter the room through either of the two doors.

In the program below, checking the status of leoeck is effected by the
before demon defined in the class "with_a loek"™ mix-in elass. This
cheek is automatically made before copening any object (a door, in this
case) "with_a lock".

Two doors are introduced to a room by inheriting
front_door®™ and "with_back door®, Each class has an lnstance method
named "make way™, Whichever door already open or at least unlocked
when the "make_way" method of the room is called, is used for entering
and exiting the room.

two claszesz "with_

¥ Lock
claaa look hasa
instance
component
state := unlocked;
:locked{Lock) :-
Locklstate = locked;
:lockiLock) -
Locklstate :=
sunloak{Loak) -
Locklstate :=

Locked or unlocked
Is locked?

Locking
looked;

W WA WA

Unlocking
unlocked:
end.

4 With Lock == MIXIN
class with_a lock hasa
instance
attribute
leck i=s lock;

end.

before:opan(Obi) -
tunlocked(0Ob)llock);
:lock(0bl) :-
ilock{Objllock);
:unlock(Obi) ==
sunlock{0bj!lock);
:locked(Obj) -
:locked({Objllocked);

% Must be unlocked

§ before cpened,

% Locking objeect i=

i locking the leck.

% Unlocking object is

% urdocking the loock.
¥ Object is locked when
g the lock 12 locked.
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Room with two doors

% Simple Door
clazs door has
instance
component
atate = closed;
selosed({Door) o=
Doorlstate = closed;
iopen{Door) :=

Doorlstate := opean;
reloae{Door) :=
Doporlstete = closed;

imake way(Door} :-
Doortstate = open, 13
rmake_way({Door) -
ropeni{Door) ;
end.

£ Door with Lock(s)
elass door_with_a lock has

Page C-3
03 Feb 84

% Cpen or closed
2 I= clesed?
3

Opening
§ Cleosing
4 If already open,
b do nothing.
3
¥

If not,
then apen it.

nature
door, £ A door
with_a loeck; 7 with a leelk
end.
2 Semething with Door -—- MIXIN

class with_front_door has
inatance
attribute

end.

froni_door is door_with_a_look;
repen front(0bi) := g Opening front door
topen{0bj!front_door);
:elose_front(0bj) -
tclose(Obj!front_door);
slock front(Obj) :-
lockiObilfront_door)
:unlock front{0bj) :-
sunlock(Qbjifront_door);
imake_way(0Obi) :-
imake_wav(
Ok jifront_door); 3

% Clesing front door

¢4 Locking front door

# Unlocking front door
% One can make way

through the front door
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class with_back_door has

instance
attribute
back_door is deor with_a_lock;
ropen back(0bj) = % Opening back deor
:open(0bilback_door);
relose_back(0bj) :- % Clesing back door

teloae{0bjlback_door);

:look _hack{0bj) := % Locking back door
:lock(0Objback_door);
sunlock back(0bj) = ¢ Unlocking back door
sunlock(Objiback _door);
imake_way(0Obj) - %7 One can make way
:make_way(
Objlback_door); £ through the back door

end.

£ Z2imple Room
class room has
nature ...;
instance
:enter{Room} :-
:make_way(Reem), ...;
rexit{foom) :-
:make way({Room), ...}

" w W

end.
claas room_with_two_doors has
nature
room, % 4 room
with front_door, i with front door
with_back_door: ¥ and back door
end.
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COLLECTED SYNTAX

All the syntax rules of ESP are collected in this appendix in an

alphabetical order.
rule is given,

Use the index to find the page where the syntax

<argument list» ::= <argument» { "," {argument> }

fargument> s {term>

<atomic literal?> ::= <symbol}» | <number>

<body> ::=

{goal listl
| " <goal list> { "3:" <goal listd } m)n

<character string>» :1:=
nnwy [ catping character» | nnwesd

<checkerr» ::= <goal li=t>»

¢olass clause definition® ::= <method clause definition>

felaszs definition>» ::=
Telass" <{glazs names>
[ <macre bank declaration> ]

"has"

[ <nature definition> ™37 ]
{ <elass slot definition> "7 }
{ <elass clause definition> ™37 }

[ "instance"

{ <instance sleot definition> "3;7 }
{ <instance clause definitiom>» ";" } ]

[ "localr
{ <loeal clazuse definition® ";7 } ]
Tanpd® h_ n
colass method call> ::=z <elmss named "7 <termd

<glass pnamer

<elass objectd

Pis <rnamer

= "#" J{olass name>

€elass slot definitiond ::= <{slot definition>
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‘eompound literal>» :i=
{yector>
| <string>
| <compound term>
I <operator application®
| <list>
Coompound term> :r= {functor> "(" <argument listh> )"
¢delimiter> ::= <delimiting character>s
¢delimiting character?» :1:=
l{lr r 'H]l'l | I'II'I'I I n]n | r:[w I rr]n
| I'I"!I [ ﬂ;l‘! I fFHEH I iR = I'I'I'I'l
<demon type> ::= "before" | "after”®
<digit seguence> ::= <{digit> { <digit> }
<digit> 3=
ﬂn.ll J I'I"il'l | !2" | l'lall I 'IHH'
I 15|'r J I'FE'I'I = pulrrr l “E" l igrr

<directions> ::=
Fleft® |

"rightt
<expanded pattern? ::= <term>
<expansion condition® ::= <body>

{exponent part> ;=
nem [ ongm | onom ] <digit sequencel>

ffleoating-point number> :1:=
<digit =equence> "."™ {digit sequence>
[ <exponent part> ]

<formatting character> ::=z
® n | {line separator? | <tabuletion code>

<functor> ::= <symbol>

<generator? i1i= <goal list>

<goal list> ::= <goal> [ "," <goal: }
<goal> ::=z <method ecall> | <predicate call’
<head> ::= <term>

£infix operator application» ::=
<term>» <infix operator>» <term»

{infix cperator? ::= {name>

<instance clause definition> ::= <method clause definition>
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{insteznce method c2lly ::= ":" <{glasa pamer ":" <term>
<instence =lot definition?» ::= <slot definition>

{integer list> -:=
<integer number> { "," <{integer number) }

{intepger number? @z {digit =eguencel
¢<invocation pattern>» ::= <term>
<lexical element> ;i=
<namge’X

| <number>

| <character string:

| <varizbler

| <delimiter>
<list> 1:=z <nuli list> | <non=null iist>

{local clause defirition» ::= <clause definition>

<lowercase letier’> tis
<kanii character>

[ mam | rpr | omgm | wgn o nan | ongn | ngn
| mpn I LR r'.j'" | fgd | onym | ngf | mpA
Iongm | tpn 1 ngn [ npn | nge | omgn | onge
ongn | omgm | ongn | Hyh | mgn

<maero bank declaration ::is
"with_macro”
<macro bank name> { "," <macro bark name’> }

{macré bank definiticn» ::=
"macro _bank <macro bank namer "haa®
i <maero definition» 7;% |
Henﬂﬂ H_ i

{macra bank name?> ::= {name’

wmaero definition> :i=
“invocation patierny =¥
cexpanded patternd { <runtime conditien> }
fia® Jexpansion conditiend

emethod call>» 1:=
<normz]l method calls
| <class melhod call®
| <instance method calls
dmethoc clauss definicion> ri=
[€depor types:] PP dolause definitiony

<plause definitiond ::=  <headd [ ":=" <bodyr ]

<pame string charactep> ::i=
<any charzoter except apostrophes» | nren
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{rnamer :is
¢lowercase letter> { <letter» | <digit> | "_" }
! ¢special character> { <special characterd ]
| <guoted name>

<nature defirnition> ::=
"pature®
¢super class name> { "," <super class name> ]

{non-nuli list> :1:=
n{n <term listd [ """ <term> ] "]"

<non-null vector> ::z "{" <term list> "}"
¢rormal method call> ::= MY {termd>
<rull list> ::= "[]"
Znull weotor> ::z "[}"
<rumber?® ::= <integer number’> | <fleating-pcint number:
<operator application: i:=
{prefix operator application>
| <postfix cperator application>
| ¢infix eperator application?
<operator bamnk>» ::=
"ooerator bank" {operator bank name> "has"
[ <operator defirition> ";" }
nendn ®_n
<operator definition> i:i=
<gperator kind» <operators>

{ <precedence definition> }

{operator kKiner :1:=
"prefizxn | "infix® | "postfix"

<operator 1ist> ::= <operator> { "," <operator> }
<operatorss :tis
{operator:
| (" {aperator list» ")

Zoperator® ::sz <name> | "(" <{name> ")"

¢postiix operstor application> ::=
<term>» <postfix operator>

¢postiix cperstor» ::= <name>
<precedence definition> ::=

<precedence relations
[ <direction> ] <operators>
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{precedence relation> ::=
"precedes™ | "is preceded by"

<predicate call» iz <term>

cprefix operator application? ::i=
<prefix operator’> <term.

<prefix operator’ ;:= <{simple name>

fquoted name>» r:=
1w { <name string character» } n'e

cruntime condition» ::=
"when™ <generator’
| "where" <{checker>

<slot definition item>» ::=
{elot namesl> [ <slot initiatiop> ]
I m(" <slect names> [ <slot initiation® ]
Peo® (elot initiation coder ™YW

{zlot definition> ::=
<slet type> <slot definition item>
{ "y" ¢slot definition item» ]

<slot ipitiation coder> ::=z <gomsl list>

<azlot initiatiend ::=
Pe=® Jterm» | "ia" <class namelr

£glot pames>» ::=
<slot pame}>
i "(" <zlot npame> { "," <slot name> } ")°

<slot typer ::= attribute | compopent
tapecial character> ::=
mygm | ngm | mgn | wmen | [ B} | mgm | LY L] | mn
LT L I bl IR N R L VL AL
pongm | onun

<8tring character> ::iz

£any character except double-quotes>
| NMANN MAEARN

<ztring elements® ::=
n{}n | n{" {integer list> n}w

<strirng type specifier®» i:=
"bita"™ | "bytes" | "double bytes"

{atring> 1:=
scharacter string>
! 4string type specifier> ":" <{string elements>

<super class name} ::= <class name> | "#n
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{gymbol} ::= {name>
Cterm list> :1= <term> { ",% <term> }

Ctermd> ::=
"(" <term» ")"
| <variable
| <atomic literal>
| <compound literal>
| <elass object>

{uppercase letter> r:1s

npm 1 ngn | nCn np ngn l L 1 HEH

| |
Pomge | onym | omgm | mEm | ompw | omye | wge
! ﬂn,l‘ 1 HP'H l H‘nﬂ l H'aﬂ | I'IEI I HT“’ ! 'I"ul'l'
: 'I'"I' l HH“H‘ | HII 1 “IH | Hzl

{yvariable beginning character> ::=
{uppercase letter> | ®_M

<variable trailing character> ::=
{lowercase letter>
| <uppercase letter>
I

<digit>
| m_m»

<variabler ;i=

¢variable beginning character>
{ <variable trailing character> }

<yector® iz <pull vectord | <non-null vector>
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prineipal element, 10, 12 to 13
principal functor, 10, 18 to 19
program, 9

gquoted name
(syntax), &

radix, 32

retract, 23

runtime condition
(syntax), 28

semantie network, 24
sharp maaro, 32
slot, 2, 15
definition, 22
{syntax),; 22
definiticn item
{syntax), 22
getting value, 23, 32
ipitiation, 23
{syntax), 22
initiation code
{=yntax), 22
name s
(syntax), 22
setting value, 23, 32
Lype
(syntax), 22
alot access method, 23
apecial character
(=yntax), 4
standard maero, 32, L0
atring, T, 11
(syntax), 11
character string, 7
elements
{syntax), 11
type specifier
{ayntax), 11
string character
{=yntax), T
sSuper class natbe
(=yntax), 17
symbol
{syntax), 10
ayntarx description, 3

template, 16
term, 9
{eyntax), 9
list
{syntsx}, 10
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uppercase letter
(ayntax), 4

variable, T
{syntax), 7
anonymous variable, 8
beginning character
{=yntax), T
trailing character
(syntax), T
vector, 10
(syntax), 10
vector notatien, 10
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