——

ICOT Technical Report: TR-022

TR-022

Modularization and Abstraction
in Logic Programming
by
K. Furukawa (ICOT)
R. Nakajima (Kyoto University)
A. Yonezawa (Tokyo Institute of Technology)

August, 1983

Mita Kokusai Bide 21F 3 456-3191-5

|[:OT 1-28 Mita 1-Chome Telex 1CUT 139864

Minato ku Tokyo IR Japan

Institute for New Generz:tion Computer Technology

Modularization and Abstraction in Logie Programming

Dogen : {K. Furukawa, Institute for New Generation
Computer Technology
F. Kakajima, Eyoto University

4., Yonezawa, Tokyo Institute of Technologyl!®

In knowledge information processing, structuring of knowledge and
algorithm ia one of the key issues, The goal of this weork is to
introduce the concepts and mechanisms of abstraction, medularization
and parameterization dinto legle pregramming which is one of the
preliminary steps toward the kernel language of the fifth generation

computer systems.

1. JIntroduction

To break the complexity barrier of software, modularization seems
the cnly effvctive means, The idea of "program modularization through
abstraction® [Dijkstra 70) has seen its success in the scene of
conventional 4imperative (von Neumann style) programming. This idea
has promoted the development of languages such as CLU[Liskev 77] and
Iota[Nakajima 80] whose primal wpodelarization mechanisms are their

defining facilities of abstract data types.

On the other hand, little work has been done to introduce

podularization mechanisms in the design of logic programming language.

*} The order of the authers 1= indifferent.

Page 2

{An exception is M-Frolog and its software support system called LDM
[Farkas B£2], but they seem to limit themselves to providing some
grouping facilities in their janguage.! Bazed on our experience in
Wwriting large software in Proleg, we assert that introduction af
modularization by way of abstraction ﬁeehaniams egpecially data

ahstraction is highly useful, or even necelsary in logic programming.

A logie programming language called Higike, which we are
currently designing, provides data abstraction and modularization

mechanisms as language constiructs.

2. Data types and Modyles

Himiko i= based on a many-sorted logic. Namely Himike dincludes
data type concepts, where & type is 2 collection of terme which are
generated in an explicitly s=specified manner. Thi= mechanism ocan
pedupe the possibility of errcrs which are caused by mismatching
netween term structures during un fication procedures and enhance
readability of programs at the cost of some inflexibilities. Note our
assumption that Himiko is to be embedded in an irtegrated programming
system which will include powerful programolnog suppnrf and validation

facilitie= and lighten the burden of the programmers due to the

introduction of strict prograocming disciplines.

There are two kinds of datez types in Himike; types and patterns.
Types correspond to abstract dats titypes whose term structures are
encapsulated irte their deliping modules and o vhich access 1is
possible only through a set of "menufed operations. On the other
hand, patterns are those whose term structurez are shown to outside of
the modules, Both types znd patterns are parameterized with respect
to datz types. For 4instance, in Himike the type of gqueuez of

arbitrary elements given as & lype GUEUR(T) where T is & dela type

Page 3

parameter., By passing an actual type or pattern te T, ome can get a
type of queues consisting of elements of a definite data type. We do
not, however, get into details of patterns or type-parameterization in

this versian of report.

& prograc in Himike is wriltten as a hierarchy of modules,
Semantically, & module defines a chunk of theory. Syntactically, it
ponsists of the interfece part that declares the relations and data
types and the realizastion part that gives the logic programs. The
syrtax for medules is designed under the assumption that Himiko
prograomers will be equipped with a modular programming systep with
which constructicn and management of modules are supported by module
data base facilities. 4 module iz the minimal unit to which

ab=traction and parameteriration as described below are applied.

3. Abstraction

The notion of dats abstraction is based on the view that a data
type is characterized by a set of operations which are basic to the
type and that access to any object of the type is allowed only through
those operations. 4 module in Himike encapsulates the types that it
defines. MNemely the conerete structure of the terms which form the
type i= not wisible frop the outer modules. Suppose 2 module M
defines a type tt and relations q and r on tt., The terms of the type
tt ere supposed tc be generated only by g and r and therefore satisfy
2 certzin inveriance condition whose preservation is often essential
for elgorithm correctness. If an ohjest of tt were accessed directly
frog another module N without referring to g or r, the condition would
be +violated to result in & loglcal error in the program. Therefore
the only legal access to objects of tt from ¥ should be through g and
r. Moreover, in the text of N the arguments of g and r of type L is

allowed to appear only as wvarisbles, i.e. glx,y) ,not qi{f{2,x),

Page &

£lL,v}). All necessary unification procedures against terms of tt are

restricted to M.

L module in Himike consists of an interface part and a
realization part. {8ee Figure 1) An interface part specifies the
names and functionality (argument types) of the relations which are
defined by the module and which are acceasible from outside the
podule. r1, r2,... in Figure 1 are such relaticns. If abstract data
types are defined by the module, their nares are given in the
interface part and the names of the relations which characterize the
abstract data types are also given ir the interface part together with
their functionality. In Figure 1, nl, n2, n3 are the names of the

abstract data types which are defined by the module.

The realization part of a module defines the relations whoae
names are given in the corresponding interface part, (Relations are
defined ip the form of FHorn clause.) To define the relations, the
interface part may contain the definitions of relations that are not
nameé in the interface part. Such relations cannot be used outside
the module. Wher namez of ebstract data types are given in the
interface part, thelr representations pust be specified as "term=" 1in
the corresponding realization part. The eguaticnz that follows repr

in Figure 1 specifies such representations.

Mote that & group of abstract dats types are characterized by
mutuzl "relations" among ty¥pes in the group. Thug, a oeodule ir Fimiko
may define more than one abatract data type sipultaneously, which 1s
different from the corresponding notions in Iotz and Clu. A wmodule in
Himiko may define a2 ecollecticn of relationz which are utilized to
accemplish a =ingle task, or it may defline & collection of reletions
which are packaged a= & unit. Ir suchk cases, only the relations whose

names are gliven 1in the interfzee part can be accessible (or called)

Page 5

from cutside the module.

To show how programs are structured through the notion of modules
in Himikeo, we econsider {fragments of) Himiko programs depicted in
Figures 2, 3, 4 which implement 2 T-Frolog interpreter.
{T-Prolog[Fute 81] i & logic-based programming language for
simulation.) The interpreter takes a goal list as inmput and a final
state a= output, and 1t s=imulates events deseribed in the goal list.
The module for the interpreter (Figure 2) defines 2 relation Mexecute"
which is defined ir terms of the relation "executel™, The definiticns
of these relations are given in the realization part. Thiz module
uses =2 module which defines an abstract data type "state"., (3ee
Figure 3.) This type is an abstraction of the =tate of the
interpreter. The relations (or operations) that are basic to this
type are those for cresting & state, recording state changes,
simuleting actions of processes and 56 o0 The definitions for
Fexecukte™ and "executel” are described in terms of these relations for

the =tate.

A= specified in the realization part in Figure 3, the abstract
data type M=tate™ 1is represented az a2 term whoze functor name is
‘state'., Thisz term consists of three subterms which eorrespond to &
queue for waiting processes, & queue for blocked processes and an
identifier for the currently active process. The subterms
gorresponding to gqueues are constructed from variables of abstract
data type gueue. The deflinitions of relaztions {operations) basiec to
gueues and the dats representation for the type queue are deszcribed in
the module depicted in Figure 4. FNote that thiz module contains two
realization parts, one describing the list implementation of = gueue,
the other the d-list (difference 1list) implementatiion of & queue.
(The hierarchy of the mpeodeles for the interpreter programs is

iilustrated in Figure 5.)

Page 6

An interesting point in our language design for program modules
ig that term structures are allowed in definitions of relations.
Namely, the term structures alsc plays a role of basic type
ponstructors such as list and thus subterms (whieh correspond to
components of data structures) are extracted or modified by
pnifieation, preserving a pewerful feature of the Froleg type leglc
progranming. (This, in turn, implies that some of argument=z for a

relation do not have to be typed.}

Note that [Kowalski 79] introduced the idea of separaticn of data
structure from programs te inerease their readability and reliability,
but he did not extend hi= idea to design a language which supports

modularity.

4. Logical viewing of terms

In legic programcing, all data structures are terme end
procedures on them are specified by unification mechanisms. Oflen a
single data cbject can be viewed as more than one term structure on
which different unificatien procedures are conveniently spplied. For
in=stance, we have a2 string of characters "abe...k™ which 1z actually

represented as a list of characters:

cons{e, cona(b,lcons{k, nil}l)..).
On the other hand, it is convenient te regard 1t as = page which iz =&
seguence of lipes where @ line is a sequence of characters with a

certain ending charaeter. Namely

line{L7, line{L2, line(....}])..)

is another view with each Li standing for a line.

Pege 7

The transformation between those twe term structures is given by

the following Prolop-like program,

aspecification

<PAGE> cons{ecp,nil) | cons(<CHAR1:, <PAGE1>)
<PAGE2> cons{eop,nil) | line(<LINE>, (PAGEZ>)
CLINE> = (eol,nil) | char(<CHAKZ>, <LINE>)
<CHAR1>» = <CHAR2> | ecl

transformation
trans{cons{eop,nil),cons{eop,nil)).
trans{cona{enl,FhGE1j,linefeunsfenl,nilj,PAGEE]}

= trans{PAGE1,PAGEZ).
trans(cons(¥,PAGE1),line(char(X,LINE),PAGER))

1= tran={PAGE',line(LlINE,FAGEZ)),

Himiko utilizes suoh transformation rules to conduet virtual
unification, that is, te unify an abstract term to an actual term. In
most cases, it ie not necessary to transform the entire structure at a

time. The lazy eveluation technigue can be well embedded in Hiciko to

meet this goal.

5. Optimization

Modularization often introduces some ipefficlency inte programs
at the cost of getting them well structured. Let us consider another
example of an absztract data type representing a Rubik cube. Figure &
shows =2 rule +to manipulate the cube, which is written by using the
following concrete representation of the cube:

cubelfront([F1,F2, ... ,F9l}
back([B1,B2, ... ,B9])
lside{[Ll1,L2, ... L8]}
r=ide{[RY,R2, ... ,E9])

T
P
top(lT1,T?, --. ,T8]1),
bottom([01,02, ... ,0%9])

Page 8

The modularized wversion of the rule as well &as the lower
realization module for the abstract dats "cube™ is show in Figure 7.

The zingle procedure call

¥ = cube(front([FC!_1), baek([_,_,TCi_J), ., _, toep([TC,_,FCI_1)._,)

in Figure 6 is divided inte feour calls and mekes the prograc
inefficient. To aveld this defect, we use partial evaluation
technigue. If we partly perform the program in advance te the actual

run, we can ocbtain the value of ¥ in a_cube(¥), which will result to:

¥ o= vector{veotor(FC, v v i rereat s
veetorl o TC s Vs

-
?EﬂtDI‘ETC ot FG, PR T TR T s_:' ¥
-}

This 1= equivalent to the literal in the original program {(in Figure

£ directly manipulating the actual representation in Figure 7.

Helerence

[Clerk B81] Clark, K. L. and Gregery, 5. ™A Relational Language for
Parallel Programming®, In Proc. ACM conference on Functional
Progremming Languages and Computer Architecture, (1981)

[Dijkstra TO1 Dijkstra, E.W., Dahl, O0O~J., and Heare, C.4.R.
structured Programming, Academic Press, (1970)

[Farkas 82] Farkas, Z. et gl. PLDM: # Program Specification Support
Syatem©, In Froc, First Int. Logic Programming conference,
Marseille, (1982)

[Furukawz B2} Furukawa, K. et al. "Problem Solving and Inference
Mechanisms" in Fifth Generation Computer Systems (Ed. Moto=oka, T.},
JIPDEC - Hourth-Holland (1982)

[Futg #1] Futo, T and Szeredi, Jd. "T-Froleog: 4 Very High Level
simulation system",General Information manual SZ. K. I. Bucharest,
(19B1)

[Eowal=ki 79] Kowalski, R. Logie for Preblem Solving, North=Hollanpd
{1979)

[Liskov 77) Liskov, B. H., et 2!, "ibstraction Mechanisms in CLU",
CACM, YOL. 20, NO. &, 56L-5T76 (1577)

[Rakajime B0] Nakajima, . et el. "Hierarchical Frogram
Specification and Verification - a Many-sorted Logical Approach®™, Acta
Informatica 14, 135-155 (1980)

module <module name:>

Anterface
fype <ml., <n2>», <n3>
rel
r1(<n1y, <n2>», <n3i>)
rea(<ni», <integer>», <{n2>)

realization
repr
nt = .+ Lerm structure,..
ne = ...term structurea,..
n3 = oo berm structure. ..
Llauze
ok T T

PI{aaaa) 2= 810, =20...0,

= P
refe...) 1= a3(...), =4(...).
rEl:l-uil} .= 55':iii}|]“Ef.--}.

Figure 1. HMedule Structure

podule interpreter
ipterface
rel execute{<goal list>,<state>]
: ¢goal_list> iz a raw tern being represented as:
; <goal_list> = nil | {<goal>,<{goal_list>)
: {goal> = new(<{gozl_list>,{process_id>)

D wait{<codition>) | ...

realization
rel
execute(CL,FS) ;FS stands for the final state.
:= preste_state{IS),executel{GL,IS,FS}.
;IS gets the initial state.
executel({new(PGL,ID),Q),51,52)
:if the head of the goal list is the form new(®,%#).
:= get _active_process(AF,51),
make_process_await((Q,AF},21,33),
new_szeotive procesz{ID,33,584],
!, execute({FGL, 54 ,52).

executel{ (wait(C),0},51,32)
tm (C,executel(GL,51,52))
; 4if C holds, then executel{...}
or
get_active_procesa(iF,51},
make process_blocked{ (GL,AP),C,31,53),
I, eall_sv{53,82).

eall sv(31,52)
= ... ,activate waiting process(S5,32).

activate waiting proce=ss[31,52)
.~ awake waiting process{(GL,ID),51,53),
new_active_process{ID,53,34),
!, execute! (GL,54,52].

Figure 2. Interpreter program.

podule state process_module
Anterface
ftype <{=tate>

rel ecreate_state(<state>). jcreate an initial state.
get_active process(<process _1d>,<statel)
:get the currently active process.
new_active_process{<process_1d>,{state>,{stated)
imake the <{process> active
pake_process_await(<{process>,{state>,{(state})
awake waiting procesal<processd,{stated,(stated)

L

'EER R

realization
Iepr
state{waiting(<{queued),
blocked(<queuer],
active(<processy))

fslauge
create_state(state(waiting(01),blocked(Q1},active(self))

:= create=1(Q1), create-1(Q2).
get_active process(ID,state(_, ,active(ID)})).
new_active_process(ID,state(W,B,_),state(W,B,active(ID))}]}.
make_process awailt{(PGL,ID),
state(waiting(0OW),BPQ,AP)
state(waiting({QW1),BPQ,AF))
:= er_g({PGL,ID),QW,0W1).
make_process_blocked((PGL,ID},
Cy
state{WJP,blocked{QB),AF},
state{WPG,blocked(QB1) ,AP))
:- en_qf(PGL,C,ID),CEB,CEB1).
awake_waiting process({PGL,ID},
state(waiting(QW) ,BPQ,4P),
state(waiting(UW1),BFQ,AF]})
1= de_g({PGL,ID},0W,0W1).

LRI

R]

end-gf-module

Figure 3. state_process module program.

podule queus
dnterface
Lype gueue

rel create_gl<queuelr) ;oreate an emplty gqueue,

ern_qf<item>, {queue>,{gqueued)
:put an <item> at the end of gueue.

de_gf<item>,{queue’,<queuel)
;delete the <item> at the top of the queue

realizationl(1)

Lepr
gueue = <list>
*a queue iz implemented sz & ususl list.

plause create_g{[]). .
Er._q{}tt,t-,:l} = aPPEnd{':u[};_ir:"”-

de_gi([],[],[]).
de_gl¥,[X157,9).

relaization(2)
repr
queue = d{<1ist>, {listd>)

*a gueue iz implemented as a d-liat,

clause oreate_g{d(Q,Q)).
de_q(X,d([X|Q],91),d(g,01)).

—pf- =

Figure 4. gueue module program,

L ————

! interpreter

e e e i T

I =tate |

- e o ww owm Em o e =

| d-list implementation |

- e = o

Figure 5. An example of hierarchical module structure,

prod_rule{move_to_front_north:
[X = cube(front{[FC]|_1},
back([__,_,TCI_1),

top([TC,_,FCI_1),
1
found(X)]
=>
[apply([1l up,b_cow,l_down,t_right],X,Y),
replace(X,Y),
print_cube_change(X,¥)1).

Figure 6. A Rubik cube rule written using conerote representation.

prﬂd_rule{muv&_tq_frnnt_nurth:
[a_cubel(X),
color(front:center of X, FC),
eolor{back:north of X, TC),
color(top:center of X, TC},

color(top:north of X, FC),
found(X)]
=>
,_[apply{[l_up,b_pew,l_ﬁown,t*right].X,Y}.
wealle
module cube
interface
Lype <cubel
rel
a_oube(<ouber}
color{<facer:<position> of {cube>, <coler:)
realigation
Lepr

¢oubed = veetor(vector(<F1>,<F2>, ... ,<F8>),
vector{<B1y,<B2>, ... ,<B2>},
vector{<L1>,<L2Y, ... ,<L9>»),
vector(<R1»,<RE>, ... ,<E9>),
vector{ <T1>,<T2>, «.. 4<T82),
veotor{<01>,<02>, ... ,<05>))

Lﬂube{ "I.I'EI'.‘tlDr‘{ vectﬂr‘{_,_,,_-__-_r._:_-_ l.._} ’
veator(_,
vector(_,
veator(_,
veator(_,
vector(_,

R 1.

color{front:Position of veector(F,_,_,_,_s_), C)
:~ p_color{Position, F, C).

eolor(back:Poaition of vector(_,B,_,_,_s.), C)
:= p_color{Positicn, B, C).

p_color{center, veetor (€, s _y_serer—r—_1—Js Cl-

p_color{north_west, vector{_,C,_, . s »_s_ts C}-

end of module

Figure 7. A modularized version of & part of the Fubik cube progras.

