ICOT Technical Report 17 015

TR-0G15
Logic Programming
— Past, Present and Future —
by
I.A. Robinson

{Svracuse University, U.5.A))

June, 1953

Miies Doelogeni Pide M1F N3 45R-310] —=

iGD | 4=28 Mz -Chome Teles IO Pl
Minate-ku Tokve HUE Japan

Institute for New Generation Computer Téchhblugy

LOGIC PROGRAMMING

- PAST, PRESENT AND PUTUEE -
J. A Eolkinson

Syracuse University

[The following text is an edited and condensed transcript of
an ICOT Poblic Lecture given im Tokye on 10 Pebruary 198137

Thank you very much. I wish T could speak to you in
Japapnese. Fert time perbhaps I will be able to do so with
the help of a Fifth Generation computer.

In thinking about the history anmd future of the idea of
logic wprogrameing it helps to distipgquish the folloving
periods: ‘

distant past (1879 = 1970)
near pasb (1371 = 1980)
present (19871 - 19290)
near foture (1991 - 2000
distant foture {2001 - 2

1.0 THE DISTANWNT PAST (1879 - 1970)

The distant past starts with an ioportant pilestone in the
history of ideas. 1#79 happens to be the year im wvhich
Alhert Pinstein wvas horn. HBat in that year sonmething else
was born, nagely, the predicate calculos, as we now have ikl
It vas invented by one san, GCottlob Prege, a wmathematician
whose goal wvas to analyze coabletely the formal structuore of
pure thought. PFrege called his system the Pegraffschrifft,
a word he appears to have also invented = Tt sSeess to amean
soaething like "notation for <oncepts™. He thought of it as
a universal language in which every possible foram of
ratiopal thouoght that could enter ioto a piece of deductive
reasoning could be represented im a systematic and
mathematically precise warv.

Aod so it proved. T think that the history of this
syYstematic notation of Frege's has korne out his faith im
it. The rest of the distant past i= essentially about the

developaent ip one particular line of that potation. The
particular line is what we might «call neoapptatiaonzl
predicate calculusm, the line that 1is always seekling
algorithms in which the processes of dednction are captured
in a systesmatic way-. As Frege thern saw it, these processes
vere to be mathematically precisely presected, so that they
could be studied forsally. Hovewver, he was not directly
concerned with computational isswes as such.

co the distant past of logic programeing is the hastory of
copputational logic. There was & long period, af about
thirty five TYears, after the iantraduction of the
Pegriffschriftt before anything really significant happened.
It*s fashionable to sention im the history of the predicate
calcules the fzgous work of Whitehead and Bussell -
Principia Rathematica. However, that work is mnot really
sart of coeputationazi logic, but part of another braoch of
the developsent in which Prege was also very interested,
namely, the effor: to analrze to their wery foundations the
basic ideas of s=athematics; the notisrs of fupction,
infinity, Sei, and sSc oi. *reqe helieved, and so did
§hitebead and Tossell, that these nctions could be analyzed
in purely 1logical terss, and that 1s what that pacticular
line of developeent - logicise — was epdeavouring to do.

In computational logic the first really significant work
after Frege wes that of Lowvernheiz in 1515. This began a
fruitful period of erpleration and discovery culeinating in
about 193C0. Et about that time, the discovery of what we
no¥ think of 2= the fundamental thecrem of the predicate
caleculns wazs epade independently by the French algebraist aad
logician, Jacgues Herbraand, who was writing his Ph.D. thesis
im 1929 =amd im 1930, 21 vears old at that tire; a
Korwogian, Thoralf Skolem, a gature proefessiocoal
mathogztician working throvshout the 1320%s oo the sane
problesa: and Furt Godel, ap Aostrian gathematiciany all of
vhos were &attezpting o prove about the predicate calculus
the basic fackt wkich Prege toak on faith when he invented it
in the first wplace, naeely, that it is indeed a corplete
systen of ootarien, that 1t actually does do everything that
it is intenled to doa

The iptention behind the languaqe is that it should provide
a formal proaef of every sentepce in the languaage which is
logically valid - that is, truoe gnder all po=ssible
interpretations - and that this proof should be
systematically corstructible, giver the sentence. Gadel,
RBerbrapnd ant Stoies shoved in different ways that this is
the case. Tt is to these pen that we owe todav's predicate
calculus proof proceduresa

Berbrand gave several versions of the proof procedure, oORe

of which involved him iep the idea we now call fynification™.

of course im 19310 there were ©no coapoters to ran the
procedure on, and indeed cosputers did mot arrive on the
scene pntil the early 1950's. So nobody was atble to think
of prograaming the proof procedure for a modern computer
entil about 1955 when a Dutchman, Evert Beth, decided to try
ijt, and he vas followved by others we should remenbar, Stig
Kanger and Dag Prawitz from Sweden, Paul Gilmore, Rao Wang,
Mmartin Davis and Hilary Putnasm from the USA, —— all of thenm
decided to try the now 25-year-old process on the conmputers
of that era.

In doing se, Dag Prawitz, in 1960, revived the unification
notion, and used it in cne of his early proqrams.

It was the ezxperience of these investigators that the
algorithm, as it was formulated in 1930, wasn't very well
thought out from the modern computational cosplexity point

of view, and that it idinvolved enorsous combinatorial
explosionsa- They were somewhat disappointed in its
perforzance.

At this stage I myself hecase involved in this effort.
about 1961 I started to study these papers, and it occurred
to se *hat there were a few tricks ope might use to improve
the copmputatiomal performance of the EBasic algorithe. 1In
the course of that work, I stumbled across the idea that's
pow known as "resolution®, which was a way of inveolving the
unification concept riqht at the very heart of the proof
svyster that one was dealing with.

T will say more about the developments that ensued after the
early time when rescluotion began to be the vay people
attempted to make the computer efficiently carry out the
basic process.

But T would first like to pention another thread inm this
brief history of logic proaramsing. This was pot quite as
direct a part of +the development of 1logic proper, baot
certainly it belongs in the logic programming story. 1In the
middle 1960%= two qgentlemen whose names are not as wvidely
known as thevy should be — Michael Foster and Ted Elcock -
vere experimentiog with a programming formalism that they
called 1AH5YS ({(for ABerdeen SYStem). Later they repmamed it
LESET |[for ABerdeen SFT language) . It was a computing
langquage based on the idea that the proarammer would sisply
make assertions.

These assertions, or sentences, would be, =0 to speak,
axioms that the prograceer believed to be true. They would
be entered into the menary of the coemputer, and then used as

the prepisses of deductive inferences when a query, as ve
would now call it, was suhsitted to the systen. These
aseertions would thern be invoked automatically in deducing
the answer to the cuery.

This was very interesting early atteampt to do w~hat we novw
think of as logic prograsming. It was not, however, carried
through in the conterxrt of the forral predicate calculus, but
was dAone intuitively in more or less ordinary mathematical
pnotation. It was a Tather compier systen, and didn't behave
gunite as efficiently as oone could bave wished. TFRut anyone
vho wants to go hack to the beginniegs of logic prograrminog
shauld be aware of that work.

Well, resolution spread around and eany people took it ups
iprluding an early picpeer in resclution logic programwming,
tordell Greene, in Stanford im the late 60's, who attenmpted
to use resolution in essentially the modern way as the basis
of a logic programeing systea. He +thoughkt of it as a
guestion ansvering systee- Rightly enoughk; that¥s what
logic prograssing really is all about. His work attracted
guite a lot of attention;-—-sose good, some btad. The good
part vas that at last bere was a systematic plan for a
guestion-answering cosputing systee. It seered to he very
general and potentially avplicable to a wide range of
problens. The hbad part was that the particular tesoluticn
algoriths underlvying i%* was still cosputationally coamplex
enough to limit the apolications of the system to fairly
small problems. Oop larger problems, Greene's =system wounld
again rTun into coebinatorial explosions. This was once
again disappoiptine.) .

Sp at the end of the 1960*s and at the Lteginnine of the
1570's there were scae rather negative comzents made,
especially from the directionm of Casbridge, Rassachusetts,
to the effect that doirc artificial intelligence computing
by logic, and esnecilally by resnlution, was an extreacly
=illy thing to do: ard that the proper way to proceed was
in a different wmanner. The HIT systezx PLARKNER emerged
during that controversy. It was another line of developroent
that I thipk now is djoining again ipoto the maln strean.

A nusbher of people — Hohert Fowalski, Donald Kuekoer, David
Luckham, Donald Loweland, and others - were attacking
relentlessly the probles of the costinatorial complexity of
resolution=——and a lot of ideas wvere tried. The winning one
turned out to he to restrict the resolution rule =o that the
deductire structures that would be ogenerated by the
algorithe would he lizear in fore.

That would pean that eack proof would he a tree structure
with one ®mzin brapch. Fvery inferred clause would lie oo

the main branch and would resolve the previous clause on the
main branch with one of the input clauses.

Another line was to take the unification process, and try to
make it faster, and ieprove its performance.

ceveral people - I was one - were working om this: Bob
Pover and J Moore Joiped s at that tipe. This was in
Fdinburgh in Scotland. They thought of all sorts af
wonderful algorithmic tricks inclanding structure sharing for
speedipng up the resolutiom rrocess. Pssentiallvy, the
development down to here can be susemed op by saying: all
t+he pieces vere now available for FREOLOG.

2.0 THE REAE PAST (1971 - 1930}

Tt took someone like Xlain Colwerauver to see all those
pieces and put them together into a homogemeons systen.
First of all, Colmwerauer invented one that he called
SYSTEX 0 , and then he pnamed it (or it vas his colleague
Philippe Roussel who named it, or it may have even heen
Roussel's wife who onpaned it) PROLOG; we cap"t guite find
oot who thought of that narmed

At any rate PROLOG was horn in Marseille ip 1971 ot
simply, it consisted of a linear resolution systee in which
the clauses involwed in the problee were restricted to be
Rorn-clauses, together with an interpretation which is due
to Eowaleski of what is happenipg whep you ron the sSystem -
an interpretation which directly transforps the theoren
oroving process into a sore traditicmal copputation process.
Bach =step is the igovocgation of a preocedure which then
returns soee kind of result to its caller. 211 of those
computational notions were exploited by Kowalski in this
procedural interpretation of linear Hors-clause resolution
cYStens. This thep was hov logic programming as a concept
campe abouts

It was Kowalski who saw all this ip PROLOG. He saw how to
look at it im both ways: first as 1logic; second as
computina.

The near past, them, beglins with PROLOG springing fully
qrown from the head of Col@eraver, apnd with Fowalski
beginning his crusade as a tireless proponent of the idea,
effectively spreading the bDews. EROLOG erxisted! People
very guickly saw its virtues and began to use it.
Fowalski*s 1974 IFlvr address wvas an erxtremely influential
expositien of logic prograeming in general amd PROLOG LIn
particular. It was he who first sparked the rapid growth of

interest in 107iC proacarsibd.

This caused u uumber of the best younaoer cosputer scientists
in Purope tc take up logic oprogramsing as their wsain
activity- I would like just to eentior the main ones that T
Enow: Sten=Lke Tarnlond Ffrom Sweden; Feith Clar¥ fronm
Bagland: Eaarien val Eaden from Follaod; Maurice
Bruynocoghe frop ®elaium; Peter Szeredi frox Hungary; Herve
GCallaire from Prabce; pavid %arren, our ceclleague here
todavs *uis and Fernando Fereira from Portugal: all the=se
pecplie collectively qgave al enorasus iwgpetus to logic
prodqrameing. Tt wvas oquite remarkable vhat force gathered
hehind the idea due to these spiendid people.

e als=o sa¥ a rather guick organizational development; as
illestrated, four eranvle, br the excellent boeck logic
Prograssziog edited oy Clarck 2nd *arclecd, which is a2 record
of an ipternational Workshop of the whole community of logic
progratiing researchers, teilisg thelr idea=s for developing
and applying the poticn. This T think helped a great deal.
%e have now hzd Turther ¥erkshops ip Syracuse [Spring 1581)
and Los Angeles [Someper 19371) 3 and one is plaoned for
cusmer 1903 ip Portugal. In Suemer 1982 we had the First
Internationai Locic Progracsing Corference in Rarseille, and
plap the Secocnd for Sumper 1984 in Uppsala, Sveden.

Logic prograecing has been helped by some excellent books:
Fowalski's Logie for Problem Solving; the PECLCG manual of
Clocksin and Hellish: and I <ust mentioned Clark and
warcluné!s hook. But of course we've got to pay our respect
to the wonderful izplepentation that PPOLOG was given after
the original %arseille FOETRAN-based icplesentation.

Logi~ prograpcing hes beep ezxtresely fortupate to have David
varren's factastic EBéimburesh UEC-10 PROLOS, which T thiok
really pusued logic vrograseing over the toep and wade it
ipto a agseful toocl “or all nanner of purroses. One cannot
praise hichly eaouchr Lavliits influence through that
igplegentatiob.

Ip 157% Fronie Sihert and I decided to isplepent a lagic
progragzipg sSy¥stes 18 LISP at Eyracuse. Ve call our systen
LOSLTIS5®. The ceneral ifea bebind LOSLIGE 1s to try to take
the logir proorsseing notion and to ulend it as nicely as
possible withk the functiso proaraenping notion exesplified by
LISP. LIZPF is the tost farpous case, bBut mow there are purer
an? sore eilegant function prograekeipy systees such as TCavi?d
Turner*s Sisl and LnI, leter Hecndersen's LIZPFIT, and the
one spoken about by Johw Backus im his 1977 Turina Awvard
lecture.

Puoction procra=zzinhg Seews op the surface to he an

independent and snmevhat separate notion from logic
pProgramming.

My contemtion is that they are both exanples of a nore
fundamental single common idea, which we might {resenbering
the Aberdeen idea) call "assertional programeing”™ - a type
of proqrameing in which what you do is assert some Sentences
to be true, and then ask for others to be deduced as a
consequence.

Ir logic programsing, those asserted sentences happen to be

conditionals. In functior prograseing, they happern to be
egonations. But that's a really only a superficial
difference. I think the main point to notice is that when

we run systems of either kind we are running deductive
engines:; we are asking thes to make deductioms for us.

So LOGLISP, which we are currently finishipg up at Syracuse,
i= an attempt to embody hoth s=tyles of progqramping within
one framework. ©Other people such as Jan Fomorowski of
Linkoping 1in Sveden - now at Harvard Oniversity - alsc have
+ried t*o coambine LISP and logic proqraeming and of course I
peedn't point out to this auvdlience that this is very much a
theme in yocur owe Pifth Gepmeration Preoject.

The beginnina of the Pifth Generation Project is the gqreat
event which marks the end of the near past . (Quite suoddenly
we in the West had this delightful surprise. We found that
here im Japan vyou had been quietly studying this idea,
unknown to us, and bad spotted it for what it was, namely, a
beautiful, strong techkniqgue which could be exploited in the
wars that you saw. For us, this was a wonderful way to end
the 1970'=s.

I think oane sShould =say, instead of adopting logic
progra@sping as a central idea in your notion, what you
really are doing is adeopting assertional prograwmming as the
central idea. Because I have heard over and over again ip
visiting research groups bhere that same idea, to cowbine
logic programsing with functico prograsning.

Soe we end the near past with a fine orchestral climax; and
we enter the present.

3.0 THE FRESENT (19871 - 1990)

How, we can®t discuss the present in this talk it historical
style, since 1t is pnot yet over. Instead, T would like to
offer some ohservations about where we are going and what we
ouaght to try to do.

I think there are sorce tremds that we should be anzious

aboot. I as afraid thai the wery success of PROLOG, which
ha= been so resoundiag, ®2y have some udnfortunate aspect=.
For example, I tegret ({(for similar reasons to Dijkstra's
concerping GOTD) that PRUOLOG has the COT feature in it, and
that PROLOG prograwesers are encouraged to be ingeniouns in
sanagiong the particular way in which PROLCG develops that
basic tree construoction. It happens to do it depth first by
backtrackiag, visitinag all the podes 1n the tree.

Trit's not necessary seature of 2 logic programeing systesg
it happens to be the PROLOG wafj. It would be better if the
details of that were invisii:le to the vser; mnot thrust upon
the user as one of the main things the user should be clever
about ipn writipny prosTams.

So, CUT is not & good thimg, but then it may already be on
jts way out since it is a serial notion. As maore and aore
parallel PEOLOG impleseptations cone along, 7Fyou won't be
doing backtracking internally, vyou will be doing tree
development in a holistic, parallel eanpner. The intuitions
hehind +the PROLOG pragrasmers' desiaon of PECLOC algorithes
¥ill ther charge and move to & Lhigher level. hnd that will
be good.

¥hat PROLOC is reslly after in the CUT construction is a way
for the procrzmser tec plan coasputational economies in the
construction of that tree. and of course cpe would like the
programsescrc to he able to pass along advice te the systes
abouet what parts of the tree to neglect as being
unpecessarf, given that developments in the cosputation have
reached a certain state, which couldn't be detected until
ron time. Ift*s guite desirahle, it seeaxzs to pe, to provide
the prograsmer with come way of influencing the efficiency
of the trer develozsent. WNet, however, zt the erxpense of
intelligibility of the prooranr!

A sonewhat related point is that it cughl not to make any
differenpce Lnm what order we assert the components of a
conjupcticn, because logically they have Do particular
order. To give thew an erder is te superpose something else
on what yvou are sSaying.

Within a clause, we puoht net to hawve to woarry about the
order. Kar =shouild we have to vorry about the order of the
clauses agong thesscelrera

In short, we ought m©not *o incorporate into the loaoical
notation it=elf particular conveptions zboiut how to manage

the details of the deductive search. Such detalls as the
processor cannot bhe expected to decide wisely sust ke
mapnaged by the proagracser throuak control inputs. Tut these

should be separate frow the logical ioputs.

§e peed to keep in mind that logic preoqrameing in general is
pot to be identified with PROLOG, in particuolar. The
relationship is that PROLOG 1is an iaplementation, a
particular realization of the lagic programaing sctiom. I
wvould even say that more genmerally, logic pragramming is not
totally to be identified with Horm clause resolution
proqraseing. That just happens again to be a special case
apd a very good one, as we have seen, of the general idea of
deductive computing fros assumptlons.

You might even go further still, and =say it'"s not even
really limited to the first order predicate calculus. After
all, there are other interesting logics ; there 1is higher
order loglic: various flavours of modal logic, and 50 OQ.
There are all sorts of rich formalisms that it might be
thinkable one day to unse in the way we nov use a restricted
predicate calculus to do logic prograsming.

So, T think we should preserve the terminology, and keep
logic programscing as a sSeparate concept, and then have
individual notions for various snecial cases of 1t.

I think we cught, im the same spirit, to contrast the
general idea »f a logic programmping system with that of a
complete prograpzing environament. It seems to me that sobse
of the things that vyou have to do in the various PROLCGs 1
have met are strange. Yoa have to, for example, mnake
side—effects ta¥e place, like ©printing, by attecpting to
prove a septence: and in the act of trying to prove it,
samehovw off to the side, events take place. That doesno™t
secm to be very good copceptually. I think it's Lbetter to
be bonest aboat ieperative prograsming; if you want
something to happen, vou should, I think, have facilities
available for =sarving so and for saking them happen. Your
assertinnal semantics vor't them be all cluttered wup with
side-effects.

T think ancther point which should be made about PROLDG is
that it overstresses the role played by relations in
assertional programming. Pelations have a wery important
role, of course, but they are not everything.

Tt soretimes Seems to me that we have returned to the
garliest days of computing, whem in expressing the
evaluation of an erpression, one had to introduce npnarmes for
internediate walues and store +them in cells with those
names: finally there would be a cell with one's apsver in

it. 0f course, the intersediate paming of steps in a
successive evaluation of an expression is something that we
really don't want to have +to do. and it seemed to be

progress when FPORTRAN arrived, and allowved one to just write
the expression down, and have it evaluated withoot havipg in

azseably landuage oneself to nawme all those 1inotermediate
results.”

If you look at some PHOLOG prodraas vhere deeply pested
expressiomn are involved, you suddenly find yvourself back in
those davs, having to name intermediate stages of a
successive nested evaluvation in order to come out at the end
with a value. I don't think that the expression 1itself is
unlogical - it's a ters, after all - and I would prefer to
elevate functions to the sape level as relations, as Ffrege
4id in the origqimal desigmn of the predicate calculus.

1 kpnow that it*s literally true that a function is Hust a

special kind of relation. Bet you cap turn that around, and
you can oheerve also with eguoal merit %that a relation is
just a special kind of fuopction. As a matter of fact,

that"c how Prece saw ite. For hiz, a relation is a fancticn
fros tuples of thipgs te truth valees. And so, you think of
evaluating a relations in just the same way as you think of
evaluatipg any other fupctiom. Tt's just a different trarget
domain.-

Weil, this provokes us to ask the guestion: ¥hat is the
best total gprogramming environment? ¥hat should be the
elements of it? JTf we want to have it contain editors , I/0
cosmands, and other kinds of side-effecting machinery, we
had better thipk i%t all out carefully s¢ as not to @mess up
ope of our nost pagpificent tools, namely, the logic
programsing formalise. JTt®*s sorely got to be part of that
epvironzent, but we dop’t want to overload it, it seems to
me, with all these other duties as well.

I have more anrieties. Hitherto, all the logic programping
systess that we have had erperience with, have keen =ralld
Ehat do I meac by that? Mmaioly that they have heem rumnino
on machines in whose main sesory all of the assumptions were
stored apd thus randosly accessible throuah good indexing
and associative retrieval mpethodso

¥hat happens when we go teo larger systems, where we can't
put it all inm the main semory? We are going to have to work
with essentially disk-based wvirtual @®memories. Aod so0 we
have to face the problea of the =slowing down of the
accessing to the assumptionms, which is a 1little vorrisoae.
It isn't clear to me how, if we are going to get to very
larqe systeoms, we are doing to be able to get the speed-ups
that the Fifth Generation Project is talking about.

Today's speeds iw LIPS - logical inferences per second - of
logic prograssing sSystems are in the order of ten to the
four. I¥f we are going by 1930 teo get up to ten to the nine,
wve'ye oot to think out where that speedup is going to come

from. Tt seems ta me that 1f wve can stay inside the main
gemory of the wmachine, wve can guite happily plan on that
cpeed-up. BY goinmg to parallel working, we can probably
gain a factor of a hupdred. BY going te 1990 hardware we
probably get another factor of a hundred. The remaining
factor of ten we can hope to get by being even clevererl than
we have been so far im organizing the basic algerithms.

So, I think a ter to the five speed-up 1is reasonable,
provided that we can deo it ip fast pesory. Fut if we have
to get our clauses fros éisk menory, we have a probler to ao
that fast. Tet, ho¥ else are we to store a terabyte of
infermation?

T confess that I sometimes have 2 twinge of anriety about
your harving sade logic programeing the central these in vour
Fifth Generatior Provject. I wonder whether your qreat
confidepce in this idea 1s going to he justified. There are
some risks involved, as you well know, in putting thkis idea

in the center. It is really an experiment. T think it's
syorvhelmingly probable that the experipent is goling to ke
successful. Aut there are some hazards. 1 will say more

zbout these ic a moment.

A final, general worry - what's going to happen to logic
programeing, as a pure abstract idea, wvhen you people get
throogh with it? Fverybody pow is paying intense attention
to the paradigoc: changing it, experimenting with it in
various ways with different motives. Sozething is going to
bappenm to 1it, and T have the anxiety that it might not
alwars be for the best. ¥ bave to try to guide the
developeent now in this decade that ve are Just beginning,
=o that at the end of the decades we have a notion of logic
program=ing sSystess that ¥e can he proud of, a notiop that
j= =till elegant, powerful, and siepple, and indeed that has
all +the virtgpes that logic prograrcoiog now Seems to have as
an idea.

Let®s hope that in eaking logic prograeeing into a practical
success oB a larqe scale we don't have to sacrifice any of
that elegance and beauty. I soretiwes feel a little nervous
vhen T see papers and listep to discussions in which logic
programeing is beinag blended in with everything wunder the
son. That*s perhaps an unnecessary wWOLry. J bope so.

Lastly, since I love LISP very much, 2S5 do a lot of other
people, I thope that 1ISP, whick 1is a beavtiful thing,
doesn't disappear. I ae not =0 fapatical a logic
programmine proponent as to want LTIED tao he defeated, and to
be superceded eptirely by something like PEOLOG. As I said
earlier, the proper line is ftor both of ther to Fkeconme what
each of them is tryiong to be, mnamely, ar assertional

- 11 -

programeping sSysten. 50, 1 want LISP to survive - not
necessarily down to the smallest detail - but as the basic
jdea of a lambda calculus based formalism, with a universal
data structure of the the dotted pair- That's a beautiful
apd powerful idea.

So, let's not destroy LISP in wmaking logic vprogramming a
SUCCEesSS.

4e really do hawe a wonderful opportunity to do good work on
the paradigs of logic programeing. Consider what FPeter
Landin did in the early 60's with LI5P. He set out to show
vhat surprisingly enouqh ¥cCarthy, in inventing LI5P, bade*®t
realized fully, that LISP was essentially the lanbda
calculus- He ezplaiped this with a marvellously elegant
abstract machine, the SECD machine. This work of Landin®s
was I think ertremely ieportant and very beautiful work.

If you look at the work of the moderp function prograeeing
researchers, like David Turper and Peter Fendersan, you find
a similar hunger for elegapce there, which I vpersonally
react to very positively. I thkink that it's isportant te qo
for elegance and beauty in these mathematical engineering
quests. TYou can't really go far wrong if it's beautiful.

¥e don't want logic prograsmsing te spavn off kludges. That
would be very distressing- ©Gne of the unfortunate thepes in
the last fifteen or twesty years in artificial intelliqence
programming bas been the tendency to create effective but
ugly software. Let's try to avolid that.

Ap oxamnle of an opportunity for greater elegance is
unification. I believe, and so do wmany others, that
unification is a very powerfol idea, which can explaic a
nusber of other ideas that have arisem in coaputer science,
very well, very sieply, and properly- 1 think it's the
upderlying w®wechanise for all processes of parareter passing
as hetween function calls and functiom activations.

That's of course bhow PROLOG sees 1t; hov FKowalski's
procedural interpretation sSees it. But it's never really
beer tried, as far as 1 am aware, 1imn the function

prograsming contert. In ALGOL, PASCAL, LISF and so oan , the
parameter passing corresponds to a one-=ided wmatching of

forsal pacameter vith actual partaneter. and the actual
parameter in such a cosparisom doesn*t change. Oonly the
formal parameter changes. and it's set to be the sase as

the actual, an? then the body of the procedure is erecuted.

e nov have a chance to see what happens to the functional
prograaping situation, whem we generaliTe parampeter passing
through ma¥ing it into a two-sided exchange of infaormation.

Fenneth F¥ahn and Harvey Abramson have both looked into the
desian of function prograsming Systees, inp which upification
is the leading pripciple.

Alsoc, T think it's now clear to many peaple - certainly to
Colmerauer and also to a puegber of people I have talked to
here in Japan — that one can Yery readily compute with what
otherwise might be described as infinite expre=ssions. They
are not really infipite; they are representations of
infinite things. The resresentation ic done by meapns of
pointers which cam introduce cveles into the sEructureds
LISP has dealt with such structures for Yyears, but
furtively. The nse of BPLACA and RFLACD was thought to be
npot guite respectable™ and in any case dangerocs.

OUnification can perfectly well be qeneralized, and now is inm
many sSystems, to handle erpressions of that character also,
as well as the m@ore wusual finite expressions that we
aoriginally had im mind.

If you do that, you get the ability teo represept sctreanss,
and also to dintroduce lazy evaluation 1into deductive
computing, and many other cood thinas. This i= being varked
out by a number of people including many qroups in Japana

As jour Fifth Generation Project plams point oul, we now
bave a chanpce to develop new architectures, to incorporate
vyarious kinds of paralleliss, and to go for very large
database applications. I earlier alluded to the worry that
i bave, whether vyou <can have both bhoege collections of
clauses up in the terabyte range with a gigalips of speed.
Tt seems to we that we've got a probles there that I
persopally don't know vyet how to cope with. HoweveD, the
pev technolegy is beckoning.

T think we are ready now for sopething like a Enuth treatise
on logic prograssiog methodology. This would rmake a rajor
impact on the world comamunity of componter scientists who may
not have heard of logic prograwming yet. Perhaps Step-Ake
Tarnlund apd Feith Clark, or Ehud Shapiro, or Haartep vanp
Esden, would be aood people to Ao it. They should really
make a definitive attempt to write out what it is that legic
progaaring has going for it. 1 knov there are hooks
already. I know Fowalski has an iptroduction to the ideas.
That's mnot guite what I have in wmind. I allude to FKnuth,
hecause eyerybody ¥nows what a wonderful jok he has dobne

for. <o to speak, von Heuvsanp ccrputicg; and logic
prograsming needs a Frnuth pow. Perbaps, ¥ nutk hirself - who
knows? - may get interested.

Another thing that worries me is the identification of logic
prograsszing with artifzicial intelligence as a movement in

the history of ideas. It seees to se that they arec't the
same at ' all, aopd my advice 1s: we should try to keep loglic
prograasing well apart frosm artificial iptelligence; not
try to hecok thes together. for one thing, I helieve that
artificial iptelligence 1is Jjust about to go down into
another of its periodic troughs. ITf you look at the history
of LI, ¥ou will see that it's been rather wup and down:
eEICeEss1ive enthusiasne follawved by equally ercessive
disappointment. ¥heo you begin to see lots of superficial
Yournalise and lots of television interviews with well-known
faces, vou hegin to think that the wrong forces ate at work.
1. agocd scientific trend happens more guietly than that, and
doesn't need the kind of media exposure that AJ seers to ke
getting, if not actually to he seekinga

T think that many of the famous accosplishasents in AT are
benign kludges, that 1s to say, I doo*t thiok yvouo can
extract from them, successful as some of thea are, any
systematic deep fundamental science. It's not always clear
why things wortk well, if they work well. It seems to Be
that LI Lbas got a long way o go before it hecomes anvthing
like a science: before it deserves that label. Tt seerps to
e mostly to consist of wery worthwhile aspirations. Lots
of good undertakiogs azre afoot, but to aspire is npot the
same thing as to achieved You have to do the wvwork as well
as talk about doing it.

For exapmple, I feel that scme of the propagqanda that the
notion of “erpert systems™ 1s now getting in the press, is
5liaghtly esisleading. If you lock at the well-known
exagples, for exasple, at MYCIN, or PROSFECTCE, or MACSTHA
{these are successful examples:; don't get me wrong!) and if
you ask why are they successful I think you will see that it
isn't the eethodology that was followed out in canstructing

thes, because the =wethodeology involvyed 15 relatively
trivial. ¥hat really wmade these systems successful
{especially MACSTHMA: this bears out the point amast
strongly, I think) 1s that they are packed full cf sulkdject
matter exnertised MACSY®MA is a collection of syabolie

matheratics algorithms, which has bheen put together by
really strong applied mathepaticians, people who really know
that field, who also Lappen to he fluent in LISP.

So, they were expressiangq themselwves in LISP:; and HACSTMA is
the result. The versor who wrote MYCIW is a doctor who i=s a
aood diagnostician himselfo

¥hat you have in these cases 15 people who know thelr field,
essentially taking advantage of a computational formaliss,
that helps thepr say what the¥ koow. ind 1t's paturzl enouah
that if they are clearheaded about it, they can get soae
good applications goinc.

Feigenbaumw has wade this wery point - that in expert systens
it is always the particular expertise that counts, not some

general uniforms technigue-

It little becomes the AI cowmunity to say: mlook at these
snccesses % AT techoology was siaply applied to this
probles area or that problea area, and wve got expert
systens™. That®*s mnot how it happened. There 1s no =such
thing as a general AI technology, which these ©oeople took
advantage of. ¥hkat they took advantage of was compoters,
and a good programming labguaqea.

Well, that may have provoked some gquestions when T an
finished, so I will gqo aba

Pinally, let me say something about the Fifth GCeneration
Prodject. I discern, as a vwvery friendly aobserver, t¥o
classes of goal in the Fifth Geperation Project: one class
§= what vou might call "softeare and hardware engineering®.
Tt seems to me these goals are realistic; they will be
ackieved certaiply; they are even cooservative. They aTe
=0 well thought through apd planpned.

On the other hand, T think that the goals that you riqght

classify as Al goals - such as speech nnderstanding, vision
and lamaguage translation - those are 7very agbhitious,
vonderful aspiratioms, but have a different order of

difficulty, because they so much involve the wunkpbown, with
not pwsuch already in our bag of tricks to help us get there.
1 hesitate to say these goals are too ambitious; but they
are of a different kind.

4.0 THE NEAF FUTURE (1391 = 2000)

In the 19%0's we shall be experiepcing the results of the
Fifth Generation Projecta We pight expect that the pain
impact of the FPifth Geperation will be what it is trying to
achieve, naamely, to open up all kinds of pew arplications af
this new way of compoting.

I think we can erpect expert systess to be in qeperal use.
Once the tools are available, T do opot believe that a
special kind of expert — the "knowledqe engineer™ = will be
needed to implement such systees. The point of the Fifth
Geperation revolutiop is to elizimate, as far as opossible,
the role of such a go-between. Today's situation, io which
the professional expert is not necessarily akle to eXpress
his expertise in =uitable computational fora, is mot the
model for the futuro. ¥e must expect that nlogic
prograwsing literacy™ will becomse widespread.

=The pypert systor of the near future will only superficially

- 15 -

be super-human; it will sisply be the enbodimsent of
eyisting erpertise as currently stored imside humans. of
course, the entrancing prospect iz the possibhility to scale
up the speed and the size of problems, which are like what
humans can cope with, buot are beyond the computational
capacity of the bhuman data processing instrument.

%e humans have such ssall buffers and such slow, if bhighly
parallel, processors that we are strongly limited in how we
cap deploy such expertise as we manage to acguire im a short
life timed

If we can learr how that works--learn how to express it, and
bov +to ipvoke it and activate it, then ve have the
possibility to amplify what we already spderstand.

I vert good erample of that im today's techoclogy is the
uncanny and rather upsetting pover of the best chess playing
prograss. The underlying process perforsed by all of the
current chess playing prograes is elenentary and
uninspirina, mere look-ahead in the tree of woves, and
evaluation accorfding to some guite understandable plan of
weighing the features of the configuratiops out ov the
borizon, and them backing up those values imn the mipimax
¥ay. That's not a yery deep idea, but it just happens that
the scale on vhich it's performed is such that it's already
sufficient te give a hard time to somse of the very best
hoean chess players. There are recorded ezasples of
international grand masters findimg it Adifficult +to avoid
defezt in sore of the specialized endgamse situations inp
chess, vhen the machine is sieply playing ion this open,
easy-toe-aonderstand say, but on a huge scale and at epnraous
speed.

%o, the poor husan 4is faced with sosething whkich in
principle ke teo could do, but vhich is being done on such
&0 epormous scale, that there is a difference in degree in
perforsance — the "order of Eagnitude effect™.

R11 of that, it seems to we, micght ke krought about if we
just ertrapolate a little bit curcrent trends in all these
different fields. EPspecielly interesting, it seexs to me,
is the prospect of a loe-cost personal work stationm with all
of the different capabilities that we might look for im the
1990ts. Tt seers not unlikely that we shall each kave as a
personal possession sowmething like a world library = a
Likrary of Congress. A swmall shelf of optical disks, wmuch
like today®s personal collections of phooograph records,
woul? be-enough to store- it

.0 THE DISTAMNT FUTURE (2001 - 7)

many people associate the year 2001 ¥ith the title af the
popular film by Stanley Fobrick and Arthur Clarke in which
the talking computer RAAL develops a catastrophic mneurosis
and sabotages the mission to Jupiter. This kind of
nrealistic® science fiction sSeess not too different fror the
<ort of rational speculation needed for looking ahead at the
gore distant fuoture.

1 am sure there are people in the audience who are nmuch
better placed thkan I to speculate. Bat it seems to se that
we can pov discern two longer tere trends that will reach
come =sort of culpimation pot lomg after 2001.

There are already people «ho are investigating the
fabrication possibilities opened op by genetic engineering -
ijp wvhich protein structures wvould be constructed according
to prograas that are in the D¥A, just as they are in nmature.
The idea would be that we too could exploit the genetic
rodipe and use it as a prograeming mediur and assenmble

structores down in that scaleas suck ultra large scale
iontegration is the w@patural culmipation of present trends,
and it is @pature's own techbology. She has hkad =much

erperience with 1it, and our hbraies and nervous systems are
compact, complex, powerful devices built entirely 1in this
WaTa

T cap po reason at all why we shouldm't be looking fer a
direct modeling of meurc-physiological systems. The rate at
vhkich the experimental work is now proceeding iw the medical
researcch cepters arcund the ¥orld i=z really guite
astonishing. Last year's Nobel Prize wimners, Hubel anpd
Wiesel, have shown us sope amazing things about the way the
vision syster works, io apimels apd presumably hucans.

There appears to be a systematic structure in there that
looks vwery fapiliar to designers of cosputing eqguipment. I
think that given another two or three decades, we should he
vyery far alomg im this usderstanding of actual natural
systeps, and that we will be able to reproduoce thee to so0pe
extent.

Be should also expect the ipterfacing of artificial =systees
with our own: suppleaentary prosthetic devices for
ephancing what we already have. Thues we wmight sSee erxtra
sesory wodules, enhaunced vision and hearinq, and auxiliary
processing units far direct access to erternal ioformatioo
resources, dictionaries, and SO oOh. ¥e are today seeloq
sedical technology accogplishing saoy kinds of mechanical
prostheses. ¥e are beqginning teo be able to think of
devisipg prostheses alse to infarmation processipg functions

- 17 =

as welld

FPinally, let us try to thiok ahead to what 3intelligent
computing might do for important probless which are
extremely large or extremely difficult {(or both) and which
we pow cab't do moch about. Detailed models of the warld
econoa¥ or the warld ecologry: spoken mnatural langquage
tramslation in real tipe. Obviously, the lomg-range goals
of the P¥ifth Generation Proiect lwear upon these. And
obviously, these goals will be reached. The only guestion
iz how soop. I think we capn each elaborate for ourselres
the speculations a2bout what that miqht meapn for the way life
is lived, and what it miocht =mean indeed for peace and
harwmony between differept peoples.

I would like to conclude by saying that even though there is
some sort of a language barrier between you and me, I have
never had a happier and more froitful three weeks than I asm
Just concluding here im Japan, language barrier or not.
Perhavs we don't need the auntowatic translator gquite as
badly 25 sone people say ve doe

Thank yoa wery much. If there 1is time for gquestions, T
wounld be happy to try to answer then.

HNODPERATONR: Thank you. The next; aguoestion and ansver.

ME.- FOROFAWA; I wvant to ask you abont your thought to
combine logic programeing apd fubnctional prograsming. I
think there are three issoes; that*s sy guestiona

One is at rather philosophical level. And T think vyou mary
bave some deep coosideration why vou need to corbine logical
prograeeing and functicnal prograssing.

And the secopd level is the potational level. We need s=oae
kipd of pmotational device to coxbipe.

And the third level is the implewentation: How to manaqge
these two different ideas.

ME.- FBOBTIXS0N:- Thank vou. Perhaps I «can take them in
reverse ordera

The way I think we would want to ieplewment a unified systen
vould be to design an erxtensicen of existing function
prograxming notation fror the reduction semantics poiot of
Tiew, where vou undersiand the cosputation process in teras
of a collection of rewriting rules, which are looking for
matches for thelr left=hand sides, whereupon their
right—hapd sides are replaced there; and just that is done.

There is a bnatoral parallelise there, because many rules can
find matches for their left-hand sides all at the same time.
and so, if 7vou think of the replaceeent being done at all
places possihle, You qet a pnatural larqe wgrain of
progress™. Then, if you cap find a place in there for the
logic programamina process, You have the implementation plan,
at any rate up to within details.

apd I propose to make that happen in this manner, nazely, to
introduce a set expression im addition to the nor=al
expressions of functiom progqrameing, whick are basically
applications of functioms to arguments. By a set expression
1 mean the noreal sathesaticians® notatiom witk the curly
brackets: the set of all ¥ suchk that P(x). That is pot a
functional application. Tt has a different semantics. But
you can give perfectly simple straighforward replacesent
rules for such expressions. And the renlacement rule for
spch erpressions essentially is to replace one of the goals
in the condition part them by the right-hand sides of
clavses which unify with it.

S0, a given set expressicm 15 replaced by an expression
saying "union of several set expressioms", one eachk For each
distinect resolvent, as we would pormally think of it in a
logic proqramaing context.

If you introduce that replacement rule for the set
expression, and supplementary rules for working out the
details of the upion construct, vyou find that you can
harmoniously make the logic programming process happen
ipside the reduction of set expressionsa.

So much for inmplesentation.

For notation, I think the sawe idea of erxtending the mnoraal
function =acpplicative notation with set expressions gives a

beautiful progragegipg potationd ind T am not alone in
advocatiog dita. As it happens, David Turmer is now doing
that with hi= own functiom progra=eing formaliss; zg is

John Narlincten.

The function prograaming people have seen the peed to add
the =et erecression to their notation. It"s a very nataral
potation; jt*s +*he sort of potatiom that ope uses
mathematically, intuitively, on paper. So, there is no
problem, it seens to me, about that. It's a good move from
the potaticn point of viewd

Finally, from the philosophical point of view, I think the
motive for going this way is, as always, some sort of
understapding of what one is doing; how thinking works.
And for that, ope needs some features of che's sodel, which

include certainly siweplicity and elegance and power. This
is going back all the way to Frege now, who had those
criteria before him when he desigpned the Beqriffschrifft. I
think it's a matter of looking for forms of expression that
ve fimd natural in our own thought-processes, and
representing wvhat we do as pearly isosorphically to the way
we think as possible.

These are the forms of pure thought. If you look at leogic,
what is it giving you? twve thingss: abstraction,
application of fumctions to arguments, and that's all. The
set expression is really abstraction, pag eixcellence.

And =0, there is wery little geing om in that =sodel.
ipplicaticn and abstraction are really the tvo main things
that are in the notation, and T believe that wmakes 1t ap
ertremely simple but powerful model for all of thinking. So
I want to do it that warvy.

ME.- S{¥Ai:. "My pame it Motol Suwa from ETL.

Although I understood that you do hate AI, I don*t really
think that you hate ATI. EBecause you glve us Your foreseen
of Pifth Generation Computer Preoject, and you pointed oot
that the exnert systeres will be achiewed in all areas. Put
you said that the “expert systess™ propaganda is misleading.
What do vyou Rean by "expert systeas"t?

KB.- EROPIWNSQOE: W®ell, T don't know whether you have that
i1diom 1im the Japanese langquage, but in Englishk you have the
pnotion of using the guotatiop wmarks in a ratbher sarcastic
VAT So, 1f vou wish to mock sowething, you can put guotes
around it.

T think another device is to preface it with the prefix
Ses-called™.

Now, I anologize for the sarcastic guotation marks. I wl1ll
erase them from m7y transparencyY. I didp*t really aecap to
mock erxpert systems so nuch as the idea that we bhave TWAI
technology™ orf "knowledge engibeering®™ to thank for thea. T
will srand by those guotation marks? I like to stimulate a
dehate, amd it's fun to put one's position more strongly
perhaps than one really feels it.

I aa simply pointing at sorething that gives me disguiet. I
doo*t knov what fields vou all come froz, but all of us here
probably represent a norher of different fields which are
very- ancients: logic is a very old sutkdject; mathematics;
physics, chemistry, hicleogy, and so on. Hovw there 1is a
certain dignity to good science, wyhich involwes one in being
faithful te criteria of podesty and testing ideas and beino

- 20 =

yery Systematic 1m one's erXpositicos, and so on, which I

value very higbly. Apd I think s0 4oes ewvcrrvone else who
bas ever been Znvolved in that culteral tradition.

as T watch the field of AT, and its literatore, and 1its
practitiopers, I find +hat there is not much respect for
that spirit. There is ap exuberant ecerqgy and an infectious
ercitement, bhut there are also a 1ot of careless and
half-compieted resvlts being nublished. It*s a rvibkrant,
youtrhful, chaotic field.

Sg, vhile T want to identify pyself witk the quest of
artificial imtelligence, T +thint it's a gaagnificent
adventure}] on the cne hand, I doe't, on the other hand, wvant
to be associated with some of the style that T observe asong
at least sowe practiticpers of 1t

T think in fact that LI perhaps bkasn't adrancad as well as
it =might bhave, if more attentisn had been paid to sone of
the piceties of the older disciplipes. and so, when I have
an opportunity to say this io public, T doc so; my ictention
is to try to improve the situation a little bit, to raise
the standards of practice im AI.

There is a lot more LT goes en in the popular press tham I
would like to see. T soppose that's inevitable. The public
is interested. Tt's an exciting satject. Bot if you look
at, for eracple, the history of physics, 1 you look at the
careers of, =ay, Albert Fipsteip, or Jobn von Heusaod, yoOuU
find that they were wery ceticent and very careful about
what they would say to the gevsSpapers- They +took great
paipns to nnderplay what they were doing, and not to hyne up
the ercitemsent lervel in the media.

Itts guite pilain that sush soher reticepce is pot the
™

prevailirg s=%v¥le 1m RI, &l leest at presont. ut I danp*t
hate &T: I Lose 9. 1 fwusl want i* teo be better than it
is.

