ICOT Technical Report: TR-025

A Knowledge Assimilation Method for
Logic Databases
by
T. Mivachi, S, Kunifuji,
H. Kitakami, K. Furukawa,
A, Takeuchi, H. Yokota

September, 1983

hita Rokusal Blde. 21F

“ :D I 4-28 Mita 1-Chome
NMinato-ku Tokyoe HIR Japan

TR-O25

{03 4a6-3191-5
Telex 1COT 1324964

Institute for New Gleneratiun Campﬁter Technology

A THOWLEDGE ASSTMTLATION METICD FOR LOCGLT DATABASESD

T, Miyachi, 2. Kunifuji,
H. Eitakami, K. Furukawa,
A. Takewchi, HR. Yokota

Tnstitute for New Ceneration Computer Teeknelegy {(ICOT)

Abztract

In this paper we consider & deductive question answering system [lor relational
detabzses as a logie database system. We propose a knowledgpe assimilation
method suitable for such & system. The concept ﬁf knowledge assimilation
oriented %o deductive logic is formulated in an implementable form based on the
notion of amalgamating object languages and meta languages. The conecpt of
knowledge assimilation consists of checks on subconcepts called provability,
sentradietion, redundshey, independency, and correspending internal database
updates. We have implemented a logic database-criented knowledge assimilation
progrzm in PROLOG, 2 logic programming language. As 2 result, we found PROLOG

suitable for knowledge zssimilation implementation, among cther uses.

1. Introducticn

Humans acguire knowledge from the real world when they recopnize the value of
its existence. Enowledge-base management sSystems ilncorpeorating & relational
database manzgement system take on the role af knowledge acquisition, knowledge
representation, and knowledge utilization. Nevertheless, It 1= humans that make
the final decision as to whether or not teo store knowledge in databases.

Since, hcwever, humans can lack the neceasary knowledge and are careless,

gquizitist of krewlecge smould be refuszeq 1T the Wnowlacge I8 ImpIIeIilF
inponsiatent with Dumen intent or has zlready been acguired.

Storing into dztabases only the necessary xnowledge winich iz also consistent
with the intent of the acquisition is czlled knowledge assimilation. To zssure
the validity of knowledge stored In databases, knowledge zssimilation is
indispersable at the tinme of knowledge aequisition.

The hasic eoncept of xnowledge assimilation was presented by 3Jowen et al [E &

¥OB17. But, they did not show any specific method for its implementation.

Research into integrity constraints in databases has been conducted by Cadiou

1]

[Cadiou 7TA], WNicolas [Kiecolas 78], Beeri et al. ([B & B & G 78], and others,
This research correspeonds te research on the problem of contradiction addressed

by Bowen et 2l. in the context of knowledge assimilatiocn,

In this peper, section 2 defines the. concept of knowledge assimilation in an
implementable form te clarify it theoretically. Seection 3 reports on the

PROLOG-based knowledge assimilation implementation method we have developed,

The research field zddreszed in this paper is what has =0 far been called
resezrch on fundamental theory, application, and implementation of deductive
question answering systems for relational databases., Feor simplicity, however,
it is called a "logic database® here as, in CERT-Workshop [G & M 78], (G & M & X

B1] and [Nicolas B2].

£. F¥nowledge assimilation

The basic concept of knowledge assimilation was presented by Bowen & Kowalski
[B & K 81]. To explain the concept it is necessary to introduce a meta language

to operate on the provability of object languages. Therefore, we first explain

~esesrcn on meta lanstages in 2.1 znd tnes giscuss the concept of knowledge

sssimilaticn in 2.2.

2.1 Hesearch on metza languzges

Operztions on the provability of object languages cannot be performed within
the fremework of object-level langusges. [EB & K 81] =shows that it is possible
to expand the power of an object language by incorporating a metz language to
dezl with *+he provability of object-level languages. It shows that the object
level and metz level czn be dealt with by & 3ingle language. This is ocalled
smalgamation of object-level languages and metal-level languages. The following
D1 and D2 are the top-level program of the meta predicate "deme" [or dealing
with the said provability. "Demo" judges whether Goals are provable from Frog.

"depo{Prog, Goals)" corresponds to 'Prog —Goals! (t— : provability).(Note 1)

01} demo (Prog, Goals) <- empty (Cozls) (Bote 2)

D2) demo {Prog, Goals) ¢- szelsct (Joals, Goal, Rest),
Meawber(Proc, Prog), rename{Pres, Geals, Variantpree),
parts {Variantproc, Conel, Conds), mateh (Conel, Goal, Sub),
apply (Cond=s + Reset, Sub, Newgoals), (Note 3)

demo {Prog, Newgoals).

Programming this 'demo' predicate just as it is written here Is not easy, and

the program is not efficient.

{Note 1)Note that "demo® stops whenever it finds the rightl solution
far a provable goal but does not necessarily stop in octher cases.

(Mote 2) The use of '<-' instead of ':-' in PROLOG indicates that lhe procedural
interpretalion of PFROLOG is preserved but the order of clauses iz nol
specilfied.

{Note 3) Here '+' represents the unilon set operalor.

OL3, TFererrz L& warren ceveleoped = 9FREQOLIG
Iotérsretsre in PROLIGT as sarly =s 1676

, femoostreting that a FROLOG interprezer

can me eazily prepared using PROLOC ftself[P & W 1978].

Tm =hisz gonnection we hzve [found the following facts: The meta prediczte
niemaf =znd the PFROLOG interpreter in PROLOC have almost the same funetion in
respect Lo meta language implementation; and “"demo® can be eazily implemented

by the PROLOG Interpreter in PROLOC, The besie Tunction of "demo® czn be

achieved by the following six clauses,

demo{DE_name, true) :=I.
demo{DE_neme,not(P)):-!,not{demc(DE_name,P)).
demo(DE_nzme,(F:2)) :=!,{demo(DE_name,P};demc(DE_name,J))}.
dego(DE_name,(F,5)) :-!,demo{CE_name,P),demo(DE_name, Q).
dema(DE_name,F) = me:a_palL{DB_naéa,(P:-GJj,demu{Dﬂ_name,H}.
demo(DF_name,®):- meta_czll{DE_name,P].

meta_cgll(DB_name,P):=- EPz..[DE_name,P],EF.

The demc program is brisfly explained below. The [irst clause i= assumed te
he true if OGeoals is "true', The second, third, and fourth clauses give the
preving procedures to be followed when goals sre in the form of negation,
disjunction, and conjunction, respectively. The {iftk &and sixth clauses
actuzlly do the proving: The Ffifth clause proves goals by rules(intension),

while the sixth clause proves gozls by factl{extension].

Tre zbove "demo® can be easily modified to handle the Cut Operater {!) as

well.

o e
-

Thne FRICLOC mekes 1T pessitle to easily amelgematz cobject-lavel and meta-level
languazes ints opne, which mesnz that It Iz pomzible o implement knowledze
assipilation with relative sase, It alsoc means that PFROLOG can operate on
object-level knowledge and meta-level knowledge, These will be discussed in

detail later.

2.2 Concept of knowledge assimilation

A= knowledge iz generslly called data in the field of logic databases, data is
usad in the sense of knowledge alszo in this paper. Then the concept of

knowledge assimilation can be shown by the follewing A1) through A4) [B & K 81].

{A1) If input data (Input) can be proved from the current database (Currdb), the
new database is identieal with the current one.

(42) If one item of information (Info} in the current database can be proven
from the rest of the database (Interdb) together with Input, the new
database {Newddb) represents the database obtained by assimilating Input
into Interdb.

(43) If addition of 1Input to current database (Currdb + Input) results in a
contradiction, input data (Toput) must not be added to the eurrent
database (Currdb). The new database is identical with the current cne.

{A4%Y If Input is independent of Currdb, the new database represents the database

cbtained by adding Input to Currdb,

From the foregeing A1 through &%, it can be reasoned that knowledge
zssimilation requires performing (A1) provability check, (A2) redundancy check,
{A3) contradiction check, {44} independency <check and updating Currdb

accordlngly.

L7 i T S e =TT e
EoToCRED SOiE MSESCLanE -5 «LaCEsay «

el througn A% Wnen ioplemented Iz oz leszis

it
"L}
=
0
[l
i
in
A
-t

pregramming languzage. We believe their orocessing seguence should te
reconaidersd. Becides, no =pecific definition is given Lo contradietion or

ipdependency.

In “Ris paper, therefere, we consider the processing sequence of kneowledge
gzsimilation =and, define contradiction and independency. Furthermore, we make
an in-depth examinetien of the role of redundancy checks, thereby giving =z

plezr-cut definition te the concept of knowledge assimilation.

2.2.1 Processing sequence of knowledge assimilation

e consider it appropriate to process knowledge zssimilation in the following

Sefquence.

1) Provability check
2) Contradiction check
3} Redundancy check
1) Independency check
The reasons ere given in &) through o) below,

2l The provability check znd eontradiction check are both intended to judge
whnether input data should be added te the database (which 1s wcalled
tassimilable'). By contrast, the redundazney check is needed when input data
is assimilable. Therefore, the redundancy check should take plaoec zfter the
provability snd contradiction check.

Rl Ca=zes where input data can be proved Croo the database are contrary Lo ocases
where input data is incensistent with the database. Basiecally, the
srovahility check, which is coneeptuzlly simple and primary, should precede

the gontradiection check.

o: The ‘zcepenpency chece should texe plaece &fter the assimilanililcs cheal
heesuse 1t ipcludes the sssimilizhility check. If ipput datz is independent
of the datzbase, the redundancy check is already completed. Therefore, the

independency check should be performed after the redundancy check.

5,2,2 Databzse contradiction

Individual datazbases have meanings conaistent with their respective purposes
znd, therefore, should refuse to store data contrary to the neanirgs,
furthermore, semantic constraints on individual databases should be defined by
individual integrity constraints. Knowledge acquisition into databases should

e performed aceording to the meanings defined by integrity constraints,

Thus we define a database contradiction as fallnws: That the database
generated by adding input data {New knowledge, Input) to the current database |
turrdb) inveolves & contradiction means that there exisis date which deoez not

satisfy the pertinent integrity constraint (ICi).

2.2.% Assimilability of Input data

Input data {new knowledge) is assimilable intc the current database (Currdb)
if the following conditions z and b are satisfied:
&) Input data i= not provable from Currdb.
b)Y Input date is not contradictory to Currdb in the sense of 2.2.2.
Purthermore, there are the following two cases where input data iz assimilable
into Currdb:
1} Redundant
2} Independent

Thease cases are diseussed ip 2.2.3.1 &nd 2.2.3.7, respectively.

when input data (Iznput) is assimilable, there is a possibility of redundsnt
datz existing in {Currdb + Input), wihere Currdb represents the current database.
mnus we define {Currdb + Input) to be redundant if there exists non-trivial Xi

represented by Tormula (A):

Ki—= Currdb, (Currdb + Input - Ei) —Xi (4} (note)

Note that generzlly the possibility of redundancy E;iata with respect to the
pinimum significant constructs of knowledge. If we recognize the existence of
the minimum =ignificant constructs of knowledge, the possibility of redundzney
exists with respect to the partially pasudo-ordered set of Currdb besides mere
elements of Currdb. In this case, the redundancy check generally must be

performed on the partially pseudo-ordered set of Currdb.

It need not be demonstrated here that Input does not represent redundant
knowledge against (Currdb + Input - Input) because this 1s already proved by the

provability check.

2.2.3.2 Independence of input data

We define input date (Input) to be independent of the current database
{Curpdb) if a and b in 2.2.3 hold and no data that makes A hold exists in

Currdb,

Input is independent of Currdb if Input is assimilable into Currdb and (Currdb

+ Inpui) does not constitute a redundancy.

{Mote) The symbol '_~' in the notaticn 'A-3B',indicates that & 1z a partially

3

pseudo-order s¢t of E.

2.2.4 Tlor:®azticn of the zonecept of kmewisdge assimilistion

Based on the foregeing defimitions of the concepts of contradiction,
azsimilability, redundaney, and independence in knowledge azsimilation apd the
processing Sequence of knowledge assimilation, the concept of knowledge

essimilation, including its processing sequence, can be formulated a5 followz.

%A1} azsimilate({Currdb,Tnput,Currdb) <- demo{Currdhb,Input).
KA2) assimilste(Currdb, Input,Currdd) <= demo{Currdb + Input, falze).{Note)
F&3) assimilate{Currdb,Input,Newdb) <= Info —3 Currdk,
Interdh = (Currdb - Info),
demo{ Interdb + Input, Info},
assimilate{Interdb, Input,Newdb).

KAL) assimilate({Currdb,Input,Currdb + Input) <- independent(Currdb,Input}.

Here the provability of false or contradiction (KA2) and independent

(RaL) are as defined in 2.2.2 and (X4 1] [__DEI = New DB i Provable S | Hew knowleoge I

2.2.3.2,respectively. And it is gz 2 o8 = Hew DB | Contradisiory | yew wnowledge
e ————

considered sufficient to perform i — 1
(kA i | 18 | New knowledge : New DB |

- Aedundant znowiedge .o~ PFrovabie

redundancy removal (KAL3) as

needed. Note that if the (KA43) {ka 43| | om + Independent|lew k‘nauieﬂgei!ﬁew DE-!

procedure defaults, "independent = Figure 2.1 rogegsing of knowledge

assimilahle’. assimilation

3. PROLOG-based implementation of knowledge assimilation

3.1 Knowledge categorization and representation

(Kote) Integrity constraints are meta-level knowledge concerning objects (Currdb
and Input) but can be represented in object languages uaing the meta
predicate "demo®,

=y
-

;ith, we will define the knowlecgs oDeing censidered for kKoowledge
zesimilation. FKnowledge czn be represented by 2lassifying it inte three
categpories: factis(extenzions), rules(intensions}, and integrity censtraints.(For

specific examples, refer to 3.8.]

Here integrity constraints are separated from the cother tWwe because they
represent the meta-level knowledge of extensions and intensions, Although
addition of extensionz or intensions leads to an increase in the k¥nowledge in
the database, addition of integrity constraints, or tighterning of integrity
constraints, results in 2 decrezse in the knowledge that can be proved from the
database, In this sense, integrity constrazints should be separated from mere
extensions and intensicns. Therefore, we will represent integrity constraints
with a2 different syntax then that for extensions and intensions, Integrity
constraints will he defined by desceribing them within the framework of
"oheek_db", together with & target relation, message on detection of

contradiction, and terpget database:

check_ db {target relsticn, integrity constraints,

messege on detection of rontradietion: [target database]].

=
o

n cheek db, integrity constraints are described with the fellowing syntax:
¢ICs»::= <IC»,<ICs> | €IC>r;<ICs> | <IC>»
£ICY» 1= <L=> -3 £L>
¢Ls» ::= <L»,<Ls> | <L>»;<L=> | not{<Ls>) | <L»
Ly rr= onob{<L>») 4 <1
€1 :1:= <Goald [kote)

{Note) "Gozl" represents a goal in FROLOG.

This S¥Duax gives shes sxpressive power, ineluding tkec of Horn logiec. {Fer an

exzmple, refer to 3.5.;

3.2 Preconditions for knowledge assimilation implementation
The implementation of krnowledge assimilation in PROLCG is predicated an the

following three conditions:

(1) Inpudt data is an extenzioen., Inpet data could be expanded to include
intensions (rules), bui for now iz limited to extensions (facts).

(2} The databaze assumes Closed Werlé Assumption (CWA) [Reiter 78], namely,
Negation as Failure [Clark TBJ]. To put it simply, knowledge not provable
from 2 database is assumed to be "false"™ in the database.

(3} The following assumpiions asre made on consistency:

3.1y Cuprdb and dintegrity conzstraints are consistent iIn the sense of
first-order logic.

{3.2) If the two=place demo predicate iz wsed, fhe current detabase
(Currdb) and integrity constraints are consistent in the following
senze (Refer to 2.2.2):

Cenzistent (Currdb, ICs) = mot {demo (Curréb, not {(ICs))). (Note)

Here the fipst "not® on the right side of "z" is a negation of provability,
or a2 negation in meta language; and the second "net™ is &2 negation of the
representation of integrity constraints in the object language, cor =
negation in object language. The coneept of "conaistent™ uses knowledge in

meta language and knowledge in object languzge by simply zmalgamating them,

MNote thet condition 3 omly has to hold true at the starting point of the
"knowledge assimilation®,

(Hote} Since the second %"notf is implemented by using "! {cut operator)®,Wwe are
considering here only those cases in which demo stops within a finite time.

!

3,3 ZImprevement in sfflozenefF =f pentradigtion check
we will explsirn beleow two oethods Ier ipprevin the effiecieney of the

corncradicticon check.

.%.1 Integrity constraint selection

™he syntax of integrity nonstraints, as shown in 3.1, akes the form:
current_db(check dh{ target relation, (ICa},

'message on detection of contradiction', [target databaze])).

The first argument {target relation) of foheckddb™ can be specified. Thus,
only the integrity oconstraints relevent to the target relation specified are
selected., Specifically, the contradiction check agsinst integrity constraints
irrelevant to the target relation is dispensed with by identifyirg the following
three conditiona:
al Helation name

bl Number of zrguments in the target relaticn

ol Ponstants appesring in the target relation

3.9.2 Ipstantiation-driven contradiction search

1= =z method for performing the contradiction check against dndividual
integrity constraints selected by the integrity constraint selection method in
3.4.1, we have devised an ipstantiation-driven contradiction =zearch approach,
which is represented using demg as demo {eurrentdb, not (ICi)). Thiz method
is intended to detect & data occurrence which patisfie=s the negation of the
relzted ICL. The approach requires searching @ targel database once at most.

When & date oceuprence which satisfies the negaticn of ICL Is detected in the

couprse of the search, the detecticn of contradictien can finish.

bl
I

in

L8]

3.2 Improvemec:t iz sfficiency of redundancy check

Redundancy removal is generzlly targetecd at elegents (minimpum significent
constructs of knowledge 2= referred to in 2.2.3.1) of the current database
(Currdb). BHut if the knowledge to be assimilated 13 limited to extensions
{facts), only facts in Currdb need te be individuzlly considered for redundancy
removal. This helps to impreve the effieiency of the redundaney removability

check., The proof is omitted,.

3.5 Programs in PROLOG

We stated earlier that knowledge assimilatien can be easily implemented in
PROLOC using the PROLOG Interpreter. Here we will give an explanation of PROLOG
programs to implement knowledge assimilation tRefeE to Figure 3.2). Here, as
contrasted with the two-place predicat;: demo{ Current_db, Gozls), the cne-place
predicate; demo (Goals) is used for fixed current_db. And for checking Views,

we add the term (View) to it.

K4 1 iz g provaebility check program. If the execution of demo on input data
is sucecessful, it means that the data has seen proved. If input data has been
proved, the new database remains the same a2s the current database {eurrent _db},

and the processing of knowledge assimilaticn is terminated.

¥A 2 is a contradiction check program. In itas first clause, the program
assemes that {Current_db + Input) has heen generated at the first goal. at the
second and third goasls it selects an appropriate integrity constraint, At the
fourth =znd fifth goels it transforms the integrity constraints for the
coptradiction check. At the sixth geal it executes the contradictlen check. AL
the seventh and succeeding goals it performs ogessage output at the time af

contradiction detection and post-processing. When contradietion is detected,

KA 3 is a program for the redundancy remevability check, which iz implemented

by neredun. The last clzuss performs post=-processing.

¥4 4 iz g prograzm to perform the independency check. But given the definitien

#

off independency in 2.2.3.2, K& 1 through XA 3 have completed the independeancy
check against the datsbase which assumes oWk, Therefore, KA U does nothing but

store input datz in the datahase.

AR LAT) Decucibility Check 7 #/

gsgiaf Input, View) i=
demol(Inpuc, Yiew], Soynl ,ttynl,
d55018Y("mm= Imput-fnowiedgs is deducible fprom OB !1FD,
Lbyni,tiyni.

S EAFY Coatracistion Check [against Integrity Comstraint) #7
aasim{Input, Tiew) -

asserc!ourrent_db{Idaut}], F% KA3) Redumdancy Check in { DE + Imput | %/
current_gh{cheni_dh|Tnput, I0,Message, Viewd)), zzsim{Iaput,View):-
go_owner|View, Viewk), current_cbiil,
lo_trees({IC, I0E}, maradun{ X, Tnpul, Tiew) ,
Crhaeck_IC=..ldome, TCH, Tiew], fail.
Cheer_i0,ztynl,.ztynl. noeredunt (P:-3), input, Viewi:i=1,fa1l,
display{'e=- Iopu: conflicts with '), porecun(X, Inout, View) r=pretractcurrent_ab(X)l,
gispiayi 'the Integrity consaraine 10V, asserti{eurrent_iblInpuel},
eyl sovnl dispiavi’ 'Y, qemal X, Yiew),
displayi(Meszzsege), stynl, thynl, by, recract{current_db{Inpus}l, 1.
retract{ cusrans_de{ Input) b, pnoredund{X, Inpus, Viow) ! =rocrpet{ourrent_dbi Topeb}],
assiz(Inpuc, Viewii-retrastieusrens_2bilnpus)},faal. azserzalcurrenc_db(Xi}, §.
te_trena{{I0T-—3I05, ITOR now{ICIL L, J* SA4Y Independency Theck By
ip_srams! (LCa;I02) , P ICAM IZEMY) - anniml Tnpubl, Tiew) -
ig_trans(ICA,ICaM], zssert{current_db{Input)},
ig_wrenndIfA, ICAMD. Liyni, ttyal,
im_ceonet {{TCP--21C2), I0BY (207, 20t (ZC2) ; ICIM)) - - diapiay{'=== Hew Knowledge is nequired ![17),
le_srans I0B, Z0RMG. tiynl, ttynl.

{(Figure 2.2 Example of PROLOC programs for knowledge assimilatien)

3.6 Implementation examples

Exzmples of the implementation of the checks for knowledge assimilation are

given telow.

{Exzmple KA 1) Example of provability check.

o
i
il
ki

Let £S5 SLEposs ihet the aAnowiecge "herio s Toroka's perent" is DeEinE added
=n =he Zzizozse. Fezulis of the cnsox, however, ghow thzt the Lnowladge need not
be scded as new knowledgs heczuse it can oo deduced from the database. {Refar

to Figure 3.3}

- resylzs of shesk implementziiion -

? - aanimilate (parent | fcooks, norio), {(pErentl).
——= Inputewnmowledge tan oe ceducea Trom DB

(=]

atavalie
Noric Tumikg
i

‘Tomcke's parent = dorzo) é?—-q
Provabld Tcooko

L

(Figuere 3.3 Provability checl)

{Example K& 2} Example of contradiction check

Enowledge to be added: "At hospital H, 2 child {Yoke) was born te HNeorio and
Yumiko. The heospital registers Yoko. as & child of the two. It hez made tests
te establish that this is genetically correct.™ Results of the contradicetion
sheck reveal that the knowledge is geneticzlly wrong. ("Dr.Gregor Johann Merdel
{genctigi=t) says Me", & wmessage given con detection of contradiction, 1=
output.) This shows that no shild with blood type B can be born to a couple
with bleod types A and O, (Refer to Figure 3.4)

- Fesyeits af check loplemefiztlion -

c_ ammiziisteihlovd_typelveke,t), [parent]l.

em=figy hpowinge i3 segured !

sirilatel fatner{ yoko,zcricl, fperontll.

mop®listn with fne Integrisy fonsirelnt Ul
Sregar Jenanns lendel mnys 7oL
—
lJatacase r
Haria L — Yumika
foptradictory {Blogd type A {Blgod type Q)
!S&ﬁ g =140 |
(Blowl type 4] {Bload =vpe &)

(Figure 3.4 Contradiction Check)

Ilj‘r
ill
i
[1F

Here Thg ilptegricy constraint shet BEs detected the contradietion Lakes the

check_dbo(father(X,F),
{bloodtype(F,FT) married(¥,M},bloodtype(},MT},
Eenﬁsmatch{FT.HT,CBT}+blaodt?pe{K,ETJ
-> member{BT,CBT}),

'Dr. Gregor Johan Mendel says ™ NO ! "', [parent]).

Herc the integrity censtraint en the relztion "father” requires that the blood
type of the child be ineluded in the set of possible blood types of the child
deduced From the combination of the blood type of the {ather and the bleod type

of the mother.

iExample KA 3) Exzmple of redundancy oheck

In the database, knowledge of father and mother 13 represented Dby extensions
and knowledge of parent and prandparent, by extensions and intensions. (Fefer to
Figure 3.5.) In this case, if the redundancy check program 1s executed,
the knowledge "grandparent (Yukike, Yasuc) is Jjudged redundant knowledge
and removed from the database becausze 1t is deducible f[rom other database
knowledge a3 shown in Figures 3.6 and 3.7. To put 1t more generally, Lhe
extension deducible from the extension of father, mother, and the intension of

parent, grandperent is removed from the database.{Refer to Figure 3.7.).

Yere the knowledge "grand_parent (Yasuo, Nizaemon)" is nol removed because It
i= not deducible from other knowledge. This indiecates that knowledge of

nerandparent® iz stored in twe forms--extension and intension--in the dstabase,

- Listiegiour/ent_thi.
aurrant_Zihf fatker{Fuiike, asaol).
suprepan_shi fzther(asase,yasuc).
eurrent_dh{ fether(ysaua, tashiall,
areant_ohi father(hiroko,2a3ue)],
current_db{ father{ tomoko, norial).
sur=eapt_4h(fETher! youka, norie) .
surrens_db(fatteriroris, Mujiol).
meps_dn(Fatheri yunike, 2as=a]).
surrens db(zotherd yukiko, tomokell.
~urrent_db{zotoerdasac,biroko)).
surrent db{meches{yasuo,skikall,
surrent_db(zether] iirokn, seLEuko}] .
surrent_db(zother! topoke, yumike)).
currenr_db(mptheryouis, yusilkol}).
ourrent_db(pecher{noric,2ichtko)).
enrrent_db{ metker(yumiko,sachike)].
current_dbi parent [yukike,as30) J.
cureent_dhi parent (yukiko, tomeks)).
ourrent_db({parent{azso, yasuo}}.
surrent_db{perent(asao, Airoke) .
current dhigrendparent(yukiko, yasuol).
curreat_dbi grandparent! yulike hiroka]].
surrant_db{grandparent(yukiko, norie]l.
curreat_dh{ grandparent(rukike, yumika)].
surrent dbdgrendearent(yosuo, nizaeman)).

current_dbl (parent{_1,_7):-
fatber({_1,_2);mother{_:,_2}),.{2]]).

eurrent_d4h{ (grandparent{_%,_2]i=
parenti(_1,_31', 'parent(_%,_2)),[_41).

Zxample of redundancy check
{popLenta of catabaze)]

{Figure 3.5

- 4 Fl 17 - = A
Te Lizmimgi aummani dh).

::rre:t_f:{granuparsn:{ya:u:.:Lzaﬂznn}}.
current_sbi mother(pumiko, sachiko]).
ayrrant_dhimother{ poric,zickikel].
nurr&u:_db[:nlher{yﬂuHu.?umikD}J.
purrent_db{souher(tomoka, yamika)).
surrent_db{mother{hiroke,setsukel).
surrsnt_dh{mother(yasuc, akiko)]).
current_db{mother{asac,hirckel].
current_db(zotber! yukike, tomoko)] .
:urrent_db[fntheriyunika,harun}).
curraat_db(facner{norio, fujicll.
eur=ent_dh{ father(youko,zorio)).
eurrent_db{ father{tomoke,acrial).
:ur:cnt_ﬁh:fa;he:fhirekn.nasuu]}.
surrent_db{ father{ yasuo, teshicl).
surrent_dbl father{asso, yasua]).
:urren:_dbtrnther{yukikn,asao}}.

current_db{ {parenti_1, 2}:=
Father{_1, 2):mother{_1,.2)).[_3]}.
surrent_dbi (grandparent{ 1, %) :-
papent{_ 1, 37", parent(3, _2}3,{_31}.

Txample of redundancy check

{Figure 3.7
7B aftar removal ef redundancy))

{concents of

E Dataoase

father sothar
Tamuo - Hircko
L
AHBU Tomoko
Tukika
nerent = Uather osther
gramd parent = parent af parenat

[—_———

! .
i Sedundant
W

grandparant [Yukiko, Yasuo)

[¥egure 1.5 Zxample af

reduncant dnowledge detccted]

il
il
I!I!

L T St
2 - am
e gf imfdeparcencT sneow

Zuppoze the xoowlsdge "The blaed type of Yoko 1s AM™ is being added into the

I's

databaze. Here the dzput dates iz judged ipdependent of the databasze through
provebility, contrzdiesion, and redundancy checks snd added into the database.

{Refer to Figure 3.8).

Fesultz of cneck implementation -

T=zszimiiagts{blood _tvpelvoko,al,.pareati!.
m== Hew Inowledge iz zogured 1
i Databasze
{Blood type of Yakﬂh____qﬁébfnere iz ne information
= &£) add i concerning the blood type of Yoko

{Figure 3.8 Example of independency check)

L, Summary

Each datzbase has a meaning oonsistent with 4its purpese. The knowledge
glready stored in & datzhase ha=s value in terms of that mezning. Knowledge
asgimilation is important for the purpose of managing a datsbase sc as to aveid
aeguiring kinowledge iInconsistent with the meaning of the database or redundant

r

knowledge. AL the beginning of thiz paper, we stated that the meaning of =&
logie deatabase should be defined by integrity constraints. Then we constructed
the concept of knowledge sssipileticn in an implementable fore by defining
contradiction, redundancy and indeperndency in the assimilation ef knewledge inte
the database whose meaning is defined by integrity constraints and discussing
the relaticnships among these checks. We [lound knowledge assimilation could be

easzily achieved by amalgamating object and meta worlds using a PRCOLOG

interpreter written in FROLOCC,

Cip SICLOI-cEsec fmposmesiation of 4noWlSCgf £853ID1 3Tion WES ccnductec 0¥
gssuoicg oWs and llmitins irpes data o EXiernsIons. Ionput dets tc be
assimilated could be expanded to inelude intensions (rules) as well, but we will
report this on anaother ooozsion. Ligiting input data to esxtemsions, however,
enshied us <o make izprovements in the efficieney of contradiction znd
redundancy removebility ehecks. Hote that this knowledge =ssimilation program
parn be used if* the cdatabase and integrity constraintsz are consistent when at
the =start. Alse, the program leaves Lhe respansibility for integrity constraint
management to the database user,

Fep the future, we azre studying the follewing possibilities related to
knowledge assimilation systems:

Optimization of contradiction and redundancy checks
. Frhancement of flexibility in interfaces with users and ezze of use

. FEnowledge base management of multi-worlds dztabases using a database view

funetion

{Acknowledgements)

The =uthers wish to express their thanks to K. Fuchi ,director of the
Institute for MNew Generztion Computer Techpelogy (ICOT) for providing the
opportunity to conduct this research, The suthors thank M. A4so, H. 3akai, and
K. Mukei of the Research Center for their helpful discussions. The authors
also gratefully acknowledge the uzeful commentz made by Professor, 5. Ohsuga
of Tokye University, Lecturer Y. Tanaka, of Hokkaido University, H. Katsuno of
Musashinc Telecommunications Laberatory of NTT, and others at the RIMS symposium

held at Xyote Univerzity.

W
1

d
in

fZARAG T8] C.Beeri,P.i.Sernetein,anc N.Geocman; "A Sophsticatec Introcuction

Patz Bzse Yormalizastion Theory,'Proc. of the Wth VLDE Conf., Eerlirn,

& ¥ 81} K.a.Sowen,i.A.Howelsky; "imslgamating Language apd Mete-langusge in

e
LAE)

Legic Programming," June,13E7.

[Cadiow 76]1J.M.Cadiou; "On Semantic Issues in the Helalional Model of Data,”
Meth. Found. Comput.Sei,Mazmkiewiez. Vel.i4S, Berlin Heldelberg New

York:Springer,1976.

[G & M 78] H.Gzllaire,J.Minker(eds.}; "Logic and Dais Bases," Flenum Press, Hew

York Lendon,1575.

[GEM&N B1] il.Gallaire,J.Minker,and J.Nicolas{eds,); "hdvances in Data Baze

Theory, Vol.1," Pienum Press,1%81.

[Nicolas 821J.¥icolas{ed.); "Proceedings of Werkshop on 'Logical Bases far Data

Bzses,'," OXERAI-CERT, Tculosze,14=17,Dec. 1962,

[N & G 78] J.Hicolas,H.Gallzire; "Data Base: Theory vs. Interpretation,” in
Logie and Data Saoes(H.CGallzire,J.Minker,Eds.), Plenum Press, New

York London,pp3fi-54,1978.

(P & W 78] F.Pereira,D.H.Warren; "Definite Clause Grepmers Compared with

fugmented Transitiop MNetwork," DRI, Univ. of Edinburgh,1978.

[Feiter TAR.Reiter; ™ On Closed World Databases,” in Logic snd Data BHases
{H.5allaire and J.Minker,Eds.), Plenum Press New TYork Londonm,

