ICOT Technical Report: TR-016

TR-016

Qute : A Prolog/Lisp Type Language
for Logic Programming

by

Masahiko Sato and Takafumi Sakurai
(University of Tokyo, Japan)

August, 1983

Mita Kokusal Bldg. 21F (U3 456=3191—5

Il D I 4-28 Mita 1-Chome Telex 1COT J32964
Minato-ku Tokvo 108 Japan

Institute fo_r New Generation Computer Techn;iogy

Qute: A Prolog/Lisp Type Language for Logic Programming

Masahiko Sato
Taka fumi Sakural

Department of Information Science, Faculty of Science
University of Tokyo

ABSTRACT

A new Prolog/Lisp tvpe programming language called Qute is introduced.
Qute computes (partial) recursive functions on the domain 5 of symbolic
expressions in the sense of Satol3], Sato and Hagiyal4].

Qute amalgamates Prolog and Lisp in a natural way. Any expression that
is meaningful to Qute is either a Prolog expression or a Lisp expression and a
Prolog (Lisp) expression is handled by the Prolog (Lisp, resp.) part of Quie.
Moreover, the Prolog-part and the Lisp-part calls each other recursively.

Compared with the traditional Lisp symbolic expressions, our symbolic
expressions are mathematically much neater and yet constitute a richer domain.
Quie is a theoretically well-founded language defined on this domain of sym-
bolic expressions.

Many interesting leatures of Qute are described in this paper.

Quie has been implemented on VAX/UNIX and is used lo develop a pro-
gramming system for proving properties of our domain of symbolic expressions.

0. Introduction

In this paper, we introduce a new Prolog/Lisp type programming language called Qute
that is designed to compute (partial) recursive functions on the domain S of symbolic expres-
sions in the sense of Sato[3], Sato and Hagiyal4].

Since Qute combines the features -of Prolog and Lisp quite naturally, it provides a com-
fortable environment for developing programs interactively. Users of Quie can not only enjoy
both Prolog and Lisp style programming but also combine them in a unigue way.

To be more precise, any expression that is meaningful to Qute is either a Prolog expres-
sion or a Lisp expression. A Prolog expression may contain Lisp expressions as its subexpres-
sions and conversely a Lisp expression may contain Prolog expressions as its subexpressions.
Prolog {(Lisp) expression is handled by the Prolog (Lisp, resp.) part of Qute. In this way, the
Prolog-part naturally containg the Lisp-part and the Lisp-part contains the Prolog-part.

Another characteristic feature of Qute is that, like Lisp but unlike Prolog. symbolic
expressions play the double role of data and programs. It is therefore possibie 1o write a simple
metacircular interpreter of Qute by Qute itself. In fact, we can write the interpreter using only
the Prolog-part of Qute. The interpreter of Quie can be defined formally by inductive
definitions as we did for Hyperlisp(3]. This makes Qute a theoretically weli-founded language.
In this paper, however, due parily to the limitation of space, we will describe the semantics of

This paper is based on the result of activities of working groups for the Filth Generation Comguter Systems
Projects.

Qute rather informally.

LOGLISPI1] wkes a similar approach towards combination of Prolog and Lisp, but our
concern centers on formalism which we siightly mentioned above. Therefare, we designed
(ute so that programs can be naturally regarded as symbolic expressions. (As is explained
later, we regard a ‘variable’ as a symbolic expression unlike usual Prolog.)

Quie has been implemented on VAX/UNIX at the Computer Centre of the University of
Tokyo. The language is used 1o develop a programming system for proving properties of our
domain of symbalic expressions. Properties of Quie will be expressed and verified in the sys-
lem. See Sakurail2] for mare details of the project.

In the rest of the paper, we first review our domain S briefly and then describe the syntax
and semantics of Quic, Many interesting features of the language will be described along the
way.

1. Symbolic Expression

1.1. definition of sexp

Symholic expressions (sexps, for shorl} are constructed by the Following clavses:
0 is & sexp,

Il s and 7 are sexps then snocfs, 1) is a sexp.

ak B =

If s and 1 are sexps and at least one of them is not 0 then cons(s, 1) is a sexp.

All the sexps are constructed only by means of the iterated applications of the above three
clauses. and sexps constructed differently are distinet. We denote the set of all the sexps by S.
Note that snoc is @ Lot Tunction on SxS while cons is partial since it is undefined [or the argu-
ment (0, 0). We make cons total by stipulating that cons(0, 0 = 0. We also put saocf0, O
= 1.

We denole the image of the function cons by M and that of snwoc by A, so that we have
two biective functions:

cons: Sx5—M

e S E—A
Morenver, we have S = MU A and MO A = i ie, S satisfies the domain cquation

5 =5x5 4+ 5x8
Flements in M are called mwlecules and those in A are called arams. By the above discussion,
we can define total functions cer and cdr on S by the equations

carfeons(n ylb = car(snocly yi) = x
cdrlconsc,)] = edrisnocix v)) =y

1.2. dot notation and list notation

We introduce dot notation and list notation as notations for sexps., A sexp is also valled 2
Nist when 1118 weitten in dol notation or list notation.

[x . ¥] = snoclx.v)
(x . v} = consfx

[x]==x

[_I']‘ C X t\'-.ui.-]]' = |‘--'.-"I . [3'-!~ U Xy . -xn‘-l"
ixh "‘1.1'"]—_'.".'1.. "'-P:¢-ﬂ]

(L x) = x

{-"-]:- Tty Ky --'fll'rl} - ‘-1] - {-‘:L B --"‘:'114-].]'.j
(e, cooox)=, e, x, O

[l=0=0

A list which begins with (is a cons fist and a list which begins with [is a smoc list. {0 x)
iz a cons list and [x 1 is a snec list, though they denote the same sexp,

L3, name
Let L be the set of ASCII graphic characters. We define a funclion p : L—A by using 7
hit ASCII codes. We explain by examples,

pfa) = [1,1,0,0,0,0,1)
p(A) = [1.0,0,0,0,0,1]
p(1) =1[0,1.1,0,0,0,1]
o(*) =10,1,0,1,0,1,0]

Mote that the ASCI] code of "a’ is 1100001 in binary.

A name is a string of alphanumeric characters whose length is longer than 1 and which
begins with a lowercase.

A name denotes a sexp as follows:
Let g = {; - I be a name, then » denotes

I.Dﬁ]j. v -,Flﬂt,:l!

1. The Lisp-part of Qute

The top level read rowtine of Qute reads in an expression and processes il An expression
is either a Lisp expression or a Prolog expression. A Lisp (Prolog) expression will be processed
by the Lisp (Prolog, resp.) part of Quie. We will explain the Lisp-part of Qute in this section.
Evaluation mechanism of Lisp expressions in Qute mostly follows that of usual Lisp. However,
our treatment of variables and function applications radically differs from usual Lisp.

We give some examples in 2.1, give informal explanation of eval in 2.2-2.6 and summar-
ize definition of eval in 2.7,

1.1. examples

(L1} 0
=
(L2} lapple, orange);
= [apple, orange]
(L3} > eonsiX,Y) = (X.Y)
cons defined
(L4} cons(apple, orange);
= (apple _ orange)
(L5) > snoc(X, Y) = [X . Y],
snoc defined
(L6} "[X, cons(apple, orange}l;
= [X, cons(apple, orange})
(L7} ‘leons(left, right}, X, VY, /snoc(left, right)];
= [cons{left, right}, X, /Y, "lleft . nght]]
(LB} > ecar(iX . ¥)) =X

car defined

(L9} = cdr((X . Y)) = Y;
cdr defined

(L10) car(snoc(left, right));
= lefl

(L11) > atom(Z = (X . Y)} = eqlZ, [X. Y]

atom defined
(L12} eglapple, orange),
=1

(L13} eglapple. apple);
(L14) atomf{snoclappie, orangel):
=
(L13) > append(X = (X1 . X2). Y)
~ Cond| eq(X, 0) —> Y,
0 —= [X1 . append(X2, Y] I,
append defined
(L16) append{[as, bbl, [cc, dd, cel);
= [aa, bb, cc, dd, es]
(L17) > applv(F, X) := CAPPLY, [F. XI);
apply defined
(L18) applvicons, [lisp, prologl):
(lisp . prolog)
(L19) > and(x = (x1.x2)}
v="Condl eql’/x,) => 10,
/x1 == Andl[. /x2]);
and defined
(L20) Andleq(aa, aa), 0];
= {}

2.2. constant and special sexp
A molecule whose car-part is

[lo,1,0,1,0, 1,01, «

(D)
li,0,1, 1,1, 1,000, «

o1

{0, 1,0,0,1, 1,10, (= [p("}])
N, 1,0,0,0,0,011, (= [p(I]
{11,0,1,1, 1,0,0l or {= [p("J])
flo,,0 1,1, L, 10 (=D

15 called a special sexp. We use VAR, APPLY, QUOTE, QQUOTE, ESC, EVAL respectively
10 denote the above aloms. A sexp which dogs not contain o special sexp as ils SUD=sEXp IS
called a constant sexp or simply & constans,

We now cxplain the function eval that is used to evaluate Lisp expressions. The function
eval is defined so that it preserves cons and snoc for non-special sexps and henee it becomes an
identity function on constants. Therefore, we can make use of swoc (and cons which satisfies
(r3)) as a pattern constructor. This advantage comes from Lhe fact that we have two construc-
tors snoc and cons,

(r1) eval(D) =0
(r2) evalllx . 1) = levalix) . eval(v)]
(r3) evall{x. ¥} = (evailx) . eval(y))
where x # YAR, APPLY, QUOTE, QQUOTE
The expressions (L1), (L2) in 2.1 are evaluated by these rules. Nole that a name is a constant,

We explain evaluation rules for special sexps in the following.

1.3. variable and environment

A special sexp (VAR . x} is called a variahle. We introduce a syntax sugaring for a var-
able. A single lowercase character followed by a string of digits or a nonempty string of
alphanumeric characters which begins with an uppercase character denotes a variahle. Let the

string be [y - - - I,. It denotes
(VAR . [p(ly), -, p(iJ])

Example 2.1.

Var = ([[0.1,0,1,0,1,01] .
[11,0,1,0,1,1,00, [1,1,0,0,0,0,1], [1,1,1,0,0,1,001]) O

The value of & varable is determined relative to an environment. An environment is & list
of pairs of a variable and its value. It is created when a function or a macro is called.

Besides this environment, there is a global environment, though we do not go into delails
in this paper. If a variable is not found in an environment, a global environment is searched.
A global environment is preserved even after evaluation.

2.4, quote and quasi-guote

For a sexp r, each of “t, "t, \r and /¢ denotes & special sexp (QUOTE .),
(QQUOTE . 1), (ESC . 1) and (EVAL . 1} respectively. We say 7 is in the scope of ", ", \ and
/ respectively. * and * plays a similar role in eval as that in usual Lisp. ' plays the role of
quote,

{rd} evall't) =t

In the scope of °, a special sexp loses its special meaning. ' plays the role of backquote in
Maclisp, but our " is not a read-macro.

(r$) evalCt) = gevailt)

{re} geval(0) =0

(7 geval(lx . 31) = lgevallx) . gevai(y)]

(r8) geval((x.) = (gevallx) . geval(y})
where x # ESC, EVAL

(r9) geval(\t) = ¢

(r10) gewal(/t) = evallt)

In the scope of °, only / and \, have a special meaning. / evaluates a sexp in its scope and
plays the role of quotation. For examples, see (L&), {L7), (L19). Note that quasi-quotation is
useful if we want to suspend evaluation of applications.

1.5, definition of function and macro
A function definition is of the ﬁ:-rm_

> func fml = body,

where func is a name, fml is a formal parameter which is a cons list and body is a sexp. Simi-
larly, @ macro definition is of the form

> mae fml = body;

where mac is a name. We cannot associale a function and a2 macro lo the same name. For
examples, see (L3}, (L8), (L9), (L11), (L15), (L17), (L19).

A formal parameter is defined as follows:
(1) a wvariable is a formal parameter,
(i) 0isa formal parameter.
(iti} if fy and f; are formal parameters, so are (f, . f2) and [, . £l

In a formal parameter, f) = f3 denotes [fy . fal.

1.6, apply
A special sexp (APPLY. x) is called an application. We introduce svntax sugarings for an
application. They are
Junlargy, - . arg,) i1l

Funlarg), -+ | argy) {2)

where fun is a name, fun is a nonemply string of alphanumeric characiers whose length is
longer than 1 and which begins with an uppercase character and arg, is a sexp. Fun is dis-
linguished syniactically from a variable by the following '

(1), (2} denotes respectively
{APPLY, (fun . larg,, -, arg,]})
(APPLY, lfun', arey. - -, arg, |}

where fun’ is a name obtained by replacing the leading uppercase character of Fun by tha
corrasponding lowercase character.

Example 2.2.

cons(apple, orange) = (APPLY, (cons . lapple, orangel))
Conslapple. orangel = (APPLY, [cons, apple, orange]) O

(1) and (2) are evaluaied by the following rules.
(r1l) evalffunlarg,, - -, arg,}} = appiy(fun, evaillarg,, - - -, arg,]))
(r12) evallFunlarg,, - . arg,]) = applv(fun’, fargy, - -, arg,))
Note that in (r11)} eval also plays the role of evlis in ord.nary Lisp because of the rules (r1).
{r2). Whether an arpument list is evaluated or not is decided not by a function or macro but
by the form of a function or macro call.

applv(fun, argl) is computed as follows. If fun is an atom other than eq or cond. it is

regarded as a function or macro name and its definition is searched. If found, a new enviren-
ment is created by the following rules from the argument list argl and the formal parameter
Smi of the definition,

pairupl, argl) = {]

pairuplv, argl) = [[v . argl]]

where v i5 a variable

pairup((fy . £3), Larghy . argly)) = append(pairup(fy, argly), pairup(f 5, argly)}

pairup((fy . £}, largly . arelsl) = append(pairup(F,, argly), pairup(fs, arely))

pairup(Lfy . £, argl) = appendipairup(fy, argl), pairup(fy, argl))
whare append concalenates two lists,

Example 2.3,
patrup((Z = (X, Y1), {laa, bb]l} = [[Z . [aa, bbll, [X . aal, [Y . bb]]

Recall that f; = f; denotes [f, . f3]. O

Note that a formal parameter is used as 2 skeleton that is matched with the argurnent st
and that a formal parameter matches any sexp because of the totality of car and cdr.

If fun is a funclion, its body is evaluated under the new environment.
Example 1.4,
See (L3) and (L4). cons{apple, orange) is evaluated as follows:

Evaluating the argument list [apple, orange] results in [apple, orangel. The formal param-
eter of cons is (X, Y) and the body is (X . Y). Pairup of (X, Y) and [apple, orange) creales a
new environment

[[% . apple], [Y . orangel]

Under this environment, (X . Y) 15 evaluated and results in

(apple . orange) O

If fun is a macro, its body is evaluated under the new environment and the result is
evaluated again under the environment that was current when the macro was called.

Example 1.5,
See (L17) and {(L18). apply(cons, [lisp, prologl} is evaluated as follows:

Evaluating the argument list [cons, [lisp, prologl] results in lcons, [lisp, prologl]. The
formal parameter of apply is (F, X) and the body is (APPLY, [F . X]I). Pairup of (F, X} and
lcons, [lisp, prologll creates a new environment

[[F . consl, IX . [lisp, prologll]

Under this environment, CAPPLY, [F . X]} is evaiuated and results in
(APPLY, [cons, lisp. prologl)

This sexp, i.e., Consllisp, prologl, is evaluated under the previous environment yielding the
result {lisp . prolog). O

Qute has two built-in functions eq and cond. eq returns 0 if its two arguments are equal,
| ptherwise. The definition of cond fallows that of usual Lisp, except that O represents truth
and other sexps falsity. We have a syntax sugaring for an argument of cond. That is,

¢ == b denotes (o, &)

Example 2.6.
See (L19) and (L20). Andleglaa, aa), 0] is evaluated as foliows:
The argument of And is not evaluated. Pairup creates an environment

[[x . feqlaa, aa), 011, [x1 . eqfaa, aab], [x2 . [0]]]

Under this environment, the body of and is evaluated and the resull is

Cond| eqi"feq(aa, aa), 0], 00 —> 0,
eqiaa, ag) —> Andl [0]]]

This result is evaluzted again. As eval{eq([eqlaa, aa), 0], 0)) == 1 and evalleqlaa, aa)) = 0,
And[0] is evaluzted. And[D] is evaluated similarly and the result is 0. O

In addition 10 a functicn and macro call, Qute also hes a lombda expression, which we
explain in 2.7,

2.7, summary

We summarize the definition of eval in this section. Here we define eval as a function

from 5x8 (o S, that is, evallx, em) = y means that evaluating x under the environment env
results in v

evallx, env)

= if x =0 then 0

elif aromx) then snoclevallcarix), env), evalledrix), envl)

elif carix) = VAR then getix, cnv}

elif carfx) = APPLY then

if molelcdrix!) then

if aromappiixt) then appivifn(x), arglx), env)
else apolv(fu(xl, evallare(x), env), env) fi

else true(value(d, praixl, barsix), envi fi
elif car(x) = QUOTE then cdrix/
elif car(x) = QQUOTE then gevallcdr(x), envl
else conslevallcariy), envl evalledrix), et B

(For the explanation of rue. see section 4.)

geval(x, env)

=if x =0 then

elif aiom(x) then snoclgevallcar(x), env), gevalicdrix), env))
elif car(x) = ESC then cdrix/

elif car(x) = EVAL then ewal(edr(x). env)

else conslgevallcarlicl, env), geval(edrix), envi) i

where appl is cadr, fu 15 caadr, ary |s cdadr, value 15 cadr, prd 15 caddr and fars is cadddr.

getlv, envl
= if v = varfeny) then vallenw)
else gorfy, resrfenvl) i

where var s caar, val s cdar and resr is car.

apple(f. arg, env)
= if giom{f} then

if /= eq then eglearlarg), cadriarg))

elif /= ¢ond then evcon(arg, emy)

elif fincli) then evai(body(f, pairup(formal(f), argl}

elif macro(fi then evalieval(bodv(f), pairup{formal(f). argl), env) fi
else eval(bav(f), appendipairup{fm!(f), arg), env))) fi

where func(f)} and macrol(f) decides whether f is 2 function or a macro, bodyv{f) is the body
of a definition of f, formal(f} is the formal parameter, bdv is cedr and fml is car. (else-part
corresponds 1o lambda expression.)

eveon(cls, env)

= if ris = [] then 1

elif evallpremicls), env) = 0 then evallanicls), env)
else eveon{resticls), om) fi

where prem (S coar and and 15 cadar.

pairup{fmi, arg)
= if fin! = 0 then []
elif malelfml} then
if car(finl) = VAR then snoc(snoc(fml, arg), 0}
else append(pairupicar(fml), carlarg)), pairup(edr(finl), edrlarg)))
else append(pairup(ear(fml), arg), pairup(cdr(fmb), argl) fi

This describes only the pure part of eval. Quie has & built-in funclion "set’ which can
change the environment. We only give some examples. (x = ¢ is a symax sugaring for
Set[x, el.)

Example 2.7.

{x 1= lisp, x}:

= {lisp, lisp)

({x . y) 1= cons(lisp. prolog), x, v);
= ({lisp . prolog}, lisp, prolog)

{[x . y] ;= cons(lisp, prolog), x, v¥):

= ((lisp . prolog), (lisp . prolog), (lisp . prolog)) O

Note that the first argument of set is treated similarly to a formal parameter of pairup and that
the second argument is evaluated. :

3. The Prolog-part of Qute

The Prolog-part of Quie is similar to an ordinary Prolog, but there is an important
difference, i.e., the argument list of the predicate and the parameter list of the assertion are
evaluated before they are unifiad.

We give examples in 3.1, explain syntax of Qute in 3.2 and mechanism of unification in
i3, 34, '

3.1, examples

(P1) +cons | X, Y. (X.Y)
cons defined

(P2) — conslapple, orange, X],
X = lapple . orangs)

(P3) + cadr | X, ¥ — eqlY, car{edr(X))];
cadr delined

{(P4) — cadrlcons(left, (right)), X,
X = right
(P5) + append|
0. Y, Y

FIX1 . X2, Y, [X1 . Z2]
— append! [X2, ¥, Z2];
append! defined
{P6) — appendl[[aa, bb], X, [aa, bb, ec, dd]]:
X = [cc, dd]
(P7) + append2 | X, Y, append(X, Y);
append? defined
(P&} — append2(lprolog, lispl, [qutel, XI;
X = [prolog, lisp, qute]

3.1, definition of predicate

A predicate is of the form prd arglise where prd is & name and arglise is a snoc list. Iis
denotation is [prd . arelisr]. prd is called the predicate name of the predicate and arglist is
called the argument list of the predicate.

A predicate definition (assertion) is of the form

+ prd | paramy bodyy
| paramy bodyv,

| param, body,

5

where prd 1s & name, param; is of the form

S ¥ 1oL, & Ky
[s B or -y or Pis v B Pt

where g is a sexp, and body, is emipty or of the form
— predicate} — predicare? - -+ — preﬂ'i'c‘a.re:m '

where predicate] is a predicate.

The corresponding Marscille nolation is

. L]
+prd | param,)~ predicare |"—~ - o —predicate) |

| . m
+ prdd | param, 1= predicatel— -+ - —predicate,

We call [param;] a parameter list of the assertion.
A poal is of the form

— predicatey — predicate; - - - — predicaley,
where predicate; is a predicate,

3.3. variable and its value

First, we define the notion of free variable. The following function vars(f) is used to
define the set of (ree variables in f.

vars(f)

= if =10 then ¢

elif /= [f;. 3] then vars(f}) U vars(fy)

elif = (VAR .) then [f]

elif /= funlarg,, -+ - . argy) then varsflargy, -, arg,l)
elif f = Funlarg;, - - -, arg,] then ¢

elif /' = Epsilon{val; bodv) then vars(body)— vars{vall

elif /= "rthen ¢

elif /= "rthen gvarsit)

elif f = (fy . 1) then vars(/) U vars(fy) fi

{For simplicity, we omit the case of lambda expression.)

gars(f)

= if f =1 then ¢

elif £ = [f; . f4l then gvars(f) U guars(fy)
elif £ =\t then &

elif /= /1 then vars(t)

elif /= (fy . /1) then quars(7) gvarsify) fi

When a sexp f is evaluated, il is necessary to know the values of the free variahles in f.
However., the intended meaning of a free variable in a predicate is an unknown sexp which may
be known after evaluation. We introduce the notion of an undefined value (it is an imaginary
element outside of §). We suppose thal each free variable has a different undefined value,

3.4, unification

Before evaluating the predicales in a goal, an environment which is 2 list of pairs of a free
variable and an undefined value is set up. Before an unification is made with a predicate
definition, an environment is set up similarly, using fcee variables in the parameter and the
body of the predicate definition. An undefined value plays the rcle of a ‘variable” in
unification.

Example 3.1.

— appendl1[[pralog, tisp), [qutel, X 1;
creates an environment

[[X . undfil]

before evaluation, where undf; is an undefined value. Evaluating [Iprolog, lispl. lqutel, XI
results in

-10-

[[prolog, lispl, Iqutel, und/] (1)

According to the definition of appendl in (P5), the first parameter list [0, Y, Y] is evaluated
first and its result is [0, wndfs, wndf;]. This is not unifiable with (1). So the second parameter
list 11 . %20, Y, (X1 . Z]) is evaluated and ils resull

Hundfs . undfa), undfs, lundfs . undfsl]
is unified with (1), At this time, the environment is

[[X1 . prologl, X2 . lisp]], 1Y . [quiel), [Z . undfgl]

and undf| is instantiated to [undfy . undfgl. In this way, execution goes on. After execulion,
the first environment is instantiaied to

(X . [prolog, lisp, quielll O
Since no restriction is imposed on the paramelers of an assertion, they may contain any
speeial sexp as is seen in (P7). Unification with such an assertion goes like the following
Example 3.2,

(PR} is executed under the definition (P7), where append is a function defined in (L15).
[[prolog, lispl, lgute], X] is evaluated with the result

[[prolog. lispl. lqute], undfy]. (1
A parameter list [X, Y, append(X, Y)] of (P7) is evaluated and its result is
lundf 7. undfs, undfsl (2)

with the condition
undfs = append{wnd s, undf).

That is. since we cannot evaluate append(X, Y) with free variables X and Y, we assume thal its
value is wndls and impose the above condition. (1) and (2) are unified and as a result
undcfined valucs arc instantiated, 1.e., undf; = lprolog, lispl, wndf; = lqute) and wndfs =
undfy. The condition is instantiated to wndf, = append([prolog, lisp], [gute]) and it is
checked. append{[prolog, lispl, lqutzl) is evaluated and wadf; is instantiated to [prolog, lisp,
guiel. 0

4, Connecting Lisp and Prolog

One of the most important features of Qute is that the Prolog-part can be called from Lhe
Lisp-part. It is a mechanism similar to Hilbert's epsilon symbaol, that is, a mechanism to find a
value which makes a2 certain predicate Lo held.

4.1. examples

(El} > append3{X, Y)
= Epsilon(V; append3[X, Y, V]),
appendl defined
(E2) = yppend3
.Y, Y
IIx. X1 Y, [x.Z]
— append3|X, Y, Z]

append3 defined
(E3} append3illisp, prologl. lqute]):
= [lisp, prolog, qute]
{(E4) > append4iX, Y)
= Epsilon(V; append4[X, Y, VI},

11 -

appendd defined
(ES) + appendd
(Y, Y
Ix . X1, Y, [x. append4(X. Y)

appendd defined
(EA) + member
Fx, [x . %]
Ix, Iy . Xl
— memberlx, X]

member delined

{E7) Epsilonix; memberix, [apple, orangell);
= apple

(E8) - eqlorange, Epsilon(x, member[x, [apple, orangell}];
yes

4.2, epsilon expression

A special sexp (APPLY _ lval, prds, vars]) is called an epsilon expression where val is a
sexp, prds is a predicate or a cons list of predicates {i.e., conjunction of predicates) and vars is
a snoc list of variables Lhat ure local in the epsilon expression. We introduce a syntax sugaring
for an epsilon expression. It is

Epsilon(val; body)
where val and body are sexps. [t denotes
(APPLY . lval, body. vars])

where vars is the snoc list of the free variables in val.
According to the definition of eval in 2.7,

eval((APPLY . [val, body, vars]), emv) = truelval, body, vars, env)

It is computed as follows. A new cnvironment £ is set up by appending to the head of the
current environment env a list consisting of pairs of a free variable in vers and an undefined
valuc. body is executed by the Prolog-part under this environment E with the result that the
environment is instantiated to an environment £ that makes body rrue. According 1o the far-
mal specification of Quie, any E' that makes hody true is sceepted, but the actual implementa-
tion finds E' in & depth-first way. Then val is evaluated under the instantiated environment £’
and the result is the value of (APPLY . [val, badv. vars]). When E' is created a marker to
this frame is also made, so that a later backtrack will return to this point.

Epsilon expression is therefore a multi-valued function, however only one value is refurned at a
time and further values may be obtained by using backtrack.

Example 4.1.

(E3) is evaluated under the definitions (E1), (E2). append3 is called and the environ-
men!

[[x . lisp, proiogll. Y . [qute]]]

is created by pairup. Epsilon expression which is the body of appendl is evaluated. TFirst, a
new environment

IV . wndf)), [X . lisp, prologll, IY . [qute]]]

is created. A goal append3[X, Y, V] is executed under this environment according to the
definition (E2}. The environment is instantiated to

=12 -

[[V . lisp, prolog, qutell, 1X . [iisp, prologll, 1Y . lqutel]]

and V is evaluated under this environment with the result [lisp, prolog, qutel. It is the value of
the epsilon expression and of append3(llisp, proleg], [quie]). O

Example 4.2.

(E6) defines an ordinary membership relation on a list. In (E7), the Lisp-part of Quie
sels up an environment

E = [Ixn. undfill

and calls the Prolog-part. The Prolog-part tries to find an instance of £ that makes member|x,
lapple, orange]] rrue. The following two instances of £ both give a correct instance:

£y = [[x . apple]l, £y = [[x. orangel]

Howewver, the actual implementation does a depth-first search and returns £y as 2 new environ-
ment. The Lisp-parl cvaluates x in this environment and returns apple as the value of (E7).

In executing (EBY, the two arguments of the predicate eq are evaluated first, The second
argurment, which s the same epsilon expression as (E7), is evaluated similarlv as above and
apple is returned as i1s value, Since crange and apple are not ‘eq’ (equal). a backtrack occurs.
This forees Qute to find a second value of the epsilon expression and the value orange will be
returned this ume. Since orange and orange are ‘eq’, ‘ves’ is returned as the answer to the

question (E8), =

5. Conclusions and Future Plans

We have shown that it is possible 10 amalgamate Prolog and Lisp in a natural way. A
comparison of the evaluation of a Qute predivale with that of an atomic formula in a first order
language will make this naturalness clear. Consider a first order language that includes:

& binary predicate symbol < (for less than),

a binary function symbaol + (for plus) and

constants for natural numbers
with their usual interpretations. Then the truth value of the atomic formula

i< h

is evaluated as follows. First evaluating the terms 2+3 and 6, we get 5 and 6. Then by the
meaning of < we see that 5 is less than 6, which implies the truth of the formula in question.
The evaluation in Qute is complelely analogous. With appropriate definitions of ‘less_than® and
‘rlus’, the question:

— less_thanlplus(2, 3}, &];
15 evaluated by Qute resulting in the answer ‘ves’,

According 1o this analogy, the evaluation of a sexp by the Lisp part of Quie corresponds
to the evaluation of @ term. Here, an epsilon expression corresponds to Hilbert's e-term.

We have defined the semantics of Qute informally in this paper. We wish 1o give a for-
mal definition of Quitc in a forthcoming paper. (See also Sakurai[2).) This will be doene as fol-
fows. First, we will define a formal intuilionistic theory of symbolic expressions called SA
which is proof theoretically equivalent to Heyting’s arithmetic HA. It will then become possi-
ble to define Quie within SA. Moreaver, 1o mechanize these processes, we will implement a
proof checking svstem for SA using Quie. In this way, we will be able to formally reason about
the properties of Qute within Qute itself.

« 13-

References

n
[2]

3]
4]

Robinson. J. A., and Sibert, E_ E., 1982; LOGLISF: an alternative to PROLOG, Machine
Imtelfigence .
Sakurai, T., 1983: Formalism for Logic Programming, Master Thesis, Depariment of infor-
mation Science Faculty of Science Universiy of Takyo.

Sato. M., 1983: Theory of Symbolic Expressions, 1, Theoretical Computer Science, 22.19-55.

Sato, M. and Hagiva. M., 1981: Hyperlisp, Algorithmic Languages, Proceedings of the Inter-
national Syvmposium on Algorithmic Languages, (eds. J W. de Bakker and 1C van Ve,

MNorth-Holland.

-14 -

