Prolog and Relational Databases

for Fifth Generation Computer Systems

by
Susumu Kuniluwji

Harun Yokota

PROLCG and Relational Duta Bases

for Fiith Generation Computer Svstems
¥

by

susumu Kunifuii
Harue Yokota

Research Center
Inscitute for New Gepneration Computer Technelogy (ICOT)

Mitakeokusai Building (21F)

1-4-28, Mita, Minato-ku, Tokyo, 108, Japan

ABSTRACT

Among several research subjects oo the Fifth Generation Computer
Systems Project in Japan, there are two major research plans, that is,
design and implementation of a Sequential Tnference Machine and a
Relational Data Base Machine. The zero-th version of the Fifth
Generation Kernmel Language is based on the logic programming language
PROLOG with several functioms added. One of these functions is the
interface between the Sequential Inference Machine and the Relational
Data Base Machine.

The authers' research theme on the Fifth Generation Compurer Systems
is the spplication of logic programming to relaticnal data bases. Tirst,
the authors consider the question of how powerful a relational database
query language should be. They show that Proleg with a meta-predicate
s2tof is a relationally completa query langusge, and that it can handle
the concepts corresponding to least fixed point operaters. Second, they
peint cut that there exist two approaches to interface a PROLOC-1ike
logic programming system with large relacional databases:; which are the so-
called evaluztional and nom-evaluational approach. Current implementation of
PROLOG assumes that the relational database resides in an Internal Data
Ease (primary memory). However, when the relatiomal database resides in
an External Daca Base (direct accessible secondary memory), several
difficut "interface" problems appear and the utility of PROLOG is
reduced. This is because the Sequential Inference Machine is designed
and implemented by the non-evaluational approach and the Relational Data
Base Machine is dome by the evaluational approach. Therefore, the
authors describe how to combine these machines and propose a simple way
in which the PROLOG-1like system can be modified to aperate efficicncy
with large relational dacabases. in other words, they show how 2
PROLOG systex can be adapated for the evaluational type. They give,

with respect to the non-evaluational type, a method which medifies PROLOG
in a simpie manner.

In conclusion, Fifth Generation Eernel Language logic programming
can e used £o express and solve many fundamental and difficult preoblems
rezarding deductive questicn-znswering on relational databases.

l. Introducticn

The Fifth Generation Computer Systems (FGCS) Project in Japan [1],
[2] has been planned and inaugurated in order to bring about new develeop=-
ment in information processing and computer industries in the 1990's,
The research and development (R&D) targets of the FGOS are such core
functions for the Knowledge Information Processing Systems (KIPS) in
the 1990's as problem-solving and inference systems, knowledge hase
management systems, and intelligent man-machine interface systems. The
R & D period set for this project is 10 wyears, divided, as shown in
Fig. 1 [1], into an initial stage (3 wvears), a middle stage (4 years),
and a f£inal stage (3 vears).

For the initial stage, the most important R & D targets concerning
the problem—solvine and inference svstems and the knowledge base manage-
ment systems are the design and inmplementation of the Sequential
Infercnce Machine (SIM) and the Relational Data Base Machine (RDEM)
respectively. The geal of the S5IM is te develop a high-performance
firmware baced machine which efficiently supports the specification of
the Fifth Generation Kernel Language (FGXL), which will beceome the core
logic programming language of all software systems, and includes various
functions to provide researchers with a good preogramming environment to
accelerate the R & D of scfitware systems. The goal of che REDBM is the
K & D of a high-level architecture to support Relational Data Base (RDB)
management functions to form part of the core of the FGCS, and capable
of storing, gquickly retrieving, and efficiently updating wvery large RDBs.
For this goal, the R & D plan will include the design and experimental
implementation of the RDEM and the RDEMS (RDE Management System).

Toward the aim of the FCGCE, most essential is an enhancement of
abilities for problem-solving and inferemce. One of the major reasons
for the adoption of the logic programming language is that it includes a
bagic inference mechanism. PROLOG provides & natural and useful logie
programuing language to represent RDB, Knowledge Base (KB), and inference
mechanism and to solve various problems connected with them. Therefore, the
FGKL is based on PROLOC with several functions added. Among these
functions, the most interestcing problem is how to combine the SIM and
the RDEM and how to provide a siwmple way in which the SIM can be
wmodified to interface efficiency with the RDEM.

2. Deductive Power in a Relational Databasc Query Language
2.1 Basic Approaches

Our main concern of how to represent knowledge in logie is hased
upon the recognition that a language of logic can be used to represent
RDBs, KBs, and inference mechanisms [3] and consequently that it provides
a uniformity of knowladge representation and hence a firm mathematical
hiasis for knowledge engineers [4].

It has recently been recognized by Gallaire et al. [3] that
predicace calculus is very useful for deductive question-answering on
EDBs. The methods presented by many authors shew how far predicate-
calculus can be used to express and to solve many fundamental and
difficult problewms regarding deductive question-answering systems,
and to understand the implications to RDBs.

In the research of deductive question-answering systems on ROEs,
there exist two kinds of approaches from a logical point of view, aone
of which is called a non-evaluational approach and the other is called
an evaluational approach [5].

In the non-evaluational approach, we regard a logic as a formal
System which consists of axioms and inference rules, and formulate the
formal aspects of RDEs and KBs by appealing to the same set of axioms
of the formal system. This approach admits an application of Inference
rules and fits the current iwplementation of PROLOG, which assumes that
the RDB resides in primary memory, which is called the Internal Data
Base (IDB). However, it does not admit any use of set-operation
mechanisms of relatiomal algebra offered by our experimental implementa-
Eion of the RDEBM/che RDEMS.

In the evaluationul approach, we ragard a logic as a languaze which
consiscs of syntax and semantics. We interprete an RDB as a model given
in its semantics, and a KB as the scumantic constraints of the model.
Under this approach, we can use the above-mentioned set-operarcion
mechanisms of relational algebra. Accordingly, with the development of
RUBMSs, the advantage of this approach has recently boen recognized.
in spice of the advantage, however, such specifiec interpretation
techniques as connection graphs [6] and rewriting-rules [5] have not
enough been developed. Therefore, this approach fits the current
implementarion of the RDBEM/RDEMS, which assumes that RDB resides in
szcondary memory, which is called to the External Data Base (EDB), but it
does not fit the currvent implementation of PROLOG.

We have been discussing the advantages and disadvantages of these
twe appreaches. We ave concerned about interface hardware and software
between the SIM and the RDBM. This paper gives a simple method to
integrate the non-evaluational approach and the evaluational onc, after
the knowledge representative power of the PROLOGC-1ike logic programming
language has been investigated.

2.2 Basic Concepts

In this section, we will give some preliminary remarks on notatien
and terminology.

We will consider a formal system which consists of a first-order
Horn logic. In general, an expression is any sequence of symbols.

There are three kinds of meaningful expressions: term(s), liceral{s), and
Eorn clause{s).

A term is an individual constant, an individual variable, or an

expression of the form £(tj, *++, tg), where f is an m-ary function
constant and t;, *** fp are terms.

A literal is either a positive atomic formula or a negative atomic
formula. An atomic formula is an expression of the form p{ty, =--, tg),
where p is an n-ary predicate constant and ty, ***, £y are terms.

4 Hornm clause is a set of literals of the form

(Vi) woe FRILELY wee VL)),

where Li's are literals, at most one of which is positive. Note
that it is a kind of a closed universally quantified well-formed formula.
If Lo is the only positive atomic formula, we will write the above-
mentioned Horm clause in the DEC-10 PROLOG (7] form

Loi-lys Lps =77s Lge
Ly 15 called the conclusion of the clause, and Li's are called its
conditions or its body. A Horn clause containing no positive atomic
formula is called a question or a goal statement and writtep in the form

l’- LI

? Ll' L21 N LE‘
A Horn clause containing only the poesitive atomic formula is called

an assertion or fact and written in the form

LD'

2.3 Relationally Complete Query Language

After Codd [8]) gave the concept of relational completeness, Codd's
relational algebra is often used as a model of an RDE query language.
In this section, we show that DEC-10 PROLOG with a meta-predicate
satof [9] (see appendix (A)) is a relationally complete query language.

{Proof of relational completeness)

An RDBE can be built up as a set of assertions in an IDB of the
PROLOG.

&, For set operations:

(¥

The concepts of intersecticon, union, difference, and Cartesian

product can be respectively implemented in the PROLOG as follows:

(2 setﬂf{fkl,
L3 setﬂf{[xl,
(4) Eﬂtﬂf{{xlp ey xn’Y

"t xn)r {F{Kll T, xn}; q{l{-l?

ST I (Yo &

cee Xn}, mt(q{!{l,

ey XD, (K, ety XD, (X, e, X)), S),

ae xn}}, 5),

“ry X)),8),

17 YT Ym}: [P{xll Yty Kn}’ Q{Yll Tty Ym}j: 5},

BE. For relational algebra aperations:

The concepts of projection, &=join,

can be respectively implemented in the PROLOG as fcllows:

gerestricrcion, and divisicn

(3) setaf(tﬁil, xiz, EEN xim}. (le, cee xjn_m}“pixl, eey X)L 8D,

(6) setof ({Xy, ===y X, ¥y wor,), (RBX,, p(X), comy Xy o0y XD,
q(Yy, **v, Yj, e Y), 8D,

(7) setof((Ly, =*=, X, =+, Xj. e, XD, (Kiaxi’
e T Kio moms X)), 8},

(8) setof{kal, A xkn-gj’ {setoftixil, e 1iEJ, Py, »ovy X)s 80
setqf(ffjl. .-, Yjﬂj, {th, e, Yhmhi}Aqiyl’ ey Y), 80,

subset(S ,S }), 51,
1 P

where X, =Y, |, XK,

i jl i,

From A and B, the relational completensss of FROLOG with the

cetol aperaters is shown.

See appendix (B) which demonstrates some typical cxamples

of the above cperatioms.

i

, *ec, and X, =¥
1

{g.e.d.)

Wote that the meta-predicate setof is not a primicive predicace
of any first-order logic, and the 2Znd argument of the seto
predicate is mot a term, but a2 sequence of conditions of any Horn
clause. Also, note thet the setof predicate is implemented by using
many higher-order predicates and meta-logical contrel primitives.
(see appendix (A)).

2.4 Least Fixed Point Operator

The characteriscic of logic programming in PROLOG on RDBs is easily
able to represent and utilize recursive definitions. From this poinc of
view, there is an important class of query languages that cannot be
expressed in relationally complete gquery lamguages, i.e. relational
algebra or relational calculus. Aho et al. [10] considered the
question of how powerful a relacional query language should be. They
stated the universal conditions of the query language. Their candicions

are known as a class of the unilversal query language which can handle a
least fixed point operator.

Consider an eguation of the form
(9) R =RUg(R)

where g{R) is a monotone relationmal alpebra expressionm [10].
A least fixed point of eguatfon (9) is a relacion R% such thac

(10) B* = R W g(R*} and
(11) I1f R is any relation such that R = RYg(R), then R* C R.

¥or the equation (9), they provide a procedure of constructing =
relation B* inductively for a given existing base relatioan B, (CZR). The
procadure can be expressed in terms of a simple PROLOGC program as
follows:

(12} least-fixed -poinc {RG, R*}:—setq{RD, k), Lip(R, BR*).

LEp(R, R*) :—setq[R,_R'}, g(R, R"}, union (R, R", R"'),
noteq(R', R"'), !, Lfp(R"™, R¥).

EfplR, R):=1.

whare the predicate setq(¥, Y} means the assignement statement
"X+ ¥." The above PROLOG progrsm is not a complete description which
would require the detailed definition of the low-level predicates. Nora
that this procedure essentially contains a tail recursive optimizaticn
preblem of PROLOC [11].

At first sight, the preoblem of the above-mentioned least fixed point
operators is seemed gquite difficult to solve. However, its solurion is

simple, because we can also use the meta-predicate seief to solve it.
We iliustrate with an example of how to PROLOG handles this more general
class of the gquery language.

[Example 1]
t13} ancestor (X, Y):- parent (X, ¥).
ancestor (X, Y}:= parent (¥,Z), ancestor {Z, Y)}.

1.

parent {xl, ¥,

parent (xn , ¥vno J.
(14) ?- setof((X, Y), ancestor (X, Y), Set=of=-Ancestor).

The problem of this approach is how to find a logical form of the
least fixed point equationm (5} and how to express it in terms of a"righe"
recursive Horn clause in PROLOG. Note that the problem is a problem
of PROLOG programming itself, and not of implementation of the least
fixed point operators.

3. Interface between PROLOG and RDEMS
3.1 replace PROLOG Program

Tn this section, we propose how to integrate PROLOG on the 51 and
RDEMS on the BRDBM. Some implemental modifications should be made to the
PROLOG program to permit a lazy evaluation of a sequence of conditicns
which may be handled by a RDBMS. The basic idea is the same as 3owen
et al. [12] and Chakravarthy et sl. [14]. The former paper Eives z
theoratical basis of amalgamating object-language and meta-language in
logie programming, but their 'demo' program is not implemented in
PROLDOG so far as the authers know. The latter paper gives a PROLOG-
hased inplementation image, but their 'deme' program cannot handle
recursive Horn clauses, negative literals, and other evaluahle predicates.
Cur 'replace' PROLOG program amalgamates cbject-language and meta-
language to avoid modificacions to the PROLOG complier/interpreter, and
moreover it can handle general recursive Horn clauses, negative literals,
and other predicates that can pe evaluated. But it cannot manage a cur
operatar '!' [7] which is not essential in EDBMS,.

The basic idea of the 'replace' program's algorithm is as follows:

(1) A new evaluable predicate called 'edd' is introduced for each
EDBE relation which is a so=called hase relacion managed by RDBMS.

(i1} edb predicates incorporatad into new conditions are placed at
the end aof a2 sequence of given conditicons. On the ocher hand, other
predicates are added at the front of old conditions.

{(i1i) A condition which starts with an edf predicate should be
recognized as a lazy evaluation state.

{(iv) 1f all conditions are recognized as lazy evaluarion states, a
query for a given sequence of conditions must be sent to 2 RDEMS te

" obrain one answer. Other altermative gueries can be message-passed
bv usual backtracking mede of the PROLOG, i.e. typing alternative

command '

The following PROLCG program answers the asbove-mentioned
problem. It can be regarded as a top level interpretsr of a Hornm
clause program which represents Horn clause provabilicy [12].

/% Rerplace prolod prod. for EDE %/

rerlacel _s[1s03) 1= 1.

rerlacal(_rfHeadlBnduls[Head i Bodu]) -
Head =.. [edblRestls .

reslace{Prods(GealiRestlsaliReslace) i-
rrog({llausasFrogdls
renzea.varsi{Clavsas(GazliRest)s[Head | Bodul)
differiGozl+Heads[1fF)
add(Prod:BndysrRestsinterGozls)s
arplyllnterfoalssNiffeNewGoalsls
rexlaca2{FrodsHewboalssiillRerlace).

The first argument of the replace predicate indicares the target
program, the second one gives the source geoal statement, and the lasc
one receives the replaced goal statement which consists entirely of
adb predicates.

The first clause of the replace predicate states that recursion
is stopped when the program achieves an empty collection of geals. In
the secand clause of the predicace, Head =“[Edb|RE$t] means that Head
consists of an edb predicate. It indicates that the goal statement
consists only of am edb predicate, and then recursion should be stopped.

The last clause of the raplace predicate states:
1. finding a clause in the rarget program indicared by 'Prog’,

2. renaming the variables in the clause so they are distinct
from the variables in the poal statement,

3. matching the top of the goal statement list with the head of
the clause, and assigning the difference of the variables
petween Lhe top of the goal statement list and the head of the
clause to "Diff’,

b, adding the body of the clause to the rest of the zeal statament;
and at this time, if the body contains only an edb predicate,
then adding it to the end of the list; cotherwise, adding it
te the top of the list,

5. applying the matching substitution to obrain a new collection
of goals,

B. replacing the new goal statement in the same way (recursivelv).

A complete version of the replace PROLOG program is given by

appendix (C).

3.2

with

Examples

In this section, we illustrate the execution of the above program
the following typical examples:

[Example 2]

Consider the following program (15) and (16} and the goal (17)
stered in IDB.

(15) fallible (X):- human (X).

(16) human (cturing).
human {socrates).
greek (socrates).

(17) 7= f£allible (X), greesk (X).

In the evaluational approach, the assertion-type clauses are
stored in EDB as EDBs. Therafore, we replace all assertion-type
ones by the new Horn clauscs in IDB correspending to the RDBs in EDE.

(18) human (X):- edb (human, X).
greck (X):- edb (greek, =).

Then logic programs {15} and (16) are cransformed te the
following form which is an object-language program 1 (17) in
meta-language programs:

(17) w=rodiChusanix)redolhumansulIaF1),
rrogilereehixiredblcgreckex) IsT1),
reog{lfallinlaludrhuman{xdls iy,

10

where variables are distinguished by an initial leccer =, v,
and = nn1y‘

The meta-language program executes the goal statement (18)
against the object-language program (17), and returns the answers (19).

(18) 7= rerlacei(flsLfallible(x) sareakin)l,_a5),

(19) 45 = [Cedblhumanexdredblaresk .23 3§

no

As the answer "edb (human, x), edb (greek, x)" is evaluable
in an RDBMS, it would return all answers which are x = socrates
in this case. It is the rasult of what occurs for only one
execution path. Though, generally speaking, zl1l1 paossible
execution paths must be executed, the above program (19) shows that
there is no other execution path.

[Example 3]
Consider the following "right" recursive program (20):

(20) ancestor (X, Y):- parent (X, ¥).
ancestor (X, Y):- parent (X, 2}, ancestor (Z, Y).

In this case, the program (20} is transformed into the
follewing object-language program £2 (21) in a meta-language:

(21) rrogilrarent{xrydrsediolrarentinre) 32},
rros{lancestori{xsulrparent{uull T2},
spa2i{lancestarixsylsrarent (el rancestaorizywl 120,

The meta-languape repldace program executes the goal
statement :

{22y 7= rerlacelfZslancestorliury}ls_53},

Then it returns all possible execution paths, if necessary, by
typing the alternastive command ";", which is supported by the

avtomatic=backtracking mechanism in the PROLOGC.

(23} -53 = [edblrarentrurwld i

93 = [edblrarentsszlsedbliraraentsTeel] &

I

(L]

L]
[l

[edbierarentrurzdredniparentssrs/ 2 redodirarent =729l]

[Example 4]

Consider the following mere complicated logic program (24)
and its transformed logic program £3 (23).

(28) q; (X, ¥):= py(X, 2), py(2, ¥).

C25) erogilelindredbinlendds).

Frodf{lediarul redbi(r2ree) 30,
prodfledliuretredbl(pIrmral1sfI),
rrodilzd4turuszdrodbipdrrarz)] fI0,
rrod{lersiuse)reddirhruradle T3,
rrosilol(xsuler2{uszlsrpilizsg) I +F13).
rrofllolluwrgl s urzdraIlorul deaalnrulin)1efI.
srogilaliu)rrliudopbluru) I+ £T,

For this program (25), the next question (26) and its answers
(27) suggest that the replace program also permits a question
which may contain some constants. In this case, the question (26)
corresponding to "?-qp(a, X), q5(X)." contains a constant a.

{26) 7- rerlacet?3slimliarairoldntls_BLY,

(27) _@L = Cedbi(eZrarz)redbir3rzrnlredbirl syl rednirdrurn)] &

-Bl = [edbd{rPrarciredbirIszraliredoierdrarvlinlreahirloylredbimarus:

23 =]

[Example 5]
Consider the following “left and right" recursive program (28}:

{28) ancestor (X, Y):- paremt (X, ¥)
ancester (X, Y)}:- ancestor (X, Z), ancestor (2, ¥Y)

For this program, the usual PROLOG programming generates a
looping program which does not stop.

However, against its transformed program (29}, if the replace
pragram exccutes a given goal statement (30}, then it ean return
a sequence of backtracking choices (31), if necessary, of a
finite length as one wishes.

3!

12

(29) proatleaventinsuleadb{rarantrysu) 1,747,
rrodtilanceatar{zrulrrarentiu,al] 74},
rrodilancostord{erudrancectioriusz),

ancastor(zegdIaTad,

(30) 7= rerlaceif4slancestiorin ulle_43},

(31) _43 = Cedbiparentrneu)l

=43 = [edbi{rarentrxrz)regbirarentezrald i
_43 = [edbirarentsurzdredbirarentrzrc?2)sedbirarentr =220
HE S

[Example 8]

Consider the following program (32) which contains an
evaluable predicate "neq' and 2 negation 'mot':

(32) manager_many (X, Y):- manager (X, Y), manager (%, Z), neg (¥, Z).
manager-one (X, Y) :- manager (X, Y), not (manager-many (X, ¥}).

Hote that PROLOG's "not' is neot a logical aegation, but a
convention for negative information representation in esrtificial
intelligence techniques [3].

For its transformed program (33), the regplace program is able
Lo execute a given statement (34), and it returns an answer (35},
in which "mot' is handled in a nested form aund 'neq' is done as an

evaluable adb predicate.

(33) erodilaznsser(urelsedblosnagern,sy)1sf5).,
Frogilonealxradeadbineariul) 1 fS),
rrogi{lmanader_manyl{nsy) imanagerixsuls

manaderlxrzshinea(uwszdIefO).
erodilmanagder_one{rylrmanssarin g,
notlmanader manyliryld}lefs),

Frogi{lnot(X)inot(X¥1:F),
(343 7= rerlacei(fSsimanzer_ornefnmiwd 1o 430,

{35) _43 = [edbimanaser:uiyu)s
not{edbimanagserinswliredbimanazser,sxrzdredbinearerzldl i

gl =]

13

[Example 7]

The most difficult problem in integrating the evaluational
approach and the non-evaluational one is how to handle the case
where part of the assertion-type clauses resides in the IDB and
the rest exists in the EDB. Consider the following program (36)
in such a case:

{36) ancestor (X, Y):- parent (X, Y).
ancestor (X, Y):- parent (X, Z), ancestor (Z, Y).
parent {tom, bill).

For its transfiormed program (37}, the »eplace program
executes & given goal statement (38), and then the final answers
that result from its execution are shown in (39):

(3}} prag{lzacectortarylrrarentinsul T284Y,
progilancestor (el erarent (el rancestor(ziud IoT4Y,
rrozi{lesrent(tanebillVlefé).
rrogilzerentinrglrodbirarenteein) Iof80,

(38) 7- rerlace(fé Cancestoritonsu)dr_ 437,

[]9} 43 = [1 &

43 = [edbirarentrbon,n)d §

=43 = [edbi{parentsbill 13 j

=43 = Ledbiparentrbillotondd |

=43 = Tedbirarentsbillsrz)sedhiparentezsn)]

HES

Careful consideraticn must be given in order to capture
the meaning of the sbove answers. All possible execution paths
are complex in cases where assertion-type clauses exist in IDB
as well as EDB.

4. Conclusion

For the initial stage of Japan's FGCS project, the most important B & D
targets are the design and implementation of ITM and RDBM. Then we
are incerested in the rescarch on the intaerface software between
TROLOG on the STM and RDEMS oo Lhe EDBEM.

First, we have investigated the knowledge representative power of
logic programming inm PROLOG. We show that PROLOC is a relatiecnally
cozplete query language and, furthermore a universal relational query
lasnguage embedding the least fixed point operators. The proof is shown
by meins of a meta-logical predicate gsetof. The predicate is useful
in derermicing all of the terms that satisfy some condition in warious
gpplications, and attaches importance to suggest how Eo canvert relational
caiculus expressions to relational algebra expressions.

Second, we described two approaches for deductive question-answering
oz ADBs. In the non—evaluational approach, a theorem prover solves a
given problem by making use of IDB's knowledge which consists of
assartions and general rules. Though this appreoach £its the current
izplsoentation of the FROLOG, it cannot manage very large RDB that is
a set of assertions. In the evaluational one, a specizl type of
inZegrence mechanism, such as connecticn graph, eCe., generates a sequence
of goals, called plans, which can be evaluated by RDBM3. Though this
ona fits the current implementation of RDBMS, we ought to implement
such an inference mechanism. Therefeore, we propose a simple way in which
PAOLOG legic programming can incerface wich RDEMS. We give a replace
program which is used to expand & condition in & goal statement so as to
gonerate a soquence of evaluable predicates all of which must boe retrieved
in RLEM5. The program to amzlgamate meta-language and object-language
iz miven by using meta-level stacements directly written inm PROLOG
ilcseli

Acinowledgemant

The authors would like to thank Mr. XK. Fuchi, the Director,
Or. K, Furukawa, the Chief, and Dr. 3. Uchida, the Assistant Chief, of
ICOT, for their useful comments and discussions on this research.

.
Rafaranceas

[11 1COT {ed.): Outline of Research and Development Plams for Fifth
Generatien Computer Systoms, May 1982,

[2] JIPDEC (ed.): Proceedings of Internaticnal Conference of Fifth
Generation Computer Systems, Oct, 19u2Z2, 1981.

[3] Gallaire, H. and Minker, J.(eds.}: Logic and Dara Bases,
Flenum Press, 1978.

[4] Feigenbaum, E. A.: The Art of Artificial Intelligence: Themes
apd case studies of knowledge engineering,
TJCAT 1977, 1014~1029.

[5] Chang, C. L.: DEDUCE 2: Further Investigations of Deduction in
Relacional Data Bases in [3], 201236,

[6] Sickel, S.: A Search Technique for Clause Interconnectivity
Graphs, IEEE Trans. on Computers, WVol. C-2%, No. 8.
Aug. 1976, BZIUR1S.

[7] Pereira, L. M., Pereira, F. C. N., and Warren, D. H. D.: User's
Guide to DEC System -10 PROLOG, Laboratorio Macional de
Engenharia Civil, Lisbon, Portugal, Sept. 1978.

{8] Cedd, E. F.: Relational Completeness of Data Base Sublanguages,
in Courant Computer Science Svmposium €& Data Base System,
Prentice Hall, 1972, PP. 6508,

i3] Byrd, L., Pereira, F., and Warren, D.: A GQuide ta Versicmn 3 of
DEC-10 Prolog and Prolog Debugeing Facilities, DAT COccasianal
Paper 19, Dept. of A.IL., Univ. of Edinburgh, Scoccland, 1980.

[10] Ahko,A.V. and Ullman, J. D.: Universality of Data Retrieval
Languages, ACM/SIGPLAN Conf. on PFrinciples of PFrograzmming
Languages, 5an Antonio, Jan. 1979, 1107117,

{11} Warren, D. H. B.: An Improved Prolog Implementations which
Optimises Tail Recursicon, DAI Res. Rep. Ne. 141, 1980,

{12] Bowen, K. A., and Kowalski, R. A.: Amalgamating Language and
Metalanguage in Logic Programming, School of Computer
and Information Science, Syracuse University, June 1981.

[13] Chakravarthy, U. 8., Minker, J., and Tran D.: Interfacing
Predicate Logic Lamguages and Relationmal Databases,
Proc. of the 1st Int. Logic Frogramming Conf., Faculsd des
Scleaces de Luminy Marseille, France, Sept., 14n17th, 1982,
9188,

16

(RN TE AR I T ER AT
Japrlueey wmnaaual yigey Jo saley m.—.t.

e —)

sajipaai arem)os B Tansl jusfigeg

3 m_m.:—-._-._ LTi-1Y 4 SRS F0E JIID .—-uu.— el

|
|
. |
“
_
|

TN BT 0 10 SuSE e steq 3F papmous

i

|

|

_

_

— | o u.-ls....-._-.m u_uﬂuh.u.__.__ e ﬂ..u_._.wnun.._h.u._.ﬂ_u__..._“
_

W3EAE 2Ima) JUs MIEQ
{1 sdsnqus ssmg aFpapmauy) e e e e
aremyjos Fupuwedosd pesdiagg) g _|1l1..l e ——————— — —— =

_ 1414 U wonerEayun oy sanhpoyse]

-

; _ vorpeiado Euauniad e 0 siojenug _

atea o8 i shs sugpeapde mseg)

STy 3300 ISECEIED [EUDLIR]S xl_ _

RELL TN A e LA uaijeisda _
sdpajmotiy pue jeirojiejas adi pagjueg _

- wWEgysane sseg afip oy _—

AeM]jus A5E[] n —

ALrs) g
uas Fewen 2peag s8po sy

PN

3rem ok aaejaag watyang Wis e Sseg areg 38pa|mouy

T |
(S[5A UL pariear)) i
WSt 13Ul afaq £ | _\..\ wagsdsqns sseq 3¥pamony |
dfpepmnny pue auas)ig) i . . r\ M) SUSIITY DU [RUOTTIUG] [RORIAIPUL J0) SR
_ asesy poos Fupumeafosd qualyyzig =
r SIS A uoperdagug sy sanby oy
| —J

waoppeiads epusugsles sop siopepnueg *

- WISPURLIIUE 230303 1] e] _ ||||||||||||| I_
W _ wspingaang poddns ad &3 eiep 12engy _ _
A1EM |05 AIUBEAEN |

PR BUpApasi 2 ga L) _ _
LS UL A MO R _ _
2uemifos 3gage Juadipaa) _ /
L]
_ sz apsen sauasapuy ad 4y (3 [
(s fegng aauasagn|) | E — i __
§ LSS0 NE 29U 13Ut _

1 .__i.w.— H._n!_.-.ma —.-..u_.-— _._u.=__.- ..-_._-.-_._ —.—._.._—__..-_-..—- ..-.n .-ﬂ Hu— -._.mvn m.m
(siunysdsqns spas-Jpews pruwanrpslig) e e e o .l._

wa1sds ymay o quadagasay (afs prug swasAsqns jo puawnlojaasg cafns ajppyy Afopouygaay ammdwos aseg o quouwdogaasg) adws (el

17
APPENDIX (A)

The meta-logical predicate setof (X, {Y"}Q, S) is an extension of
PROLOG for generating multiple solutions, and means S is the set of
all instances of X {such that there exists a Y} such that the goal
statement (is provable, where the set is non-empty." The following
program is implemented in the RT-11 PROLOG developed for the LSI-11

machine.

T or(ddyufuy”7 3.

cebtaf (X »FrLy 3= TunctoriPse "7 sNIy 2r2{lsPsrT)lry 2rsi{2sFiF10s
(wariXdr 'y setolf(0Y XIsFLsLLYF setaf(CYIEIsFL1. 1) 3y
scoumI{LlaL 7},
setafi{dsFsL) 1- sZensumizseS)r wars(X P11 14
(Fy 21 =0, L[S+XIVWIr sss2rti(Sidr fails
S1 =0 CEs_I¥Ysy S1s zoocumli{S VL) 3.

vars(X,F,V) - fumnetor(PsFelly srenlEsFeNVie 1,

sTolCEsFPe MLV IYZDY 1 H 2 Or arsiNsPeYdy check{¥:s¥ U1,
H is H - 1r sronfXsFeHsUT),

STCh(XaF sy 1= M = Gr M 12 N = 15 sronf(X,P.H,U).,

srehioro s 0y CI0 .

check{ZeYe¥) &
check{ds YY)y T atami¥i, 1,
check (LY, V) 1= wvezrs{XrYeWis o,

sCcoUmliSeNeLL)Y - 51 =, [E¢X1WV]sy retract(Si)y csooumi(SeU L2,

wviunionCLATsL2sL1de 1,
socumlf_ s _»C2).

GUoum2iCIs L0,
Gooeum2 (LE_TLIJILZI L3 - scoum2iLl29Ldds wunmion(lL1+sL4,_3}.

wmamal X LY _T%

- Y ==Y
wmemo (XL 1L 1) " [

widnloniCIeSeS) .
vorion{CTIRISrA) - wmemb(T»E): 1y vunion(RE:S:8&%,
YUR1An{CTIRI P S,ET143) - wunion{R:Sr &) .

= werlYlr lelwar{Xdy 1y X == Yi notivmemod{Y X))

}l‘

18

APPENDIX (EB)

The following gquestions and amswers have been executed in the DPEC-10
TROLOG V3.3 on DEC 2040. -

h. BSert operaltons

s R o
RS I
-
F
L¥]
-
.

{given set F) {given ser)

Al Imtersection | P= gztofCiX,Y), (alX,¥!,3iK,¥r2,3:.
F=FNQ g = {(i,ae), 02,021,
" X = 77,
¥o= _47 g
ag
42 Union DoP= seraiiiM VI (XK, VIigiK, Y22, 80,
- E =g, ad 02,50, 83,82, 03, 28, e, 80, 08,257,
5 FUQ x = 2%,
¥ o= _4%
ha -
AY Difference V7= selof iR YILaIN, Y nos et WiE, 50,
Ea P = § ' ((J.22. 84,02
W= _Z%,
¥ = 45 g
&
A4 Difference ! P= gETafOlN, Y, Ca{N, ¥ neTliaik, Y222, 82,
§=0-F Eo® [0l a). 02,227,
% = _7¥,
L ag .
no
A5 Carcesian Po7= gETafilN,.Y U U, fEN, ¥, 200, W2 3
predusc
So= fiiLa, tad diTia Zundo e, daad D08 EL 20
¢2.b, 0.2k, €2,8,2.5),¢2,3. 3,22, 02, 2.2 32,
5= F@Q t3.c.t.ar t3.c. 2.3 I3, 0 302 TT0 20 %20,
T SR T I - D B I R e, 521,
U = _4&4,
¢y o= _87F.
¥ = _Q'F',
¥ = _43 &
ne

® poriFdr=F, 0, Fail.
necd).

E. GERelarional algebra operations

Bl Projection

(0, 0, 0

-4
=8

®

E 2 f Téa, 2, %1
b 1 g rick,i,57.
c 3 f rile, 3, F2.
g Ki g T?f.':‘;zr:-'}'
2 2 f rife, 2,7},
i 7= setai(l,{A,B)"v1¢/R.B.C1.58).
RI31(8,) s =407,
- A = 45,
p g8 = _4£,
0 cC = _24 ;
no
B2 fB-restriction
R{A 8 c)
FACn, 2,10,
P 2 1 rel{g,2,X2.
g 2 3 rd(s,5,4)
g 5 4 redr, 3,52,
r 3 3

i ?- serof{{A,B,C),(rdCa, 3,00, 850, 8,

R[E = C]{a B C) =) [Cp,2.12,4¢5,5,437,
S — A = _Z29,
ooz 1 g = 453,
T s 4 C = _é35 ;

R PR N A R P eI e T R S TE S PFEELLE
E Jadaging
-ﬂ-ﬂ.-—.-.qk..lu..l.__wt..ﬂ.nf.u “A-WL“nH.HHH ' _ .l_.“_lhil__-q.-.._l

. P ES Ty aanguaw
g
L -
Uhtxy owozy
rrthitay o= g
e =
N T
LT =
frreroe sttt o= sfaoos 3][2' 0}y
TS RS TSNS (G (I IR OI8 G R WIE L b I3 01355 00 0188 oy |
¥
2Lk
N T
LA S z ox &y oz
rrtRyps gEt Lty LA - Y 0l
TfETaypE gfitprEags -
g txyps YL IE i1 ._u”-w ﬁ.u a __:u
USTSTATT by
[FRF]
H =]
~ TR
= N
- 1 Z 7 LA
. . R =V (3 0 2 7 wislo = 20w
L S A N B T A B B O B

A e CITAITSEDDMIZAN (3G N b ndas o

B N N A m M w

M A A L | z 1 N
N tElES A L # E [2]
ST ST & AR AT L oo
RS T4 R R

(3 ols a8 w

o

uiel-a g

APPENDIX (C)

The following amalgamation program 'replace' is implemented in the
ET-11 PROLOG.

1

2 /% Reelzee srolod sros. Tor EDB %/

3

4 prerlaceiosLIsL1) = 1,

3 replace(_s[HesdlBodylslHesd| Bodel) =

& Head =.. Ledoikestly 1,

7 replace(Frosy[GoallRestirAllRerlace) -

3 rrogiClausesProgl,

7 rensme_varsiClauses[Goalifestl[Head Radells
i0 differiGoalrHesd:Dilfly

11 add{Frog«daderiestirinterfoals)y

12 serilylInterGoals ' Diffrdewboalshs
13 rerlace{FraossHewbasisrdllRerlacel.
td

1%

la 7% Fenzsevars %/

17

18 rename_varsifnot (X2 ILIr_sCnot(XI1LT) - 1,
19 rensme_varsiClauserGoslissClausel) -
20 searcnovar(ClavserVarlily

21 saarchovariBosliseVarl)s

s Varl = Var2,

a3 gensymiVarlisVarils

Z4 cnanse_var{llavsarVarisVarsrClausells
23 renzze_vsrslClanealsGoslssLlausallds 1,
& rensne_vars{llauser_sClsusel.

27

282 sesrchovar{lnot{XiIL]eVar) 1=

2 1y sazrch_vsr(CXIeMar).

30 searcnovar(TXiLI«Var) -

i1 K =.s [PredlArscsl,
i is.vartArssr¥ard,

33 sesrcn_warl{lXIL]«Var) 1~
34 searcnovaril:Vard,
35
T4 is_warilXIYI XY I-

I7 name{ X CHLHINLREI) s
38 HLH > *w',

37 is_wvar{iXiY¥IsUar) i-

40 is_war{Ys:Varl,

o=
—_

21

42
43
44
45
44
47
48
49
S0
51
52

T
o]

34

=
ol

o

ST
57
wl

37
ad
&l
a2
43
a4

.
[=

LT
&7
58
&9
70
71
i2
73
74
75
ié
77
78
79
a0
a1

-
=

83
24
g5
B4
BE7
g8
BY
70
71
72
73
24
89S

22

chande_vwar(Lls_r_r[1).
change_var([rnot{X) L1111 VarlsVarI {not(YIIL2TY 4=
change_var{{{l:Varl ¥ar3:LY1)s
change_var{LisVarleWarisL2s 1,
change_vwar{LAIL1I+VarteVar3»LHIL2T) :-
B =.. [FredlXl,
chandind(XsVarisVardsf)s
E =¢: [PredlYl,
chanZe_var(LlisVarlisVar3sL2)r 1.

changing{[ls_r_+L3).

changing{CWarllLidrVarlVards[Var3IL2D) -
changinailis«Vari Var3sL2).

changing{LXILL1]«Varl VarI LHIL2]) -
changing(Ll,VarlVar3:L2),

/% Difference %/

differinot(X)rnot{X),dlfIs033) 1= 1.
differ{¥s Y d(DLiffl:Di7F2)) 1=
X =s [Predlaraldy ¥ =, [Predlare2d,
diff{ArdlsArg2sDifFi,DifF23s 1.
diffILIsLI+CT4C0),
AiTFOCAILI] CXIL22+DiP P DLTFD) £

AifT(LLL2:DiffL0i772),
QITT(CXILLTCY L2 CXIDiFFLY LY IDETT2I) o
is_var(CYl:¥)r
difTf LI L2y DiffLeDifea),
dif FCLX LI OV IL2TEYIDEFFLI,CXIDEET20Y -
is_war{lXlsd)s
diff (Ll L2+DifFL. DifF2Y.

F¥ fad &S

add{FsiNotTernlyRestsInterGoals) i-
HotTerm =:. Cnot!SubGozlsls
reslace(FrSubboale NewSubGazlsis
HewHotTerm =., [natiHewSubGaalsly
arrend({RestriNeulotTermls InterGoals)r !
add(_vs[EBodylRestrinterboals) -
Body =.. [edbl_J:
grpend{Rest [HodulsIinterGoalely !,
zad(_srBoduysiestsyInterGoals) i-
arprendlBodurRestrInterGoslsl,.

/T Arply 1/

aprlulinterGoalssrd({[1s0])rInterGoals) 1= 1.
arplullnterGoals:dilVarliRest1]sIVar2|Rest2]sNewboals2) -
change_var({InterGoslssVar2VarlrlewGoalsl)s

arplulNewCoalslrd(RestirRest2)NewGoals2)s 1,

