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1 Introduction

Quasigroup (QG) existence problems[B&9] in finite algebra are typical finite-domain constraint satis-
faction problems, which have a reputation as being combinatorially intensive.

Several attempts have been made to solve open quasigroup problems [SFS93|[FSB93]. M. Fujita
and J. Slaney[FSB93| first succeeded in solving some open QG problems by using MGTP[FH81] and
FINDER. It was found later that these problems can be solved more efficiently with the Davis &
PPutnam theorem prover DDPP developed by M. Stickel and the constraint logic programming [CLP)
system, CHIP[CS89], developed at ECTLC.

Such research has shown that MGTP lacks negative-constraint propagation ability. This motivated
us to develop two types of systems: CI* (Constraint Propagation) and CMGTP (Constraint MGTP).
In this paper, we introduce the systems and show their effectiveness in solving QG problems.

2 CP
2.1 Key Features of CP

CP, which is based on the CLP scheme, is a very compact program for solving finite domain problems
written in SICStus Prolog on Sparc workstations, CP has the following key features.

o Domain and domain element variables. For QO problems, we use three squares according to
{1,2,3)-, {2,3,1)- and {3,1,2)-conjugates.

* A coustraint propagation mechanism which uses the freeze facility of SICStus Prolog.

2.2 Variable Maintenance in CP

Figure 1 shows the variables in a third-order latin square wsed in CP for solving quasigroup problems,
where domain variable Vj; ranges over {1,2,3}(1 > 1,5 > 3} and domain element variable Xf: ranges
over {yes,nop{l > & > 3).

Domain variables have the same meaning as in ordinary CLP. However, CP also introduees domain
element variables for quick constraint propagation. If a domain element variable ,‘fi‘} is bound to yes,
Vij's value is fixed to k; if bound to = no, Vj; should wot take k; and if it remains unbound, Vj; may
take k.

In general, a variable V' has the domain [1,2,...,n} with the corresponding domain element

variables { X7, Xs,..., X;}. From the finite domain property, if n — 1 variables of { X}, Xu,..., X,}
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[Migure 1: The Variables in a third-order latin square

except for Xp are honnd to no, then X is bound to yes and variable V' is bound to k. If V' is bound
to k, then Xy is bound Lo yes and X;{7 £ k) is bound to ne.

For ()03 problems, inverse functions play a significant role in constraint propagation. Each function
defines a different latin square, and domain element variables can be shared by these squares. Using
shared variables facilitates constraint propagation like :

acpb=c rhosyye=a,cogpa==h (1)

[rsh by b ?5 [ b"z,‘n o # a,c0312 4 if;ﬁ {2}

where o439, and o032 are inverse operations of 2123, Ordinary CLP does allow constraint propagation
like (1), and {2) is not possible, in general, becanse domain clements cannot be handled divectly.

2.3 Experimental Results on CP

Table 1 compares experimental results for QG problems on CP and other systems. The numbers of
failed branches generated by CP are almost equal to DDPP and less than those from FINDER and
MGTP. In fact, we confirmed that CP has the same pruning ability as DDPI* by comparing the proof
trees generated by O and DDPP for QG5. The slight differences in the number of failed branches
were caused by the different selection functions used.

For general performance, CP was superior to the other systems in almost every case. In particular
we found that no model exists for QG5.16 by running CP on a Spare-10 for 21 days in October 1993,
It was the first new result we obiained.

3 CMGTP

3.1 Key Features of CMGTP

MGTP is a full-first order thearem prover bascd on the model generation methodMBS8]. A merit of
solving QG prolilems by MGTP is that they can be described in first-order form. This enables concise
description. For example, in the case of problem QG5, MGTP only requires seven input clauses.
However, MGTP also has the demerit that it cannot propagate negative constraints sinee it is Lased
on forward reasoning and only nses positive atoms.

To overcome this inability, we developed CMGTP {Coustraint MGT'P) in SICStus Prolog, with a
slight madification to original MGTDP. CMGTP introduces the following key features:

» Negative literals and the integrity constraint, P, —F — false.

® Extended MGTP rules, such as p,—=r — —g and =r,y — —p as additions to the original rule
o — 7



Table 1: Comparison of experimental results using CP and other systems
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# Unit simplification is performed between unit literals in the model candidate set and digjunctive
literals in the model-extending candidate set,

Figure 2 shows the CMGTP input clauses for QG5.5. As shown in this figure, constraint propa-
gation rules can be written directly with MGTP input clauses,

3.2 Experimential Results on CMGTP

Tahle 2 compares experimental results for QG5 problems on CMGTP and CP with the same selection
function. The numbers of failed branches are the same. We confirmed that CMGTP and CP generate
identical proof trees when they nse the same selection function. When it comes to CPU time, however,
CMGTPF is about 10 times slower than CP for problem order from 7 to 14.

Table 3 compares the execution time profiles of CP and CMGTP for QG5.10. For finite domain
checking and candidate selection, hoth systems took almost the same time, The main speed difference
occirs during term memory manipulation.

Another major speed difference occurs when updating the disjunction DB, CMGTP maintains
disjunctive literals using a disjunction database. CP does not manipulate disjunctions explicitly.

In CF, constraint propagation is controlled by a freege [acility; in CMGTP, it is controlled by
conjunctive matching. CMCOTP handles unit confliet tests by conjunctive matching, while (P nses
unification failure.

The current implementation of CMGTP is only a primary version. We expect that its performance
can be further improved by a factor of 3 or 4.
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Figure 2: CMGTP rules for QG5.5
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4 Future Work

We have shown that both CP and CMGTP have the same constraint propagation ability as DDPP
[or pruning the search tree spaces in QG problems. We need to now improve CMGTP performance
by refining implementation technigues. At present, CMGTP can handle forward checking in CLP. For
further improvements, we are now investigating how to incorporate other facilities, such as the CLP
lookahead mechanism, intoe CMGTP.
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