ICOT Technical Report: TR-042 | _

TR-042

An Approach to a Parallel Inference Machine
Based on
Control-Driven and Data-Driven Mechanisms

by
Rikio Onai, Moritoshi Ascu and Akikazu Takeuchi

January, 1984

21C0T, 1984

AMita Kokusal Bldg. 21F {E A56-11] -
Telex |L(}T JS"EIH

“ :D | 4=2¢ Mita 1-Chome
Minato-kun l(‘k‘.f\ VIR Japan

Institute for New Generaﬂon Computer Tec:hm:uln:u_;nir

ICOT Technieal Report TR-0O42

An Approach to a Parallel Inference Machine
Based on Coptrol-Driven and Data-Driven Mechanisms

January, 1984

Rikio Onai, Moritoshi Asou, and Akikazu Takeuchi

Institute for New Generation Computer Technology

I. Intredoction

This paper dizcusses the design of a distributed Parallel Inference Machine
called PIM-F (F meaning Fusion mechanism)} based on control=-driven and

data=-driven mechanisms.

The Institute for New Generation Computer Technology({ICOT) is carrying out
research and development on 2 new generation computer system based on a logic
language. Along with the maj]or characteristies, such as unification and legieal
variables,eta., a logiec language has other features at pregram execution level

such as high parallelism and "DO HOT CARE/DO NOT KNOW non-determinism®™([1].

For construction of a total logic programming system, it 1s necessary to
provide within the logie language concurrent progess deseription

facilities[4],[8] for cperating systemas and I/0 device handling.

Therefore the FIM-F machine, which is designed to be 2 direct execution
legie machine, has suppert for concurrent process functions and parallel "DO NOT
KENOW non-determinism™ processing function, as indispensable functions. It i=
wiorth noticing that the target languages of the machine are parallel Prolog
{parallel "D0O NOT ENOW non-determinism® processing(2],[3]) and Concurrent

Prelog[t],[5](concurrent process contral).

ICOT'a PIM-F machine possesses the following features:

1. PIMeF iz a distributed computer system.

Page 2

In Proleg and Coneurrent Prolog programs there 13 high parallelism.
Therefore each unit in PIM-F is divided into banks to achieve highly parallel
processing, and a tagged-packet communication system is adopted to realize

highly diatributed processing.

2. Partial copy strategy is adopted.

Although there are several goals in a body of a elause, only & reducible
goal is ecopied and is sent to a unifieation unit in order to shorten the

length of a packet going through networks.

3. PIM-F adopts a control-driven mechanism as the basic execution mechanism.

4 Proleg program and 2 Concurrent Prolog program are executed by
generating resolvents from parent clauses. 4 reducible goal (which iz one of
parents clauses) is indicated by sequential-AND operator, parallel-AND
operator, and commit operator. In other words, the goal reductions are
driven by these operators. This is what wmotivated us to adopt a

control-driven mechanism as the basic executicn mechanism.

Programs are executed as follows;
(1) In a Prolog program, AND-literals are executed sequentially from left
to right. This is because there 1s a complicated consistency check in
solutions of shared variables among AND-literals. QR-clauses,; however,
are executed in parallel.
{2} In a Concurrent Prolog program, AND-literals connected together by
parallel-AND operators are executed in parallel, as are OR-clauses. "no

NOT CARE non-determinism® is realized by commit cperators.

i, PIM-F adopts a data-driven mechanism a= a synchronization mechanism for

concurrent processes.

Page 3

Conecurrent processes can 3end messages by instantiating shared variables
in Conecurrent Proleog. We ecall these shared variables channel variables and
the other logical variables non-channel variables hereafter. The bDusy-wail
method, which is one method of inmnplementing chanmnel wvariables, increases
network traffic due to frequent accesses Lo memories by consumer processes,
when prealizing concurrent process execution on a distributed parallel
machine. Therefore, We introeduce a data=-driven mechanisn as a

synchronization mechanism for concurrent processes.

There is 2 method whiech treats the channel wvariables in the same manner
&% non-channel variables, whieh are not shared among aoncurrent processas.
Howewver, in this method, even a memory cell which stores a non-channel
variable has to possess 2 field that keeps pointers to suspended consumep
processes, Therefore, surplus memory i3 needed. For this resason we

distinguish channel wvariables from non-channel variables.

For achieving both the data-driven mechani=m and the distinction of the
above twe kinds of variables, we introduce Message Beoards in each distributed
unit., Message Beard is a kind of I-structured storage(12]. As a result, as
soon a3 a producer process binds a value to 3 channel variable in 2 Message
Board, meszsages are sent {using the message rpazaing method) to suzpended

consumer processes which are to be driven to reduction.

In summary, our propesition is that of a Parallel Inference Machine [PIM-F}
based on control/data driven mechanisms[6] where a data-driven synchrenization
of concurrent processes is executed through Message Boards. In addition, we

have shown that PIM=F can execute "D0 NOT KNOW non-determini=sm™ in paralilel.

This paper describes the PIM-F computation model, conceptual configuration,
and individual wunits in PIM-F(particularly the Message Board). It also shows

the execution of sample programs in Proleog and in Concurrent Proleg on the PIM-F

machine.,

Page 13

IT., PIM-F Computation Model

The target languages of the PIM-F machine are parallel Frolog{parallel ™00
HOT ENOW non-determinism® processing) and Concurrent Frolog. A Prolog program
and a Concurrent Prolog program are executed by generating resolvents from
parent clauses. A reducible goal (which is one of parents clauses) is indicated
by : sequential-AND operator, parallel-AND operator and commit operator. In
other words, the goal reductions are driven by these operators. Therefore we

adopt a control-driven mechanism as the basic executlon mechanism.

L PROCESS-TREE whieh is a tree structured network of processes is created
when dinput goalas are given, and vanishes when all the input goals are solved.

There are two worlds in the computation medel.

[1] Mon=-GCuard World

A goal is executed in OR-parallel and AND-sequential. Since there are no
parallel-AND operator and ne commit cperator {ne guard) in this weorld, geal

reductions are driven by sequential-AND operator.

®# Definitions of GOAL-Process Creation:
(1) A GOAL-Process is created when input goals are first given, and consists
of the given input goals.
(2) A GOAL-Process is created when a goal is reduced, and consists of the
results of reduction. Consequently, a GOAL-Process i1z made up of N-number
of goals (N»=1). We will refer to these goals as sub-goals hereafter. A

sub-goal is the smallest constituent unit of this computation model.

{Sub-goal states)
1) Not-reducible: A state in whieh a sub-goal is not (yet) subject to
reduction (with the exceptien of "dead"™ sub-goals, not-reducible

sub-goals do net inelude the left meoat sub-goal.).

Page §

2) Reducible: A state in which a sub-geoal ia reducible and is waiting to
be picked up.

3) Active: A state in which a sub-geal is reducible, has already been
picked up and is in the process of being reduced. When a sub-goal is
reduced, it ecreates M-pumber of new child GOAL-Processes, whose parent
is the GOAL-Process containing that sub-goal (Upon implementation, a
child GOAL-Process communicates with the reduced sub-geal in 1ta parent
GOAL-Process by meanz of a pointer). The letter M stands for the
number of OR forks, and Ms0 indicatea a sub-goal'a fajlure at OR-

reduction.

The reduction consists of OR-reduction apd AKD=-reduction.
OR-reduction means unification between a sub-goal and the corresponding
head predicate. If OR-reduction succeeds, unification information of
OR-reduction is transferred to the body predicate and the resolvent is

generated. This is AND-reduction.

These M-number of child GOAL=-Processea are called albling
GOAL=-Processes, When a sub-goal unifies with a unit clause, a value
returns directly to the appropriate sub-goal without creating a new
child GOAL=-Process. Child GOAL-Processes are also made up of N-number
of sub-goals (N>=z1).

L)Dead: A state in which 2 sub-goal has been completely solved. In
other words, when OF fork count (desaeribed in Section ITI.[1] 41))} is
reduced to Zero, the aub=goal atate becomes dead. {Upon
implementaticon, the memory eell occupied by this sub-goal becomes

garbage.)

* Definition of GOAL-Process Termination: A& GOAL-Process terminates whenever

all of its sub-goala have been solved {inecluding failures).

* GOAL-Frocess states

Page §

1) Active: 4 state in which a GOAL-Process has been created and has yet to
terminate.

2} Dead: A state in which a GOAL-Process has terminated.

[2] Guard World

GOAL-FProcesses are executed in OR-parallel. Reduction eof AND-literals
are driven by sequential-AND operateors, parallel-AND operators and commit

operators. The user can specify these operators.

Definitions of GOAL-Process Creation:

{1) A COAL-Process is created when input goals are first given, and consists
of the given input goals. Each individual input goal is a sub-goal of the
GOAL-Process.

(2) A GOAL-Process is created wheman input goal(a sub-goal) is reduced, and
consists of the results of reduction. Conzequently, in this case, a
GOAL-Proceas i3 made up of Nil-number of literals in a guard and N2-number
of goals (N1>=0; N2>=0). Both literals in a guard and goals are called

sub-goals. The syntax of a Guard World clause is given below.

p:- g1, g2, =-=--, ght | &1, 82, --- , sK2
Literal List in a Guard Goal List
{guard part) {body part)

{3) When a literal in a guard or a goal (a sub-goal) 13 reduced, a
COAL=-Process ia oreated whiech consists of the results of reduction,

Consequently, a GOAL-Process is made up of literals in a guard and goals.

{ Sub-goal statesa}
1) Mot-reducible: A state in which a sub-goal is not (yet) subject to

reduction.

Page T

2) Reducible: A state in which a sub-goal i3 reducible and i3 waiting to
be picked up.

3) Active: A state in which a sub-goal is redueible, bhas already been
picked up and is in the process of being reduced. When OR-reduction ia
attempted on a reducible sSub-goal, that sub=goal happens to be
"suspended” due to the limitations of the read-only-annctation (This ia

described in more detail later in this paper).

When a literal in a guard or a goal (a2 sub-goal) is reduced,
Menumber of new child GOAL-Processes are created, uhich have the
GOAL-Process containing the sub-goal as their parent GOAL-Process (Upon
implementation, a ehild GOAL-Process communicates with the reduced
sub-goal in the parent GOAL-FProcess by means of .a pointer.}), M stands
for the number of OR forks, and M=0 indicates that the sub-goal has
failed at COR-reduction. These M-number of child GOAL-Processes are

ealled sibling GOAL-Processes.

Child GOAL-Processes are also made up of a guard and goala. In a
Cuard World, goal reduction is driven by a commit operator. 3Since
gibling GOAL-Processes are killed at the time of ccommitment, at most
only cne child GOAL-Process can survive.

4) Suspend: A state in which a sub-goal can unify, except when a
read-only wariable has unified with a non-variable term in the head of
the clausze. When another sub-goal binds a value to the appropriate
read-only variable, the suspended sSub-goal once again becomes
reducible.

E) Dead: A state in which a sub-goal has been completely solved. In
other words, when OR fork count (described in Seetion III.[1] 41}) is
reduced %o Tero, the sub=-goal state becomes dead. (Opon
implementation, the memory cell occupied by the dead sub-goal becomes

garbage.)

Page 8

®# Definitions of GOAL-Process Termination:

{1} If either a guard cr a goal faila, the GOAL-Precess containing the guard
or the goal returns a failure message to the parent GOAL-Process and
terminates.

(2) A GOAL-Process terminates when its guard and all its goals have been
solved (i.e. when a value is returned to the parent GOAL-Process, or when
a value is written in the Message Board, or both).

{3) A GOAL-Process terminates when a guard ipn the GOAL-Process has succeeded
and the commit operater has been reached, but the other =ibling

GOAL-FProcess has been driven by a commit operator ahead of 1it.

#G0AL=-Process states
1) Aetive: A state in which a GOAL-Process has been created and has yet to
terminate.

2) Dead: & state in which a GOAL-Process has terminated.

The relation among = PROCESS-TREE, its GOAL-Processes and sube-goals ia

shown in Fig.1.

PROCESS-TREE

- - o - o o e s s

GOAL-Process

i !
sub=-goal f
sub=goal [{-===———=

sub-goal 5<-n1

L sub-goal | J

{ GOAL=Process GOAL=-Process
sub=-goal sub~-goal
sub-goal sub-goal
sub-goal J asub=goal

N — - — T —————————— -

Fig.1

Page 9

III. PIM-F Architecture(See Fig.2)

Thi=z section describes the architecture of PIM=F.

=

Inter PFO Network

-

Process Pool Unit 1 (PPU i)

o s s e
Message DBoards
sesse lp‘o Bu!‘ferl(—)iﬂnntrulle e
Process Fool J
L ————— o - — - - o - " -
. A S —— _— ——
! PPU -> UU Network
UU -> PPU Network 1:
- ——— — j
SM Unit J Unification Unit j (UU j)
r---------ﬁ.-ﬁ.ﬁ‘? = e - L L |
M E 1/0 Buffer
I | o o
---------- Matcher ——3
LN 5D Upifier e ------j Clause LA R B
e r--;h et Pool
Ev-P] Unifier
L T e -
1/0 Buffer | ¥ v
--1;-------4\ I/0 Buffer

Inter EZM Network

e i e S M)

Fig.2 Conceptual Configuration of FIM=F Architecture

(Ev-P is a processor for evaluable predicates and SM is a Structure Memory)

(1]

Page 10

Process Pool Unit (PFU}

This unit consists primarily of a Process Pool and Message Boards. The

Process Pool atores GOAL-Proceases, and Message Boards are used as

synchronizatien support mechanisms for concurrent processes.

This section deseribes the Proceas Pool, Message Boards and the internal

format of a Guard World GOAL-Process in a Process Pool.

i}

Proceas Peool (PP)

A Process Pool stores GOAL-Processes and the relation among GOAL-Proceases,
i.e. the historical ipformation about reduction. The relation among
COAL-Proceases is represented by reversed pointers, which define parent
GOAL-Processes,

Even if there are several sub-goals in a GOAL-Process, in order to shorten
the length of a packet going through the network, only reducible aub-goals
are picked up by the Controller and sent to Unification Units(UUs). On
picking up, the Controcller refers to the following tags uf the sub=goal.
Level tag and lode tag:

Level tag

This tag shows the node level of the GOAL-Process(its depth from the root)

in a PROCESS-TREE. Level tag number is inereased by one at AND-reduction.

Node tag
Node tags are numbers given =uccessively by a Unifier in a UU.

These tags are used to identify each sub-goal and to control the

plck=up of reducible sub=goals.

ii) Message Boards

Page 11

A brief explanation of a guard and read-only-annotaticns 4in Concurrent

Prolog is given prior to our discuasiopn of Message Boards.

{1} A guard and read-only-arnnoctaticns

A guard consists of AND-literals on the left side of a commit operator
which isa represented by nim on the right =side of a clause, A
read-only-annotation, represented by "t", is added te a variable, such as in
the case of "I7°7, A wvariable with a2 read-only-annotation 13 called a

read-only=-variable.

Head-only-variables aect as channels between processes which correspond to
sub-goals in the PIM-F computation model. A process which has a
read-only-variable {consumer process with respect to the variable) cannot
instantiate the variable (channel variable) and is suspended until another
process (producer process) instantiates the channel wariable (i.e,, sends out

a message),

Opce a goal has been set, corresponding clauses are searched for in
parallel and the first clause that succeeds in unifying the guard is selected.
Then the unified informatien in the guard 1s released,. Its body part
(AND-literala on the right =ide of a ecommit operator) then becomes a
resolvent., A2 & result, even Iif another alternative eclause should later
succeed in unifying 4its pguard, that clauvse i3 erased. In this senae, the

commit operator functions as & cut symbel.

(2) Introduction of Message Beards

Conecurrent Prolog contrela concurrent process by means of channel
variables. The busy-wait method, which is one method of implementing channel
variable=s, increases network traffic due to freguent accesses to memories by
consumer processes, when realizing concurrent process execution on a

distributed parallel machine. Therefore, we introduce a data-driven mechanism

Page 12
as a synchronization mechanism for concurrent processes.

There is a method which trests the channel variables in the same panner
a2s non-channel variables., However, in this method, even a memory cell which
stores a non-channel variable has to poasess a field that keeps peinters to
suspended consumer processes, As a result, surplus memory is neeaded.

Therefore we distinguish channel variables from non-channel variables.

In erder to achieve both the data-driven mechanism and the distinction of
the above twe kinds of variables, we implement Message Boards in each

diatributed unit.

There are two kinds of channel variables.

1, There are read-only-variables in channel variables that are shared
among concurrent processes, which are connected by parallel-AND
operators. In this case, cocpneurrent processes which have
réad-only-variables are consumer processes wWith respect to this channel

variable.

2, There are no read-only-variable in channel variables that are shared
AmSng concurrent processes, which are connected by parallel=AND
pperators. In this case, whether the channel variable is an input or an

output is unknown at the time of compilation.

Values sent through chanpmel variables and the channel variables are
written into a Message Board (Fig. 3). A channel variable is represented by
& channel identifier and a variable identifier(level tag number, node tag
number,ate,). L Message Bogrd is & ring-shaped board for each channel
identifier. When structure data (usuzlly [a value|next channels]) are sent
through a channel variable, variables in the structure data are registered
into a Message Board as new channel variables. The sub-goal performs hashing

based on the channel identifier and accesses the appropriate Message Board.

Page 13

When a reducible sub-goal, which has been sent toc a Unificatien Unit, is
suspended due to the read-only-annotation and is sent back to the Process
Pool, this consumer sub-goal goes to see 1f a message has already been sent
from a producer sub-goal to the Message Board. -If a message has arrived, the

channel variable of the consumer sub-goal 1s replaced by the message.

If no message has arrived, the sub-goal 1links it=elf to the Suspend
Process List. When the producer sub-geal sends a message, i.e. binds a value
to the channel variable, the message i3 written into the appropriate cell of
the Message Board. If there is a suspended consumer sub-goal linked to the
Suspend Procesaz List, the message is sent to the consumer sub-goal and the

consumer sub-goal 1s to be driven to reduction.

As mentioned above, PIM=F adopta a data-driven mechaniam as a

synchronization mechaniam for concurrent processes.

A head pointer and a tail pointer are used to indicate the zarea of a
ring-shaped Messzage Board. A reference count of a channel variable controls
the head pointer.

Head pointer: When the reference count becomes zero as the result of
decrement, the head pointer is increased by one.

Tail pointer: This pointer indicates the Message Beoard cell inte which
the next channel variable will be registered. When a
channel wvariable is registersed, the tail pointer is

increased by cne.

The increment and decrement rule of the reference count i1is as follows
{READ=-VAR and CHANNEL=-VAR are described in the section dealing with the
internal format of a GOAL-Processz in a Procesa Pool):

1. In such a case that a channel wvariable is a READ-VAR.

Fage 14

When the READ-VAR exists in a pewly created(committed) sub-goal, plus

1.
When a value is read by a2 consumer process, minus 1.

When a sub-goal which includes the READ-VAR terminztes, minus 1.

2, 1In such a case that a channel variable is a CHANNEL-VAR.
When the CHANNEL-VAR exists in a newly created(committed)
sub-goal,plus 1.

When a value iz written or read, minus 1.

When a sub-goal which includes the CHANNEL-VAR terminates, minusz 1.

Channel Variable
Measage(value of channel variable)
reference count
Suspend Process List

AN T

head pointer ———3 X | [11X"'] | 2 |

I

tail pointer -.-—--}kk K \L \\

Fig. 3. Message Beard

{3}Ioternal Format of a Guard World GOAL-Preocess in a Process Fool

This internal format is shown in Fig. L.

C-tzg: The first child GOAL=Process to reech a commit operator turns
this tag ON. If the tag is already ON, the OR fork count is reduced

by one and the GOAL-Frocess becomes dead.

Page 15

pointer to parent GOAL-process

T s o e e e]

overall header

o e e o T S A e S A S e e

guard part header

e o o . o o - -

| size of a guard literal | node tag

R ——EY e L e |

C-tag,S=tag | evaluable predicate
OR fork count H identification tag
guard Fﬁft SR —

[G__rart} pred | Predicate

i S . e e e - S

type of arguments i

e o e e e e S . e S S S o —
L]
L]

e e e e s s i i -

body part header

e o s s e P e i 5

size of & body literal | node tag

e — e o]

C=tag,S-tag | evaluable predicate
| | OR fork count | identification tag

! t
na&; Par pred | Predicate

(B= part) -
type of arguments

s o S T
]

s ——————— e T L R B R T L

short astructure data area

Lo e i e . S D P e - e e e A N S B

Fig. 4. Internal Format of a Guard World GOAL-Process in a Process

Pool

® QR fork count: The OR fork ccunt is made known after OR-reduction, and
reduced by one each time a failure oeccurs in the guard of an Ok=forked
GOAL-Frocess or when the guard succeeds {when the commit operator is
reached). Ween the count is reduced to zere, the sub-goal becomes
dead {garbage).

S-tag: State tag. States ipneclude not-reducible, reducible, active,
suspend and dead{garbage).

& READ-VAR, WRITE-VAR and CHANNEL-VAR are newly established as types of
arguments. READ-VAR, WRITE-VAR, and CHANNEL-VAR are channel variables

and are used to distinguish channel variables from non-channel

Page 16

variables. Furthermore, these provide the basis to judge whether a
sub-goal is a consumer or a producer with respect to a variable.
READ-VAR: HRead-enly-variable
WRITE-VAR: Variable for sending out messages.
CHAMNEL-VAR: Charnnel variable. Whether thia variable is an input or an

output is unknown at the time of compilation.

[2] Unifiecatien Unit (UU)

i} Matcher

A Matcher receives a reducible sub-goal frem a PPU. If the sub=goal 13
an evaluable predicate which does not peed unification, the ﬂatnher sends it
to an evalusble predicate processor. If not, the Matcher searches a Clause
Focl for head predicatea that match the sub-goal. If the search ia
suceessful, then clauses with corresponding heads are transferred to a

Unifier.
ii) Unifier

A sub-goal and the correspending clause are sent to & Unifier. The
Unifier, in turn, unifies the arguments. The average number of arguments is
approxipately three, indicating that no significant benefit could be expected
from parallel unification between argumentsa[S]. Therefore, there is a Unifier

and unification precessing is performed in sequential.

¥hen unification is completed for a sub-goal and the corresponding
clause, the Unifier organizes the resulting packet and sends it back te a2 PPO.
When an argument is a long structure data, the Unifler generates a new packet
consisting of the structure data arguments information and transfers it o a

Structure Memory Unit.

Page 17

There is another strategy[f)]. 4 Unification Unit unifies a sub-goal and
a head predicate in a Clause Pool(OR-reduction} and AND-reductlon is executed
in a Process Pool UOnit. This strategy shortens the length of a UU=->FPU
network packet. However, a FPU must have AND-reduction function and may be
overloaded. First we will adopt the former strategy and the next investigate

the two to compare.

i1i) Clause Pool

We adopt the strategy that each Clause FPool stores the same clauses.
Therefore, reducible sub=-goals in a PPU can be sent to UUs which have low load
averages. In this strategy, the corresponding clauses are picked up
sequentially from a Clause Pool, However, since the number of OR relation{¥*]
is about three(9) in 2 program which has rules mainly, there is little
puaaibility that a Matcher and a Unifier are overlpaded DY many corresponding
clauses, We have to consider the support mechanism for executing prograoms

which have facts mainly.

[#] If slauses have the zame head predicate symbol and the same number of
arguments, they are in OR relatiocn t¢ each other. The number of such clauses
ia called the number of OR relation. When there is 2 program described below,
the number of CR relation is two.

append({],X,X).

append([W[X],Y,[W!Z]) :- append(X,Y,Z).

iv} Evaluable Predicate Frocessor

This processor executes at a high speed evaluable predicates which do not
need wunification. t=z the result of static analysis{5] of DEC=10 Prolog
programs in ICOT, it is made known that about fifty percent of AND-literals

are evaluable predicates, Therefore, an evaluable predicate identification

Page 18

tag is introduced into a internal format of =2 sub-goal and a Matcher can

detect evaluable predicates.

[3] Structure Memory Unit{sSMU)

A Structure Data Unifier (SD Unifier) receives a packet from a UOU and
unifies the two terms by referring te the relevant memory word (iwo terms ,one
is in a sub-goal and the other is in its corresponding head predicate.) Then
the 5D Unifier stores the result of unification into the relevant memory words

and sends the addresses of the written or modified memory words back to the UT.

IV. Sample program execution

This section shows the execution of sample programs in Preleg and in
Concurrent Proleg on the PIM-F machine. The interpal formats of processes are
shown in abbreviations. An asterisk (") indicates a reducible state, Not-#*, the
not-reducible =state, &ct, the active state, D, the dead(garbage) atate and SUS,
the suspend state.

1] An example of Prolog
The program iz as lollows

son{3,P) :- child{s,P),man(53).
daughter(D,P) :- child(D,P},woman{D].
child{C,P} :-father(P,C).

ehild{C,P) :- mother{P,C).

father{kazuhiro,charles),
father{kazuhiro, jack).
fatner{kazubiro,betty).

mother{mary,charles).
mother{mary, jack).
oother{mary,betty).

man{kazuhire).
man{charles).
man{ jack).

woman{mary) .
woman(betty).

Page 19

This program represents the family relation.

betty{daughter} jack(son) charles(son)
The goal i=

?7- son(X,mary)l.

To begin with, the below given GDAL-Process is stored in the Process Pocl
of Process Pool Unit © {abbreviated FP in PPUC) as the summit of the

PROCESS-TREE. 4 node tag is omitted,

FF in FPUO

. -4

rTntal Header | Top GOAL-Process(T G-F) , <X>

- - . S T e i) i o

| Literal Header | level 1 (Lv 1) #

PR ———————————————— e et L

pred | son

e s e i e i v A e o P i s S - S o o]

var | X

i
. .

atom | mary J

The PPUC Controller picks up a reducible sub-goal in the GOAL-Process and
the packet described below 1s sent to Unification Unit O(UUO) (A free OU is

selected.).

- e s e o

pointer to the sub-goal in parent GOAL-Proceas
{abbreviated P-sub-goal)

Header | Lv 1, <I>

b . - i - -

var | X

o . T B Y I e S e e i e - e

atom | mary

...ﬁ_._..............-..,q-.pq._._.u..,-.,,.......-.-..-.--...-—--—.——————————-———-_—j

The result of reduction in UUD is as follows:

;pointer to P-sub-goal

L s e e . s e e T o S . i

— o —

atom | mary

Total Header({T-Header} | <X>
Literal Reader(L-Header) | level 2|
pred-: ehild o
h;nr 4 i T

level 2

Page 20

Literal Header |
pred | man
var | X

- ——— -

The result is then sent to FPUY, for instance,

The contenta of the

PPUs

are a3 follows:
PP in PPUD PP in FFUM
[THeader | 0 G-P,<X> | pe---i-pointer to P-sub-goal
'T.-.-Header -I-;r 1,00 1, Act {-——I. i“;---Ele;'w:ler P €X> o
-;red | son o L-H;;dar 1 Lv 2, :‘
var I-;h‘- i .;;;d i ehild
aton ! mery | var | X]
T N F;tum | mary
_E:Haadar | Lv 2,Not-* N
(pred 1 man
var | X o
- -
The OR fork count (ex. ©OR 1 4in PP 4in PPUD) is made known after

QR-reduction

in a UU,

Next, a reducible sub-goal "ehild™ is sent to a free UU.

The result of reduction in the U0 is as fellows:

pointer to P=-sub-goal,

Header | Lv 3

i pred | father

. . . e s i ———

| atom | mary

o . e e e e ey

var |1 X _J

Page 21

A ——— et

pointer to P-sub-goal

Header | Lv 3

If these new GOAL-Processes are sent to PPU2 and PPU3, the contenta of

PFis become a5 followa:

FF in FPUOD

b -1
| T-Header | T G-P,<X> !

e e e e o e

E L-Aeader | Lv 1,0R 1, Act

| — p—

ipred ! aon

-]

fvar | X

o

| atem | mary

S ————

i B B S . e e S A

PF in PPUZ

--~ pointer to P-aub-goal

i i e i e D i

| T=Header

T s . g s . . . A s

L-Header | Lv 3, ® i

o . e s o s o o o —--—-—*

pred | father

J...---.-E-- pointer to P-sub-goal
P

———+pointer to P-sub-goal

PP in PPN

e i - S R i o e T

i e e o D D - o

[
| T=Header | <X»

| ———————— e T e e T T

s e s e e e

pred | child

s

latom | mary

T o T S T i

L-Header | Lv 2,Nct-#

pred ; man

L-Header | Lv 2,0R 2, Act Q-T

Cvar 1 X
------ >

FE in PPU3

Fe======a=

o o e e e e e e e e e

T-Header

L-Header | Lv 3, ®

e i M S e e s

pred | mother

the

[I

Page 22

Reducible sub-goals "father™ and "mother® are picked up in parallel by

Controllers and sent to free Uls.(Rest 13 omitted.)

ALz described above, since sibling GOAL-Processes do not kill each other

and are executed in parallel, parallel "DO NOT KNOW non-determinism™ processing

is realized.

[2] An example of Concurrent Prolog

The following program represents the proecess "integers", which generates
integers starting with 0, and the process "gutstream®, which receives and

outputs integers,

The program is as follows { // is parallel-AND cperator.) :

rule integers(X,[XIN]) :- Y is X+1 | integers(Y,N).
cutstream([¥X!N]) :- write(X} | ocutatream{N?}.
goal integers(0,N)//outstream(N7).
The process "integers" takes on the internal format shown in Fig. 5 as a

(which Lo reducible ot first 4
result of reduction. The process foutstream™ goes to the Message Beoard teo

check the value of N?, but is suspended and linked to the Suspend Process List
since the value has not yet arrived. N=[0[N'] is not released since "Y i3 0 =+
1" has yet tc be executed., When "Y is 0 + 1" i3 executed and becomes "Y iz 1,7
the guard succeeds, turning the C-tag ON and releasing N=[0|N']. Therefore,
[0IN'] is written a=s a value of the channel wvariable N into the Message Doard
and the next channel variable N' iz registered into the Message Board., As socon
as the value of N is written, "outstream®, a consumer process linked to the
Suspend Process List, is notified that N is [CIN']. Upon receiving of this
e Suldn n
notification, "outstream® becomes reducible’{for the result of this reduction,

see Fig.6). In other words, reduction of "putstresm™ 1s driven by the

notification. Then, when "write (Q)" im executed and "0" i= generated as an

Page 23

putput, the outstream reaches the commit operator and N'=N" is released toc the

body part. Then "integers (1,N')" is reduced and "outstream (N'?)" is linked

to the Suspend Process List of the Message Board.

Frocess Pool
(ﬁ:integerﬂfﬂ N} 0 1 Act] . R

| C-tag I N=[0!N']
(CFF:0,0N:1)
H OR fork ecount G-part| ¥ is 0+1 #

|I _I

B-part| integers(Y,N' JE

s T —— - --n--—-

o - e s i . o s

rnutstream{ﬂ?} 3U5] o ——

S ——

e

e

——

Meassage Board

gaaay

H-poi = N | H -

Tm{tili

Fig. 5

Page 24
Process Fool

{/fEntegarE(D,N} 10D] integers(1,N') O ~ *# I

I———————— . L -
1

oo

S~ NY=N*

G=part

B-part | outstream(N''?) i

e o e e e e L

Message Board
i — - ——— —— - e i
s
e

Nt [oiN') 10|

V. Concluding remarks

This paper describes the design of a Parallel Inference machine (PIM-F)
based on control-driven and data-driven mechanisms. We have confirmed that back
communication and bounded buffer communication[11] can be executed using Message
Boards and their internsl formats, and that the Message Boards can function a3 a
data=driven synchronization zuppert mechanism for concurrent processes. Also we
have shown that PIM-F can execute "DO NOT ENOW non-determinism™ in parallel.

Metworks are under consideration.

We are developing a software simulator for the FIM-F machine im order to
eollect data on the =tatus of the unit queue, the operztion rate of each unit
and the banking effect of the units. Fernel Language version 1 (KL1)[3] will be
run on PIM=F. Roughly speaking, Set expression[i4] is the bridge between a Guard
World and a non-Guard World in KL1. Therefore we will consider a Set expression

support mechanism in PIM-F.

Page 25

Finally, thanks are due to Dr. E. Murakami, chief of the Firat Research
Laboratory fer his inspiration. The discussien with and ecomments of
Or.K.L.Clark, Dr.5.Gregory in Imperial College, Dr.E.Y,Shapire in Welzmann
Institute of Science and Dr.P.C.Treleaven in University of Reading, who were

visiting researchers to ICOT in 1983, were of great benefit.

* References #

[1] R.Kowalski : Logie for Problem Sclving , North Holland, New York £1979)

[2] S.Haridi and A.Ciepielewski : An OR-parallel Token Machine, Legie

Programming Workshop '83 (1983)

[3] J.Darlington and M.Reeve : ALICE and the Parallel Evaluation of Logic
Programs, The 10th Annuwal International Symposium on Computer Architecture

(1983)

[4] E.¥.Shapiro : A subset of Concurrent Proleg and Its Interpreter, ICOT
Technical Report TR-003 (1983)
[5] E.Y.8hapire : The Bagel : A& Systclic Concurrent Prolog Machine, {currently

being prepared for publication as an ICOT Technical Report.)

[6] P.C.Treleaven, et al. : Data-Driven and Demand=Driven Computer

Architecture, ACM Computing Survey, vol.1l, Ne.1, Mareh (13982)

[7] S.Funifuji,et al.: Conceptual Specifiecation of the Fifth Generation FKernel
Language Veraion t (EL1) , (currently being prepared for publication as an ICOT
Technical Memo.)

[8] E.L.Clark and S5.Gregery: PARLOG: A Parallel Logic Programming Language,
Research Report DOC 83/%5, May (1983)

(9] R.Onai,K.Masuda,M.Ascu : Static Analysis of Sequential Prolog Programs, ICOT

Technical Report TR==32 (1983)

[10] R.0Cnai,H.Shimizu,N.Ito,E.Masuda & Construction Schema of a Prolog

Page 26

Maphine Based on Reduction Mechanism, Proe. of 26th Conference of IFS (Japan)

1983.(In Japaneze)

[11] A.Takeuchi and ¥.Furukawa : Interprocess Communication in Concurrent

Prolog, ICOT Technical Report TR-006 (1983)

{12] Arvind anéd H,.E.Thomas : I-structure: tn Effieient Data Type for
Functional Languapges, MIT Lab. for Computer Science Techniczl Memo TH-178

{1978)

