ICOT Technical Report: TR-013

TR-013

The Personal Sequential Infercnce Machine (P3i):
Its Design Philosephy and Machine Architecture

by

Hiroshi Mishikawa, Minoru Yokota, Akira Yamamoto
Kazuo Taki and Shunichi Uchida

June, 1983

©1083, ICOT

hWlita Bookusa Bldy 21F (00371 456=3191 =5

“ :O | 428 Mita 1-Chome Telex [COT]32964
Mliopio-ku Tokve 18 Japan

Institute for New Generation Computer Technology

The Personal Ssquential Inference Machine {PSI):

Its Design Philosophy and Machine Architesturs

Hiroshi Nishikawa Minoru Yokota
Akira Yamamoto Kazuo Taki Shunichi Uchida

Instutute for New Generation Computer Technology
Mira-Kokusai Building, 2IF,
4-28, Mira lchome, Minato-ku, Tokvo 108
Jama-

ABSTRACT

As a software development too! of the Fifth
Generation Computer Svstems (FGCS) project, a personal
seguential inference machine is now being developed. The
machine is intended to be a workbench to produce a lot of
software indispensable to our project, [Its machine
architecturs i1s dedicated to effectively execute a logic

programming language, named K10, and is equipped with a

largs main memory, and devices for man-machine
communization. We estimate Its execution speed is about
20K e 30K LIPS. This paper presenis the dssign
oblecuves and the architectural features of the personal
sequential inference machine.

Page 2

L. Introduction

The final goal of the Fifth Generation Computer Systems (FGCS)
project{l] is 1o develop the basic technology fer a totally new
computer system which has the ability to handle knowledge information.
Inference 1s for the key mechanism in that system. That is the basic
motivation why our project chose logie programming as the basic
programming framework

As one of the actual programming languages based on logic, there
is an on-going active move of using Prolog to build new computer
applications, especially in the aruficial intelligence area
However, the processing power of existing computers is not sufficient
for this purpose. It is quitz important for the project to rapidly
estzblish the logic programming environments. To sarisfy this aim,
the Sequential Inference Machine (SIM) is under the development in
ICOT.

SIM is mainly intendsd 1o be a software development tool,
however, the design of its architecrure has many experimental aspects,
It seemed 1o be difficult to design the ideal machine at once, So we
have taken the following development steps:

1) designing & new programming language based on logic.

2} designing a personal sequential inference machine which is
specialized for that new language.

3} designing a new operating system runeing on that new machine.

4) designing an advanced sequential inference machine based on
the experiences from 1) - 3).

As the first step, the logic programming language, called Kernel
Language Version 0 (KLOU), was designaed to take the place of FProlog.
KLO is mainly used to describe svstem software, such as the operating
systermm kernel, compilers, and interpreters. Therefore KLO can be
regarded as 2 conventional assembly language except for legic
programming f=atures. And a Personal Sequentizl Inference machine
{called PSI:) which 15 designed to execute KLO 12 now under the
development as the second step.

The following sections describe PSI design objectives, its system
overview, and 1ts machine architecture,

2. Design Objectives

As PSlas considered as @ man computing tool in the iniual
stage of the FGCS project. the main requirements for its design are
the high performance ang an easy-10-us® man-machine inierface.. Since
P51 must be available ar spon as possible, the main efforis are

Page 3

focused on designing its processing unit and memory unit. However, in
another aspect, designing PSI can be considered as an experimental
step toward the target inference machins.

7] Performance Goal

As 2 software development tool, an adequate execution speed and a
sufficient memory space must be provided in order to execute
real-world applications.

On this point, it is suitable to compare them with the DEC-10
Prolog system[2]. Because, it is the most popular one and 1i1s
compiler generates very fast codes.

However, the DEC-I0 Proleg system is limited in its memeory sizs
(256K words) for users. It is relativity small for actual Prolog
applications. This limitation may cause 2 serious problem in 1rs use.

Thne lower execution speed might be compsnsated by longer processing
time, however, there is no way o continue the program execution if
the system has used up such a memory spacs as a stack. From our
experience in using the DEC-10 Prolog svstem, we estimated that at
least a 10 times larger memory space must be necessary. In this
situation, the virrual storage system would be an attractive feature,
howsver, its implementation in the Prolog environment involves several
problems to be studied. We have to study such problems more deeply as
the swapping ratio betwesn main memory and secondary storage, namely
the locality of memory ‘2ccesses, effective eache control mechanism,
and an effective garbage collecrion algorithm working real-time/[3].
Therefaore we decided to leave the virtual storage system as 2 futurs
extension. Instead of it, PSI is equipped with a relatively large

real memory, maximum 16M words. About execution speed, PSI 1is
designed to atain 20K to 30K LIPS (Logical Inference Per Second)
which is the similar performance to the DEC-10 Prolog compiler version
running on DEC-2060.

22 Personal Use

PSI is designed as a self-contained, personal machine in order 10
provide it user with powerful computing facilities and an efficient
programming environment.

An easv-to-use, sophisticaied man-machine interface is the most
important features for software development tools. To provide good
man-machine communications, PSI is equipped with 2 t't-mapped display
device and a pointing device (2 mousz}. And 2 multi-window sysiem 15
planned to be implemented” on them. The input/output devices for
Japaness characters will also be included, and PSI will support a word
processing svstem for Japanese.

Page 4

2.3 Local Area Network

PSI is planned to be connected to a lecal area network in order
to give its user a more productive environment, Although any kind of
_ peripheral devices can be connected to PSI, an usual PSI system will
have a limited number of devices according to its own system
characieristics.

Through a local ares network, the distributed processing system
connecting several PSI's can be built. Furinermore, the user can
access other machines from PSI, such as a relational data base machine
also being developed in the project, and conventonal commercial
machines.

2.4 Flexibility

PSI has adopted microprogrammed control for flexibility and
extendability.

The project has decided on KLO as a machine level language,
however, its usefulness will be verified after PSI completes. In
addition, the research and development of new programming languages,
such 2s concurrent Prologl4](5], is alse ons of ths important subjects
in the project. Therefore PSI must be able to executs those
experimental languages as their test bed.

2.5 Evaluation

Using PSI, several items of measurements are planned for
evaluation on programs behavior and machine design. One is o
evaluate charactenistics about the execution profile of logic based
programs. Another ons is to evaluate the validity about P3I
architecture and hardware design. Especially, the measurement of
memory access characteristics inciuding cache hit ratio is one of the
important items, because memory access is the most frequent operation
in inference machines, The next advanced models of SIM will be
designed utilizing effectively these evaluation resulrs.

2.6 Specialized Hardware Supports

As a first expsrimental inference machine, an effiort has been
mads 1¢ introduce several specialized hardware supports suitable for
executing & logic programming language in PSL. To improve unification
spesd, PSI has hardware buffers. The role of these bufiers 15 1o
quickly refer to the binding values of variables. For dynamiz da
tvpe checking. euch word has an § bit datx tag (rag architecwure). Te

Page 5

make memory access operations faster, the connection between the main
memory and the processing unmit was desiened as tightly as possibie.

PSI design objectives can be summarized as the combination of
high performance of the 32 bit "super mini-computer” with the good
man-machine interface of the "super personal computer.

3. System Overview

One of the key factors to determine a machine architecture may be
the design of the machine instruction set. FPSIis a specialized
machine for exscuting the logic programming language {KL0) however, 1t
must have its OWR operating sysiem to be a self-contained personal
sachine This section briefly summarizes the sofrware systzm and
hardware configuration of PSL

3.1 Language System

One advantage of a logic programming language is to use 1iis
non-determinism effestively. However the non-determinate operation is
considered unnecessary for describing low-level system control such as
the kernel of operating systems, because it mainly consists of
determinate operations and thus mnon-determinate operations would
produce redundancy. In general, if a machine architecturs 1is
dedicated to some high- level programming language, it becomes
difficult to implement its operating system in that language on the
same machine. In this sitvation, a different programming language
could be used for system description, however, this approach would
degrade the uniformity of the system. And the machine architecture
should support two different types of language processing. To make
the entirs system uniform, we decided to implement a PSI operating
systern based on the logic programming concept. KL0O has been designed
to maks this possible.

Figure | snows the lanpuage sysiem hierarchy. The system
programmer uses KLO directly to develop a compiler, an interpreter,
and operating system kernels. From the users view point, KLO can be
regarded as a machine language of PSI, however, KLO is basically 2
hlg@-}evel, logic programming language. Its features are summarized
as iallows:

o a subset of DEC-10 Prolog
o an extended ability for hardware resource handhing

o an extended abilitv for interrupt handling and process controi

Page 6

o extended execution control facilities

K10 includes the normal unification mechanism and clause handling
mechanism like usual Proleg. Frem this view point the users can
regard PSI as a complete Prolog machine. On the other hand, the users
can also specify the machine level control with 1ts extended
faciiities in KLO.

Def-1TC Proloc

- comel ier intergreter
\ KLO KLO

comailer i interpretar
i
i

assemoiy lancuage assembiv language |

assembiy
lanauace

ﬂa

assemnier /—(- pEjes

assemaly lancuage

ad
'l
i
[+
Q

_C abjerct coas _}'

|

TRig2rpretler

micro code 1

1

I

|

|

|

[}

!

[

[; i
[| : i
|

t

[

3

I

W

HERDWARE

R4

HARDWARS

i
L]
i
!
1
|
|
I
1
!
I
i
I
!
|
|
I
I
[

[
[
——— = —————— S |

Fiogurs 1, lanouage hisrarchy

Page 7

3.2 Operating Svstem Suppert

The kernel parts of the PSI operating system are written in KLO.
These are transformed into internal machine forms by the compiler
which is alsg written in KLO wself. Then P3I hardware/firmware
directly executes those internal forms. Furthemnore, time crucial
parts of the operating system kernel, such as the garbage collector or
process switcher, are executed directly with firmware. The
applications programmers will use 2 higher programming language than
K10, This language is executed with the interpreter or is compiled by
the cempiler written in KLO into internal machine forms.

From the software sids, it can be said that the PSI operating
system is written in completely a logic programming style. From the
hardware sids, it can also be said that PSI architecture supports (he
primitive kernel operating system functions.

3.3 System Configuration

Figure 2 shows the PSI system configuration. CPU has a
microprogram sequencer. The capacity of its writable control storage
is 16K words. The micro instruction is 64 bit long and is executed in
less than 200 nsec.

Hain network
filoppy disk

Memary

Cache

P51
Pl

hard disk keyogard bitmap display mouse

Figure &. System configquration

CPU interprets internal object forms of KLO with its micro—coded
interpreter. Its hardwars mechanism is mainly dedicated for the fast
unification. It includes several discrete registers, register files,
and an arithmetic operation unit.

Page B

The memory unit has 2 relatively large main memory instead of
being eguipped with a virtual memory system. A maximum of 16M 40 bit
words can be installed. To shorten memory access time, PSI 15
eguipped with 2 cache memory. It consists of 2 sets of 4K word
memary, and a write-back strategy is adopted. Since several stack
areas are reguired for interpretation of KLO and each stack area will
arbitrary grow during program execution, PSI introduces logical memory
addressing. Therefore the roles of the memory control unit are
address translation and cache control. If the required data exist 1n
the cache memory, PSI can fetch that data within one micro instruction
cycle.

A general purpose input/output bus is provided to PSI. To keep
design simplicity and generality, I[EEE-756 standard bus(MULTIBUS) 1s
adopted. As a minimum configuration, PSI supports a fixed head disk,
a f{loppy disk, a key board, a bit-mapped display, a mouse, 2 printer,
and a lozal area network interface. Since PSI is planned to be
connected to a local area network, the peripheral devices may be

selected according to their own characteristics.

PSI also has an additional parallel interface port, in order to
satisfy the requirement for connecting special 1/O devices directly.
For example this parallel interface will be used to connect the
relational data base machine or the voics recognitien device, and ete.

>

4. Machine Architecturs

The architecrure of PSI was dscided based on various
considerations. A KLO program is compiled into the internal object
forms of PSL. But the level of the object cods has been decided 10 be
higher than that of ordinary machine instructions. So PSI is regarded
as a2 high level language machine In order to attain high
performance, PSI adopted & tag architecture. Furthermore, & cache
memory and special purposs registers are providsd to improve the
cnification speed. PSI always refers to memory with logical address,
and also has hardware supports for multi-processing.

41 How 1o Design the Machine Instruction Set

KLO is a logic programming language, however, it 1= mainly used
for svstemm description. Therefore, performance in its execution 1s
crucial, To take advantage of the.source program information as much
ay possible, we decided to employ a compiler and thus PSI executes
compiled codes instead of interpreting source codes direstly. Ewven
though, after compiling KL, there sull remains many operations 1o bz

performed only in exsculion time, such as unification, because ©f 2

Page ©

dvnamic feature of the logic programming language. Then several
lavels of machine instructions can be considered.

The lowest one may be the conventional machine instruction level,
and o KLO program would be compiled 1iate small pieces of those
primitive machine instructions. The highest one is the internal form
which is translated one by one from a source statement of KLO. The
desirable machine instruction level depends on the characteristics of

the language.

Originally, KLO contains two different groups of elements. The
first group 1f user-defined clauses to be exesuted within the logic
programming framework. Namely, it is executed based on unification
and backiracking. Tne execution of them 1s slightly simple and
deminated with memory access operations. Therefore, it 1s undesirable
thar such execution 1s broken into many small machine instructions,
becauss many instruction fetches are needed. In addition to this,
there is less room for macro optimization on the hardware side because
of low level machine instructions. This results in increased
redundancies in both execution time and memory usage. We considered
that PSI should have these unification and backtrack control
facilities by itself.

The second group is built-in predicates for such operations as
arithmetic operations and input/output operations(6]. Since the
execution of them is performed determinately, their object codes can
he represented in compact forms like conventional machine
instructions. These built-in predicates are introduced not only to
enhance the efficiency of frequently used operations but also to be
able to include such primitive operations as register handling and
direct memory manipulations used in the operating system.

Consequently the PSI machine instruction set has two 1ypes in its
internal obiect forms. The first. one corresponds to user-defined
clauses. Actually, such a clause is compiled into the sequence of
several internal oblect forms according to source clause definition.
PSI interprets that sequence as 2 machine instruction on the whols.
The others correspond to buili-in predicates. Basically, a built-in
predicate is compiled into one internal machine form.

4.2 Internal Object Forms

A KLO program 1s translated into the corresponding internal
object form described above. How to represent darz and clause 1s
shown in this sectiof,

421 Internal Data Representauon

Page 10

Through examining PSI machine architecture, providing 1t with
enough ability for increasing requirements from application areas is
considered. At least 32 bits are necessary for representing
sufficient magmitede of numbers and addressing space. In result, PSI
employs a 40 bit word representation as shown in Figure 3. The upper
§ bits represent tag bits (tap part), and the remaining 32 bits
represent the data itself (data parr). 2 bits of the tag part are
used by the parbage collector and the remaining 6 bits indicate the
tvpz of data included in the data part.

(tag l| data

_,___,_"___,Jr N g

) 3Z

Figure 3. word Tormatl

PSI has several internal data types corresponding to ones in KILO.
The visible datz types for user are listed below:

svmbol
integer

real

vecior

string

logal wvariabie
global variable
void © variable

LT I e T o s o

() Symbal

This indicates the identifier of an atom. In the data part, the
symbol number corresponding to an atom is stored. The printing image
of an atom is managed by the operating system. So there is no direct
relation berween the symbol number and its printing characters.

(b} Integer, Real

These are nurmerizal data on PSI. The walve of them is stored in
the datz pare

(c} Vector

A veztor is a block of continuous memory slots, 2nd 15 used to
represent various structured data such as binary trees. As shown in
Fipure 4, a vector is usualiv accessed by wav of its descriptor.
However, this represeniation always nesds an €xIr2 memory access
whenever a vecior 15 accessed. Since it is supposed that the vector
whizhk has a few elsments is frequently used in programs, the direct
vector ryps 15 introduced in order to effectively access such verlors.
The conventions! list structers 15 an example, and 1ts repressntation

Page 11

i¢ shown in Figure 5. Comparing the performance of the structurs
sharing]7) with that of the copving strategy on structured data
handling, PSI employs the structure sharing method similar o the
DEC-10 Prolog. Therefore the structured data ars manipulated as the
pair of a structure (representing in a vector) and its values {located

in the global stack). This address pair is called a molecule.

5 g 1 ':I' r—.l' tag ! | oles |
JJ | tag 7 wlen 7
(|
I“*—i- dysc °—!_’rl |
imt M g " | slen W J

Figure 4. vecior reprasantation

vees 1| 5 ‘

)

-
i o '
L int I 1
rv:c':ﬂ 'f
J
|
inc | 7
vegT 0 ril

Figure 5. Tist representation
(d) String

A string data type is introduced for mampulating 2 byte
(CHARACTER), double bytes (KANII), and a bu (FIGURE) string data.
Like the vector representation, string data is also accessed by way of
ite descriptor.

{e} Local/Global Variable

This data tvpe indicates a local/global variable included in a
cluuse. In the data part,” the wvariable number is stored. The
instance of a local variabie is created in the local stack. The
instance of & global variable is created in the global stack. Roughly
speaking.the difference betwesn the two is that the instances of local
variables are cleared when the clause including them are executed

Page 12

determinately, however, those of global variables are not cleared,
(f) Void Variable

This type means that the variable can have an arbitrary value,
namely can be unified to any type of data

42.2 Clause Representation

The definition of a clause in KLO is the same as the one in
Prolog. It consists of a head predicate and several goal predicates,
The compiler translates a clause into a corresponding internal object
form. As shown in Figure €, each clause is represented as continuous
memory slots, called code, 1n PSL A code is a similar dawa type 10 a
vector, and consists of 2 clause header, head arguments, goal
predicate name and ifs arguments.

Wﬂw
(al{¥,¥):- o(¥,2), add{Z,1,Y).

i

alzarnazive tlause

] 1 H
L e §orves | omarg | W0 | ne e
Arguments L=war ¥
of Heac Jl} L-var ¥
J tpas = —
Lbal L=vwar ¥
L-war 1 I
Go2)] osee |2 | 1] ¥

Figure £. clause represgniation

A elause header consists of four words. The first word ndicates
the size of the code. The second word has an address to the code
representing the next aliernauve clause. The third word 1s a
reserved word. It might be used by the garbage collector. The last
word indicates attributes of the elause. TYFE shows the clause type.
For example, it is 2 unit clause, or having altzrnative clauses eic.

Page 13

Narp shows the number of arguments included in the head predicate,
N1/&g shows the numbsr of local/global variables included in this
clause,

Following a clause headsr, the head predicate arguments are
located, Each argument is represenied in the data types described in
421

The remaining codes show the internal form of goals, There are
rwo types of poal represemtation according as the called poal
predicate 1s a buili-in predicate or not.

{a)} User-Defined Pradicare Call

A goal predicats name is compiled into the pointer to the code -
representing the called clause. This pointer is stored in the data
part and the tag of this pointer is set to & code typs. The goal
arguments are arranged continuously, fellowing this pointer.

(b) Built-in Predicate Call

In the data part, a compact representation of machine
instructions is stored and it consists of an § bit operation code and
three § bit operands. The role of built-in predicates is to create
objects, test the attributes of objects, and manipulate objects etc.

A built-in predicates is compiled into one word object code basically,
so that it can be executed efficiently on PSL

Each goal is compiled into the pointer of the corresponding
clause and its arpuments. There are three connecuon types o goals,
which PSI can directly interpret with its firmware interpreter.

{a) AND Conneztion

AND connection shows that the goals are combined as an AND node
in the AND-OR search tree. Eezch goal is continuvously located as shown
in Figure 7-(a). AND connection means that each goal is executed
seguentially and if a goal is failed, then backtracking occurs.

{b) OR Connection

This tvpe is used to represent an OR connection included within a
clause. OR connection shows that each goal is combined as an OR node
in the AND-OR search tres, This conncction is realized by an OR
instruction as shown in Figurz 7-(b}. At firs: execurion, the first
goa! is tried. When they fail, then the second goal is tried. Each
branch of the OR connection can be compesed of several poals.
Therefore each branch of an OF connection is the same as an ordinary
alternarive clause excep: that they are included 1n only one clause
and require no unification process.

Page 14

(&) AWM zsnnection (3} 3% zonrec*ipn
{z) CAIE canmgciion

[

W= 21-LEsd=. 2i- (81520155 Hr- cese{lImgx,3%,32],35.
Asazar Par: reager Parg ' Hezder Part
— Arguments = ' Arguments = = Arguments =]
- af Head — o af Head - - “of Head -
Cozl a1 _“T'_,.[-f | o T [ease| [nas
: Gozl 3 & = |
|
- " —
Goai BZ ER I ,g_//
Goal BE Goal 93
Goal E3 i
T
Goal 83
Goal BE
Figure 7, gozl connections Goal E3

(¢) CASE Connecrion

CASE connection can be regarded as the arranpgement of indexed
goals. Figure 7-(¢) shows the internal format of CASE connection.
One of the goals is selected by the result of CASE instruction and ir
it is succsssively executed then the goal following the case block 1s
exscuted next. Even if backtracking occurs, unlike OR connection, the
remaining indexed goals are not executed.

23 Execution of PSI Internal Object Forms

For interpretation of the KLO program, the following four siacks
ars needed: '

o local stack
o giobal stack
o tratl stack
o control stack

The vse of these stacks is similar te those of DEC-IO Prolog,
however, the control stack is separated from the local stack in order
we efficientiv execute the extra control primitives of KLO.

Page 15

The local stack is an instance region for local vanables.
Preceding the unification process, P31 allocates the stack entries
according to the number of local variables included in a clause.
Thess siack entries are popped up when the evaluation of the clause
including them is dstermunately terminated, or unification fails.
Theyv are also cleared when it is pruned by a "ecut” operation.

The global stack is an instance region for global variables.
Similar to the local stack, PSI aliocates siack entries according to
the number of global variables. These entries are only popped and
cleared when unification fails. In addition, a moelecule generated
during unification and some contrel information are also alloczted in
this stack.

The trai] stack is used for undoing variables when backiracking
scevrs. Im this stack, binding information (Le. the cell address
whare a value is siored during unification and whose content must be
changed to ‘undefined’ when unificatoin fails) is stored. When the
instance value of a variable is modifled, ts old contemis are also
stored in the trail stack in addirion to its cell address.

In the control stack, various book-keeping information regquired
far the execution control is stored. All of them are pointers which
represent the execurion environment of corresponding clauses. They
are used to rewurn to the calling clause, or to the backtrack point
when unification fails.

There are some data types dynamically generated during program
execution. Some of them are described below.

{a) Reference
It indicates a pointer generated during unification.
{b} Molecule

PSI adopts the structure sharing method to represent structured
data described before. Since & melecule consists of two waords in PSI
it can not be located into a variable cell. Therefore, a molecule
itself 1s allocared in the global stack, and the reference to 1t 15
|@eared 1n the wvariable cell.

4 4 Address space

PS] has a 32 bit logical address space. It is composed of 256
logically independent areas. The size of each area is 16M words, and
managed by pages of 1K words. The reeson why the concept of ares 1s
introguced 15 as foliows:

{a} Since PSI supports multi-processing, it s desirable for the

Page 16

operating system to assign completely independent areas to each
process.

(b) Since PSI firmware interpreter uses four stacks described in
section 4.3, it is desirable to be able to expand each stack area
independently. I these stacks are aliccated to the same space, a
collision between stack areas will occur. At that time, one of them
must be moved to another spase. This situation causes serious
overhead time.

Since four stacks are required for imterpretation of a KILO
program, it means that each process nesds at least four areas for its
execution environment. On the other hand, code areas might be shared
among many processes, If four aress are assumed to be used for code
areas, namelv heap areas, a maximum of €3 processes can be crezted on
PSI from 256 areas.

Each area is divided into 16K pages. A page comsists of 1K
words. An area is managed by PSI operating system in page units, PSI
allocates one page when a process nesds mere memory. On the other
hand PSI disallocates some pages when a process release memory.

In result, the memory address field is divided into an 8 bit area
number, 14 bit pags number, and 10 bit oifset as shown in Figure &

ARER £ PAGE # DFFSET
- i - AR
) 14 i0

Figure E. address format

The address translation mechanism is shown in Figure 9. The
translation from a logical address to & physical address is performed
with an area table and a page table. Each area wable entry shows the
base address of a2 page table located in the page map tabie
corresponding to an area. And each page wble entry shows the
phvsical page address corresponding to a logicel address page. As a
first step to ganerate a physical address from 2 logical address, the
arca table is accessed using the area numbsr, and & page table base
address 1s obtained. Then the page map table 15 accessed using the
sum of that pags table base and a the page number. Finally
coneatsnating the ourput of the page map tabls and the page ofiset, a
24 bir phvsizal address s obtained.

LaslcaL aphRESS ae | il | OEESET ’
i f&______J i
L ¢ asga TASLE 3 ¢ PASE meR TaBLE)
P q 1€
I f! 4 &
SR,
T a—
W BETE —
15
&
L SRH
(258 entr enl ’ 'j
Ee 7
£ JFE EF:FJE’J+
14 |

FHYSICAL appRESS

e | QFFEET

Figure 2. address translation

To achieve address transiation, it is common to use a Translation
Lookaside Buffer(TLB). Each TLB entry contains a logical page address
and corresponding physical page address. TLB is a sort of cache
memory, and if the address pair corresponding to a logical address is
stored 1n it, there 1s no reference to the translation wable exisung
in the main memory. PSI does not adopt this method. Instead, the
area table and the page map tabis are located in special fast memory.

In result, the address translation process is performed within a micro
instruction cycle. The reasons why TLB is not adopted are shown
below: :

(2) If the address pair is not in TLE, the translation table in main
memaory must be accessed to generate a physical memory address.

(b} Since the garbage collector must search all memory space, it is
supposed that the memory access locality during garbage collection 1s
not so high. Therefors, TLB mught not work well 1n that siwanon.

Page 18

(¢} PSI does not adopt virtual memory. The total amount of page map
table entries can not excesd the number of physical pages. Since the
maximum size of mmain memory is 16M words, 1t is sufficient to have 16K
entries in the page map table.

The size of an area can extend from one page [0 16K, pages.
Before program eXecution, the maximum number of pages used 1n a area
cannot be predicted. Furthermore, a process needs at least four
areas, however, the urilization of each area is different among .
processes. Accordingly, as the number of pags table entnes increases
during executicn, a pags table may coliide with another pages table
within the page map table. To avoid that case when possible, 1t is
desirable 1o locate each page tble corresponding 1o an ared 2s
dispersively as possible. Also, the page map _memary size should be
larger than the number of physical pages. To sausfy this condition,

PS] has a page map memory of 32K entries. Since the standard physical
memory size is 4M words, the size of a page map memory is eight tmes
larger than that of physical pages.

If a page wble collision occurs in page map memory, a trz2p
occurs and page table relocation must be deone. Thers are man¥
algorithms te be considered. It is a future research theme to examine
which algorithm is betrer.

45 Hardware Supports for Fast Unification

Unification plays an important role in executing 2 KILO program.
To efficiently execute the unification process, the hardware support
mechanism is indispensable. The major part of the unification process
is memory access and data type chacking. The facilities employed in

PSI are o5 follows:

o Cache memory
o Tag bits
o Frame buffer

{a) Cach: Memory

The merit of using cache memory is to reduce the cost of all
memory accesses besides stack access. PS] adopts the wrie
back-stratepy for cache control, aot the write-through strategy. A
cache memory manages logical addresses. Therefore, if the accessed
data exists in cache memory, no address translation is needed. The
address translation is required only if a cache miss-hit occurs. PSI
memory controller periorms address translation during the cache memory
access in paraliel. . This mechamism creaies no overhead time for
translation when the cache memory miss-hit occurs.

{b) Tag Bits

Page 19

A tag is essential to effectively interpret a data type. To
realize fast unification depends on how rapidly the data types can be
examined. For this aim, tag bits are artached to all data, and they
specify the type of the daa. A special hardware mechanism, which
decodes tag bit pattern efficiently, is provided in PSL

(¢) Frame Buffer

Frame buffer is the set of special registers provided for the top
of the stack frame. Lo this buffer, the arguments of a clause and the
cells of local variables are stored. Most of the unification is done
using this buffer. This reduces the number of memery accesses, and
faster unification will be realized. Furthermore, using this buffer,
Tail Rezcursion Optimization (TRO)(8] can be realized efficiently.

4.6 OS5 Suppoert

Since PSI is designed as a self-contained system, it requires own
operating system. This operating system consists of an end-user
interface (command Interpreter), 2 programming Sysiem (editor,
dsbugger), a file system, and so on. To provide its users with a
sophisticated programming environment, that operating system must be
an easy-to-use system, and provids good man-machine communications.
Considering that these systems are specified by KLOit is desirable
that PSI must have operating system sSupport functions.

To attain this objective, PSI has variovs hardware and firmware
supports. For example, such primitive Opéerations as a Mmemory
allocation or a garbage collection included in the memory management
system 15 directly performed by firmware. The process switching of
the process management system is also performed by firmware.
Furthermore, PSI holds the process information in fast CPU memory in
order to reduce process switching overheads. This is an esscotial
hardware support in PSI, because KLO requires larger execution
environment than ordinary programming languages, and without that
hardware support the contents of many base registers must be saved
into the main memory at process switching.

In addition to higher level operating system support, there are
cevera! K10 buili-in predicates which perform low level system
control, such as hardwars resource handling, ~direct memory
manipulation, and input/output control. These built-in predicates are
effectively executed by firmware.

Besides this suppor: described, garbage frez regions Is
introduced to support the ‘operating system kernels. In this reglion no
garbage collection is done. This means that 2 program running in this
region can be exccuted even whils a garbage collection process is
being exsculed. Those special processes unconcerned with the garbage
collection are called supra GC processes. The a2im of introducing this

Page 20
GC-less process is to maintzin good man-machine interface even when
the garbage collector 15 working.

Summarizing those, the hierarchy from the end-user interface
language to the hardware on PSI is shown in Figure 10.

AP LICATION END-USER
LARGUAGE
L user INTERFACE)
£prToR DEBUSGER COMPILER
INTERPRETER xLa-
i . amEyTTIM ™ o
l \ SUBSYEIEH -
WINDOW SYSTEM
FiLE SYSTEM NETWORE SYSTEM kLD
I T oeer
{ KERRELSYSTEM _:}
MEMORY PROCESS DEVICE I(suura-a:)
MENAGIMINT MANAGEMENT MANAGEIMENT | | MODE
' kLD
GARGAGE COLLECTOR —
PROCESS SWITCH
HARDWARE

Figure 10, operationg system hierarchy

5. Conclusion

In this paper, we described the design objectives znd ths machine
architecture of a Personal Sequential Iaference machine, PSI. Its
detail hardware design has almost besn completed and the
microprogrammed KLO interpreter 1s now under the design. The rough
ectimation of PST execution spezd is comparable to the compiled codes
of DEC-I0 Prolog system on DEC-2060.

PSI is a first step toward the target inference machine which
will be attained in ten vears. For designing next advanced SIM, we
are planning several evaluations on P51 Many software products will
also be made on PSIL. We believe that P5I will be 2 powerful and
useful workbench for our project.

ACENOWLEDGMENTS

The authors express their grateful thanks to Dr Takashi
Chikavarna for his wvaluable =2dvice, and to Mr. Kazuhiro Fuchi,
Director of 1COT Research Center and to Dr. Kunio Murakami, Chief of
First HResearch Laboratory for their continuous encouragement, and to
other members of ICOT for their useful comments 2ad discussions.

REFERENCE

(1] Cutline of Research and Developments for Fifth Generation Computer
Systems. ICOT Research Center, Apnl (1583)

[2] Warren, D.H.D. Implementing PROLOG - compiling predicate logic
program. Vell-2, DAI Research Report NoJ3%40, Deparument of
Artificial Intelligence, Univ. of Edinburgh (1977)

[3] Cohen, J. Garbage Collection of Linked List Data Structures.
Computing Surveys, 13-3 (1981)

[4] Shapiro, E.Y. A Subset of Concurrent Prolog and Its Interpreter.
ICOT Technical Report TR-D03(1983)

[5] Takeuchi, A, €t al. Interprocess Communication in Concurrent
Prolog. Logic Programming Workshop, '83 (1983)

[6] Chikayama, T., et al. Fifth Generation Kernel Language. Proc.
of the Logic Programming Conference '83 (1983)

{7} Boyer, R.S and J.S.Moore. The Sharing of Structure in Theorem
Proving Programs. Machine Intelligence Voll-7, Edinburgh Up (1972)

[8] Warren, D.H.D. An Improved PROLOG Implementation Which Optimizes
Tail Recursion. D.AJI Research Report No.4l, Department of
Artificial Intelligence, Univ, of Edinburgh (1580)

