ICOT Technical Report: TR-029 _

TR-029

Mandala: A Concurrent Prolog Based
Knowledge Programming Language/System
by
Koichi Furukawa,

Akikazu Takeuchi and Susumu Kunifuji

Movember, 1983

9]

(8

-

©1983, 1COT

Mita Kokozal Bldg 21F fla) ADR=2181 =5

“ :D | 1-28 Mita 1-Chome Telex IWCUT] 32661
Minato-ko Tobkve 8 Japan

Institute for New Generation Computer Technology

Mandala : A Concurrent Prolog Baaed
Ernowledge Programming Lenguage / Systen

Iheieki Furukawa, Akikazu Takeuchi, Susumu Kunifuji

Institute For lew Generaticn Computer Technology

E HE-L E1E|

A& knowledpe prograooing lanfuzspe/rsystec called Mandala is being
ceveloped on Concurrent Prclog. The final gpoal of ceveloplng Mancela
is to provide a tool for kKnowledge processing which 13 cepatle to
extract very high parallelisoc 4in ita execution on the Fifth
Gereration Computer Systex{FGCE). Mandala supperts Dboth object
oriented programuing and data coriented program=ing, vhich are
realized by the same mechanism. These two programming styles will
enable us to extract parallelism in knowledge programming. On the
cther hand, Concurrent Proleg, the implementation language, will make
it pos=zible to run Mandala on a highly parallel computer. The main
design philosophy is to introduce a multi-plane structure for
distinguishing meta level concepts such as modifying and controlling
the problem solving strategies from object level concepts. We
defined most of the important concepis in krowledge progrezoing, €.8.
cisss, instance, meta c¢lass, class variable, ds-a hierarchy arnd
part-of kierzrchy, in terms of Concurrent Proleg and the pulti-plane
structure and found the definitions eclear and sicple.

1. JInfreduction

Enewledpe programming plays a very important rocle in FGCS as shown in Figure 1. It
links between knowledge infermation processing applicatiens ard KL, the Kernel Language
for FGCS. To extract very high parallelism in knowledge infermation processing, we need
a sultable formalizatien 4in each level of description, that is, in preblen deseription
level, in algeritho description level and its execution level. There secems o be very
few solution: that achieve sush parelleliszm. The solution we have in oind is shown in
Figture 2. Object oriented propramming is considered to be & very powverlul tool to
express solutions to problems in terms of many processes cooperating with each other.
Concurrent Proleg [Shapiro 1683, Shapire & Takeuchi 1983, Takeuchi & Furckawa 1983] is
one of the post prozising cendidates for the parallel algorithm descriptien languzge,
which i3 a nztural extention ef Prolog having the czpabllity ef expressing concurrency
without lesing its semantic clarity as a logie programoing language.

L‘Fr_?wpmr
;f;’ﬂ’ﬂFﬁF

(Carpregong (rohicm

Svwnp fiarem

lroblem
denesdrtlon

fejest Cricnied Proprovucise
Tr
Ll Lhe
[ii:%oncurrent Frolog P::::4rq
= irsion

o]
Farellel Archiiteoclure Exoecutiaon

NEM

Knpwicdge Repreiealatan
.._'_!'!H'H!

Faralich frfereare Merg fnference
AMonddzlt

(.::--—:f.{.:m'm:rf l|"r|-.lp
<,

Tirure 1. llandcln in FGOO5

N,

Flpmer 2. Enoeledpe inforoation Frosessicr= soséom

b Y

In this paper, we propose a knowledpe programcing languzge/systen called Mzndala =as

2 lanfuspe for pretles description. It fits to Figure 2 since Hzpdala can pravice 2n
cra=ct ocrientec prograccling envaironment. Ir fact, Mandala prvides a sifLoturiny
peihaniss in writing Concurrent Prolep progrecs a8 well as in buillind knewd g
et ef trky key feztures of knowiecps pregrassing laznpuacer suszs oze LODPS

-]

efik 16EII and Ll20 ipncluder Lhe BESLT STTUCLUCInG Coneepl o SCellilalwe=tld

[Goldberg & Robson 1983].

I~ section 2, Cercurrent Proleg is brieflly introcuced. Conceptual explanation ef
Mandala is given in secticn 3. The irplementation detail 1s discussed in sectien 4 and
cxacple profprams sre given in section 5.

2. Peview of Concurrent Frolog

toncurrent Prelog is a logiec-based parallel pregramoing language designed and
implemented on the DEC-10 Proleg by E. Shapiroc [Shapiro 1933). As the Belational
Lznguage [Clark & Gregory 1681] and PARLOG [Clark & Gregory 1983], Concurrent Freolog
adopts Or-parallelism as a basis for non-deterministic processing, and And-parallel ism
for the description of parallel processes, shared veriables are used, with some control
information, "variable annctation®, as compunication channels apong concurrent procedses,

2.1 sSvntax of Concurrent Frolog

The bazic style of programs in Cencurrent Frolog is.guite similar to these in nEc-14

Prolog. In fact, the basie syntactie monstructs in Concurrent Prolog have the same

wnings as in DEC-10 Proleg. Therefore we neglect the explanation of the basie
-_atactie constructs and capnpentrate on the explanatien of the difference between themo.

[PFroegram] I= Concurrent Prelog a progranm is expre.sed as a set of guarded clauses.

[Guarded clause] A guarded clauses is a clause which always has "|" ({called a comzit
sperator) on its right side as illustrated below,

A :~ G 1 E.

where G and B are predicates concatenated with logiczl AND, called a guard part and a
vody part, respectively. ™7 is an extended concept of the cut symbel.

[AND] Logieal AKD is expressed in the following two ways with operationally different
peanings.

sequential AND nET
parallel AND R

is evident from their names, "&" indicates goals cepnected by T&® to be executed
w.quentially while "," geans geals ponnected by "," to be exscuted in parallel.

[nead-only annotation] The rezd-only annotation ™77 is gontrol information that can be
added to ocecurences of variables and is wriiteéen as nyern, Variables with ®%% can always
ke unified with other variables but pust not be unified with non-variable term3 until
they are instantiated. *he annotation ocan be added independently to individual
ceourrences of variables. HNeormally, individuzl processes add, or co not add, the
arpotation to varlables shered by them. Onece a process has added the annctation to a
ahzred veriable, it cannot {nstantiate the variatle, and has teo walt until anoiher
tnrenass (without the annotation) instzntiates the variable.

Variahles unified with wvariables with the read-only annatation auntemotically inherit
thia property. The annotation is net an operator, Therefore, 1f ¥ and ¥? appear in the
same clauue, they are legically the same except for the unification control information.
if ¥ is imsrantiated to 2 non-variable term with respect to %7, the arnnoiation loocses ita
effect.

7.2 Reduction

We will discuss how a given goal is reduced to subgoals. Irn Concurrent Frelog, &
prorrem monsists solely of guarded clauses. If trkere i85 =2 claugss not explicitly
QOT.I.:},‘.in_; "!-1 i is profe_&ﬁf: as if it= EEFI!"d iz amptly, Lhat 15, it had T in the

lefiomost part of its right side.

Maw assume that there is a goal A and the following are the clauses which have the
same predicate name as the geal A.

#1 = G1 | B1.
B2 - G2 1 B,
A7 = Gn | Brn.

61 may be empty. These clauses are classified irio the following three categories wit
respest Lo the goal AL

(1) eardidate Al = GL | Bi.

T- this case, A and Al can be unified and Ci solved without unifying a read-only veriable
with 2 non-variable term.

{2) suspended ALY = GA | B
~+ this ease, A and &) ecan be unified and GJ can be solved except when a read-only
~izple iz instantiated to 2 non-variable tero.

{3) rail ik = Gk | Bk.
ﬂther.caaea.

If goal A& has ene or more candidate clauses, one of them is selected and the goal is
redueed to Bi (az=suming it is Ai :- Gi } Ei). The selection rechanisa evaluatles each
slavuse in parzllel end selects the first candidate found. Use of this eppreach permits
don't care non-detercinistie processing. Once the goal A has been reduced, checks of
aiternative clsuses are aborted. In this sense, the "|" symbel [lunctions as the e¢ut
ayzbol. If goal A has no candidate clause but has at leest one suspernded clauss, it is
suspended uptil at least cne candidate can be found or a complete fzilure occurs.

Ma wardable binding taking place in the course of the reduction is finzlized until
the copputetion commits to that clawse and other poasibilicvies &re elicinated.
Trnerefore, a chored variable without the rezd-only annotation, even i it is instarntiated
to a nonevarizble term in the course of reduction, does not allow asccess by cther

geesses until ™0™ is passed.

Fo The rirveture of Mandala

The most irportant concept in Mandala is its multi-plane structure. The bettom
plane 13 wused to express object worlds which contain information of given probleps
dornins and 43 called an obiect plane. The next higher plane i3 used to express mela
vruwledse about cbiects described 4n the object plape and ia called & meta plane. In
theory, it is possible te concider higher level plane such as a2 meta meta plane z2nd =0
Ciie

In Mzndala, there are twe kinds of cemponents to express the warld structure of
robiems te be sclved; ere 13 a knowledge base (program) depicted by the syzbol of a
ek, zand thke other is an active proecess depicted by a circle. These itwo kinds of
c:p:ncnts can exist 1n ezch plane by giving different roles respectively. The typiezl
resture is to essociate an active process called knowledge base manzper in the meta
t> cach knowledge “base in the object level as shewn in Figure 3. This assoeistien
lled & pengger-of link, which is one of the four kinds of links in Mandala.

S TR T P |
l.... -

I'"
-
"
—

[
(A3
"}

The remairing three kinds of links are is a, pari_cf and instance_of, &n is_a 1inx
nopnests | tws gisks L in the seops plane and expresses usual coneept Rierzrchy agz anown in
Tirure 4.

An Apstance of link connects a disk and a process in the same plane and erpresses
she fact that the process 1s an instance of the disk, or that it i= Pexecuting the
progrem®™ in the disk.

i riArr

e le
r

caf
o
:f'p-e_i:lec1

Conposite_oblect

ebhject plane PR e

Fipure B. Iz a3 lia;x

Yicure 3. pmarnaper_el 1inpk

A part of link is =ipilar to an is_a link in a sense that it connects two disks in
the same plane, The difference is that there 2lso exists a part_of link between active
processes whieh are respectively connected to the two cisks by instance_of links as shown
in Figure 5.

FOCLAnIUIBT_ZTES o
RO
-

et
u
.
(4] I
L]
i '
-0
*
\
]
O*

ot _o
,:f_.._.,_.__.._

[
i vl
e r k \.-
.I M !
'
Q<
,--"''_'_'_.-._

Freent that it uses "=3" instead ef ":=" and additicnal annctation "s® to goels, the
conoent of wach knowledge tbaze 45 @& Concurrent Prolog program which descripes the
behaviop of its instances. On the cother hand, the content of each process is its status
which changes zecording to the proceeding of computation.

The gdistinction between knowledge base {program) and process enables us bo Introduce
complex 1inks between two planes, It is possible to zssozizte more than one cisk to each
knowledps bace manager. Assume a kKhowledge base papager responzible to check the
censistency of a new input to the knowledpe base, It uses a gifferent kind of knowliedse
cplled dpteprivy econstraintz te check the input. Inteprity constrzints &re themselves
birds ef object knowledge whieh i3 to be expressed in the oblect plane. Therefore, we
two wnowledge basps to be associaled Lo the koowledpe Dase manaper. Mote thei if we
iicit coely one to one correspongence for maneper_of links, ManZaia’s strusturing coneent
bescoes eguivalent Lo that of Smalitalk-50 [Goloberg & Robsch $583].

A
iy

3, Implementalion in Cenourrent Preoles

A= already mentioned, there are two basiec cowmponents din Mandzla, that is, a
knecwledge base (a disk! and a knowledge base manager (a cirele). In the current =tare, a
knewledge tase 15 implezented as a program ol Concurrent Proleg z2nd stored in the
interpnal data base as well as another programs, On the other hznd, a cirele, which is an
instance of some knowledge base and piays a role of a knowledee base menager if 1t 1=
created on the meta plane , is iapleoented by a process, ne peal which represents this
process has the form,

object{Kame, Input,Progran).

Hereafter we call the process with this goal an object. An object takes three zrguments.
The first argument "Name" is an ideptifier of Lhe object, the zegond argument RI=put"™ ia
a channel tkrough which the object receives a sequence of goals and the third argument
"Program" is a sct eof clauses which specify the behavior znd state of the chbject as
Concurrent Froleg programs. When an object receives a pgoel through its channel, the
abject =zelves it using its owWn Knowledpe "Program®™ and tries cext gozl while it receives
new goals. The Concurrent Prolog progrem which represents an cbject is shown below,

object{Name,{Gozl|Input],Program) -
simulate{kame,Gozl,Prograo, NewProgram),
(wait{NewProgram) & object{Name,Input?,NewProgram)).
otject({Mame,[],Program).

The predicate "sipulate® takes four azrguments and it tries to sclve the goal ™Goal" miven
as the second argument, using local knowledge "Program™ also given as the third argument.
After the gozl "Goal" has been solved 1t returns the updated progranm "HewPrograe" to the
feerth argument. In przeties it only invokes "sioulate” with five grrpuments in which the
extra fifth argupent is used to represent default knowledpe which eczn e2lsc be used to
aclve the goal "Goal®™, The progrez of "simulate®™ with feur arguments zre shown below.

simulate{Hame,Goal , Program, NewProgram) :-
simulate({lanc,Goal, Progras, NewPregrae, [1),

The fifth arpument of "sizulate®™ with five arguments is default knewledge, which can be
zed 1in =clution of the goal ™Goal? and is represented as z set of clauses. New

"simulate® precicele can use both loecal knowledge and default knowledpe when it solves a

Foel and returns the updated local kncwledge. If the poal eanmet be solved using loecal
nd default knowledge, 1t enhances the default knowledpe and tries to =olwe it apain with
<w default knowledge. The program of "sioulate® with five argumerts i3 shown below.

Simelate{ Neme, true, W, W, 3.
sizulate(Name, (+Process,). Prograg, NewProgram,Defauit) ;-

Frocess, simulate{Mame,Q,Program, NewPrograwm,Default).
sirulato(Name, (&,B) ,W, N, D) :=

simulate(Name, £, W, W1,D), (wait(Wi)&simulate{Nace, B, W1 ,5,D)).
zigulate(Nape, (A&B) W, N, D) :-

cimulete{ Name , &, W, W1.D)4siculate! Name , B, W1, 0. D).
simulate(Nane,+Process, Progras, Propras, Default) :-

Fracess, ’
simulate(Nane, process_status{Program),Progran, Progras,_).
gimulate(Name,add{C),Progran,{CiPrograz],_).
sirvlate{ Name,delete{C]),Prograre, NewProgras, Default) :-

prolog(delete(C,Progran, MewProgran, Defaulit)).
zimulate!{ Name,{Fkame,Class,Chan) part_of Me.Pregrem, Progran,t) -

prelog{find_axiow((PName,Class,Chan) part_of Me,Progran)).
sipulatoe hame, &, W, W, D) :=

prolopieysten_pred(Al) | prologl(il.
iwulats { Nape, 4, W, K.D} -

prologt (fing_method{Name, AW, D NewD !, append(W, Nawl, Vi.copy{V,Cw3%Y &

vimilote_resclvelhame, 5 00, Bowln, hewD) W1} !

sioulizte{Napmpe, =, Wl .hoNewD .

The peaning of each clause 13 iisted below.

1. If the goal is true, "LewPropram®™ is the sane as AProprEmm.

2. If the goal iz a comdination ef the ferm (+Frocess,?), it forks "Process"”
and =solves the rest el goals by *xirulate”.

2. If the posl 13 2 combinction of tke Torm [(F,T), it aplits 1o LWo Esiculate™
processes.,

4. If the gozl 1is a combinatisn of the form (P42}, first 4t solves "P" and
then solves "0,

g, If the goal is +Frocess, then the process sclves the nprocese™ without any
layer of Psimulatem.

&, If the goal is rorocess status(Wi®, it ynifies the variable "W" with the
local program "Frograz”.

7. If the goal add(C), it adds the assertion "C" to the "Program® and makes
PHewPropran®.

g, If the goal is delete(C}, 11 renoves the asserticn "C" frem the FProgran®
and make "NewProgranm®.

g, If the goal is *"(PF,Cl,Ch) pert_of Mem", it tries te unify "{®,Cl,Ch}
part_of HMe™ with an gssertion in the program.

10. If the poal 13 a systen predicete, the goal is =sclved by the sequentlal
Prolog interpreter.

11, Otherwise, it tries to reducze the goal usi the progran and the default.

Belaw the programs of ssipulate resolved™ and "sipulate_unify® are shewn.

5imulatﬁ_reﬁbl?E{NaDE.ﬂ,[CECE].3+H(H.ﬂ}.H!} -
sipulate_unify({4,C,C,B) & simulate(Neme,G,H.W1.D) | true,
3imulete_rﬁsﬂlveiﬂame.ﬁ.EC}EF!.B.HD.WiJ:-
ciptlate resolvelNazc,A,Cs?, B WDLWT) 1 true.

simclate_unifylA, (A=>({G12)),C.E}.
simulate urify(&,(4=2B).true,B).
simulate unify!{f,A,true,truel.

5. Exagples
A sipple example whizh describes a gounter ia shown below.
fmmmr = Class Counter —me—=m=====

class{counter).

counterlcounter is_a 'Simple Cbject').

cavnter{stzbel0}).

coupter{{clear =» delete(statel(X)] & add{state{D)})).

counter{{up =» delete(state(X)) & X1 := ¥+1 & addistate(X133)).
counter((down =» delete{stzte(X)) & X1 := X-1 & add(stzte{X1)))).
counter({show =» state(X) & write{X} & nll).

Descriplien of a meta class "Class™ whieh is a typical knowledge gmanzper i3 shown
ot st _anP pan ereate inatanccs from 2 knowledge base and show liztinz of knowledge
base and o on.

Ferm—————— Mrigllaas flass ==———wemm——-

metaciass(Clas=").
vy s [TClasst i A 1Simple_Objectt).
tClans'{ punber(03).

Prignst fiapegtel Nane Goalsl =2

aetetelnuprer(X)l; & ¥1 t= X+1 & ad?{nuzber{X1}) &
asciinctencelhame,Goals’ ! & Crams inatance_ol Mpzme &
instantiswe’ Cnage, hame 0¥ & -cbieztilName, 1nit!Cozls? DR

"Clast'[inow_many = numberil) & writeiX!) Ellidie

F

-

tClass'({list{db) => T instance_of M &
prugranfE,CIausesj.writuan{C1ause5],n1}J.
tPlgss! ((kill(bame) =» delete{rumber(X)) & X1 := X=1 & add(nuober{X1}]) &
delete{inztance(Name,_))).
IClass'({list{self) =» process_stztus(S) & writelnl(E}&nl)).

Yere we chow three basic knowledge bases, "Object', tEimple _Object! and
'Composite_Ubject'. "Object' dis placed on the root of is_a hierarchy spawned on the

pbject plane and 'Composite_Object' is a root npode for every objectz which consista of
pore than one object and 'Simple_Object' is a root node for other objects.

fome———=—=- (Clazs Chjenl se=cccemm==

claas{'Ohiect'}.
tOsject' { 'Hapt{Set, [1)).
'Object ' {{*Map' (Set,[XIR]) => copylSet,5)45=[¥Coals])
Goals, 'Map'(Set. R})).
'gbject' (("Enumerate' (Set,List) => process_status(W)iget_atl{W,Set,List}]}).

¥ mmmmmma= {lass Simple Object se=—e=w——-

class('Simple_0Object').
tSimple_Object'('Simple _Object' is_a "Object').
'Simple_Object'(4init),

fommenae=== [lass Cemposite Object —emmme—ee-

class{'Composite_Object').
'Composite Object'('Cosposite_Object' is_a 'Object').
'"Composite_Ohiect'({send_tol(Name,Msg) =>
delete! (Name,Class, [Msg!New]) part_of Me) &
acd{ {Mame,Class, New) part_of Mell).
tComposite_Object'({init =2
‘frumerate’ (! (Mame,Class,Chan)!{Nase,Class,Chan) part_of _},List),
'Hap':{[Kq:e,CIass,ChanJrinstantiate(ﬂlass.ﬂane,Ppﬂgram} &
+object(Name,[init|Chan],Prograc)},

List))}.
Here we show mare canorete exapples. Below definitions of Prectanpular_area”,
mepnoe® nnd Woindow with_label™ are shown., They are alse exanples of Ppart_of" relztiocn,

cince "window_with_label® is defincd using "frame” as a part and freme is also delined
uzing "rectangular_area® as a part.

Fommmm -=- Clazss Rectangular Ared ———=-====-

claszs(rectangular_areal.

rectancular_arealrectangular area ts_a 'Simple_Object').
Feotoneuler sreslistabe! (20,5,30,1000).

feouorewlar_area((clear => state{Pareu) & clear_primitive(Param))).

e ——— Closs Framg —-—ms——===-

clasa!{ freame).

freme! frame is_a ‘Composite Object').

co oo frae, rectongular_ares,Chan) part_efl frame).

frerelidrow => send tolrec,state(Param)} & walt{Param) & draw_lines({Parac)}}.
frege({refresk =» sepd_tolrec,clear) & draw)).

fracei {stetelParer) =2 send_toi{rec,statellaramll)l.

| FEYe——— Y. 1] Wimpdow with_LEDE]l eemeeeccceas

class{window_with_label).

window_with label{window_with_label 1= a "Composite_Object').

window with label((fr,frame,Chan) part_of window_with_labell.

window_with label{label{gazonk)).

wirdow with_label{{change{Label] => delete(label{_)) & add(label{labell)])).

window_with_label({show =» send_to{fr,refresh) & send_to(fr,state{Paran)) &
wait{Param) & label(Label) & show_label primitive(lLabel,Param))}.

Finally we show a more complex class definition than before. The new class has an
aesimilatcr &3 a part and manages two knowledge bases, one of which is a positive
knowledge basze that contains programs and the other 13 a negative knowledge base that
coptains a set of Integrity constraints fer the positive knowledge base, When a class
receives a new data, the assimilater associated to the class tries to check 41f tLhe new
data invokes a cortradiction and if it is a redundant information and soc on. The list is

given below,
e MatazClase 'Class'" with assicilator ——s—ee--- -
petaclass('Class').

*Class'('Class' is_a 'Composite Object').
"Class'{{assim,assimilater,Chl) part_of '"Class').
'Class'((pinput{Assertion) =>

He instaznce_of Mpame &

F mpzitive_kKb_of Me & N negative_kb of Me &

send_to(asszim,passimilate(Assertion,P,Ni}}).
'Class'(({ninput(Asserticon) =2

He instance_cf Mnamse &

P positive kb _of Me & U negpative kb _of HMe &

send_tol{assin,nassizilate{Assertion,P,N}]))]).

assimilator({zasimilater is_a 'Composite Object').
assipilator({contra,contradietion_checker,Ch2) part_of assimilater).
assimilater((redun, redundancy_checker,Ch3) part_of assimilator).
assimilator((passimilate(fs=ertion,P,N} =>

prograci{ F,Pprogram) & aimulate(Pprogram,Asserticon) | truell.
assimilater({passimilatef{Azsertion,P,N) =>

programi P, Pprogran) & prograom{ N, Nprogren) &

send_tolcontra,contradict{Pprogran+hissertion,Nprograz])

botruel).
srnviniiztor({{passimilate{Azsertion, P, H) =5

prograc(P, Pprograu) &

send_to(redun, redundant([],PirogransAssertion, InterPprogram))

} modify(FP,InterPprogram) &

passimilate(Assertion,P,N))}.

siciniletor{({passinilate{Assertion, P, N) =2

otherwise | progpram{P,Pprogram) & modify(P,Pprogram+dssertion))).

martradistion_checker{contradiction_checker 1s_a 'Simple Object').

cantosdicrion_checker((contradiet{InterFels,[HellNels]) =5
sipmulate({InterPels,Nel) | true)).

contradiction checker((contradict({Interfela,{_INclal) =»

gtherwise ! contradict(InterPels,Nels)k)).

codundensy_checker{ redundancy_checker 1s_a 'Simple_Objeet').
roZaniarsy_checker((redundant{Seenfecls,[Pel |Pels],NewPels) =>

zimelate (SeenPeis+«Pela,Pel) | truel).
rorondeney_cheoker{ { pedundant{ SeenPels,[Pel ! Fels], NewFels) =»

ctnerwize | redundant([FeliZeenPcls], Fcla, NewPecls))),

Fe Atkiowimdrement

The authors wian to thank mezbers of ICOT working group Ne.2 and Ne.4 both for
freftful discussien and comments, The authors would also like to thank Kazuhiro Fuchi,
Dipecter of ICOT Fesearch Center and z1l the other members of 1007, both for help with
this research and for providing a stimulating place in which to WOrK .

!References]

[Shapiro 1383] I.Y.Shapiro: A Subset of Concurrent Prolog and 1Its Interpreter, ICOT
Technieal Report TR-003 (1953).

[Clark & CGregeory 1681] EKE.L.Clark, S.Gregory: A Felational Language for Parallel
Programming, Proceedings of the ACM Conference on Functional Frogramming Languages and
Computer Architecture (1981).

{Clark & Gregory 1983} K.L.Clark, S.Gregory: FARLOG: A Parsllel Logie Progranming
Lanpuage, Fesearch Repert DOC 83/5, Ioperial College, May (1883).

[Goldberg Lt Robsen 1683) A.Goldberg, D,Robson: Smalltalk-80; The languzge =and its
ipplementation, Addizon-Wesly 1983,

,_abrow & Stefik 1983] D.G.Bobrow, M.S5teflk: The LOOPE Manual, Xerox technical meno
EB-VLSI-£1-13, 14983,

[Shapire & Takeuchi 14983] E.Shzpire, A.Takeuchil: Ohject Oriented Programming in
Concurrent Prolog, New Ceneration Computing Vel.1, Ne.1 (19E3)

[Takeuchi & Furukawa 1%E3] A.Takeuch!i, FK.Furukawa: Interprocess Cocounication in
Cencurrent Proclog, Proc. of Legic Programming Workshop Y83 in portugal (1983).

