ICOT Tec_hnical Memorandum: TM-1298

THM- 1298

Workshop on Knowledge Representation for

Legal Reasoning

by
K. Nita, H. Tsuda & K. Yokota

May, 1994

@ Copyright 1994-5-20 1COT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 2IF (03)3456-3191~35

" :O I 4-28 Mita 1-Chome
Minato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

Workshop
on
Knowledge Representation for Legal Reasoning

Friday, March 18, 1994
Northeastern University
Boston, U.S.A

Workshop Chairpersons: Associate Professor Carol Hafner
(Northeastern University)
Dr.Katsumi Nitta
(ICOT)

oo =i O AN e Bl BS

= . 1
L e b4 a e am i emiasaseeariraRs AR rnamnanaan 1
EmaE .. e 1
b= N N R T
- P |
7 - - NP I
Stephen Wong @@= A - b ooviunn, e 12
20 o T 13

[IM] B/, FT7ARF Y MR

“"An Order Sorted Logic for Legal Reasoning Systems 16

Makoto Hataguch:

"4 Knowledge Representation for Ethics Case Comparisen

and Some Ramifications for Legal Hnowledge Representation.” ...19
Kavin D. Ashley

““Legal Reasoring on a Deductive Object-Oriented Dalabase

and its Extemsionsl e 20
Karumasa Yokota B
Legal Hnowledge Representation: A Yiew [rom the Backbench45%

Devid &, Skalsk

TTA Formal Madel of Legal Argumentation coiieeiieaaiinenns 50

Giovanni Sartor

““Knowledge Representation Language: Quisole ..o.vvieiviiainnnnn 6

10T Znd Lab.

“"Quizote as a Toll for Natural Langoage Processing ™ 81

Satoshi Tojo and Hirushi Tsuda

"M Legal Reasoning System on a Deductive Object-Oriented

B I L T T 86
Chie Takahashi and Kazumass Yokatla

" "Representation of viewpaint in New HELIC-I1" 95

Katsumi Nittg

"TOWNERSHIP: A Case Study in the Representation of

Legal Egncepls- .. 103
L. Thorne McCartiy

" Building up a Legal Ontology from a General Oetology ~ 104

Takahira Yamaguchi and Masaki Kuremalsu

“"Balancing Expressiveness and Tractability: Expectation-Driven

Froblem Formulat ion .o oetiamneinsinivaserrnnnsnanssnssnnens 110
L. Karl Branting

"'A Legal Reasoning System based on Sitwation Thesry.

Satoshi Taojo and Stephen Wong ..ot 123

-H!Pr!!tﬂllliﬂﬂ of Legal Knowledge oooooiiinnans R X

by Logic Flowchart and CPF -

1 LIS

030 1 S AT T D B S TR~ T 1970 FAEOQMEN 6 RA b, §ETH Ok
A7 AHAMBEENTE TG, BT, International Conference on Al and Law (ICAIL) &£123
FERE S, 1087 A S FE Tl S TERMSIEM AR ShTVS, BATR, ABTERAFED
HEF—EiEAs, 1084 F455 LES{Legal Expert System) 7o = 7 FE ML, WO LHEREDE
HoTat, O7udcy M, MELLTHEOEAMEMECEASh, BREEL ¥
OEFEH, B e heaAakE ooy b bBRLTWA, —F, 1COT 2BV T, 1991
FE ARG AT A LT HELIC-II, %S Quixote @IGA & LT@ TRIAL &
50 omEMNERL AT ANMRBRIATETHS, EFHEO oYy b, [COT @ 220OFR
HNe— S A D e SR OMOTER R R L TERLMERCS D, W, STEEE, ERONRRR
B L TEA A LT AR, L LAdih, EROBFRER T CRFESELA TS0, B
REMNRBEAATLE LV OMEESARbo, FLC, BA TS La o TEMELTEREND
AR AT ATHRH AN TV S HRBAFAL EEL, AREESBI_LERBELRNT 0

.ﬂﬂﬂkTaittLt,

2 B4

LA A5 B WAET B o 7= Kahl Branting 8052 (Wyoming M%) 12, V—F ¥a v 7NEE LA, W
Ut H12TRFOV A FEERLTOAEE V., 20U R ML $120207 2 VIOHREELS
frea TG, YA MIEST, U7 a7 ~DREOTEY emal THB L, 2, TAY
B R A TR LTy S EE (10002 #f) B4k (MRI) icit#EH LT, FAVDOTELHAREL
BEL T, BMEEEHIT TR, FORE, BNHAESLENE S LTS Boston T,
B+ 5 = & B L, Northeastern @ Carol Hafner BRIz RBO7 Lo VEREE L,

3 &mEF

BNEONREELUTFIC T (HERE)
(1) R4
(a) BRI
o HF — (BEFRIT)
o RO | BRTERT)
o WLOFT (RE)
(b} 1COT Helic-11 B

. HEED (ICOT)

o Ki% (JIPDEC)
o H&E (MRI)

¢ Stephen Wong(UJCSF)
(¢} 1COT Quixute MR

« BifA—1E {IC0T)
o EE(ICOT)

+ Hi®F W (JIPDEC)
(d) ICOT &fk:nE L
o ®FFIH (ICOT)
(2) 7 AU A

+ Kahl Branting{ Wyoming XF)

Kavin Ashley(Pittsuburg #%)
¢ Thorne McCarty({Rulges 72°F)

Lonald Loui{ Washington #%)

¢ DNonald Berman|Northeastern 7057)

David Skalak(Masachusetts K%F)

(3)4#%V7
s Giovanni Sartor(Bologna %)
WAOSMEE, VTR BRI AT LOME TEROL D AMINY TH D, FIZ Kahl Hirant-

ing f. Kavin Ashley f, David Skalak BiLEERF Th 5 LRSI 72 Ca— S OHIFTHH Y
S OBOR—RTERLTV S,

4 FadsL
9:00 - 9:156 {amall breakfast)

9:15 - ©:20 Opening

{(Chair: Stephen Wong)

9:20 -~ 9:60 Hajime Yoshino

"'The Representation of Legal Knowledge in terms

of Logical Flow Chart and Compound Predicate Formula'’

9:50 - 10:20 HRonald Loui

‘‘Hepresenting modest raticnales’'’
10:20 = 10:50 Makote Haraguchi

"'An Order Sorted Logic for Legal Reasoning Systems''
10:60 = 11:00 {break)

(Chair: Maketo Haraguchi)
11:00 = 11:30 Kavin D.Ashley
‘A Knowledge Representation for Ethics Case Comparison
and Some HRamifications for Legal Knowledge Representation.®'’
11:30 = 12:00 Kazumasa Yokota
‘‘Legal Reasoning on a Deductive Object-Oriented Database
and its Extensions’’
12:00 - 13:30 {lunch)
{Chair: Takahira Yamaguchi}
13:30 - 14:00 Devid B.Skalak

‘‘Legal Knowledge Representaticn: A View from the Backbench''

14:00 - 14:30 Carcl Hafner
‘‘Representing Legal Purpeses in Normative Process Schemas''
14:30 = 15:00 Giovanni Sarter

*'A Fermal Model of Legal Argumentatien'’
15:00 - 15:15 demonstration of micro Quixote
{Chair: Karl Branting)
15:15 - 16:45 Katsumi Nitta

‘ ‘Representation of viewpoint in New HELIC-IT'?

15:45 - 16:15 L.Thorne McCarty
‘‘OWNERSHIP: A Case Study in the Representation of Legal Concepte’’
16:16 - 16:46 Takahira Yamagnchi

‘‘Building up a Legal Ontology from a General Ontology'’
16:45 - 17:00 {break)
(Chair: Donald Berman)
17:00 = 17:30 L.Karl Branting

‘‘Balancing Expressiveness and Tractability: Expectation-Driven

Problem Formulation'’
17:30 - 18:00 Satoshi Tojo and Stephen Wong
‘i Legal Reasoning System based on Situation Theory.'’

18:30 - {dinner)

5 HAERE
PLFInT— 72 a o 7 CRESRERTORE, BB - FRETT,

(1) The Representation of Legal Knowledge in terms of Logical Flow Chart and Compound

Predicate Formula

(a) BHRF
Hajime Yoshino
(b} #eE
BETo—F v — b & &8 CPF o L 5HMMOBRIZ-OVTORMKA. CPF @i
REIIENNESRETAROTH Y, ERFIC L TEVST O P oftELE
waEEE T, LbBRbant#Rir#@ L b0 t2iihid262n I EIZ RS,
OPF it B4 SHICHbAAEEEETL, BT 5L EREHRALC L~AIT7 7 v
MoRMAERD, TAYRECLAEYES,. 7T A0RE, Beo0BRIID &S
ATEIRARMGEETE B @SS S, ZOM, ¥ v s ADHRT, SHEL £~
wF 4 2 AT BRI o,
(c) H% - AR
Q:(Loui) ID = A 5 2 Fim0 T, Eledhl 2 2b0&\ 2EEY LT
A FlREEZ S0 LS ThitE, ZEEAELAEXL V- LEICRET S,
Q:(Loui} 7 a—F+%— @ and/or BFIZ-2VTRAEMR.
A: BIERWHSE D,

(2} Representing modest rationales

(a) B¥E&
Ronald Loui

(b) #EE
Rule f1case &k LIZEBEND, FOMIED LATIZ-ONT, § SO (ratio-
nale) 3%, #ALHOMBIZ - CHRRBLOL I CBHINERTTS, H1& LTE,
[A En b Tkt ey o) —BRRE R TV S, ZOFTE, SR
W TH L AERFEAEICR D, —BCBPC T LEOH D RS TR

#HILLTHEANAMAERBEICEDED | ROERICET SR EAREL LD
B L, THIZLIMROEBLE=TAET D,
(c) HEE- KR
Q:(Hafner) rule + case — Argument &5 BRXEAFBT 205 -WTHDLHNT
A FDEIRIBESFER LTS Z EERIDRT,
Q:(Skalak) Arguments & rationale 7B 7
A: Argument OFREOERE — Y —DiEE VG TIRE,
Q:(McCarty,Ashley) +— ¥ —DEOHIZ451) B rationale O BtiL?
Ar f2iTdsVvTIRER,
Q:{Berman) 5 -2¢ rationale . RErdE, A0 T RERATE .,
ERRBOTTFALE VI D LT, BRECPOERERBVVEETHD, F00,
BRI FTHI AL VM P ZE LELIICREE,

{3} An order sorted logic for legal reasoning systems

(a) BES
Makoto Haraguchi
(b) #H=
R AT LAOEERL LO0 Y- MREIZL D EBOEE, IRl LT
i1, BmREOBEATRETHY, BEAEORBTERCED LA TE, fhoENER
AT LALHERAETHIERERET S ILTHS, Y- FOBEEERT., Y — @
FT7S—Fray (L0 BEOREI~D—8L). BLFevent 8O Y— k%' o315
BEs _ DM rS BB REROH B2 THRANB -,
(e) HEE - AR

LT I

(4) A Knowledge Representation for Ethies Case Comparison and Some Ramifications for
Legal Knowledge Representation

(a) WEHE
Kavin Ashley
(b) e
EMRPCEC T, @BREOMESALEELS, DI LERBIETIREL
BEDHL I, BHSTICETIRERETAMELELAT A Truth Teller (215
waA-tbi, Truth Teller Tit, #3820 HYPO @ dimension #4725, MWD

B _F oI5 (principle) 2 Y~ XN TEY, dimension IZE¥ 5 similarity +
dissimilarity EFER - i@ A 2 LD L 22T D,

(c) HE-FR

HYPO i35t A 5813, trade-secrete i &\ FRAREAEHE (factor) O
WLAER THLSEThoats, —#. Truth Teller iV Tiz@EEV D, BER
B0 I LAEES D ELHY, PRI —-E0 s DS AT LR TE SRR
THhA, LHLARE, RESHESRATARLCIET I FRELESIC LThHhAHE
I HYPO DR AF L& BET3 I LRARTHIES S, ©HA, ZIThHEMN
ELECEINESEEER TR TRESE 2 U v Lt 62, 2L
TG A B, SR LCREEL L TERZOBRETHLY, BT O
m e ofES LTI, GEGE L HEREFO L EMR AR LEVWEZATH
D,

(5) Legal Reasoning on & Deductive Object-Oriented Database and its Extension

(a) FHE

Kazumasa Yokota

(b) WEFGOPEE TOREN, BIEO identity FMBE L —HWRETH L DIZHL,
25 AR EHAEOT AT, IRFTROMSHALNDT S OMERET Quixote
DGO EES L BIIRAE Quixote T EX A b l—ia Wiihot, Zht BHOMO
is_a_subclassof BHEARSE LUMROREEL TR THDF, MDY — B
AL Windpt Ve Mol AL ABORREIIEY F T AL LTRERRATIAIC
i, MEREEARGIE., HEEOB (L2 EHNER, LY MELEF TR
BIlT Al & SR R T S TR ERAL TV,

X 6o, PaaAY7e abductive lugic programming 0¥ 2 5% [EHRHFOMK—{E+ M)
PR | IofAAiAL (SBUEEOMOERETI D LICLRILTVWA, bbb,

FAD?)] L aEMizeiL, THLLBARLITATTL] 25HADKELENTS,
CTHREROSTIIH LT HERRREE Al ALER LR TVWREVWREITHE
T LEALND,

FRAERTE, TEOHR L EOBSOERFEN L TEELED, HDVEFIC
AL TEE+TABoA0LY 22, LA EEER—RRECBVT, [RA] 1S
fE AT TR LA s, 2T, BROERTIE, MHal & [RAL iLE
— O REETLTOAM, EMOES: LCHARLEC S D, BT Quixete
o module BEEIZEoT, D5 LBSHR L RRERERT LR E LTRE
MBI EIcE, EREOLIZMEAE > E<HADELT VS,

()

WEE - AR
Q: —~FE#REIC LS equality axiom # 9 F {02, ERORMBESIT—MRIEIC
FoT bk A DO TIEAEVONT

Ay ZHUEHALBADA P AF AR AL \IZh-TLESOT, B, BA
EHAOERETEHRICL VT I D ENTFHELZ-TLE S, LithisT, —HhEt
HoaRp, TmLARS OF 2 o 20keE FHiR] 2T, -oBRATHES
o kizhdlELGNS, ShiTEAE. [HLAR] & [oA] i1, SEMIZIE
B8, MU ELS LA TRE vbws” RERE" IZLoTL kRO
MR ST THY, —MORERESHREOHIEOIES LTEREHE, B2
MR L EOBRESHER - OB, Bt EREOMBERSEL DT RS,

{6) Legal Knowledge Representation: A View from the Backbench

(a)

(b)

HRE
Devid Skalak

i

SETIIMEEINEIOOEMES (HYPO (Asley,1990), CABARET, BankXX)

2 LT, EMMERBEOBRICZONT, BRI, PRLEdORRMEEERT
ZETHY, W2ERL, B6ER, FEORTM (factual prototypes) , iEHRM
DHBEHAERTOIWTHI LERLE. ENRRICHLTHE, ENERE RT3
o ¥ M factor BF THEAERMOME + T D L3, BENEROFEERSOREE
AL, BROERICOWTE, BWRMYL factor BEFURLE. £, EHR#RO
HRREHSASEOCRERECHY, BMRBOBEESRE L LT, BRAEZHET5REAS
Bl, Rt Ls LT LRBEFELY L 2B AEFT S L #n, EHREEITETS
HEW A R D WA L.
HRE - TR

HELE TR, EMREYHATD v <AroMERER Bifah, EFL~<A0FE
fll, ¥l L~<LORMESE: i S0RRSThALE. KPEEMEIC Skalak X
BEZEMRS Lm0, BONREHRRn LS, ar-TFA ML olSoRESED
AEVH AR, BEEEE - RSB TRS2RETHILN, FERHFCLD
Fily - HNEZ 2V OARRTH S, HiIF, ZOFBEEZ 8001 concept drift (1S
OEWAFERE S 7) ORETHELLERL (K{EHbREAETIAVN) , Al
EETSEELFRETRRL TS EELE.

(7) Representing Legal Purposes in Normative Process Schemas

(a) BREE
Carol Halner

(b) %%

EEITESA—ARER ShTEMERSETEALE, L—L0BEH (purpose)
&&ugﬁhffE%m%%ﬁ<&iamﬁﬁﬁmﬁﬁﬁémﬁut,Eﬁmkm,E
ﬁﬁﬁw—&ﬁ%ﬁfﬁﬁiEﬁfﬂtzﬁﬁtiﬂf,Eﬂﬂﬁﬁﬁfufzﬂﬂﬁ
LM LTCV D, BT o 2R, FEOER - WRTEROEEESEETR
m%fntxk#i.fntmtﬁﬁfﬁﬁﬁ.Tuﬂxmimtmmmﬁﬂﬁ.YH
tzcﬁ#éﬁiﬁm%m.fufzﬁxitﬁﬁﬁﬁﬁ.uinffntz%ﬁﬂﬁ
5. EfE, CoEETovARGKICLY, WE2FEEL - TEARORREZRIAT
-3

{c) HE R

ﬁ&mgfm.futiﬁiﬂthMEi#mﬂEﬁﬁmﬁﬁﬁé5%.Eﬁf
ot ABROERBESEOLOCBOMEE R, BT e v ARRE, TESFTE
CEBEhTLALOO, FAST CHATEREERZRLATEY, RMRER O
BA 7 YA AN TV S, FhicHL, EREFE, TR LERTniIRROR
B < T 0, R IEERRAL LRV EBa, BL, BREBRZLEY
ML SRR T S ¥, BT o AR 0w AREOEEES, THIFIL
ThkEABECIED LI,

(8) RA logic programming model of legal argumentation

(a) BEE
Ciovanni Sartor
(b) #E mEFay3iY - L SEMEET T A4 EE L, derivability, subargument,
opposing argument and connterargument, comparison of arguments, relative strength

of arguments, norms as inference rules, applicability and undercutting argu-

mentes, exception, non-monotonic reasoning in law, interpretation arguments,

prefernce arguments Q#LE A5, EAREF Fa-d Wt amke REEEERL, ¥
ME#REEAL.
() EE - ATR
AT &tslsE U SEIEICT A MRSl o T2, A, L<ERShL
BENETH-

(9) demonstration of micre Quixote

(a) Bs
Hireshi Tsuda, Chie Takahashi
(b) BE
Macintosh M) micro-Quixote ALV, HAMBHEFF Quixote DREELUFF £
Ak b—ira 2 ETRoT, Quixote (24X
: object identity

: subsumption constraint

1

2

3: property inheritance

4: module and rule inheritance
5

: answer with asumptions and conditional query
EvolHEroH s, BAOEETHIBROFBEEL T, ThEhicowTRES
iR ATz o, 5@ question & answer 22V THE, micro-Quixote % FETLEHA
LTUdimE L1,
(o) BEE-FTR
macintosh #FH LT A A2 E 5T, mac HOMERE MG H N Ho
. systemT + Think C Ver6 TH S5,

{10) Representing personal standpoint in new HELIC-11

(a) REH
Katsumi Nitta
(b) #EE
ICOT CHRMAE LTS EF HELIC-I EF@EFI 2T, R sh DR
iz,
(c) HEE-FTR
Q: HELIC-IT &> #&akix?

A DEBORETHELIC-ITiE Tt ¢-23) + L&, BOoEeou0 L 9258
IREA S LS EETHRE,
Q2 HSOEEOE VST FLT

AHELIC-II T2 20 BERE S - L TE S, 1 -6k classical nagation TH
B, %9 —-2id nagation as failure T& 3,

nagalion as failnre bLRERIASSERE L2 Z &4 ragEshoLblL., iR
4 AR L, classical nagation iHiE- & W LETEOWENHLEHIED,

(11} OWNERSHIP: A Case Study in the Representation of Legal Concepts

(a) BEH
Thorne MeCarty

(b) #EE
computational jurisprudence 1 2% LT ownership OEEGIZEAEED . i

#4772 -7, J <12 LLD(Language for Disconrse) T Hohfeld To@t&& Bk Loy
L1-. #7194, Hohfeldism boundle of rights (17 % T paticular objects and ac-

tions (AR THIL T L EFLE,

(c) HEE - TR
(: Hohfeld ¢xERoTILT

A AREHL,

EHEOFEEORSOTMSITIRBEEORES =T ADEY, (LB
EFENGHD, b A5l

(12) Duilding up a Hybrid Dictionary as an Ontology for Legal Reasoning

(a) BEHE

Takahira Yamaguchi

(b) HE
—43 A b — (EDR B84 L) b ERAOL Y bo V-2 RET 5 HiEY

iﬁ’\{-lr-'u

(c) HEE - FTR
Q: British Columbia @71 =2 pThAr e i—REL LT THECk=2T

Lt RLE A 2RI DT

A:-Hritish Columbia @78 ¥=2 MifbivMdy b P—REOEES IR
CIELTLADL U THhD, By CHLE8T LTHRSES TV S,

(13) Balancing Expressiveness and Tractability: Expectation-Driven Problem Formulation

10

(a) BERHF
Karl Branting
(b) &%
HERIFRA— b AT ARUTOL I M TERSLS.

< —4> | |
M -----+---> formal repr. --+--> Appr. of
fezlil | ! legal knowledge
<----+--- analysis L

explanation | I

a—H#OEEEEA I RET IREENEDTH LI, DTOES ML
TWhiaithidiz b len,
extensibility : {THOET O sequence PELETED
specificty : ERHIEEd 25 5bLEWIRETy—22RETES
EIARIZT
FH)HE -~> case matching
case indexing M= A hAE L 24

EvS YL esMELTLES,

AR#THRES L5 EDPF (Expectation-driven problem formulation) &%
AF A, ROAHEMBOGSE DT o AERRETHRS. TORENT AT 4
Fir, et H v ease WE-T0T, Hlvicase #FFMETE LV ZETHE,

(c) WEE- FTR

case (DRAEIL, WIBIZIERFEMIZ L LFWEEHFHTNAD Z L TiTh->T0 3,
i, MBICYSA o TIL A7 LOBMMITT T2, =2— 0 sophistication HbHHE
ELETHAI,

LH LHE (OB 0T AL, NRERSEL L TR EASOPMETRE,
ERAES LA, FOVLrTiIHRL, FheVOESETRLCTEI Lo
b, BEEROS—ARBIIRLI LT, IOVLrvELRLAL ARSI
L& Ev) ERIRekEN -2/, 27, EDPF 8N A7 r ARRA TV LHO
o, b3 LEEAZHRRTEROLOES I,

(14) A Legal Reasoning System based on Situation Theory
(a) B#e¥
Satoshi Tojo

11

(b) HE
B EOBERD L HE LR e e e AT AlTIEH LT situation-theoretic
mmH[HMEE%L\Hmﬂﬁg%QMmmt;é%miﬁtﬂwfﬁﬂta

M [—i— A D EHEROET A TH Y, RRERKIZET LA »7 4 >, R, BE
GEneOH— B Vo EEEFALTV D, EHIC, HLLHFLE LA LR
ﬂ&ﬁ&tbm‘Jk?ﬁyﬁiﬂﬂmmvy%mmﬁéﬁifmauﬁin,ﬁy7¢?t
SUVT I exact, partial, weak ¥ v F &, RRIZ2VTHE exact £ LETF partial { ZHIEE6IC
BiA L2 57 LTI EhD) v v TR,

505 B =30 Quixote XEIET A - LT, SMTEBIIRIETS I L HTES, Quixote
rRELECa—L, BEEE GRS, REBRORE. A -7 F o o1k L
ﬁ?%a,ir\{mmMcwﬁﬁEﬂtfiﬁﬁyayjﬂ~ﬁﬁﬁm&ﬂ—zubtﬁmﬁﬁ
iz LT D,

(c) HEB-FR

PCFG (probabilistic context-fres grammar) %* Hobbs, Stickel iZ.L & cost-based abduc-
on LB HALE L IIC, BEY A YT LAOMIZES - HHTRL AR TRETS L) T
I RGEO B R RELED 5 — 7 —Th A, ARRTE- bR, Y74 v B LTHIRRG
e F A RETALET, #RA Y PR—AT BRI TA T T IOBRADE L H
BloEEV, ERCBIL TR, Quixote BETILRRAEH S50, g o X7 L
MALhE TS D ERELLRS, Thit, BEICOT TRES N T3 RE SR
EfEaFEonBizhsetnni,

6 WX, T7RAFSV+

YT B XA TR OHP 0o E—ROFT 72 R 72 hEmt, RESARRIOSHT, O
wﬂ%ﬂtﬁﬁ?%:ktiof‘E#mﬂmﬂﬁ$téﬂﬂwhéﬁﬁtﬁhfﬂ,TTRF?&F
DLABRT DT kb L, 28, ThbORIOBRIZHE T, FEOTRERTV D,

7 Stephen Wong @4 b

hETOBERAEMNLOS A Y P ThotOT, WA 60E/NE TS Stephen Wong i
D= Ay PEREIFILRT.

All the participants of this workshop are the leading AIL rescarchers from both Japan and
United States, as well as Italy. The workshop was divided into four sessions and operated under
a tight schedule. I chaired the first session in which three distinguished researchers, Professor
Hajime Yoshino from Meijigakuin University, Professor Ronald Loui from Washington University,
and Professor Makoto Haragnchi from Tokyo Institute of ‘Technology spoke about three different

12

schemes of representing legal knowledge in Al programs. Through the implementations of these
schemes differ, they share a common thread - strongly based on the logic programming paradigm.

My observations of this workshop are briefly presented in the following. First, the ICOT re-
searchers presented good computational models and solid implementation tools for legal reasoning.
Dr. Nitta discussed the new development of HELIC-IT, which includes a three-level representation
of legal knowledge and a computational model for interactive legal debate between the computer
and the user. Dr. Giovanni Sartor from Belogna University pointed out the possibility of merging
one of the negation technigues into the defeasible reasoning method of the new HELIC-II, Mz,
Kazumasa Yokota, the chief researcher of ICOT, described one of the legal reasoning systems,
TRIAL, developed using the database programming language, Quixote. Miss Chie Takahashi and
Mr. Hiroshi Tsuda demonstrated the downsized version of Quixote, MicroQuixote on a MacIntosh
computer. They made note that this package is available as a free software. Mr. Satoshi Tojo and
mysell introduced a siluation-theoretic model for legal knowledge representation and discussed
how this model can be mapped into the Quixote language for reasoning about a variety of legal
cases and situations.

On the other hand, the presentations of most other researchers were on the abstract modeling
of legal knowledge. For example, Professor Carol Hafner of Northeastern University presented an
approach of presenting legal purposes using a certain cased-based technique. Professor Thorne
MeCarty talked about the notion of legal ownership that troubles him for twenty years. Professor
Karl Branting proposed a novel indexing scheme for formulate cases in AIL programs. Quite inter-
estingly, Dr. Sartor has given over thirty-three rigorous definitions on specifying legal reasoning
PrOET LIS,

The atmosphere of this workshop encouraged steady exchange of ideas. The projects discussed
here also showed the innovative use of logic programming tools to attack difficult AIL problems,
although many computer programs are yet to be developed. My major complaint is the tight
schedule, There were many good questions to be raised but often had to cut short due to the
time constraint. It would be interesting to see the progress of many prototypes presented in this

workshop in the near future. Finally, [consider that this warkshop is a success.

8 FLH
(1} #&Kiz>0 T

A La—niiEountn, ETRETERSH Ch- A XERTEC#TLE, Zh&ET
DREXHDLL, 2OMOBRICTAETHI LV I M hof, EEYTITE- L/HAH
THEL., FHEIRGHBOTEChoLSE, TAVIORECHRAESTHRL Eiz&MNL T
<hftdh, NEREELEEEAS Ya—NilE o kot BHHRICMTI7T—22a

13

(2)

(3)

#ﬂ?ﬁuﬁ?ﬂﬁk&&ﬂ@hrummotmfﬁﬁmv—ﬁ95y#ﬂ?ﬁUﬂmﬁﬁ#
REOERIT L@ T O EThD,

P T

H*k?ﬁUﬂmﬁﬁﬁﬂﬁﬁmuﬁbwﬁﬁhﬁtu%hﬂ.meﬂﬂﬁﬁmﬁﬁﬁ
méﬂtﬂﬁ&fﬂxﬁuﬂmﬂﬁﬂﬁém#¢&uﬁﬁL,Eﬂﬁﬁatﬂﬁﬁhtﬂmﬁ
L,?ﬁﬂﬂmm%iﬂ\WEWMMEHT5FE¢&EﬁﬂLkwE?h%,:hﬁxﬂ
ﬂ&ﬁvz%me¥ﬁﬁﬂ§u£aT\Hﬂﬂﬁmﬁﬁ@ﬁti&t:%ﬁkﬁwaLmb,
%nu%m\H$mmﬁgu§ﬁwtﬁﬂmkﬁﬁﬁﬁﬁtiﬁfémmﬁLt\TAUﬁw
ﬂﬁﬂﬁﬂbiﬂﬁﬁbfw#wiﬁmﬁié.TﬂUﬂMﬁBMéhtéi#i&ﬂﬁﬁh
EXWﬂEELﬁEﬁTED$ﬁmﬁﬁ¢éme&ﬁfﬁ;&ﬂ{miﬁﬂﬁﬁﬁﬁ%ﬂﬁ
FTAOURERRNHL L THD.

F

?—F?ayfﬂﬁﬁhﬁﬁtﬂéﬂhimmTﬁﬂtn2$E1ﬁﬂﬁﬁ%ﬁwﬁﬁ$
ummnttwﬁﬁﬁiyfmﬂﬁk\ﬁﬁﬁ&ﬁ%ﬁ%5mttwﬁ:kﬁﬁ%MRﬁTh
ap:mu—&y;ptlatﬂmﬁﬁiﬁmﬁﬁﬁﬁﬁﬁuxb?wffa:aﬁﬁmt&ﬂ
tﬁuTﬁ<.Exmmﬁmﬁ&TfHﬂufﬁww#%:kﬁfétqim,QMmmm¥
ER2ITAH koL T, a—F0EROTREEERICEDS LN TE L,

14

(%114

M, 7T T AN ME

15

An Order Sorted Logic for Legal
Reasoning Systems

Makoto Haraguchi
Department of Systems Scieace, Tokyo Instituts of Technology
4250 Nagatouta.cho, Midoriku, Yokohama 227

A large conceptual taxonomic hierarchy is peeded to describing legal do-
mains, Under such a taxonomy, legal rules as well as legal theory rules can be
described as formal rules accessing the taxonomic hierarchy. According to the
representation method of legal knowledge in terms of Horn clauses, taxonomy
is represented by a set of rules of the form

Va. s1(z) = #2(2),

meaning that §; is a subclass of #;. In other words, so called isa relation is
also defined as a logical rule, However, some researchers have already pointed
that it is unnatural to have isa relations in the forms of logical rules. For
instance, suppose we have another rule meaning that s, is a subclass of s;. In
arder to conclude the fact that s, is alao & subclass of s3, we apply inference
rules two times. However that fact is a direct consequence of the transitive
law for partial ordering, provided we have the taxonomic knowledge in the
form of partially ordered set. Such an ordered set is sometimes called a sort
him?[lﬁlliﬁh*

Sort Hierarchy: A sort hierarchy is a partially ordered set (8, <), where §
is & set of sort symbols.

Each non-logical symbols is supposed to have a corresponding sortal specifi-
cation. In fact, a function symbol f has its domain sorts 1, ..., &n and codomain
sort #. Similarly, a predicate symbol has its domain sorts 81, .., ém. Moreover
any variable has its sort s. The instantiation for the variable is restricted to
terms of the same sort 5.

Given a sort hierarchy (5, <), a unification that takes the sortal information
into account is called an order-sorted unification. Formally a unifier is called an
order-sorted unifier if it maps variables to terms of more specific sorts.

Then the generalization based on the sort hierarchy can be described as a
sortal absorption defined as follows:

16

Sortal Absorption Suppose we have a rule

¥z : 8. Wiz) = Alz)

and the sortal subsumption s, < s3. The sortal absorption replaces = : 5
with a variable g : s3 of more general sort s3. As a result, we have Yy :
s3. W{y) — A(y). In order to apply the sortal absorption to our legal kmowl-

edge, our representation of legal rules in the form of Horn-clauses should be

modified.

Sort of Event Type: We firstly suppose that some sort symbol s has
corresponding functor s.f. # is called an sort of event type. For instance, a
functor contract.f : persom, person, object — contract is associated with a sort
contract which we declare as a sort of event type. Intuitively speaking, a term
eontractf(X, Y, Z) means a an instance of contract whose arguments are X of
person, ¥ of person and Z of object, respectively. In order to describe factual
information, we present a special predicate oc : event, where we assume that
any sort symbol & of event type is & subsort of event. For instance, a fact that
a person 4 has contracted with & person b for an object ¢ can be written as
oc{contrac_f(a,b,e)). Moreover, in order to get "attributes” from the term of
event type contract , a predicate describe is used. The predicate is assumed to
have the following unit clause as a definition clanse.

deacribe(contract.f(
X :person,Y : person, Z : object), [X, Y, Z])

Canonical Representation of Legal Rules: For any legal rule whose head
contains a compound term s_f(t1,..,t.) of event type s, the term is replaced
with a new variable x of 8. Moreover, describe(z, [t1, ..., t4]) is added to the
body of rule.

According to the canonical representation, the Clause2 of Article94 is rep-
resented as folllows:

o¢(Contract] : coniract)
deseribe(Contract], [X : person,
Y : person, Obj : object]),
oc(Falsity ¢ falsity,)
describe(Falsity, [Contract1]),
oc(Contract2 : contract),
describe(Contract2, [Y,
Z : person, Obj]),
good_faith(Z, Falsity),
— cannot _set_up(X, Y, Contract?)

17

Now we illustrate how our sortal absorption as well as order-sorted unifi-
cation is useful in finding an appropriate generalization. For this puropose,
suppose we have an initial goal

— cannot_setupla, ¢, registrationf(b, c,imm.X).

Since registration_f(b,¢,imm_X) is a term of sort regisiration which is
not & subsort of contract, the head of the rule and the goal cannot be unified
by order-sorlted unification. Thia unification failure, however, presents us a
useful information about possible generalizations. In fact, as long s & general-
ization s of sort contract is applied to the specific sort registration, & should
be a super sort of both contract and registration. Hence the sortal absorption
should be tried for law ful_act = lub{contract, registration}. Generally a min-
imally specific super sort of contrlact, registration can be a candidate for our
generalization.

The unification failure of unsorted terms simply implies that we need &
generalization. Unlike unsorted case, the unification failure of sorted terms
shows a possible direction to generalize sorts. The operation needed to decide
the direction is the algebraic operation to find a minimal upper bound of & set
of sorts. Thus our sarted absorption will save the computational resources for
a large and complex knowledge base for legal domains.

References

[1] M. Haraguehi A form of analogy as an sbductive inference, In Proc. 2nd
Workshop on Algorithmic Learning Theory, pages 266-274, Japanese Soci-
ety for Artificial Intelligence, 1991,

(2] M. Haraguchi What kinds of knowledge and inferences are needed io realize
legal reasoning? (in Japanese), Proc. 6th symposium on knowledge repre-
sentation and legal reasoning system, Legal Expert System Association in
Japan, 1992,

[3] 5. Muggleton. and W. Buntine. Machine invention of first-order predicates
by inverting resolution, In Proc. Workshop on Machine Learning, pages
339-352, 1988,

[4] 5. Muggleton. Inductive logic programming, in Proc. 1st Workshap of Al-
gorithmic Learning Theory, pages 42-66, 1990.

[5] C.Walther: Many sorted unification, JACM 35, 1, 1-17 , 1988,

[6] C.Beierle et.al.: An order-sorted logic for knowledge representation sys-
tems, Artif. Intell., 55, 149-191 , 1992.

18

A Knowledge Representation for Ethics Case Comparison and Some
Ramifications for Legal Knowledge Representation

Kevin D. Ashley
University of Pittsburgh
Intelligent Systems Program,
School of Law, and Learning Research and Development Center
Pittsburgh, Pennsylvania 15260
ashley@vms.cis.pitt.edu, (412) 648-1495, 624-7496

Abstract

TRUTH-TELLER, a program for testing a case-based comparative evalua-
tion model in practical ethics, compares cases presenting ethical dilemmas about
whether to tell the truth. Its comparisons list ethically relevant similarities and
differences (i.e., reasons for telling or not telling the truth which apply to both
cases, and reasons which apply more strongly in one case than another or which
apply only to one case). The program reasons about reasons in generating context-
sensitive comparisons; it infers new reasons, qualifies existing reasons and consid-
ers reasons in the aggregate. The reasons may invoke ethical principles or selfish
considerations,

We describe a knowledge representation for this practical ethical domain in-
cluding representations for reasons and principles, truth telling episodes, contex-
tually important scenarios, and comparison rules. In a preliminary evaluation, a
professional ethicist scored the program's output for randomly-selected pairs of
cases. The empirical evaluation confirmed that TRUTH-TELLER made compar-
isons robustly and with some degree of context sensitivity.

The work contributes to Al CBR / Al and Law efforts to integrate general prin-
ciples and context-sensitive information in symbolically assessing case similarity.
The work points the way to model symbolic comparizsons of problems to paradig-
matic cases in order to address conflicts of principles. It attempts to integrate
lower level factual dimensions with higher level dimensions and principles through
a variety of techniques such as hierarchical representations of some dimensions and
hierarchical relationships among dimensions. It also furthers research on cognitive
and philosophical models of ethical judgement and decision-making.

*This work is supported the The Andrew W. Mellen Foundation. This presentation reports on wark
performed by Bruce McLaren, a graduate student in the Intelligent Systems Program. Ve are grateful
to Athena Beldecos, a graduate student in the University of Pittsburgh History and Philosophy of
Science Department, for her work in researching casuistic models in the philosophical literature and
her participation in protocols for case comparison. We thank Vincent Aleven for his helpful comments
about evaluating the program. We are also grateful to Ken Schaffner, University Professor of Medical
Humanities, George Washington University, for participating in our preliminary evaluation.

19

Legal Reasoning on a Deductive Object-Oriented
Databases and its Extensions

Kazumasa Yokota
Institute for New Generation Computer Technology (ICOT)

e-mail: kyokota@icol.or.jp

Abstract

A legal ressoning system & & large-scale knowledge information processing system into
which many techoologies such as artificial intelligence, natural language processing, aod
databases arc integrated. From a database point of view, this application has many kinds
of data and knowledge, and provides mauy research topics for next generation databases:
features of very large databases and knowledge-bases, their classification, treatment of
partial information, query processing containing bigh-level reasoning, and so on. Further,
it suggests ideas for the bonmdaries between databases and applications. In this paper,
first, I explain our experimental legnd reasoning system that is based on the dednetive
vhject-oriented database system QuiaoTE, and, secondly, § propose a framework of
heterogeneous, distributed, cooperati “lem solvers Helios as an extension of legal

TeasOning sy stems.

1 Introduction

Recently, legal reasoning has attracted much attention from researchers in the field of artificial
intelligence, with great expectations for its big application. Legal reasoning systems are very
important applications, whose development, like that of theorem provers, dates back to before
artificial intelligence was proposed, (for example, see [5]). In fact, Jaws are related not only to the
judicial world but also to all social activities. To support legal interpretation and reasoning in a
wide range of situations, many systems have been developed, incliding those capable of planning
tax-saving strategies, negotiation of payment of damages, making contract documents, predicting
judgements and supporting legislation. Many works on expert systems for such applications have

been published, while pewerful legal database systems have not yet been reported.

20

In the Japanese FGCS (Fifth Generation Computer System) project, legal reasoning systems
were considered quite critical and a prototype legal reasoning system TRIAL was developed
[8, 7, 12].

For the above systems, we provide database and knowledge-base management facilities: Qu1-
xo7e[11] and Kappa-P [12, 4]. QuzxoTe is a deductive object-oriented database (DOOD) (6, 3,
2)language and knowledge representation language, wsed for describing and classifying complex
legal data and knowledge, while Kappa-F is a parailel nested relational database management
aystemn, used to store large volumes of legal data. Especially, all data and knowledge in TRIAL
is written in QuiroTs and some advanced query processing facilities, such as hypothetical
reasoning and hypothesis generation (abductive reasoning), are provided for legal reasoning by
QurxoTE.

In the experience, we found sevaral features indispensable for future generation database
systems. For the purposes, we are developing a system Helios [10] for heterogeneons, distributed,
cooperative problem solvers, which is alse an extension of legal reasoning systems,

T this paper, first, we report on the experimental system, TRIAL, and illustrate the effective-
ness of the advanced features of the DOOD system. Secondly, based on onr practical experience,
we discuss the roles we expect databases to play in legal applications, and the features that
should be provided for next generation databases, Then, we propose a ramework of Helios as
new legal reasoning systems. In Section 2, we briefly explain some of the features of SrxoTe,
based on an example of legal reasoning and show the effectiveness of a deductive object-orientexd
database in knowledge information processing applications. In Section 3, we discuss the features
demanded for next gencration databases, especially derived from knowledge information process-
ing, and describe a framework of heterogeneous, distributed, cooperative problem solvers for

wore powerfully processing knowledge information, Lastly, we summarize the discussions.

2 Outline of a Deductive Object-Oriented Database Lan-
guage QUIXOTE

2.1 Example

To concretely illustrate the types of problems we are studying, we take the following new case

related to “kardshi” (death from overwork):

Mary, a driver employed by company ‘S," died from a heart attack while taking a

break between jobs. Can this case be applied to the worker's compensation law?

21

We will first give a brief summary of the legal reasoning process we adopted. Next, we will show
part of the legal knowledge necessary for this example, and the desirable interaction sequence
between user and knowledge-base management system to deal with the example. And last.
we will present some requirements of knowledge representation languages obtained from this

example.

2.1.1 Legal Reasoning Process

We decompose the analytical legal reasoning process into three steps: fact finding, statutory
interpretation, and statutery application. Although fact finding is very important, it is beyond
the capabilities of current technologies. So, we assume new cases to already be represented in
a form appropriate for our system. Statutory interpretation is a particularly interesting theme
from an artificial intelligence point of view, TRIAL focuses on both statutory interpretation and
statutory application.

Among the many approaches to statutory interpretation, we decide to use the following

procedure:

1. Analogy detechion
Given a new case, precedents with similarities to the case are retrieved from an existing

precedent database.

2. Rule abstraction
Precedents {interpretation rules), extracted by analogy detection, are abstracted until the

new case can be applicd to them.

3. Deductive reasoning
Apply the new case, in a deductive manner, to the abstract interpretation rules trans-

formed in the previous step. This step may include statutory application because it is used

in the same manner.

Among these steps, the analogy detection strategy is essemtial in legal reasoning for more
efficient detection of better precedents. Analogy detection ultimately determines the quality of
the result. As the primary objective of TRIAL is to investigate the possibilities of QurxoTe
in this area and develop a prototype system, we limit the scope of our present study. That is,
we investigate the extent that interpretation rules should be sbstracted for a new case, to get

plausible answers. We do not attempt to devise a general abstraction mechanism.

a2

2.1.2 Example Knowledge-Base
In this example, we use a statute and a theory for its application:

o labor low: An organization is reaponsible to employee compensation, if the case judgment

is for ‘insurance.’

o theory: If the case judgment is for both *job-causality’ and ‘job-execution’, then the case

judgment is for ‘insurance.’

Assume that there are two precedents related to the law which have already been abstracted as

follows:

o precedent 1 (job-erecution): I an employee has a relation of employment, and this

relalionship causes the case, then the jndgment considers the case part of ‘job-execution.’

o precedent 2 (Job-cousality): In the case, if the disease related incident ocowrred within the

Job's period, then the judgment considers the ease “job-cansal’

Note that these statements are abstracted from certain concrete precedents in the rule ab-
straction step by abstracting concrete concepts (e.g., a case name, or a person name) into
abstract concepts (shown in italics): employee, relation, case, disease, and job. We will show our
unplementation of rule abstraction in section 2.4.1,

Finally, for the above knowledge-base, we consider queries and expected answers.

query 11 According to past precedents and theory, what kind of judgment can we predict

for the new case?

o answer [: If in the new case Mary's activities are work related and they are the cause of

the new case, the judgment is for ‘insurance.’
* gquery 20 According to labor law, what responsibility does Mary's company have?

o answer 2: If in the new case, Mary's activities are work related and they are the canse of

the new case, company ‘S is responsible for compensation.

2.2 OQutline of @iy

From a database point of view, Quzxore is a DOOD language, while, from a logic programming
point of view, it is an extended constraint logic programming language based on subsumption

constraints. In this seclion, we explain some of its features, used in the above example. For

details on QuixoTe, see[d, 11, 12].

23

2.2.1 Object Identity and Subsumption Relation

Simple concepts can be represented as basic objects in QurxoTe. For example, the following are

hasic objects:
mary, driver, employee, male, female, person.
Basic objects are partially ordered by the subsumption relation ‘C’. For example,

mary T driver, driver C employee, male & person, female C persen.

Relations between concepts such as “Mary is a driver,” and “heart attack is a kind of disease”

ean be represented by this partial ordering.
|

|-

Complex concepts, such as “a company whose name is “5°." are represented by object terms
company [neme= “5"],

where company is a basic object, name is a label, and 5 is an object term as the value of name
Basic objects themselves can also be considered objecl terms. Generally, an object term is a

variable or term of the following form:
ol =t dn= fn] (0= m)

where oy, -+ I, are basic objects and ¢, - . ¢, are ohject terms.

Subsumplion relations ‘T between basic objects are extended to ohject terms. For example:

company [name="8"] C company,

compuny [nume="S", president="Johns"] C company |name= 5" |.

2.2.2 Subsumption Constraints

To represent a property of au object, a dotted term is used. For example, mary.employer
represents ‘Mary's employer’.
To represent relations such as “Mary is employed by company ‘8" ", we nse a subsumption

eonstrmnt between an object term and a dotted term:

mary.employer = company [nume="5"],

where 4 2 B means that AC Band BC A
The syntactic constmmct for representing an object term with subsumption constraints is

called an attribute term. Let o be an object term and ¢ be a sel of subsumption constraints,

1 although QUIAOTE can handle object seta as terms, we do not describe this hers,

24

then o|C is an attribute term. QuzaoTe also provides some syntax sugars:

o| {od Tt} @ ofl—d
o|fed Dt} & of[l+—1,
o|{elZt} & of[l =1l
Using these constructs, the following atiribute term represents the new case: “Mary died from a

hieart attack while taking a break.”

new-casef | who=mary, while=break, result=leart-atloek}.

2.2.3 Rules
A rule is defined as follows:
g 4= Q1,7 s Oy || D!

where ag, ay,-- -, 0, are atbribute terws and D is a set of subsumption constraints. ey is called a
head, @y, a2, || D is called a body, and a;'s are called subgoak, A rule means that if the body
is satisfied, the head is satisfied. If a body is empty, the rule is called a fael,

For ::xumplr_'. the fu]lﬂwillg is a rule for judgme.nt:

judge [case=X]/[judge— msurunce |
= judyge [case=X]/[fudge— jol-eausality |,
Judge |case=X|/[judge— job-czecution |
| {X € case}.
It means that if the judgment of a case, fudge [case=X] where X T cuse, is ‘job-causality’
and ‘job-cxecution’, then the judgment is for “insurance’.
2.2.4 Modules

QuzrerTe allows sets of rules to be modularized:
mo{ry, o Taly

where m is an ohject term called a medule identifier (mid) and ry,-- -, 7y are rules,

The definition of roles is extended for external reference of objects:

g 4= My Ay, Ty Gy || DY

where my, -+, my are module identifiers. This rule means if a; and D are satisfied in module my

for 1 < i < n, then ag is satisfied. As an attribute term can be separated into an object term and

25

a set of constraints, the rule can be rewritten as follows:
op |[Co=my oy, ,maton || O,

il < i< n)and C=C U U, WD, I module m has the rule and ag is

where a; = o,
satisfied, we use the expression: "oy exsts in m and has Cy in m.”
Rulez are imported and exported by rule inheritance, defined in terms of the binary relation

{written as ‘Jg') between modules, called a submodule relation:

mq Dy my, my o {f), mpu{Ra} = wig o {Ry Ra), omg o {Ral,

where mq, oy are modules and [y, By are sets of rules.

In a submadule definition, an expression in the right hand side of *Jg’ may be a fonuoula
consisting of module identifiers and set operators. Operators, W) and *\", are provided for
conatructing the union and the dillercnce of two el les.

A database or a program is defined as the triplet (5. M, R) of a finite set 5 of subsumption

relations, a set M of submodule relations, and a set # of rulea.

2.2.5 Query Processing

Query processing in QUIAoTE corresponds to resolution and comstraint solving in constraint
logic programming.

A guery is defined as a pair (A, P) (written 7-4;; P) of a set A of attribute terms and
a program P, where A is referred to as the goal and P othe hypothesis. Consider a database
DB, A guery T-A;; P to DE is equivalent to query 7-A to DEU P (If DB = (8§, My, By} and
P = {5, My, B3) then DRUP = (5 U8y, My U M;, I U I3)). That is, P is inserted into DB
before A is processed. Tn other words, P works as a hypothesis for 7-A.

As hypotheses are incrementally inserted into o database, nested transactions are introduced
to control such insertions. See [11] for details,

An answer is defined as the triplet {D,V, E). D, which is called the assumption part of the
answer, is a set of subsumption constraints that cannot be solved during query processing; V,
the conclusion part of the answer, is a aet of varable constraints that are bound during query
processing; and E, the explanation part of the answer, is the corresponding derivation flow. Note

that only subsumption constraints of object properties can be in the assumption part.

i

2.3 Applications

We have developed various knowledge information processing applications such as natural lan-
guage processing, genomic information procession, and legal reasoning, in QurxoTe. In this
section, we explain the TRIAL legal reasoning system which we implemented in Qaarors. By
showing the overall architecture, a design strategy of a knowledge-base, and an implementation

of the example knowledge-base on TRIAL, we dumonstrate @urxore's utility for constructing

knowledge-bases with partial information,

2.3.1 The Implementation of TRIAL

The overall system architecture is shown in Figure 1.

TRIAL

Interface component

(Jupry
Interfm,u

Registration Answer ’
Interface Interface ;

/Ift::a.suncr component

Raule Deductive ;
Transformer Reasoner

(Dictionary)

: (Statute Precedent
Kumw]mlg-p—lmp Kﬂﬂwlﬁdgg— base Knawledge-hme

Mew Cuase
Knnwledge—baae

*Q-'»

/

Figure 1: Architecture of TRIAL

Maote that the all data and knowledge in the database component is written in QuIyoTe,

In this section, we show how onr example knowledge-base is implemented in TRIAL (as

modules in Qurxore). We also show related query interaction.

The new case is represented as follows:

27

new-case 1 | new-casef [who=mary,
while=break,
result=heart-attack |;;
relation| state=employ, employee=mary |
[|affiliation=organization[name="5"|.
job— driver |},
where ;7" is a delimiter between rulcs.

The statute and the theory of its application are as follows:

tabor-law = { organization [name=X|
[[responsible— compensation |abject=Y, money=salary |
& judge [case=C) [[pudge— insurance |,
relation [state=Z, employee=Y|
/|affilintion=orqanization [name=X||
| {C C case}}.
theary :: { judge {case=X]/lmdge— insurance |
& udge [case=X| [[judge— job-causality |,
judge [cuse=X]|/|pudge— job-execution |
I {X € casc}).
The abstract interpretation precedent rules are abstracted from the original precedent
knowledge-base rules by TRIAL and the parameterization method
cavey | judge| case=X][[judye—s job-ezccution |
<= relation|state=Y .cmployee=Z] [[couse=X], X
| {X Cparm.case, ¥ Cparm.stute, Z Cparm.employee} }.
casey =2 | judge[cuse=X)/|[rudge— job-causality |
&= X/|while=Y, result=Z],
| {X Cparm.case, ¥ [Cparm while, 7 Cparm.resulth}.
The object ‘parm’ represents the abstraction parameters. This object results from abstracting
precedents. Tt is used to eontrol judgment prediction. ts properties are defined as follows:
purm :: | parn/[case=case, state=relation, while=job,
resuli=diseuse, employee=person |}.
To prevent the over-abstraction, these values restrict the range of variables XV, and & in

both precedent rules.

To use ‘parm’ for case; and case;, we define the following submaodule relation:

28

parm Jg cose U casey.

This information is dynanically defined in the rule abstraction step, hecause the choice of
precedents is done on an experimental basis.

The knowledge-base has the following snbsumption relations:

cnse 2 new-case, person 1 mary,
relatiom 1 employee, job-cousality 2 insurance,
disease I heart-atiack, job-ezecution) insurance,
gob 2 break.

We can now query the knowledge-base:

1. According to past precedents and theory, what kind of judgment can we predict for the
new case?
1. new-case : judge [case=new-case |[|judge=X];;
new-ciese g parm U theory.
Nole that the module parm is defined to inherit the abstracted precedent rules. Thus, we
get three answers, in which the first is returned wocouditionally, and the last two inclnde

hypotheses:

{a] X C jub-causaliy,
(b) if new-case : judge |case=new-case | has judge T job-execution, then X T insurance,
() if new-case : relation |state=employ, employee=mary | has couse=mew-case, then X C

TENUTATLE.
2. According to labor law, what responsibility docs Mary's company have?
2 new-case : avganization |name="“§" | /[responsible=X].;
new-case Jg parm U labor-low.
Note that, before issuing this query, the module new-case is alremdy a submodule of

module theory as an effect of the previous query. Thus, two answers arc returned with

generated hypotheses:

{a) if new-case : judyge |cose=new-cose | has pudge C© job-execufion,
then X C compensation [obj=mary, money=salary |.

{b) if new-case : relation [state=employ, employee=mary | has
CUUSE=TLEW-CASE,

then X C ecompensation |obj=mary, money=salary).

29

QurxoTe returns explanations (derivation graphs) with corresponding answers to TRIAL.
The TRIAL uscr interface displays this graphically if requested by the user. Judging an answer

by the validity of the gencrated hypotheses and the corresponding explanation, the user can also

update the datahase or change its abstraction strategy.

2.3.2 Other Useful Features

Some other features of QuzxoTe are also useful to TRIAL system.

Property inheritance mechanism allows to reduce the amount of knowledge descriptions.

s A rule can be designated not to generate any hypothesis. Among the example knowledge-

basez of TRIAL, rules in statute and theory knowledge-hases are designated as such.

& Various browsing commands are available. For example, a module before/after saturation

of rule inheritance can be displayed.

3 Towards New Generation Database Systems

3.1 Knowledge-Bases Reconsidered

From the experiences of TRIAL, we can list several requirements for next generation database

systems, which need nob necessarily be only for legal applications:

1. Provessing partiel snformafion
Ag data and knowledge are often not given in a perfect form. unlike conventional applica-
tiens, we must consider ambiguous or erroneous data as well as null values and logically
incomplete information such as negation and disjunction. In QurryeTe, we use subswmp-
tion constraints to handle ambignons and partially lacking properties. They are nseful not

ouly to knowledge databases but also to scientific databases.

2. Heahzmg an environment for thinking expertments
Answers are not necessarily given uniquely in knowledge information processing, but are
refined by repeating trial-and-error querying with the users. In this sense, the features of

hypothetical reasoning and hypothesis generation are very important.

3. Framework of very large database and Imowledge-base
Classification mechanisms are very important for storing large databases and knowledge-
bases. Subsumption and submodule hierarchies contribute to such classification. Especially,

a framework that allows inconsistent data and knowledge to co-exist is needed.

30

4. Integration of heterogencous datn and knowledge
Fven if we consider only one application, we can find various kinds of data and knowledge
within it. For example, legal data includes large amounts of text data as the primary
data, and abstracted data or knowledge {including rules) as the higher level data. Although
we have not integrated such data and knowledge into TRIAL, the integration of such

heterogeneous data and knowledge will hecome very important.

5. Knowledge discovery in databases
To classify large databases and knowledge-bases, two kinds of knowledge discovery will

be needed: how to find erroneous and lacking information; how to find new knowledge

{abstracted role in the above example).

6. Imtegration of technologies in related ereas
Database technologies have been spreading: for example, we now have deductive databases,
databasc programming languages, deductive object-oriented databases, and wery large
knowledge-bases. More techuologies in many areas such as artificial intelligence, program-

ming languages, and operating systems, should be embedded into database systems.

3.2 Heterogeneous, Distributed, Cooperative Problem Solvers Heltos

Among the requirements in the previous subsection, QuryoTe already supports (1) and (2).
To support requirements (3), (4), and (6), we have been engaged in the new system, Helios,
for heterogeneous, distributed, cooperatibe problem solvers. In this subsection, I describe the

outline,

3.2.1 Approaches

Very large knowledge-bases (VLKB) have been required from various areas such as expoert
systems and applications for their infrastracturea of knowledge information processing. However,
the term, knowledge-base, is frequently semantically overloaded. The confunsion seems to come
from the differences of backgrounds such as databases, expert systems, and applications, and the
differcnces of following approaches.

The first one is related to the design of applications:

+ hottom-up approach:
There are many existing applications, each of which has intrinsic databases, knowledge-

bases, or problem sclvers. New applications may be developed as the combination or

a1

integration of such existing ones as an information system. In databasc arcas, although
multi-databases and federated databases have been investigated as such an approach, they
must be extended to multi-knowledge-bases or a very large knowledge-base as a part of
an integrated information system. In distributed artificial intelligence areas, multi-agent

systems are considered along this approach.

» top-down approach:
As in most of traditional applications, an application, or its problem is divided into
multiple sub-problems, for each of which, a module is developed as a component. From a
database point of view, it corresponds to a {logically integrated) distributed database or
knowledge-base, where each local database or knowledge-base corresponds to a component,
In distributed artificial intelligence areas, distributed problem solvers are considered aloug

this approach.

As these approaches are often mixed up for developing an application, it is difficult to elassify all
applications from such a viewpoint.

The second one is velated to background knowledge:

& database approach:
Databases have been providing more advanced fealures as in deductive databases and de-
duetive object-oriented databases, which support not only a set of data but also a set of
rales or knowledge for knowledge information processing, in other words, databases are
growing to be knowledge-bases. On the other hand, there are many works on heteroge-
neous, distributed databases sneh as federated databases and multi-databases., The inte-
gration of such two directions ean be considered as an approach to very large knowledge-

bases.

s knowledge-hase approach:
Most of conventional expert systems have uwsed small Anowledge-bases. They have showed
limitations of the ability of solving more difficult or unexpected problems. One of the
reasons js considered due to the smallness of such knowledge-bases. To break through such
limitations, extensions of knowledge-bases in the sense are are considered as wvery large

knowledge-bases.

We take bottom-up and database spproaches and expect to provide an integrated framework
for very large knowledge-bases, including distributed problem solvers, multi-agent systems, and

compilter supported cooperative works,

a2

The important points in our approach are to treal a database, a knowledge-hase, a constraint
solver, or an application program uniformly as a problem solver and to integrate multiple
heterogeneous problem solvers as an information system. In this context, heterogeneity means
that each problem solver may be written in a different language and have different problem
solving abilities. In thiz paper, we propose a new framework of very large knowledge-bases
consisting of multiple heterogeneous problem solvers. The basic features of our framework are as

follows;

1. Each problem solver ean be an agent by wrapping in a copsule, which encapsulate intrinsic

properties of each agent.

2. Fach agent can communicate and negotiate with others in an environment, where the

common cominunication protocol and type system can be user-defined.

3. An environment and its related agents can be defined also as a new agent by a capsule,

which hides the internal structure,

4. A user can ask queries to an agent, where the user is considered as an environment for the

agent. Further, a nser can be defined as an agent.

COur contributions in the system are to provide a simple framework for integration and coopera-
tion of multiple heterogeneous problem solvers, the granularity of which is arbitrary, to discuss
relations between globality and locality, and to define the language based on the discussions with

multi-level transformation featires.

3.2.2 Model of Agent and Environment

[n this section, we describe basic concepts and features of our model.

(1) Agent and Message

An agent is an encapsulated autonomous problem solver, which may be a database, a knowledge-
base, a constraint solver, or any application program. Any problem solver [called a substance)
wrapped with a capsule can be an agent as in Figure 2. Ap agent provides a set of method
protocols as a part of its capsule’s definitions, only through which users can send messages to the
agent. Given a message (or a query) to an agent, its capsule interprets it according to its related
message protocol, convert the types of the arguments, the syntax of the message, the variable
environment, and the internal data structure, and send the transformed message to the internal

problem solver (substance).

33

agent

capsule

substance
{problem solver)

Figure 2: Simple Configuration of an Agent

A message to an agent is in the form of a global communication protocol consisting of the
message identifier, the identifier of a sender agent, the identifier of the receiver agent, and a
niessage. Whether an agent with side effect can process multiple messages or not depends on
the ahility of the concurrency control of the substance (nternal solver). For example, if the
substance is an database management system, its capsule send omlliple messages becanse the
substance controls concurrency as one of basic functions, I the substance processes a message

only sequentially, its capaule serialize message passing.

2} Apoents in an Environment
g

Given multiple agents for cooperative problem solving, there must be a common environment,
which knows what agents exist in it, provides common langnage interface, that is, common type
system and data structure, and defines global constraints and communication strategies such as
negotiation. As such an environment and a set of agents in it is also u problem solver, they can

be defined as an agent by a capsule as in Figure 3. An agent consisting of multiple agents is

agen 1

/’ capsule \

environment
G&nt) oo | agent b

Figure 3: A Compound Agent

J

34

called & compound agent, while an agent without an environment (Figure 2) is called a simple
agent.

1f & substance in an agent detects unsolvable constraints (or problems) inside during query
prucessing, the agent throw out them to its cupsule. The capsule converts and transforms the
constraints according to an ezport message protocol into the form of common message in its en-
vironment and throw out it to the enviromnent. The environment dissolves the constraints into a
set of sub-messages if necessary, generates a processing plan, lists candidates for processing each
sub-messages, and throw out them to some of candidates. Each sub-wessage has information
for synchronization of processing the whole message according to the processing plan, which is
controlled locally by the message handler of an agent but not by the environment. An envi-
ronment controls query processing if necessary: listing candidates, which conld solve a problem,
dispatching according to privrity, evaluating answers, and demanding alternative answers. The
main features of an environment is shown in Figure 4,

An environment is responsible for initialization and locating agents. If there are some
homogeneous agents in an environment, it generates necessary numbers of agents from the
corresponding template and allocate them in it. Tf an agent is not located when it is required.
the environment loads and initialize a necessary agent. However, if an agent fails to candidates
for solving & query, the query is thrown out to the onter environment.

MNote that there are two kinds agents: an active and passive agents. A passive ageni only
import messages, that is, it receives a message, process it, and return its answer. every problem
solver can be a passive agent. On the other hand, an active agent both import and exports
messages, that is, it can detect an unsolvable problem inside, send it as a message to other

agents, and receive its corresponding answers,

{3) User as an Environment and an Agent

A user is defined as the outermost environment where there is only one {simple or compound)
agent. If an internal agent cannot solve a problem, the problem is thrown out in the outer
environment. So, users receive unsolvable problems finally. If users return the answer to the
agent, the agent continue to process the suspended message. This model makes prototyping
multi-agent programming in our model easier.

For communication between a user and an agent, a user can give his user model, which
corresponds to a common type system and data structures defined in an environment. Given a
user model to an agent, its capsule transforms all messages between the user and the agent. If

NCCCSSATY, & user can communicate with multiple agents which the common user model is given.

a5

o). e

{a) dispatching

(L synchronization

- ‘*{EEEI] t

(b) planning query processing

{c) evalnation of answers

{d) alternative answers

wpEent

Figure 4: Features of an Euvironment

Furthermore, a user may be defined also as an agent, that is, a user can process a message
gent by itz capsule as an agent. This feature helps not only prototyping a system, but also
comstructing a group-ware environment, if multiple users are defined as agents.

Relations among users and agents are shown in Figure 5.

3.2.3 Features of Language and System

There arc three important concepts to homogenize heterogeneous problem solvers: message,
environment. and capsule. An environment defines a common space where multiple agents can

exists, A capsule is & suit of clothes by which a problem solver can live in an environment. A

36

q 1 environment

AERwmc

environment

aubstance

p—

Figure 5: User as an Environment and an Agent

message is a communication tool by which an environment and agents can work cooperatively.

{1} Message

Every information between an environment and an agent is a message in the form of the

following communication protocol:
{ Messagel D, FromAgent, ToAgent, M essage)

Messagel D consists of a message identity and a synchronization identity. As a message
identity is decided locally by the sender agent, the identity includes local environment and agent
identities to maintain global identity in a distributed environment. When a message is dissolved
into sub-messages, synchronization identitics are attached to each sub-message and coordinator
agents are determined according to the processing plan. For example, assume a message my is
dissolved into m; and ma. Although two message may be processed in parallel, they must be
merged in some agent. If m; plays a role of the coordinator, m; has a synchronization identity
such that ‘wait for my’ and my has ‘post to an agent with my’.

FromAgent and ToAgent are paths of this message, along which answers are returmeddl
to the agent which asked a query. The paths guarantees not ouly the validity of message
transformation, but also make it possible for a message to return not through an environment
except some cases. For example, consider that a query sent by an agent a is dissolvedd by an
agent b into two queries for agents ¢ and d. Answers from ¢ or d cannot be directly sent to

a. because both answers must be merged into an answer in b, where variable environments are

a7

retained.

Message consists of a message itself and control information such as transaction manage-
ment. As the former, there are mainly two kinds of messages: a query and an answer, which are
syntactically differentiated and related by the Message — I, For transaction control, there are

three kinds of messages: begin, end, and abort, as usual.

(2} Environment

An environment, written in ENVL (environment description language), consists of the following

definitions:

* Agent server, where logical and pliysical information of agents are defined. Function names,
keywords, and method names can be also registered for selection of agents. An agent server
is used for searching agents by ambiguous function wammes and listing agent candidates for
processing a message. There are three kinds of directories for the agent server: an agent
directory for relations between agent names and agent addresses, a method directory for
relations of method names and agent names, and a function directory for relations between

function names and agent names.

¢ The common type system and its corresponding data structures are defined in an environ-
ment. In an environment, all data in messages must be strougly t}rpl:.ﬂ to guarantee the
validity of message transformation. Although the definition of a Lype system is arbiteary, a

poor type system might lose information which agents provide, by data transformation.

» Parametric agents {or agent templates) are defined. When there are multiple similar agents
in an environment (for example, n-queen), their common template can be defined as
a parametric agent. Parameters should have enough information to generate necessary

ageihs,

» Global constraints in the environment, are defined. Such constraints shared by multiple
agents are wsed for control information of values which agents can get and information
passing among agents. For example, you ecan see the number of columns and rows as in
n-gqueen a5 unchanged one, and a blackboard as changeable one.

¢ Strategies of negotiation and conflict resolution, writien in ENVL, can be embedded in
an environment, although each agent might have intrinsic strategy. For example, the
covironment can embed the idleness of agents inte a procession plan and its answer

evaluation.

3B

» The ontology for transformation of vocabularies between agents is defined. As each agent
iz autonomous not only in message processing but also in vocabularies, the ontology

translates them among agents aud resolves conflict of their usage.

If a2 new agent would join the environment, those definitions should be conservatively extended.
ENVL does not intend to control inter-agent communication centrally, but shows an ability of
definitions. Even if an environment is defined centrally, it can be replicated as an attachment in
each agent. Users can select which [eatures should be written in an environment or agents.
Furthermare, the following built-in functions are supported in an environment from a system

point of view:

s Management of messages. As an environment is accessed from its internal multiple agents
and its external capsule, all messages which passes in the environment are watched to

avoid deadlock and loop with a time-out. facility.

o Initialization of agents. Agents can be linked to an environment either statically or dy-
namically. In a case of dynamic link, an environment loads agents when they are required,
and generates a necessary number of agents from a parametric agent. An agent dircctory is

generated and maintained by the imtialization.

» Dissolving a message and creating a processing plan, There are two cases: a message
with multiple messages to reduce communication cost and naturally dividable multiple
messages. In both eases, a messages is analyzed and a processing plan as a dependency

graph is created by an environment,

s Parallel processing. In the case of an agent without capabilities of coneurrency control or
paralle]l processing, an environment manage its copies for parallel processing.

s Control of candidate agents. An environment decides to send a message sequentially or
parallelly to candidates listed by the agent server.

o Evaluation of results, control for alternative processing, and composing a solution. A
query sometimes accompany & set of constraints for satisfiability check of answers. An
environment sends an snswer and a set of constraints to the related agent if necessary.
Depending on the evaluation results, an environment decides whether alternative message
processing is necessary or not,

» Management of ontologies and transformation of vocabularies in messages. A message
should be comverted and translated at multiple levels, among which an envircnment is

responsgible for vocabulary translation among agents.

39

s Unsolvable query. When all agent does not solve a query, the environment send the query

to the outer environment through its capsule.

These features are selected according to the definitions in ENVL.

{3) Capsule
A capsule, written in CAPL (capsule description language). consists of the following definitions:

o Identity and substance. Although a substance might be simple or compound, it is defined
as an agent with the identity.

s Method protocol. There are two kinds protocols: émport and ezport. An import defines
a protocal which the agent ean accept, while an export defines a protocol which the
agent asks processing to external agents, Already mentioned, import protocols are defined
in every agent, which export protocols are defincd only in active agents. According te
such protocols, the syutax and semantics are converted and transformed between an

environment and an internal substanes. A method directory in a environment is generated
from this definitions.

o Transformation of messages. As for transformation of a syntax and types. CAPL provides
definition facilities, while, as for transformation of internal data structure (inciuding van-
able environments), only names of transformation programs to be called are specified for
sl plicity.

o Self model. Besides a set of methods, what an agent can do is defined as the self model of
an agent. A function directory in an envirommenl is generated from this medel.

® Lock information. Whether the substance can accept multiple messages or not is specified.

If not, messages are serialized by the capsnle,

From & systew poiut of view, a capsule has the following features:

+ Management of messages. Both import and cxport messages are managed with a time-ont
facility for non-activity. long transaction, and external processing.

» Synchronization of dissolved messages. According to a processing plan created by an envi-
ronment, some agent plays a role of a coordinator, which is responsible for synchronization
of sub-messages aud merging of their results.

o Conversion and transformation of a message. This process is very complex: for example,

ronsider the differences among Prolog, Lisp, and C. Even if a message belongs to an

40

untyped language, all the argnments are strongly typed, converted, and transformed into
the common form of the enviromment. This process is bi-directional because its answer
must be transformed in the intrinsic form of the substance. As a user must specify how to
type, convert, and transfurmn messages, and vice versa in CAPL, he is respansible for the

semantical validity and the lossless of information during this process.

(4) Substance (Problem Solver)

There are two kinds of substances (problem solvers) from onr model's point of view: pasgive
and active problem solvers. A passive problem solver receives a query through its capsule from
other agents and returns an answer, but does not send a query to other agents, while an active
problem solver can send a query and receive its answer through its capsule from other agents. If
the message gueue in the capsule is considered as a part of an environment, the active problem
solver can be said to be aetive from an object-orientation point of view, because the problem
solver can watch the message queuc autonomously. An agent with an active problem solver is
called active and an agent with passive problem solver is called passive.

Any application program, database, and knowledge-base can be a passive agent as it ia by a

capsule, while some additional features are required to be an active agent. They are as follows:
» Pursing of unsolvable problems as a part of the syntax of the langnage.
¢ Detection of unsolvable problews during query processing,
» Sending nnsolvable problemns to its capsule and receiving its answers.
e Couversion of answer:
— Conversion between Boolean values (true/false) and success/failure.

— "Ireatment of set values which are returned as answers from other agents.

~ Aceeptance of new constraints evaluated by other agents.
For making an agent active, the specific design of the problem solver or the modification of the
language processor is reguired.
3.2.4 Examples of some Applications

We are considering more applications such as a heterogeneous natural language processing
system, a Leterogeneous distributed file system, a legal reasoning system, a genetic information

system, a free agent system in baseball, and a sumo system.

41

Here we show an outline of a sumo system, which we are investigating for the prototype

system. We intend to solve the following problems:
¢ How many wins are necessary for a sumo wrestler X' to be promoted?
There may be many expectationg.
s Who will win at the next tonrnament?

& Which is the winner at the match of sumo wrestlers X and Y7

The history of their matehes shounld be referenced.
¢ How can the tomorrow’s list of matches be planned?

There are many constraints for matehes.

We prepare about 10 ageats fol the above problems: a database of snmo wrestlers, a
database of records of matches, an arithmetical constraint solver, a tournament caleulator, a
date caleulator, a promotion mle base, a swme council, a newspaper, and so on. Two databases
are stored in Kappa, miles such as promotion and aggregation of records are written in Quz
xore, and algebraie constraints are weitten in GDCC.

The intercsting points in this example are as follows:

¢ Combination of heterogeneous problem solvers,

« Conversion of SQL to database agents.

The possibility of a very large database of records.

s Constraint satisfaction problem for preparing matehes,

* Inconsistent expectations by Lhe sumo conneil and newspapers.

¢ Historical dala management of sumo wrestlers and their record,

¢ Transaction management also in agents without concurrency control.

4 Concluding Remarks

In this paper, I overview two topics:

* TRIAL and Quixore
I explained a prototype system, TRIAL, for legal reasoning aystem, hased on a deductive
object-oriented database language, Qurryors, and pointed out many effective features of

QuzxoTe for legal reasoning,

42

s Helios
I gave an outline of a system, Helios, for heterogeneous, distributed, cooperative problem
solvers. The ubjective of the system is not an extension of Qurxore itsell, but an
integrated framwork of many problem solvers including QurxoTe. As legal reasoning
needs varous kinds of data and knowledge, Helios will show more effectiveness in legal

applications than QuryoTe.

Our dicision in these activities was based on such comsideration that many applications need
not only extensions of a single language, but alko an integrated cooperative framework of
heterogeneous problems solvers, including databases, knowledge-hases, constraint solvers, and
application programs.

QurxoTe and p-Quzxore systems, which run under TUNIX, have been released as ICUT free

software. As for Helios, we already implemented the first version of the prototype system, which
supports only basic functions and to describe small applications. Through this experiments,
the performance of commuunication among processes was analyzed. We are now investigating
specifications of CAPL and ENVL for the second version and deseriptions of confliet resolution
and negotiation sirategies for the third version. At the same pace, we are doing experiments for
describing application including the above sumo problem. This Helios will be alse relensed as

ICOT free software soom.

Acknowledgments

1 would like to thank Chie Takahashi, Toshilkiro Nishicka, and Satoshi Tojo for many com-
ments on this early draft, and all members of Qurrxore and Helios projects for their valuable

discussions.

References

[1] A. Aiba and . Hasegawa, “Constraint Logic Programming System: CAL, GDCC, and their
Constraint Solvers”, Proc. Int. Conf. on Fifth Generation Computer Systems, ICOT, Tokyo,

June 1-5, 1992,

[2] 8. Ceri, K. Tanaka, and S. Tsur (eds.), Deductive and Object-Oriented Databases. (Proc, the
Third Int. Conference on Deductive and Object-Oriented Databases (DOOD93)), LNCS 760,

Springer, 1993.

43

(3]

[4]

151

(6]

[7l

[9]

C. Delobel, M. Kifer, and Y. Masunaga {eds.), Deductive and Object-Oriented Databases,
{ Proc. the Second Int. Conference on Deductive and Object-Oriented Databases (DOOD'91)),

LNCS 566, Springer, 1991.

M. Kawamura, H. Sate, K. Naganuma, and K. Yokota, “Parallel Database Management
System: Kappa-P', Proc. Int. Conf. on Fifth Generation Computer Sysfems, 1COT, Tokyo,

Jurne 1-5, 19092

L.0. Kelso, “Does the Law Need a Technological Revolution?,” Rocky Mt Law Rev., vol.18,

pp.378-392, 1946.

W. Kim. J-M. Nicolas, and 5. Nishio (eds.}, Deductive and Object-Orented Databases, (Proc.
Ist i, Conf. on Deductive and Obgect-Oreented Databases (DO0DSR)}, North-Holland, 1990

C. Takahashi, K. Yokota, “A Legal Reasoning System on a Deduetive Ohject-Oriented
Databass” Proc. Sth nl Himy Kmiy f:'n'rr.l]lmhcr ﬁl'un'r‘rfy Databnse H"'r}‘r.l:ﬁ‘fmp. Kow Loon,

Hong Kong, February, 1994,

N. Yamamobo, “THIAL: a Legal Rensoning Svstem (Extended Abstract),” Joint French-

Jupunese Workshiop on Logic Programming. Henne, Franee, July, 1991,

H. Yasukawa, H. Tsoda, and K. Yohota, “Ohjects, Properties, and Modules in Qurrore,”

Froc, Int. Conf, on FGOS, ICOT, Tokye, June 1-5, 19492,

[10] K. Yakata and A. Aiba, “A New Framework of Very Large Knowledge Bases”, Proc. i

Conf. on Building and Shariny of Vary Large-Scale Knowledge Bases 03 {KBEKS'0F), Tokyo,
D, 1-4, 1993,

11} K. Yokota, H. Tsuda, and Y., Morita, “Specific Features of a Deductive Object-Oriented

Database Language Qurrers,” Workshop on Combining Declarative and Object-Orented
Databases, (ACM SIGMOD'83 Workshop), Washington DC, May 29, 1093.

[12] K. Yokota and H. Yasukawa, “Towards an Integrated Knowledge-Base Management System

— Overview of R&D on Databases and Knowledge-Bases in the FGCS Project,” Proc. Ini.
Conf. on FGOS, 100T, Tokyo, June 1-5, 1992,

44

Legal Knowledge
Representation: A View from
the Backbench

David B. Skatak
Dapd, of Computer Science
University of Massachuseits
Amhearst, MA 01002
UEA.
sxalak @ s umnans e

o .

Three Systems

«HYPO (Ashiay, 1980)
=CASARET
* Bank XX

CABARET

BankXX: Heuristic Search Supplies
Argument Building Blocks

L
ECTTE oy

46

Some First Reprasentation Steps

« Slakutes

Second Steps

+Lagal theories
« Recurring situations {factual prototypes)
«Lagal argumants

——— B
Legal Theorles Legal Theory Example
Fame EETUS- THECAY
lacizs F-aap el ¥ .
yrTien-hitoey. 420807, s it
mltmﬂmnﬂumuxrﬁcu.
[p T e B R L g g e Tt
. IO Tl M S S0, BRI rpadamm,
In terms of faclors mm#‘r . doou i
*Ways ta combing tha laciors eumey rele! 30ugh T, malnlion nconhy fazin:,
« Theary madification mathods e ey

i

Edasremuigatng Esiu

clsas -y Enlus, Frhyges, Mabachak
cabat AmEring el

Enuis-agaomy | Bh-cena

descrpnor ‘Thasry sppSed 1 i s cans i e Esa. B35 F 2d 311

[S, VML ik s el 117, L7

46

Legal Theory Space

L7 & i Thaoy
‘;"':"","“/-
Aimgais Mooy
o

Legal Theory Modifications (Methods)

«limit-theory-by-incraasing -preraquisie-factons

* ghift-burden-of-parsursion
T * r‘w.ig'ﬁ-l.ma-
Pras B b A R TR
N + mtudert Soan
Factual Prototypes Examples;

«Tradfa sacrats misappropration (HY PO, Ashley)
= Incoma tax: home ofice daduction
= Bankruphey

e

Factual Prototypes

+ciwil judgmeni lien
- Eamily farm
rdinhansar Ashrar
ipmdical calamicy
»gredit cmrd junkie
+auzosnbile debe
*hohedt dEBESE
+Fankrupiey TepRarer
s iRERErupEsd Income
=divarce

P ENREERTanEE

+ irresponeibles dshioc
* howsouner

*glimy middle ¢lizs wanipulsssc

47

Canons of Inlerpretation

«Ganeral languags in & statute, althaugh broad enough to
include & paricudar matiar, will not be hald 1o apply bo it if
specifically dealt with In ancther part ol the sama stabuste.

=To inchede one thing i %0 exclude ancdher

*Language of a provision should be takan in the contexi of a
stalule as a whola

i

Computational Legal Representation:
Fronts for progress

+Procedural knowladge
= Legal {re)search control knowledge
= Dutfuse knowladga
= Infarmation need for argument

m

Argument Reprasantation

= Sterectypical forms of arqurrent
= Infarmation reseds for anguiment

Argumant Pieces
= fhoel cages
*leating cases
*SUPPOMNG CALEs

*cases $haring a lasge proponion of damain lastars

s*contrary best cases for e Opposing vidwpoint

scanfrary cases Eupporing the cpposing viewpoint

=dimensional analysis of the currend problgm
*supponng citlations
+family resemblance protatype
*the laciual pretalype siony categany of the case
=appliicable supporing legal heones

e *NEMY BpPRCALIE SURPOTnG lepal Neories

48

Legal Research and
Search Control Knowledge

*Laaming search control knowledge
+ Evaluation function
«What is tha conmect faature baved?

o

A Problem?

+Evaiuation of argumanis
+A) argd e suparhuman laliacy

The Flip Side of Representalion

= Evaluation

49

A Formal Model of Legal Argumentation

GIOVANNI SARTOR

Abstract. The paper gives a formal reconstruction of some fundamental pattems of legal reasoning, iniended to
reconcile symbelic logic and argumentation theory. Legal norms are represented as unidirectional inference rules
which can be combined into arpuments. The value of each argument (its qualification as justfied, defensible, or
defeated) is determined by the imponance of the rules it contains. Applicability arguments, intended to contest or
support the apnlicability of legal norms, preference arguments, purporting to establish preference relations among
norms,, and interpretative arguments are also formalised. All those argument types are connected in 2 unitary model,
which relates legal reasoning to the indeterminacy of the legal system, intended as the possibility to derive
incompatible defensible arguments. The model is applied 10 permissive norms and normative hierarchies, and is

implemented in a Prolog program.

The notion of a formal legal argumentation seems to be self-conmradictory: For a long time the
two “logics” of legal reasoning — formal symbolic logic and argumentation theory — have been
developing separately, in a reciprocal incomprehension, if not in an open clash.

Scholars following a formal approach have privileged the search for correctness,
controllability, and certainty, and have therefore stressed the lack of rigour and the
indeterminacy of the theories of argumentation. Argumentatica has been reduced to logical
deduction or non-deductive argumentation has been confined in a “heunstic” moment intended to
preparc or control the premuses of logical deduction.

The theorists of argumentation have instead emphasized the conflict of opinions. the
evaluation of alienatives, and the performance of rcasonable choices. They have therefore
condemned symbaotic logic for its incapacity to capture these fundamental aspects of moral and
legal reasoning.

Some authors have attempted to avoid the conflict between logic and argumentation by
distinguishing the internal justification of the legal decision. mainly intended as its deduction
from consistent legal axioms, and the external justification of those axioms, in which informal
argumentative procedures play a major role. This last conception seems prima facie 10 preserve
the rights of both logic and informal argumentation, distinguishing their competencies. but may
on the contrary motivate a minimisation of the role of formal methods: since deductive
procedures (and therefore the “internal justification” as intended by those authors) find a very
limited application in legal reasoning, the most significant moments of legal reasoning arc
pushed into the indeterminate domain of extemal justification.

The altemative between logic and argumentation must instead be overcome by extending
formal methods outside the domain of deduction, to the moments of dialectical conflict — and
therefore of choice and evaluation — which charactenise legal and moral reasoning. For this
purpose we need a model of legal reasoning satisfying both requirements of formality and
isomorphism, which seem respectively to express fundamental motivations of symbolic logic and

argumentation theory:

« Formality. The model must be expressed in a formal language, defined by a compositional
syntax, and over which formal inference procedurcs (and, possibly. formal semantics) are
established.

= Isomorphism. The model must not be too far from the intuitive, natural language based, legal
argumentation. We can distinguish two aspects of isomorphism: (a) scructural isomorphism,
meaning that the formal language must preserve the typical linguistic structures of legal
language (Bench-Capon and Cohen 1992). and (b) procedural isomorphism, meaning that the
formal inferential procedures must be easily mappable into typical forms of legal
argumentation.

50

Giovanni Sartor

Both formality and isomorphism are necessary in a legal logic intended, sensu largo, as a
formalism to analyse and evaluate legal arguments (and to support them by means of computing
procedures).

Formality favours analysis: It grants rigour and precision in representing legal arguments and
allows analytical results 10 be extended and checked by syntactical computation. Formality is
equally important in a normative prospective: It facilitates the exact evaluation, according to the
proposed model, of real argumentation pattems.

Isomorphism also facilitates analysis: A model clarifies the structure of legal reasoning so far
as it mirrors this structure. Isomorphism is equally relevant for normative models, which can
influence legal reasoning only insofar as they embody the typical patterns of the latter: Effective
rationality patterns for legal argumentation cannot be too distant from legal praxis, and from the
ideals that the participants associate to that praxis.

1. A formal characterisation of legal argumentation

We will now specify a formalism for legal reasoning intended to satisfy both requirements of
formality and isomorphism, and so define the core of a model of legal argumentation. This
formalism is the first step of an ongoing work, but it already offers some valuable results: It
intuitively represents complex legal contexts, it can follow the dynamics of legal disputes, and it
simply conceptualizes some controversial problems of legal theory.

1.1. Reasons and argumentation frameworks

If legal argumentation is a discourse in which — as Alexy (1992) recalls, citing the German
Constitutional Court — “reasons are put forward. other reasons are opposed. and finally the
better reason should determine the decision”, its atomic components must be reasons, generally
intended as any statements put forward in course of an argumentation. We represent reasons as
inference rules, which have the form A if B, and ground the derivation of the conclusion A
whenever the condition B is satisfied. The formal property of inferénce rules — a concept
subsuming notions independently developed in different domains, such as the warrants of
Toulmin (1957) and the defaults of Reiter (1980) — is mono-directionality. They can be used
only forward (modo ponente) and not backward (modo tollenre). The consequent A can be
derived whenever the antecedent £ is satisfied, but the negation of 8 cannot be derived when A
is assumed 1o be false. Tnerefore the if connective in inference rules must be distinguished from
logical conditional.

We also admit categorical (or degenerate) inference rules, which allow the unconditioned
derivation of any instance of their conclusion A. Categorical inference rules express different
types of ungrounded assertions: (a) staiements of undisputed empirical evidence (facis); (b) basic
and very general normative postulates; (c) tentatively advanced propositions for which no
ground is currently available!.

A simple type of inference rule is here used: The consequent of each rule is a literal and the
antecedent is a conjunction of literals®,

Def. 1. Inference rules. An inference rule is a formula of the type <r: ppif py and ... and
pa>. where ris the rule name, each pj is a literal, if is the connective relating

| Some formalisations of argumentation, such as Simari and Loui {1992) and Prakken { 1992). distinguish inference
rules and other types of informazion, such as necessary and contingent knowledge. To simplify our model we will
not go into these distinctions.
2 A titeral is an atomic formula or the negation of an atomic formula, More exactly, a positive literal has the form
plx). where p is a predicate symbol and x is a list of terms, and a negative literal has the form not p(x). where not is
logical negation. The complement § of a literal ¢ denotes the literal opposed to g: if ¢ is a positive literal p, then §
represents the negative literal not p; if g is the negative literal not p. then T represents the pasitive literal p. In the
per, 1o make logical formulae more readable, predicates are represenied as sequences of words, and tenms appear
inside the corresponding predicates. in italics.

a1

A formal model of legal argumentation

antecedent and consequent in inference rules, and expresses logical conjunction.
Categorical inference rules have simply the form <r: p>, where p is a literal.

Rule names are required to express meta-norms (meta-reasons). While rule names are expressed
in natural language with such expressions as “ant. 2043 of the Italian Civil Code”, 2 rule name r
has in our formalism the form <flxy. xq)>. where fi5 a new function symbol and xj. ..., X

are the free variables in the rule. Substituting xj, ..., x, with appropriate terms 4, ..., {5 We
obtain names f(¢1..... fp) for all instances of the rules. For example, the name

PrivacyProtection(PhotoByJohn, Mary) denotes the application of the abstract rule
PrivacyProtection(x, y) to the individuals (the photo and Mary)} whose names have been
substituted for the variables accurring in the name of the abstract rule.

Inference rules containing variables must be interpreted as general assumptions, in which
quantifiers are implicit (universal closures), or better, as sherthands for all ground instances of
those rules (all instances obtained by substituting individual names for variables). Here are a
general norm and a corresponding ground instance:

FrivacyProtection(x, ¥): 1t is not permined w publish ¢ if x concemns the privacy of ¥,
FrivacyProtectionl PhatoBySohn, Mary):
it is mot permitted o publish PhotoBySoha if Photofiyohn concems the privacy of Mary.

The categorical rule F) expresses a fact:
F1: PhotoBydghn concemns the privacy of Mary,

The significance of a reason (an inference rule) in an argumentation, is determined by its role in
the set of the reasons so far put forward, ie., in the available argumentation framework.
Argumentation frameworks do not need to be consistent, and will not be consistent, in all those
cases in which a real discussion, involving reasons and counter-reasons, has taken place. We can
for example imagine that Mary asserted — in the debate conceming the publication of a photo
taken by John without her consent that her personal image concems her privacy and is
therefore not to be published. while John proposed 1wo objections: (a) being Mary a well-known
person, her photo is of public interest, and therefore can be published, (b) in any case the photo
was taken is an open public place, and therefore does not concemn the privacy of Mary. The set
of the proposed reasons can be formalised in the following argumentation framework @y:

dag={ Publicationd iberty(x): it is permined o publish x if x is of public interest
PrivacyProtection{x. ¥): it i5s not permined to publish x If x concems the privacy of y:
ImagePrivacy(x, ¥i: & concerns the privacy of v if y's image occurs in x and v is recognisable in x;
PublicPlaceix. y): x does not concern the privacy of v if x concerns ¥'s behaviowr in an open public place;
Fy: PhotaBySobn is of public unerest
Fa: Mary's image appears in PhoioBylohn;
Fy: Mary is recognisable in PhotoByJohn;
Fy: PhotoByJohn concems Mary's behaviour in an open public place).

1.2. Derivability

Our limited language offers a simple notion of derivabiliry, centred on the notion of inference
rule: The consequent of (any ground instance of) an inference rule r in a rule set £ can be
derived from £ when all conjuncts in the antecedent of r have already been derived from I.

Obviously. the content of any categorical inference rules can be unconditionally derived.

Def. 22 Derivation. A derivation of pg from a rule set £ is a finite sequence such that pg is the
last element of the sequence. and every preceding element is the consequent goof a
rule (instance) <r: goif p; and ...and p,> in £ such that py, ..., pa precede go in the

sequence.

52

Griovanm Sartor

Def.3: Derivability. A statement pg is derivable from a rule set I iff there exists a derivation
of pg from Z. In such a case we also say that I argues for p.

Def.4: Argument: An argument for p in argumentation framework I is a consistent minimal
subset A1 of (the ground instances of the rules in) I such that Ay argues for p.

Arguments can contain any specifications (ground instances) of general rules. For example, by
combining an instance of rule PublicationLiberty, and fact F, we obtain argument B for the

permission to publish Mary's photo:

B=|PublicationLiberty{PhotoByJohn): it is permitted to publish PhatoByJohn If PhotoByJohn is of public interest;
Fy: PhotoByJohn is of public interest},

B allows the derivation Dy:
D} =| PhotoByfohn is of public interest; it is permitted to publish PhotoByfohn).
Let us now consider the two requirements of arguments, minimality and consistency:

- The minimality requirement eliminates redundant information, allowing only the rules
necessary to derive the conclusion of the argument. Minimality is no real restriction, since any
set of reasons for a conclusion can be reduced to a2 minimal set, simply by discarding
redundant assumptions.

+ The consistency requirement corresponds to the fundamental rationality criterion according to
which a reasoner should not contradict himself {Alexy [1978] 1991, 235f), This requirement
is applied to single arguments, and therefore only 10 specific (ground) rule-instances.

Derivations can be represented as trees, to emphasize the inferential process for reaching the
conclusion of the argument. The top node of the tree denotes the conclusion of the argument;
each intermediate node is an intermediate result necessary to complete the derivation. The
combination of an upper node and the set of the lower nodes related to it by arrows denotes an
inference step, that is the elementary inference consisting in deriving a rule consequent (the
upper node) when all conditions in the rule antecedent (the lower nodes) are met. The
argumentation framework ®g, besides the argument B for the permission to publish
PhotoByJohn. includes the following argument Ba for the prohibition to publish that photo,
which grounds the derivation of Figure 1.

Ba=| PublicationLiberry(PhotoByfohn, Mary):
it is not permitted 1o publish PhotoByJohn if PhotoByJohn concemns the privacy of Mary:
PrivaryProtection PhotoBvJohn, Mary): PhotoByJohn convems the privacy of Mary if
Mary appears in PhotoByJohn and Mary is recognisable in PhotoByJahn.
F3: Mary appewrs in PhotoByfohn;
F3: Mary is recognisable in PhotoByJokn].

a3

A formal model of legal argumentation
Figure 1. A derivation and g sub-derivation from argument B2

it is not parmined to publish PhatoByJohn

FPhotoByJohn concems the privacy of Mary

N

Kary is recognisable in Photo8yJohn

Mary's image occwrs in PholoByJafhn

1.3. Subargument

To reach the conclusion of an argument intermediate conclusions may have to be drawn. Each
one of those conclusions is the final point of a minor argument, that we call subargument.

Defl.5: Subargument. A) 15 a subargument of Az 1ff A is included in A2 (4 < A2).
Def. 6 Strice subargument. Ay is a strice subargument of A2 iff A is strictly included in Az
(Al = A2). ie. T Ay is included in, but nol egual to. A2,

For example, to reach the conclusion of argument By — the prohibition to publish the photo —

we need first to establish that the photo concerns Mary's privacy. This conclusion is inferred by
the following strict subargument B3 (the corresponding sub-derivation is circled in figure 1).

Bi={ImageF rivacy(PhoigByiohn, Maryy: PhotoBySohn concemns the privacy of Mary if
Mary's image occurs in PhotofiyJokn and Mary is recognisable in Photo8yJokna,
F2: Mary's image occurs in PhotafiyvJokn.
F3: Mary is recognisable in PhaioBytohn |

1.4, Opposing argument and counterargument

In our model, consistency is required in single arguments, not in the whole argumentation
framework. Argumentation is in fact required when a choice in needed, since there is a contrast
of interests. theses, and points of view: Conflicting reasons are usually put forward in any
argumentation framework. To conceptualise the notion of conflict precisely, we need to consider
that an argument can be questioned not only by contesting its conclusion, but also by contesting
any previous inference step. We need therefore to distinguish two concepls: opposing argument
and counterargument. To oppose an argument is to contradict its conclusion.

Def. T: Dpposing argument. A| opposes Az iff A concludes for p and A2 concludes for 7. In
such a case. we also say that A and A are opposed.

A counterargument, instead. does not need to oppose the ultimate conclusion of the aracked
argument: [t may also oppose any intermediate inference step (any subargument) in that

argument.

Def. 8: Counterargument. A| counterargues Az iff Ay opposes any subargument of A3,
B1 and B3 above are, ¢.g., opposed arguments, while Ba

54

Giovanm Sartor

Bys| PublicationLiberty(PhotoByJohn, Mary):
PhotoByJohn does not concem the privacy of Mary if
PhoioByJohn concerns Mary's behaviour in an open public place)

opposes the subargument B3 of B2 and therefore counterargues B2, although not opposing B2.
Non-opposing counterarguments express preliminary or “prejudicial” objections. In Figure 2 we
can see the relation between an argument and its preliminary counterargument.

Figure 2. Derivations for an argwnent and @ preliminary counlerargument

Argument for q Counterargument for p
~®p
—

-

Directcoffict
—

Subargument for —p

1.5, The comparison of arguments

Opposed arguments determine perplexity: They push the rcasoners towards incompatible
conclusions. To ¢xit perplexity a choice is required, which may be greatly simplified by the
following assumptions:

+ Only opposed arguments must be compared. The relevance of a prejudicial counterargument
must be assessed comparing it to the opposed strict subargument.

- The comparison of the opposed arguments can be reduced to the comparison of their top
rules.

Both assumptions correspond to the intuition that derivations are developed step by step: When a
derivation step has been performed, and it is able to sustain all possible critiques, it cannot be
further questioned because of conscquences derived by applying other inference rules Lo its

conclusion?,
To solve argument conflicts we nced to express preference relations between rules. For the

moment we state only categorical and consistent preference assertions. represented in the form
<p: r; is preferred to rj>, where p is the name of the preference assertion, and »; and r; are the
compared rules, To specify the relation between opposed argument. we first need the notion of
top rule, intended as the rule establishing the conclusion of the argument. An argument for p
cannot conlain more than one rule instance establishing p. since arguments are minimal.

3 On the intuition behind this assumption, cf. Sartor (1993, 193) and Prakken (1992). A differemt approach would
consist in requiring that the succumbing the argument conains a rule inferior Lo all rules in the sed one, This
approach would come near to the models of Alchourrén (1986) and Alchourrén and Malkinson (198

55

A formal model of legal argumentalion

Def. 9: Top rule. The top rule of an argument A for p is the only rule r such that r is contained
in A} and r has the consequent p.

The conflict between opposed arguments is to be decided according to the comparative strength
of their top rules.

Def. 10: Prevailing argument. Ay prevails over A7 iff the top rule of A| is preferred to the top

rule of A3,
Def, 11: Succumbing argument. A) succumbs under Az iff A2 prevails over 4.

For example, if we add to the argumentation framework above the following preference:

PiPrivacyProtection{x, ¥}, PublicationLibertyix, ¥)]: PrivacyProtection(x,) is preferred o
FPublicationLibernx, ¥1,

we can than easily establish that By and B2 are opposed (B argues for “it is permitted to publish
PhotoByJohn™ while B argues for “it is not permitied to publish PhoroByJohn") and that B
prevails over Bz (the top rule of By, PrivacyProtection(PhotoByJohn), is preferred to the top
rule of By, PublicationLiberry(PhotoByiahn, Mary).

1.6, The relative strength of arguments

Argument frameworks can be abstracted from their human and social environments — contra,
cf. Perelman (1979, 6) — although their content depends on the initiative of the involved
parties: The parties infroduce their reasons in the existing argument framework and can always
provide further reasons, but in any state of the argumentation only the so far proposed reasons
establish the merit of a claim To determine the current value of an argument — Le., its value in
the current argumentation framework — we need concepts taking into account every possible
interference among all arguments suppornied by that argumentation framework.

First we identify those arguments able 10 express relevant critiques: directly defeating and
directly questioning arguments.

A directly defeating argument is able to invalidate the opposed argument (that we call directly
defeared). It must not only prevail over the atlacked arguments, but it must also be justified
{overcome all cnitiques) in the whole argumentation framework.

Def. 12: Directly defeating argument. A direcily defears Az iff: (i) A) opposes A2, (ii) Ay
prevails over A2, and (i} A1 is justified,

Def. 13: Defeating argument. Ay defears A7 iff Ay defeats any subargument of Az

Def, 14: Defeared argument. Ay is defeared il there is an Az such that Az defeats A).

A directly questioning argument is able to put into doubt, to make unsure the opposed argument
(that we call directly guesrioned), without necessarily invalidating it. A dircctly guestioning
argument must not cnly sustain the comparison with the opposed argument (it must not succumb
under the latter). but must also be defensible {capable to stand all critiques) in the whole

argumentation framework.

Def. 15: Directly questioning argument. A| directly questions Az if: (i) A} opposes A2. (i) A)
does not succumb under Az, and (i) Ay 15 defensible.

Def, 16: Questioning argument. Ay guestions A2 iff Ay directly questions a subargument of A 3.

Def. 17: Questioned argument. Ay is guestioned 1] there ¢xists an A2 such that A2 questions Ay,

The capability to stand possible critiques distinguished arguments into justified, defensible, and

defeated ones.
A justified argument indicates a sure or justified conclusion, since it overcome any

counterargument, i.e., it is not questioned.

56

Gipvanni Sartor
Def. 18; Justified argument. An argument is justified iff it is not questioned.

A defensible argument is able to indicate a possible or defensible conclusion, since it withstands
all counterarguments {although it does not necessarily overcome all of them). L.e., it is not

defeated.

Def.19: Defensible argument. An argument is defensible iff it is not defeated.

The notions of justified and defensible arguments specify the concept of merely defensible
argument:

Def.20: Merely defensible argument. An argument is merely defensible iff it is defensible but
not justified.

A merely defensible argument Aj clashes against a counterargument Az such that Az questions
Ay. but does not defeat it. This may happen because the top rule of Az does not prevail over, nor
succumbs under, the top rule of the opposed subargument of A, or because a subargument of
Az is also questioned.

The notions so far introduced allow us to distinguish different classes of legal conclusions:

Def.21: Logical conclusion. A literal p is a logical conclusion from an argumentation
framework IT iff p is a logical consequence of T1. The notion of logical conclusion is
of very little use, since, as we have seen, argument frameworks are normally
inconsistent and from inconsistent premises any arbitrary logical consequence can be
deduced. Every literal is therefore a logical conclusion from any inconsistent IT.

Def. 22: Supported conclusion. A literal p is a supported conclusion from an argumentation
framework [T iff [T includes an argument for p. All supported conclusions are
therefore sustained by some argument, which, nevertheless, may be overridden by
Counteérarguments.

Def. 23: Defensible conclusion. A literal p is a defensible conclusion from I iff IT includes a
defensible argument for p. Defensible conclusions are thus supported by arguments
that are nol worse (but not necessarily better) then the corresponding
counterarguments. They include all supported conclusions. except those attacked by
justified counterargurments.

Def.24: Justified conclusion. A literal p is a justified conclusion from T iff IT includes a
justified argument for p. Justified conclusions are supported by arguments that are
berter that any counterargument. They include all defensible conclusions, except those
attacked by defensible counterarguments.

Let us now apply to the argumentation framework ®g above the notions just introduced. If we
do not introduce any preference assertion in @y, we have merely defensible arguments for both
the permission and the prohibition to publish the photo, to wit respectively By and B2. Those
arguments are merely defensible, since they question one another: They are opposed and there is
no preference relation between their top rules. By is also questioned by the prejudicial
counterargument Ba, which also is merely defensible, being unable to prevail over the opposed
subargument B3. Let us now also assume the following preference:

PalPublicPlace(x, ¥). ImagePrivacy(x, v)1: PublicPlace(x, ¥) is preferred o fmagePrivacy(z, y)

stating that publicity of the behaviour in open public places prevails over privacy concerning
personal image. This preference relation makes By prevail over B3. and thus defeat B3 (since Ba
has no other counterargument). Therefore also By, including B3, is defeated, and Bj. freed from
its only counterargument. becomes justified. We can therefore derive the justified conclusion

that the photo can be published.

87

A formal model of legal argumeniation

{.7. Norms as inference rules

In the model here proposed, legal norms are not always able to produce their effect when the
provided conditions are met. Their antecedent only normally or defeasibly justifies their
consequent, where “normally” or “defeasibly” means “unless a relevant (defensible or justified)
counterargument can be raised™.

Defeasibility is a precondition of argumentation: Only if reasons are defeasible can they be
discursively opposed and balanced. Defeasibility is also required in monological legal (and
moral) reasoning, which is also centred on adjudication between competing reasons: Concrete
situations can have many legally (or morally) relevant aspects, expressing conflicting interests
protected by the law, so that the overall judgement resuiting from the comparison and balancing
of all those interests cannot be required from each single normn — that separately considers a
single aspect and suggests a comesponding legal solution — but can instead be achieved only by
the comparative evaluation of the competing defeasible norms and arguments?,

Against the formalisation of norms as defeasible inference rules. it may bc objected that the
antecedent of each norm can be extended with the negations of all possible circumstances
preventing the effect of the norm. In this way a perfect conditional norm can always be
obtained, the consequent of which is “legally true” whenever its antecedent is satisfied. Against

this approach. a number of critiques may be raised:

= The structural isomorphism objection. Statements included in legal texts are not perfect
conditional norms. Even when there is no doubt on the legal effect established for each
specific situation, legal language prefers to use separate norms: a defeasible rule stating the
general discipline, and exceptions opposing that discipline under special conditions.

* The combinatorial explosion objection. Each perfect conditional norm requires an absolute
casuistic precision: Its antecedent must be cxtended with all the possible (coexisting or
alternative) situations susceptible o exclude the realisation of its effect. This style of norm
formulation leads to an enormous number of norms, each with an endless antecedent.

+ The deep representation objection. Legal norms are intended -tu_regulate and balance
conflicting interests. The distinction between the separate provisions concerning each of those
interests on the one hand. and the criteria for their balancing on the other, emphasizes the
substantial motivation behind every legal norm, that would be obscured when one single
normative statement expressed the result of all comparative evaluations.

= The indererminacy objection, Perfect conditional norms assume that all normative conflicts
have been deflinitely solved: Only in this case — by conveniently extending the condition of
the weaker norms — can we obtain a consistent set of logical conditional. As we shall see in
the following, it is true that legal decision makers are obliged to solve normative conflicts, but
this task should not be transformed into a false postulate (the consistency of legal systems).

« The defeasible inference objection. The conclusion of a defeasible inference rule whose
condition is satisfied, can be blocked only by a counterargument. which must be included in
the available argumentation framework. If the argumentation framework ducs not include
such a counterargument, we are authorised to derive the conclusion of the defeasible rule.
This pattem corresponds 1o a general feature of legal reasoning (a) a legal conclusion must be
drawn whenever the facts grounding it have been proved, even if the facts impeding it have
not been disproved. but (b) if thosc last facts (the so-called exceptions, or impedient facts) are
proved, the legal conclusion must be retracted. Instead, the conclusion of a perfect conditional
norm can be derived only when the proof of all elements in the (conjunctive) antecedent of the
normn is given, included the proof of the negations (i.e., the disproof) of all impeding factss.

The acknowledgement of the defeasibility of all norms tends to eliminate the distinction
between "rules” stricto sensw and principles, or at least 1o overcome its conceptualization as a
structural, or logical, diffcrenceS. In our model all norms are amenable to the logical treatment

4 On partial, and therefore defeasible, moral evaluations. cf, WD, Ross (1930; 1939).

5 On the relation between exceptions and perfect conditional norms, cf. Sartor (1991).

6 In this sense, cf., among others, Dworkin (1977, 24f0) and Alexy (1985, TI). Analyses of the historical
evolution of the concepts of rule and principle — such as Pattaro { 1988) — suggest much less clear-cut distinctions.

58

Giovanni Sartor

usually reserved to principles: They are reasons that may be defeated by prevailing
considerations to the contrary, but are not irrelevant, since their conclusions must be accepted so
far as these considerations are not proposed and supported in the current argumentation
framework. We can therefore understand the relative certainty of legal conclusions, and reject
both the illusion of an absolute security and the fall on a compete scepticism.

It is true that rules (but also principles, however they are defined) can be strengthened by
extending their antecedents with the negations of their exceptions, but this extension just
expresses a comparative evaluation in which the not yet extended rule has been defeated. This is
confirmed by the logical propertics of exceptions (just remarked in the defeasible inference
objection above): The disproval of all exceplions is not necessary to derive the consequent of the
norm, but the proof of an exception is sufficient to block this derivation. When we say “p if ¢
unless 5", where 5 is an exceptional situation. we do not mean “p if ¢ and not 5" (where not s
means that s is false) but we rather synthesize the rule p if ¢, and the meta-assertion that this last
rule is not to be applied under the condition s, in which some prevailing norm establishes a
conclusion incompatible with p {or with the derivation of p by means of the involved rule). Until
s is not proved (derived), we are not able to argue for that incompatible conclusion, and
therefore we still can defeasibly denve p.

1.8. Applicabiliry and undercurting arguments

According to Toulmin (1958, 93ff 103ff), in the structure of every argument we can distinguish
two components: the warranr (the inference rule iiself). and its backing (the substantial ground
supporting that rule). In our formalism, in which rules are given names, backings can be driven
back to arguments: A backing is simply an argument pleading for the application of a certain
inference rule’. Besides arguments for applying an inference rule, there may also be arguments
against its application. Both types of arguments are here called applicabiliry argumenis, and are
characterised by culminating into applicability rules, that is in meta-rules asserting that other

rules are not (or are) applicable.

Def. 25: Applicabiliry rule. An applicability rule is an inference rule. the consequent of which

has the form <r is applicable> or <r is not applicable>, where “r” is a rule name.

Here comes the question whether every rule must previously be shown to be applicable. or
whether it may be used, insofar as no argument for its disapplication emerges. The latier
solution seems preferable, since otherwise a regressum ad infinirum would take place, in search

of backings. backing for backings. and so on.

Inapplicability rules require that the oppose relation is generalized so that it includes not only
rebutting arguments (those contradicting the conclusion of the opposed argument), but also
underculling arguments (those pleading for the inapplicability of the top rule of the opposed

argument)s:

Def. 26: Rebuiting argument. Ay rebuts A3 iff A concludes for p and A2 concludes for p.

Def.27: Undercutting argument. A| undercurs Az iff Aj concludes for “r is not applicable”
where ris the top rule of Az

Def. This: Opposing argumeni (new definition). A| opposes Az il (i) A) rebuts A or (it) A,
undercuts Az.

To illustrate the expressiveness of the linguistic structures just introduced, let us consider an
example from Italian tort law. Let us assume that Mary wants compensation from John, saying
that he crashed her fence with his car. Here are the rules to be applied (corresponding to an.
2043, 2048, 2046 of the lialian Civil Code):

Wo= { FaultLiability(x, dY: x is liable for 4 if x has accomplished damage o by fault;

s

7 The notion of backing is also considered in the formal argumentation model of Gordon (1993).
B For this terminology. cf. Pollock (1987).

L

A formal model of legal argumentation

ParemtLiabifity(x, y, d): xis liable for y if x is a parent of y &nd y is liable for d;
Incapabifiry(x.). x is not liable for 4 if x was incapable while accomplishing 4.
ImpossiblePrevention(x, y, d):
ParentLiabiliry(x, y. d) is not applicable il x could not prevent his son y from accomplishing d;
Culpableln-apabity(x, d): |
Fnrapability(x,) is not applicable if x was culpably incapable while accomplishing d;
Pz, d); Incapability(x,) is preferred to FawltLiability(x, oY,
Pax, v, d): ImpossiblePrevention(x, v,) is preferred w Parentliabilicy(x, y, d);
Pyix, d): Culpablelncapability(z,) is preferved to facapability(z, d)).

1.9. Exceptions

Three types of legal statements can be found in the argumentation framework ¥yo:

+ Basic norms, such as Fauliliability and ParentLiabilicy. which state substantial legal effect.

= Rebutting excepiions, such as Incapabiliry, which establish that a certain legal effect does not
hold under certain conditions, and rebut (all) norms establishing the negated effect;

o Undercunting excepiions, such as ImpossiblePrevention and Culpablelneapability, which
indicate that a cerain norm is not to be applied under cenain conditions. Those exceptions
only concern the undercut norm, and do not prevent its effect from being established by

means of other rules.

Usually. exceptions are not “taken seriously” in legal theory: Even those authors going beyond
imperativistic models — such as Larenz (1992, 145ff) — consider exceptions as parts or
fragments of norms, to be integrated into the norms to which they refer. Against this reduction
we must again recall the objections indicated above, and especially the defeasible inference
objection: The conclusion of the rule derogated by an exception, must also be derived when
there is no information about the exceptions (Sartor 1993). All exceptions are here separate
inference rules, which prevail over the opposed (rebutted or undercut) norms. Arguments
culminating in exceptions defeat arguments culminating in the opposed norms — when the
exception arguments are not themselves questioned or defeated by their own counterarguments
— and 50 block the denvation of the consequents of those norms.

1.10. Non-monotonic reasoning in law

The combination of rules and exceptions contributes to a fundamental characteristic of legal
reasonng. non-monotonicity. A reasoning is called monoronic when it satisfies the following
condition: if it derives a statement p from a set of premises ITy. then it also derives p from every
super-set Ty of Iy, obtained by adding further premises o I1y. Logical deduction is typically
monotonic: Mo logical consequence gets lost by extending the premises from which it has been
deduced. In non-monotonic reasoning, instead. a statement p derivable from I1; may not be
denivable from the super-set ;. Non-monotonicity allows us to understand the dynamics of
legal debates. in which new information may invalidate conclusions provisionally derived?. The
reasoning model here proposed is non-monotonic, since new information may render new
arguments possible, which may defeat previously valid ones. For example, let us extend Wq with

the following assertions:

F1: Jokn has accomplished the damage FenceBreak by fuull;
F2: Markis a parent of Joha.

¥ Non-monotonic logics (Ginsberg 1987; Brewka 1991) offer precise formalisations of defeasibility, a conce
fundamental in legal reasoning, but so far only occasionally and informally considered in legal theory (Hart 1949;
Baker 1977; Raz 1978), although some fundamental fegal-theoretical problems, such as the distinction between rules
and principles, scem reducible to it Nonmenotonic logics also solves some puzzling logical problems discussed by
legal theorists, such as Weinberger (1975), who contested the application of the falsum rule, and Philipps (1966).
who tried (o deal with rules and exceptions using inwitionistic logic. On nonmonetonic reasoning in law, cfr.
Gordon (1988, 1953), Jones and P (1991), Hage (1993). Prakken (1992, 1993), Sartor (1991, 1992, 1993).

L]

Giovanm Sartor

The resulting argumentation framework ¥ (V' =Yg v {F1; F2}) offers justified arguments
for the liability of both John and Mark. The argument C; for John's liability is the following:

Cy = | FoultLiabiliny{John, FenceBreak):
Jokn is liable for FenceBreak If John has accomplished the damage FenceBreak by fault,
F{: John has accomplished the damage FenceBreak by fault],

The argument Cz for Mark's liability (see in Figure 3 the corresponding derivation) is
obtained by adding to C; (whose sub-derivation is circled in Figure 3) the fact F7 and the rule

instance:

ParentLiabilindMark, John, FenceBreak):
Mark is lizble for FenceBreak if Mark is a parent of John and Sohn is liable for FenceBreak.

Figure 3. The derivation of parent liability by argument Cy, including subargument Cj.

Mark is liable for FenceBreak

Jaha is liable for FenceBreak

Mark is a parent of John

John has accomplished the damage FenceBreak by fault

Mark can free himself from liability by satisfying the antecedent of an exception. ¢.gz.. by
proving that John was incapable at the moment of the accident:

F3: John was incapable while accomplishing Fencefreak.

In the argument framework W2 ="y v [F3] it is possible to develop the following argument
C3. counterarguing both Cy and Cz:

C1 = {lncapability(fokn, Fencefireak):
John is not liable for Fencefreal if Sohn was incapable while accomplishing FerceBreak;
F4z John was incapable while sccomplishing FenceBreal |.

The conclusion of C3, that is </ohn is not liable for FenceBreals is derived by means of the

exception Jncapabiliry, and this conclusion contradicts the assertion of John's liability, in which
C} culminated, thanks to the rule FaultLiability. [ncapabiliry prevails over FaultLiability (thanks
to the preference assention Py) and consequently Cy is directly defeated. Also Cz, which includes
C1(C is a subargument of Cz), is defeated: C3 prevents the derivation of Johns liability and so

prevents a necessary precondition of the liability of John's father.

Let us now assume that Mary assens that John's liability was due to his fault (e.g., his
incapability derived from drunkenness):

Fa: John was culpably incapable while accomplishing FenceBreak.

In the argument framework V'3 = W2 v [Fa}, C; is undercut by:

61

A formal model of legal argumentation

Cy = | Culpablelncapabitv(John, FenceBreak):
Incapabiliry(Jokn, FenceBreak) is not applicable if
John was culpably incapable while accomplishing FenceBreak;
Fg: John was culpably incapable while accomplishing FenceBraak].

C4 defeats Ci(by the preference relation P2) and consequently Ca can no longer defeat Cy and
Cz: These last arguments recover their validity and again establish the liability of John and Mark
as justified conclusions. Let us now assume that Mark affirms he could do nothing to prevent
John's action: He surely did his best to bring up his son. More exactly, he affirms the following

rule and fact:

GoodUpbringing(x, y, d): x could not prevent his son y from accomplishing o if x brought ¥ up well;
Fs: Mark brought John up well.

In the normative context ‘¥4 so obtained (W4 = WYy v (GoodUpbringing, F5}) Mark's liability
fails, while John's liability remains. C; (conceming John) is no longer attacked by any valid
counterargument, while C {conceming Mark) is defeated by Cs:

Cs={ImpossiblePrevention{Mark, John, FenceBreak):
fncapability(Mark, John, FenceBreak) is not applicable if
Mark could not prevent his son Sokn from accomplishing FenceBreak;

GoodUpbringing(Mark, John, FenceBreak):
Mark could not prevent his son Jokn from accomplishing FenceBreal if Mark brought Jokn up well;

Fs: Mark brought John up well],

Mary does not question that Mark has given a good upbringing to his son, but she denies the
relevance of this fact: She affirms that only a specific hindrance to control John justifies the
statement that Mark could not prevent the fact, and denies that such a hindrance exists in the

concrete case.

FaossibleControlix. ¥.): x could prevent his son y from accomplishing o il x ways able to conmol y,
Fy: Mark was able 1o control John,

These additional premises transform ¥y inta W4 (Wa = W5 U [PossibleControl, F7)), which
offers a counterargument Cg, questioning Cs:

Ca=(PossibleCantral{Mark, fohn, FenceBreak):
Mark could prevent his son John from sccomplishing FerceBreak if Mark was able o conwol John:
F7: Mark was able 1o control John|.

Let us assume that no clement emerges allowing PossibleControl to prevail over
GoodUpbringing or vice versa. We must then conclude that Cs and Cg — which contradict each
othcr and have the same “strength” — are both merely defensible. Mark's liability, being
contested by a questioned argument (Cs), is itself merely defensible.

L1 Interpretation arguments

Mary could adopt a different strategy to contest the last argument of John (Cs); She could
contest the Goodllpbringing rule affirming the inapplicability of that norm;

InapplicabilityGoodUpbringing(x, v. d): GoodUpbringingir, y. o) is not applicable.

This move is sufficient to block — in the argument framework ¥4 - W3 u
{InapplicabilityGoodUpbringing | — the application of the GoodUpbringing rule, since John has

62

Giovanni Sarior

given no backing (no argument) for the applicability of that rule!®. If John wants 10 maintain the
rule, he must state, e.g., the general principle that correct statutory interpretations constitule
applicable rules and the interpretative assertion that Goodl/pbringing constitutées an exact
interpretation of art, 2048 of the Italian civil code. which is a statutory provision:

StatuteAuthority(x, y); x is applicable if x is the comrect interpretation of y and y is a stamtory provision;
Interpretative Thesis|(x, y, d): GoodUpbringing(x. y.) is the correct interpretation of 2048 ltalianCivilCode;
StarutoryProvisiony: 2048lalianCivilCode is a startory provision.

In the argumentation framework ''s = Y4 U [StatuteAuthority, InterpretativeThesisy,
StatutoryProvisiony } the applicability of the GoodUpbringing rule in the case at hand (involving

John, Mark and a fence break) becomes the conclusion of the following argument:

Cr=| StatuteAuthority(Good Upbringing(fohn, Mark, FenceBreal), 2048 alianCivilCode)):
GoodUpbringing(John, Mark. FenceBreak) is applicable if
Goadlpbringing(John, Mark, FenceBreak) is the correct inerpretation of 204 8lalianCivilCode and
2048 italianCivilCode is 2 stamiory provision;
frugrpretative Thesisi(Jakn, Mark, FenceBreak). .
GoodlUpbringingJohn, Mark, FenceBreak) 15 the correct interpretation of 20480 alianCivilCode;
StatutoryProvision|: 2048MalianCivilCode is a stattory provision.

Argument C7 may be assumed to prevail (by specificity) over the unconditioned assertion of
the inapplicability of the GoodUpbringing rule, and therefore to defeat it'!.

InterpretativeThesis) also is an unconditioned assertion. It can be rebutted by an opposed
interpretative argument Cg based on the interpretative canon that only literal interpretations are
(usually) correct, and the interpretative thesis that /mpessiblePrevention is not a literal

interpretation:

LiteralinterpretationCanoni x, ¥): x is not the comect interpretation of y if ¢ is noi a literal interpretation of y.

fnterpretativeThesisax, ¥, dl
Goodlpbringinglx, y. d) is not a literal interpretation of 2048/ alianCivilCode.

Ca=| LiterailnierpreiationCunont Good UpbringinglMark, John, FenceBreak). 2048 alkianCivilCode).
GoodlpbringingiMark, John, FenceBreak) is not the comect interpretation of 2048 talianCivilCode if
GoodUpbringing(Mark, John. FenceBreak) is not a liveral interpretation of 2048/talianCivilCode:
InterpretativeThesis2{Mark, John, FenceBreak),
GoodUpbringing(Mark, John. FenceBreak) is not a literal interpretation of 2048 ralignCivilCode .

More generally, any statutory interpretation canon can be expressed as an interpretalion rule,

Def.28: Interpretation rule. An interpretation rule is a rule whose consequent has the form <r
is the correct interpretation or y> or <x is not the correct interpretation of y>, where
xis a norm and y is a legal texL

Def.29: Interpretation argumeny. An inferprefation argument is an argument whose top rule is
the instance of an interpretation rule.

We cannot continue the discussion concerning interpretation arguments — on which, cf.,
among others. Wrobléwski ([1969] 1983) and Gianformaggio (1987). Here, it is sufficient to
remark that the model here proposed allows interpretative arguments to be combined with
substantial ones. in the sense that arguments pleading for substantial assertions (such as John's

10 We assume that underculting rules normally prevail over the norms to which they refer. In nexi paragraph, after
having introduced the notion of preference rule, we will formelly state this principle.

11 We will go into the complex problems conceming specificity comparison, which is here assumed as a primitive
notion, but is analysed in & number of technical contributions io nonmonotonic reasoning, such as, for example
Poole (1985), Nute (1988), Simari and Loui (1992), Gefiner and Pearl {1992). Formal notions of specificity are
applied to legal reasoning by Prakken (1992), Ryu and Lee (1992). and Loui et alii (1993).

63

A formal model of legal argumentation

liability) may be defeated, questioned, of supported through applicability arguments, depending
upon interpretative arguments.

I1.12. Preference arguments

In the previous example we have considered the dialectic of legal reasoning in a framework of
established preference relations, where the dynamics of legal argumentation was determined by
new facts and interpretative theses. In hard legal problems, nevertheless, comparative
evaluations are the central issue: Preference assessments also have to be argumentatively
justified. We will therefore extend our argumentation model to preference assessments, by
defining the notion of preference argument, which will be characterised as the argument making

use of a preference rule'?,

Del. 30: Preference rule. A preference rule is an inference rule whose consequent has the form
<ry is preferred 0 r3s or <ry is not preferred to r2» where r| and r2 are the

compared rules.
Def. 31: Preference argument. A is a preference argument iff the top rule of 4 is a preference
rule,

Conflicting preference-arguments — one asserting that r| is preferred to r2. the other, that r2 is
preferred to rj — must again be solved by a meta-preference argument establishing a preference

relation between the involved preference rules.
To take into account preference arguments, we need to modify the notion of prevailing

argument slightly:

Def 10bis: Prevailing argument, Ay prevails over A2 iff A1 opposes A2 and ir is a justified
conclusion that the top rule of A} is preferred 1o the top rule of A3.

Note that this definition requires that preference relations are established as justified conclusions,
i.e., by means of justified preference arguments. This allows arbitrary levels of meta-
argumentation to be developed: The justification of a substantial argument A; may require a
jJustified preference argument PA. establishing that the top rule of Ay is preferred to the top
rule of an opposed argument Az the justification of A} may require a justified meta-preference
argument PPA |, establishing that the top rule of PA) is preferred to the top rule of an opposed
preference argument FA3: the justification of PPA [may require a justified meta-meta-
preference argument PPFA |, and so on.

Preference arguments allow us to argue about comparative evaluations. To show the power of
this extension of our formalism. we will go back to a judgement of the German Constitutional
Court, the “Lebach Urnteil”, illustrated in Alexy (1980). This decision concemed a television
documentary about a serious crime, in which the names of the participants in the crime were
mentioned and their photos shown, One of those participants (who had a minor role in the fact)
affirmed that this programme violated his privacy and compromised the chances of his social
rehabilitation, and therefore violated his personality right (right to the free development of the
personality) protected by the German Constitution, The German Constitutional Court, as Alexy
observes, grounds his decision in three steps:

a. The Court admits that in the present case a comparative evaluation is necessary since two
conflicting constitutional provisions are applicable: the right to privacy, excluding the
publication of private information, and the right to communication, granting the liberty of
propagating information. Moreover, it observes that none of these rights 15 to be
unconditionally preferred to the other: Only the panicular circumstances of the single case
allow a choice 1o be made.

12 Here a simplified formalisation of the notion of preference is proposed, which is nevertheless sufficient for our
purposes. The extension of preference assertipns into preference rules was suggested to the author of the present
contribution by F. Lachmayer.

04

Giovanni Sartor

b. It affirms that the interest of the public to be informed by television about crimes usually
overcomes the serious violation of privacy regularly determined by television programmes
conceming criminal facts. This predominance, nevertheless, is not to be recognised when

those fact are no longer actual.
¢, It concludes that, under this last circumstance (as in the Lebach case), showing a documentary

concerning a criminal fact is not admissible if it can determine a new or additional prejudice
to the author of the fact.

Our language allows a straightforward formalisation of the argument of the German Court.

a. Incompatible prima facie conclusions. In the first step the Count observes that prima facie
two alternative conclusions are derivable from the constitutional rules. The comesponding
argumentation framework ©p can be represented as follows:

Bp=| PrivacyFrotection(x): x is not permitted if x violates privacy,
CommunicationLiberty(x): x is perminted if x is a form of communication:
PrivacyViolarion{x): x violaes privacy if

x is the television rogramme about a criminal fact mentioning the authors of that fact;

CommunicationForm(x): x 15 a form of communication if
x is a television programme abour a crimina! fact mentioning the authors of that fact;
Fl: LebachProgrameme is a elevision programme about a criminal fact mentioning the authors of thar fact).

The rules PrivacyProtection and CommunicarionLiberty express the constitutional evaluation of
privacy and communication; the rules PrivacyViolation and CommunicationForm specify the
constitutional rules in relation to the facts of the case: The television programme about a
criminal fact, which indicates the authors of this fact. constitutes both a communication and a
violation of privacy; £ is the basic fact of the case. Without any preference relation we are able
to derive, as the Court did. two merely defensible conclusions: The programme is forbidden by
the argument

Ej=|PrivacyProtection(LebachProgramme); LebachProgramene is not permitied if
LebachProgramme viplates prnivacy;
PrivaryViolationi LebachProgramme): LebachProgramme violales privacy if
LehachProgramme is 2 television programme about a criminal fact mentioning the authors of that fact;
F|: LebachProgramme 15 2 1elevision programme about 2 criminal fact mentoning the authors of that fact],

while it is permitted by the argument

E2={ CommunicarionLiberrviLebachProgramme): LebackProgramme is permitied if
LebachProgrameme is 2 form of communication;
Communicationt orm(LebachProgramme): LebachProgramme is a form of communication if
LebackProgramme is a television programme about 3 criminal fact mentioning the authors of that fact,
F: LebochProgramme is 2 television programme about a criminal fact mentioning the authors of that fsct}.

b. First comparative evaluarion. The instances of CommunicationLiberty that concem a
television programme of the indicated type are usually preferred 1o the comesponding tnstances
of PrivacyPratection:

CommumicationPreferencelx): ConvmnnicationLibertyix) is prefered to PrivacyProtection(x) if
x is the television programme about a criminal fact mentoning the authors of that fact.

The preference rule CommunicationPreference strengthens argument Ez. More exactly the
argumentation framework ©) = {©g w CommunicationPreference] offers a preference
argument P; — including the rule instance CommunicationPreference(LebachProgramme) and
fact F1 — for <CommunicationLiberty(LebachProgramme)} preferred to
PrivacyProtection(LebachProgramme)>. This argument makes Ez defeat E;, and therefore

63

A formal model of legal argumeniation

makes the conclusion of Ez (the permission of the programme) justified. Nevertheless, the
judges also affirmed that this preference only exists for programmes on present facts, i.e., that
PrivacyProtection is not applicable to programmes shown a long time after the concemed facts,

as the Lebach documentary:

SubsequentFaci(x):
CommunicationPreference(x) is not applicable if ¥ was shown a long time after the concerned facts,

F7: LebachTransmission was shown a long ume afier the concerned facts,

We also assume that undercutting rules are generally preferred to the rules to which they refer:

UndercuntingPreference(ry, ra): 1y is preferred to r7 if /) has the consequent “17 is not applicable™.

©2 = (O w SubsequemtFacr, F3 UndercuttingPreference} includes a counterargument —
containing the rule instance SubsequentFaci(LebachProgramme) and the fact F3 — that
undercuts the preference assertion CommunicationPreference. Therefore, the conflict between
PrivacyProtection and CommunicationLiberry remains undecided: Both contradictory legal
qualifications of the Lebach programme remain merely defensible.

¢. Second comparative evaluation. To reach a justified conclusion, a second comparative
evaluation is needed, establishing that privacy prevails under the conditions of the case:

PrivacyPreference(x): PrivacyProtection{x) is prefemed to Communicationliberty(x) if
xis a welevision programme about a eriminal fact mentioning the authors of that fact and
x was shown a long tme after the concerned facts and
X causes a new violaton of privacy.

Let us add the last fact:
F3: LebuchProgramme causes a new violation of privacy.

In the argumentation framework @3 = (@7 W PrivacyPreference, F3}. the preference argument
P2 — wncluding the rule instance PrivacyPreference(LebachProgramme) and fact F3 — argues
for <PrivacyProtection(LebachProgramme) is preferred to
CommunicationLiberty(LebachProgramme)>. P2 allows E; to defeat E2, and so justifies E1's
conclusion, to wit the non permissibility 1o show the Lebach documentary. Note that our
formalisation immediately reflects the structure of the argumentation of the German Court. in a
precise formalism.

2. The legal system as an argumentation framework

The model here proposed emphasizes the richness and the variety of the logical structures of
legal language: all statements (obligations. permissions, authorisations, applicability rules,
interpretation rules. preference rules, definitions, etc.) susceptible to being used in justifying
legal conclusions are fully entitled legal norms. All those statements, although different in
meaning, function, logical status (some of them, in particular, are meta-statements) can be used
in a uniform way in deriving legal conclusion — i.e., as inference rules — and interact
reciprocally in the game of arguments and counterarguments.

Morcover. if we accept thar the legal system contains general rules and exceptions. conflicting
norms. principles expressing incompatible legal interest. and we take those aspects seriously, we
must reject the raditional postulate of the consistency of the legal system, and consequently the
image of the legal system as an axiomatic base, all whose logical implications should be accepted
as (justified) legal conclusions. We must, instead, come to consider the legal system as an
argumentation framework. that is as a repertory of material to be used (in combination with the
ascertained facts) in the struggle of competing arguments and meta-arguments,

66

Giovanni Sartor

The vision of the legal system as a heterogeneous, stratified. and inconsistent argumentation
framewaork does not exclude the importance of coherency standards: On the contrary, we need
those standard to permanently rationalize incoherent legal systems. The most elementary of those
standards, which could advantageously substitute the false postulate of consistency, is the ideal of
determinacy. We can distinguish a relative determinacy, conceming single factual cases, and
absolure determinacy, concerning all possible cases.

Def, 32 Relative determinacy. A legal system I is determinate relatively (o a case K iff the set
T w Kp has no merely defensible consequences.

Def.33: Absolute determinacy. A legal system £ is absolutely determinate iff, in every possible
case K. the set £ w K; has no merely defensible consequences.

A (relatively or absolutely) determinate legal system I is “certain”, in the sense that every
conclusion derivable from it is either justified of defeated: E can be applied without doubts (in
the case K at hand, or in all possible cases). An indeterminate legal system, instead, is uncertain,
in the sense that it offers defensible arguments pro and contra certain legal conclusions. Every
indeterminate legal system originates inconsistent legal argumentation frameworks, when
extended with the appropriate factual assertions. but the converse is not always true: Preference
relations may establish determinacy in inconsistent argument frameworks.

Determinacy is a fundamental ideal for both legislation and legal argumentation. It cannot
instead be considered an objective quality of every legal system, so hiding the creative nature of
the activities intended to rationalize the legal system in order to approximate determinacy. To
understand those activities, two attitudes towards the legal system must be distinguished:

a An extemal (or realistic) point of view, that regards law as the set of criteria de facto used
by legal decision makers. The external view is adopted by the “observer” who intends the
describe the normative contexts in which legal decisions take place. or to anticipate those
decisions.

b. An internal {prescriptivistic) point of view that considers law as the set of criteria that
should be used (according to some normative mode!l of legal reasoning) in legal decision-
making. This view is adopted by the “participant”, who intends to take, justify. or suggest 2
legal decision

As far as the (a) aspect is concered, an indeterminacy arises when altemalive legal premises —
alternative legal ideologics (A. Ross 1958) — are effective in society, or may anyway seem
susceptible to being accepted by legal decision-makers. In such a situation, certainty of law is
compromised, since the citizen is not able to anticipate the legal decisions conceming his
behaviour. Legislators, judges, and legal scientists should try to correct this situation (issuing
new legal texts, stating new decisions, proposing new interpretative arguments). but external
indeterminacy cannot certainly be eliminated simply by “postulating” the consistency or the
coherence of the legal system.

As far as the (b) aspect is concemned. instead. an indeterminacy arises when a person involved
in a legal evaluation (typically a judge. but also a legal scientist. a civil servant, or a simple
citizen) is perplexed. since his legal assumptions include conflicting reasons, grounding
incompatible conclusions, upon which meta-reasons do not establish a precise ranking. Every
internal (prescriptivistic) reconstruction of the legal sysiem inevitably presents a certain degree
of absolute indeterminacy. Nevertheless, this indeterminacy must be overcome when it produces
a relative indeterminacy in the case at hand: The perplexed legal decision-maker cannot suspend
his judgement nor adopt arbitrarily one of the altemative (merely) defensible solutions. This last
solution would violate the universalisability principle (Hare 1962: Alexy 1978] 1991, 250ff).
requiring that equal cases are solved in the same way: Different cases. equal in all relevant
aspects, could be treated differently by choosing alternative defeasible solutions. Therefore.
relative determinacy of the intemal point of view must be pursued, by adding new reasons to the
argumentation framework, until no merely defensible conclusion can be derived, as far as the
case at hand is concemed (this aspect is well represented in the Lebach example).

67

A formal mode! of legal argumentation

This does not mean that there i always just one right legal solution (that the legal system can
be postulated to be absolutely determinate, or that there is just one way to obtain determinacy),
but rather that the legal decision-maker should try to reach relative determinacy by providing
his best reasons — in the framework of the socio-legal-political ideologies he endorses. these
ideologies also being susceptible of extensions and adaptations, There is a complex relationship
between relative and absolute determninacy: The additional reasons, added to a legal system X to
obtain relative determinacy in a case K, being applicable to all possible cases (according to the
mentioned universalisability principle), may render X determinate also in future cases K1, ...,
K;, and therefore contribute to approximating the ideal of absolute determinacy, but may also
produce new undecided normative conflicts and so make I indeterminate in other cases Kj, ...,
Kp. so furthering that same ideal.

The additional reasons required to reach relative determinacy, like any substantial evaluation,
cannot be offered by formal metheds: It is up to the lawyer to assess new legally relevant
reasons applicable in the concrete sitwation. Formal legal reasoning is not required to eliminate
ideas, or intuitions, but 10 make a coherent and universalisable use of many conflicting
intuitions. Legal logic should therefore be able to dynamically follow the conclusions deriving
from the changing context of choices, evalvations, and assumptions upon which legal
argumentation is based. The approach here illustrated, modelling the evolution of those
conclusions while the referred premises change, allows fundamental aspects of legal reasoning
— the dialectic contrast of theses and points of view -— to be represented while preserving
formal rigour.

The conceptualization of legal systems as argumentation frameworks also offers new solutions
to some problems of legal theory. Here two highly controversial issues, permissive norms and
normative hierarchies, are considered,

2.1, Permissive norms

In legal theory there is a lively discussion conceming the role of permissive norms: (a) are
permissions simply the negation of prohibitions (as in standard deontic logic. where “permitted”
means “not forbidden™ Pp = =0=p), and in this case (#) what new conlent can a permissive
norm bring into a legal system?

In fact, if p 15 not forbidden in the system (it does not hold that O=p) then the permissive
norm Pp does not seem (o give any significant normative indication. while if p is forbidden (it
holds already that O=p). than Pp creates an inconsistency, so violating the postulate of
consistency. Some authors have also affirmed that permissions simply abrogate (eliminate from
the system) pre-existing forbidding nomms, Nevertheless, according to this last opinion Pp would
become redundant immediately after eliminating O—p, and would have no further effect on the
dynamics of the legal system.

Both (a) and (b) questions above can get a positive answer, if the legal system is considered an
argumnentation framework: Permissions are simply the negation of probibitions, and they
contribute positively to the content of the legal system. The positive contribution of permissive
NOTMS consists in their use in permission arguments rebutting the opposed prohibition arguments
and so preventing the derivation of prohibitions (established by inferior forbidding norms). For
example, constitutional permissions (the so called liberty rights) rebut subsequent {but inferior)
statutory forbidding norms!3,

2.2, Legal hierarchies

As everybody admits, legal systems are hierarchical: They include criteria {meta-rules) which
establish preference relations between norms, When we abandon the postulate of consistency.
and develop a logical model for reasoning with inconsistent information, a new understanding of

13 The here propased notion of permissive norm comes near to those representations of permissions as exceptions,
or better as prescripuons intended to black forbidding norms — cf.. among others, Alchournén and Bulygin (1984),
Hemuindez {1990} — ban formal moedels of argumentation seem 10 allow 4 more intuitive formalisation of this

intriguing phenomenan,

68

Criovanry Sartor

those criteria is possible. They do not contribute to the creation of consistency — unless in the
special cases, defined by each legal system, in which a norm is to be considered as tacitly
abrogated, or as invalid, and thercfore cancelled from the legal system or not admitted in it.
Their purpose is, instead, to adjudicate the conflicts between lower level rules, assigning relative
priorities to them.

This representation has the advantage of explaining how weaker norms — although blocked in
some cases by stronger incompatible prescriptions — may nonetheless determine justified legal
conclusions in those cases in which the conflict does not arise, and automatically expand
themselves when those stronger prescriptions are cancelled or defeated!4. In this prospect, the
traditional principles to “solve”™ antinomies (the principle of hierarchy, speciality, and
posteriority) can be represented as preference rules:

Zg={Posterioritylx, ¥): x is preferred wo y if x is posterior o y,
Speciality{x, ¥): x is preferred 1o y If x is more special than y!3;
Higrarchy(x, y): x is preferred to y if x is superior 1o ¥ }.

The meta-ordering among those criteria can correspondingly be defined by means of categorical
meta-preference rules. such as the following (stating that hierarchy prevails over speciality and
posteriority, speciality prevails over posteriority):

Ei={HierarchySpeciality{Hierarchyix, y), Specialinyly, xj): Hierarchy(x, ¥} is preferred to Specialityly, x);
HierarchyPosterioring Hierarchy(x, ¥), Posterioricy(y, x)): Hierarcky(x, y) is preferred w Posteriorindy, zk
SpecialityPosteriority(Speciality(x, y). Pesteriority(y, x)): Speciality(x, y) is prefemed wo Pasterionity(y, x)).

The HierarchyPosteriority rule, e.g.. establishes that the meta-norm Hierarchy(x,). asserting
the predomnance of norm x over norm v, 15 prefermed (o the meta-norm Posteriority(y. x),

stating the predominance of y over x.
The preference rules in Zpcan be used in meta-arguments establishing that substantial

arguments culminating in posterior, more special, or superior norms normally prevail
respectively over arguments culminating in antecedent, more general, or inferior norms. In case
of conflict between those preference rules. the meta-preference rules in =) can be used in meta-
meta-arguments establishing the defeating meta-argument, which determines the best basic

(substantial) argument.

Lel us consider a simple example. The [talian Constitution establishes the right 1o strike, that
we represent simply as:

StrkeRighe x)y: 1015 permuifted thalr abstans [rom woerk if x is on sinke.

A recent Italian statutory provision establishes that every civil servant has to work every
working day (at least seven hours per day). We simplify this rule as follows:

WorkingOhitgation(1): it is not permitted thatr abstains from work if r is a civil servant.
Let us assume that Mark is a civil servant on strike:

F1: Mark is a civil servant;
Fa: Mark is on smke,

1 For a discussion with examples, of. Saner (1992), On the formal models of legal hicrarchies the works of
Alchourrdn and Makinson (1981). Alchourrdn (1986). and Gardenfors (1992) should be recalled, where the theory
of belief revision is adopted, an approach o the dynamics of knowledge developed in number of 1echnical
contributions by the same authors — such as Alchourrdn, Girdenfors, and Makinson (1985) and Girdenfors
{1988). The relation between argumentation and belief revision should be further studied, and possibly the two
agvpmacnu could be integrated in a comprehensive model of the dynamic of normative system (Sartor 1992).

13 Here the speciality or specificity principle is represented as a concemning the comparison of rules. Probably, its
direct application to the comparison of arguments (thal we cannot discuss here) would be more consistent with the
argumentation framework 50 far presented (Poote 1983; Prakken 1992: Loui et alii 1992).

69

A formal model of lepal argumentation

Let us also state that StrikeRight (which is a constitutional provision) is superior to
WorkingObligation, while WorkingObligation is posterior to StrikeRight:

F3: SirikeRighe(x) is superior o WorkingObligation(x):
Fa: WorkingObligatior{x) s posterior 1o StrikeRighilx).

In the argumentation framework Z3, containing all rules so far introduced (S2=Spu S v
{StrikeRight, WorkingObligation, Fy, F, F3, Fa}), we have two arguments, the first for
<permitted(Mark abstains from work)>, the latter for <not permitted(Mark abstains from

work)>:

Gi={StrikeRighriMark): it is permined that Mark abstains from waork if Mark is on sirike;
F2: Mark is in strike };
Go=|WorkingObligation(Mark): it is not permited that Mark abstains from work if Mark is a civil servant

F1: Mark is a civil servant |,

The two arguments are opposed, so that, to establish which one of them defeats the other, we
need to compare their top rules. Unfortunately we have two opposed preference arguments:

Ca={Hierarchv(SirikeRightMark), WorkingObligationiMark)):
SirikeRighiMark) is preferred to WorkingObligationMark) if
StrikeRight{Mark) is superior w WorkingObligarion{Mark):
Fy: SirikeRightiMark) is superior \o WorkingObligation{Mark) }:
Gy={Posteriorite Working Obligation(Mark). StrikeRighiMarky):
WarkingObligationiMart) is preferred to StrikeRightiMark) if
WorkingObligation Mark) is posterior to StrikeRighilMark);
Fa: WarkingObligation(Mark) is posterior to StrikeRighi Mark)).

To solve the conflict berween G3 and Gy, we use the meta-meta-rule establishing that hierarchy
prevails over posteriority (the preference relation is antisymmetric, so that for no pair of rules
r1 and rp is it possible that both ry is prefermed 1o r2 and r7 is preferred to ry).

G=|Higrarchyvipecialitgd Hierarc b Sieid eRighi Mark) Working ObligationiMark)),
Specialivt Working Obli gationi Mark), StrikeRightt Mari)):
Hierarchy{ StrikeRightt Mark).WorkingObligationi Mark)) is preferred 10
Specialin{WorkingObligationtMark), SrrikeRightiMark))]

On the basis of argument Gs, we can justifiably say that — as far as StrikeRight and
WorkingObligation are concemed — hierarchy prevails over speciality. This means that Ga
defeats Ga. so that we can justifiably derive that SerikeRighe(Mark) is preferred to
WorkingQbligation(Mark). This finally allows G 10 defeat G3, so that we can justifiably assert
the conclusion of G Mark is permitted 1o abstain from his work.

2.3. Computabilire and the limits of the model

The model of legal reasoning just proposed represents a computable specification: It can be
easily transferred into a logic program (1o be found in the appendix), simply by expressing each
one of the definitions above as a program clause. It is not surprising that this model, whose
central concem is isomorphism with legal reasoning. also allows a simple and efficient
implementation in a computer program: Simplicity in knowledge representation and
effectiveness in infercnce procedures are fundamental requirements of both human and
automatic knowledge processing.

Nevertheless, simplicity and computational efficiency are also achieved at the price of some
rigid restrictions concerning the language here proposed. its inference procedures, the modeled

aspects of legal reasoning:

70

Gigvanni Sartor

a. Argumentation frameworks contain only infercnce rules, and every inference rule has the
same simple syntactical structure; The consequent is a literal and the antecedent a conjunction
of literals,

b. The conflict between couples of opposed arguments is decided considering just the top rules
of those arguments.

c. Speciality is a primitive notion not formally analysed.

d.Some typical logical inferences have not been accounted for, such as suppositional reasoning
(2 proposition is assumed. a conclusion is drawn from this supposition, and then the
suppositien is discharged to obtain a conclusion no more dependant on the supposition),
reductio ad absurdum (we suppose p, infer not p from this supposition, and conclude for not
p independently of the suppositions) and dilemma (when all altematives lead to the conclusion
o, then p can be derived from the disjunction of those alternatives).

¢. The traditional non-deductive legal inferences, such as argumentum a simili, a fortiori, and a
contrario have not been considered.

. The relations between the parties of the argumentation have not been considered, nor have the

limits in the available resources.
h. No semantics has been given for the “logic™ here defined. but just an inferential machinery,

Many extensions of the proposed model can be correspondingly considered:

a. Linguistic structures not reducible to inference rules, or to the type of inference rules here
considered should be expressible to deal with some legal contexts (in particular disjunctive
factual assertions should be representable),

b. Altemnative strategies to treat conflicis should possibly be considered. For example, arguments
leading to the same conclusions could be merged. so that they their strengths are added when
facing opposed arguments.

¢. The notion of specificity should be formally defined on the basis of the content of the
regulations involved,

d. A larger portion of deductive reasoning should be included in the modells.

e. Formal specification should be possibly proposed of some aspects of the most relevant
paticms of non deductive legal reasoning.

f. A formalisation of the positions of the partics involved (including their being bound to their
assertions, their faculty of accepting or conlesting the assertions of other parties, etc.) should
be provided to explain real legal dialogues, the limitations of the available resource {especially
time) should be made explicit, as should the remedies to those limitations and other typically
procedural aspects of legal argumentation!7.

g- It remains an open question whether argumentation systems — like legal logic in general —
really need semantics. but advances in nonmonotonic logics and belief revision will possibly
allow convincing semantical models to be developed.

Notwwithstanding the shoricomings just indicaled, the simple model here proposed should not be
underestimated: It is already able to (partially) mode! most legal argumentations, in an intuitive
and computable way. Its extensions — which would hopefully allow a stricter connection to be
established with more comprehensive, but informal, theories of legal argumentation, such as
those of Alexy ([1978] 1991). Peczenick (1983), and Aamio (1987) — should try to preserve the
simplicity and effectiveness so far maintained.

16 Ag in the (much more cmnglex} argumentation sysiem which :rj'l(1o combine full first order logic with inferepce
rules, as Simari and Loui (1992), Prakken (1992), Pollock (1987, 1992), Gordon (1993), Vreeswijk (1993). In
comparison to those formalisms, nevertheless, here meta-argumentation has been especially developed.

17 For a formal model of dialectics. ofr.. for all, Rescher (1977) and especially Gordon {1993), who uses a noi
menotonic logic (Geffner and Pearl 1992) (o define and irmi-alemm into a compuier program the “pleading game”, &
formal model of civil pracess inspired by Alexy ([1578] 1991}, which also includes an explicit regulation of the
Interaction between the involved parties,

71

A formal model of legal argumentation

3. Appendix. A computer program for legal argumentation

As promised, we will now introduce a computable specification of the notions above defined.
The program is able to determine — producing the corresponding arguments — the supported,
defensible, and justified conclusions derivable from any given argumentation framework. It may
therefore offer a limited but valuable support in legal argumentation: It is up to the parties 10
have the right ideas. that is to suggest the contents to be included in the argumentation
framework; it is up to the program to determine the implications of all those contents. Here 1t 18
not possible to explain in detail the functioning of the program. The interested reader (with
some knowledge of logic programming) can easily map the program clauses into the definitions
in the paper. The program was developed in LPA Prolog (Macintosh version), but. possibly with
minor changes, should run under any Prolog interpreter accepting the Edinburgh syntax.

prevails_over{Al, A2),

= opd 120, oy, and).

= opl 130, zfy, if). JustfiediAl),

= 0pi 100, fy, nonj. oppuses{ ALAZ)
rebutsf A, A2);

- op{110, xfx, preferred_to).

- o 140, xfx, o). undercuis(Al AZ).

defeaied{ A1):-
defeas{ A2, Al).

grgement_for(A, L):-
argues_for(A, L),

consistent(A,
argues_for([Name: L if BodylAl], L):- questions(Al, AZ):
Wame: L. if Body, direct!y_guestions(Al, AZ).

questions{ A |, [FirstRulelRestA2]):-
questions(A1, RestAZ),

arpument_for{Al, Bodyl.
argues_forfA, L1 and L2);:-
not var(L 1),

argues_for(Al. L1}, directly_guestions(Al, AZ):-

argues_for(A2, L2), rebutsi A LLAZ),
concatl Al, A2, A3). nol succumbs_undert AL, AZ)
argues_for{[MName: L], L)- delensiblei A1),
MName: L. direcily_questions{A 1. A2):-
argues_for([], Ly:- undercus(A LLA2).
call(Ly. defensiblef AL).

justified_argument_for{ A LJ:- questioned{ Al}:-

argument_fori A, L), questionsi A2, Al),
justifiediA),
Justified(A);:- top_ruleiFirst. [FirstiRest]).

ot {questioned(A,
rebutsi Al. A2) :-

defensible_argument_for(A.L):-
argument_for{ AL).
defensiblel A).
defensible{A):-
not (defemedi A)).

defeats(Al, A2)-
directly_defeats(Al, AZ).

defeats(Al, [FirstRule/RestA2]):-
defeats{ A1, RestA2).

directly_defeats{ A1, A2}:-
opposes{A1.AZ),

T

top, rule(R2; L2 if T2, A2),
complement[L2, L1),
argument_for{Al, L1).

undercutsl Al AZ) -
wp_ruletR2: L2 if T2, A2),

argument_forl Al non applicablel B2)).

counterarguesi Al, A2)-
rebuts(Al, A2);
undercots(Al, A2).

counterargues{ Al, [FisuRest])-
counterargues(A l, Rest).

Giovanm Sarior

consistent_with{Rule, RestArg),

prevails_over{Al, Al):- consistent{RestArg).
top_rule(R1: H1 if T1, Al), cansistent([).
top_rule{R2: H2 if T2, A2),
justified_argumen:_for{A3, prefarred_to{R 1, B2)). consistent_with(L, Arg) :-
complemeni(L, ComplL),
succumbs_underfAl, A2):- ol memnber(_: ComplL if _, Arg).
prevails_over(A2, Al).
complemenitnon L, L),
non X preferred_to Y ;- complemeny(L. non Ly:-notL = non(_)).
Y preferred_io X.
memberi X, [X1_[.
consislent| [RulelRestArg]):- member(X, [_IYs]) :- member{[XIYs]).

References

Aamio, A. 1987. The Rartional as Reasonable. Dordrecht: Reidel.

Alchourrén, C.E. 1986. Conditionality and the Representation of Legal Norms. In Automated
Analysis of Legal Texts. Ed. A A. Martino e F. Socci, 175-186. Amsterdam: North
Holland.

Alchourrén, C.E.. and E. Bulygin. 1984, Permission and Permissive Norms. In Theorie der
Normen. Fesigabe fiir Ota Weinberger zum 65. Geburtstag. Ed. W. Krawietz, H.
Schelskd, G. Winkler, and A. Schramm, 349-371. Berlin: Duncker und Humblot.

Alchourrén. C.E., and D. Makinson. 1981. Hierarchies of Regulations and Their Logic. In New
Studies on Deontic Logic. Ed. R. Hilpinen, 123-148. Dordrecht: Reidel.

Alchourrén, C.E., P. Girdenfors. and D. Makinson. 1985, On the Logic of Theory Change:
Partial Meet Functions for Contractions and Revisions, Journal of Symbolic Logic 50:
510-530.

Alexy. R.[1978] 1991, Theorie der juristischen Argumentation. Frankfurt: Suhrkamp.

Alexy. R.. 1980. Die logische Analyse juristischer Entscheidungen. In Argumentarion und Rechr.
Ed. W. Hassemer. A. Kaufmann. and U. Neumann, 181-212, ARSP. Beiheft 14.
Wiesbaden: Steiner.

Alexy. R. 1985, Theorie der Grundrechre. Frankfurn: Subrkamp.

Alexy. R. 1992, Legal Argumentarion as Rational Discourse. La crisis del derecho ¥ Sus
alternativas. Consejo general del poder judicial, Madrid, 30 November-4 December.

Baker, G.P. 1977. Defeasibility and Meaning. In Law, Morality, and Sociery: Essays in Honour
of HLA. Harr. Ed. P.M.S. Hacker and I. Raz, 26-57, Oxford: Clarendon.

Bench-Capon, T.J.M., and F.P. Coenen. 1992. Isomorphism and Legal Knowledge Based
Systems. Artificial Inielligence and Law 1: 65-86.

Brewka. G. 1991. Nonmonotonic Reasoning. Logical Foundations of Commonsense. Cambridge:
Cambridge University Press.

Dworkin, R.M. 1977, Taking Rights Serious!y. London: Duckworth.

Girdenfors, P. 1988. Knowledge in Flux. Cambridge, Mass.: MIT.

Girdenfors, P. 1992. The Dynamics of Normative Systems. In Experr Systems in Law, Ed. A.A.
Martino, 195-200. Amsterdam: North Holland.

Geffner, H.. and G. Pearl. 1992. Conditional Entailment: Bridging Two Approaches to Default
Reasoning. Arrificial Invelligence 53: 209-244,

Gianformaggin, L. 1987. Logica e argomentazione nell interpretazione giuridica ovvero i
giuristi presi sul serio. Studi senesi 36 (3); 461-489.

Ginsberg, M.L. (editor). 1987. Readings in Nonmonotonic Reasoning. Los Altos, Cal.: Morgan
Kaufmann.

Gordon. T.F. 1988. The Importance of Nonmontonicity for Legal Reasoning. In Expert § ystems
in Law: Impacts on Legal Theory and Computer Law, Ed. H. Fiedler, F. Haft, and R
Traunmiller, 111-126. Tiibingen: Attempio.

T3

A formal model of legal argumentation

Gordon, T.F. 1993. The Pleadings Game. An Artificial Intelligence Model of Procedural Justice.

Phd. Thesis. Darmstadt.

Hage, J. 1993, Monological Reason Based Logic: A Low Level Integration of Rule-Based
Reasoning and Case-Based Reasoning. In The Fourth International Conference on
Artificial Intelligence and Law. Proceedings of the Conference, 30-39. New York, N.Y.:
ACM.

Hare, R.M. 1962, Freedom and Reason. Oxford: Clarendon.

Hart, H.L.A. 1948-9. The Ascription of Responsibility and Rights. Proceedings of the

Aristotelian Society 49: 171-194,

Hemédndez Marin, R, 1991. Practical Logic and the Analysis of Legal Language. Ratio Juris (4):
322-335.

Jones, Al and L. Pom. 1991, DEON'9!: First International Workshop on Deontic Logic in
Compurer Science, Amsterdam, The Netherlunds, December 11-13, 1991, Proceedings,
ed. J.-J.C. Meyer and R.J. Weiringa 232-247. Amsterdam: Vrjie Universiteit.

Larenz, K. 1992, Methodenlehre der Rechiswissenschaft. Berlin: Springer. 2. Auflage.
Verkilizie Studicnausgabe von 1991, Methodenlehre der Rechtswissenschaft. 6. Auflage.

Loui, R.P,]. Norman. J. Olson, and A. Merrill. 1993. A Design for Reasoning with Policies,
Precedent., and Rationales. In The Fourth [niernational Conference on Ariificial
Intelligence and Law. Proceedings of the Conference, 202-211. New York: ACM.

Loui, R., J. Norman, K. Stiefvater, A. Merill, A. Costello, and J. Olson, 1992. Compuring
Specificity. Technical Report WUCS-92-46. St Louis, Mo.: Department of Computer
Science, Washington University.

Nute, D. 1988. Defeasible Reasoning: A Philosophical Analysis in Prolog. In Aspects of
Artificial Intelligence, ed. J.H. Fetzer, 251-288. Dordrecht: Kluwer.

Pattaro, E. 1988. Models of Reason, Types of Principles and Reasoning. Historical Comments
and Theoretical Outlines. Ratic Juris 20 109-122.

Peczenick, A 1983. The Basis of Legal Justification. Lund: Peczenick.

Perelman, C. 1979, Logigue juridique. Nouvelle rhetorigue. 2nd ed. Paris: Dalloz. Seconda
edizipne.

Perelman, C.. and L. Olbrechts-Tyteca. 1938 La nonvelle réthorique. Traité de
{argnmencation. Pans: Presses Universitaires de France.

Philipps, L. 1966. Sinn und Struktur der Normenlogik. ARSP 50: 317-329.

Pollock, J.L. 1987. Deleasible Reasoning, Cognirive Science 11: 481-518,

Pollock. J.L. 1992. How to Reason Defeasibly. Arvificial Intelligence: 142,

Poole, D.L. 1985. On the Comparison of Theories: Preferring the Most Specific Explanation. In
Proceedings [JCAS, 144147,

Prakken, H. 1992, Logical Tools for Modelling Legal Arguments. Amsterdam: Prakken,

Prakken. H. 1993, A Logical Framework for Modelling Legal Argument. In The Fourth
International Conference on Artificial [ntelligence and Law. Proceedings of the
Conference, 1-9. New York, N.Y.: ACM.

Raz, J. 1978. Reasons for Action. Decisions and Norms. In Pracrical Reasoning. Ed. J. Raz, 128-
143, Oxford: Oxford University Press.

Reiter, R. [1980] 1987. A Logic for Default Reasoning. In Readings in Nonmonotonic
Reasoning, ed. M L. Ginsberg, 68-93. Los Altos (California). Morgan Kaufmann. First
published in Artificial Intelligence 13: 81-132.

Rescher, N. 1977. Dialectics. Albany, N.Y.: State University of New York.

Ross, A. 1958, On Law and Justice. London: Steven and Sons.

Ross, W.D. 1930. The Righr and the Good. Oxford: Clarendon.

Ross, W.D. 1939, Foundations of Ethics. Oxford: Clarendon.

Ryu, Y.U., and R M. Lee. 1991, Defeasible Deontic Reasoning: A Logic Programming Model.
In Deon'@l. First Imernavional Workshop on Deontic Logic in Computer Science.
Amsterdam, The Netherlands, December 11-13. Proceedings. Ed. J.-J.Ch Meyer and R.J.
Wieringa, 347-363. Amsterdam: Vrije Universiteit Amsterdam.

Sartor, G. 1991, The Structure of Legal Norms and Nonmonotonic Reasoning in Law. In The
Third International Conference on Artificial Intelligence and Law. Proceedings of the
Conference, 155-164. New York, N.Y.: ACM Press.

74

Giovanni Sarior

Sartor, G. 1992. Normative Conflicts in Legal Reasoning. Artificial Intelligence and Law 1:
209-235,

Sartor, (5. 1993, A Simple Computational Model for Nonmenolonic and Adversarial Legal
Reasoning. In The Fourth International Conference on Artificial Intelligence and Law.
FProceedings of the Conference, 192-201. New York, N.Y.: ACM Press,

Simari, G.R., and R.P. Loui. 1992, A Mathematical Treatment of Defeasible Reasoning and its
Implementation. Artificial Intelligence 53; 125-157.

Toulmin, S. 1958. The Uses of Argument. Cambridge: Cambridge University Press.

Vreeswijk, G. 1993, Studies in Defeasible Argumentation. Dissertation. Amsterdam: Vreeswijk

Weinberger, O, 1973, Ex Falso Quodlibet in der Preskriptiver Sprache. Rechtstheorie: 17-32,

Wroblewsld, J, [1969] 1983. Legal Reasoning in Legal Interpretation. In Meaning and Truth in
Judicial Decision, 71-103. Helsinski: A-Thieto Oy. (First published in Logigue et analyse
13: 3ss.)

IDC-CNR, Via Parciaticki 56016, 50127 Florence, lialy
CIRFID, University of Bologna, Via Galliera 3, 40121 Bologna, lialy

73

"IBA|0S JUIBJISUOD [BUIBIXE (18D (9)
UONdWNSSYy Yim Jamsuy

_ @Eannu._ paseq-uondumnsse) ? }hw:nu |EUCHIPUC] me

anpo [eaiyalelaiy (v

- eouelusyu| Auadoid (g)

5 T R |

1 ﬂ_Ed._

=m

wiessuon uopdwnsang (z)

poneussudarf——owou—s

o
e

Anuap) 1aiqo (1)

=

B — -

2j0x1(%) JO saines Aey _.

o4 7 PP T A Y LT PR £ 008 PR TR e i3) Ve .) o

¢, DUIUOSEBI PASEQ-UOICWLINSSE 188U} 0) MO _

£S1daouond Ajsse|c 0) Mo

¢ s1daouoo sjejal ¢} MoH

¢ S1daouoo uasaidal o] MoH

:0BenBue) vonejuasalday abpamouy] sy -

abenbue (d70)
fulwwelboid 21607 JUIBHSUGD papualx] -

sbenbueT (qooaq)
asegele(] pajuau-102igo sananpsq - .

uoneAnop &

PR L T,

“—

e

i e

L T T s i e S e ."',_i

OBW'SOA'XINN/D
2j0xM{9-0.o1U -
XINM/X SOBWI-NND'D + SOWIL/TH

noxin() G Iq -

g paieibieiu Joj sapiioey Buipiaoiyg
S094 jo SgX Joj 8benbue a0
& 20xn (D s1 1By

| uolelussa.day sbpsimouy U

JFURES [V PO S SR SO e e [N v Y B v P e

e pug
LODI

aj0xm() ahenbue §

210X ()

6

dpoxin)

oxin)

=

W ‘.:'.4-- L Sy

iy R

aimea)ac

yuondwnsse

i L

[uoai8=10j02]adde

ablaw uoynios
s&ingliie J1suLul

wia | 10slqo xejdwon -
WM 9} 1epto opdde
wia) 193lqQ oisegq -
(Q10) 18usp| welqo
swJa] 198lgo

a|npow

dIUELIZULU
uon _...“__..mm__.__w

poob D17y v puadap Aungevod
a1haME6 | s3Ul| 000'09 2215 apon
2 dsi'D "1y aBenbuen)
JBW'SOTXINA | XINN+WId/SOWId | suiyorwSO
210X 11 (D) -DaHL ajoxin(9)-big

5 et e gt STl .

Amuap) 109lq0 (1)

FFACPI RS JEVCRN FEN TG TN A [P ICRNFY N T PCECEC) T LKA A |

L.__._,q-_.- e 8 e bt ThE

w ...

il

O I T PO T Y. S TN I P [TR M KT T KR L B b

(eoosogg)

Areaqi |
SoUa)sislad IBYsn
/ \ _ X

12105 JUBISUOD _n__;._v_ _ _.._Evcm.,__l______.!_.rr Em:...
AIND ,
(]

P Jsehuay) L, GIamsuy-
¢ [82uziBjUl BARONPAE |
g "UOSESS |XaU BUNZOYNOA 3Q [|IM &Y

%\.PWM& 'UOSESS SIUI Ul SUIM 8Y |-
4

] B1S8M OWNS WS BUBLOUBYEM-
[Lone|al

NIBSE|N BPRURH =—BUBUOUBYEM-

W BUNRZONT A 80 EUBHOUBHEM [[IM.,

S~ L

Tl

Jalsad lebeusw Juﬂ:
ikl Bt | S0BWO |
_...__.v_me____.______n_ H_ .H_Z_n_

Janiag ajoxin(s - wa apoxinld)
araxp{9-Gig

uoneinByuoy WelsAg s

7

uondasx3 se sanquily 2Isuiu)
(>=.) =3 AQ souejlayu| Auadoig

aouellayu| Alsdold (g)

Ll

| EVRFR RO I O S e g A a4 I e)) TN B SR (U i

(uowoe "ouebeu} += eaueojdde i
Inos »= alse)acde M
{

e e iR tbR |

e T S

pal = oo scde
Apdadord - algo

_w LiLEa 1007
L L panog w

ALY

{uowoe'ouebeu} -= +Eaie
INGs <- 3)5%]
nai=1009

¥
e e ST

JUIENSUQD _
vondwnsgns se Auedoid oisulxy oo

SWIENSUOD (oo
uondwnsgng pue sanladold 1

Y

ol b T TRl S S

g g B A

P

W Pyt 5

e

S . e T |

30 pury ¢// \&.\
-

__._.__WH & L

4

sjoalgQ Buowe uojeey uoildwnsgng

Juresisuo) uoidwnsans (g) :

‘A
N S e G S SR R R R PO) (Y U A PN T L..m

(210xm09

[Hozo=yues ‘EuByouEyEM=aWEL Bun [
LB L0 L mliglniesew epeuey L[

ﬁ... wis} ajnqupe

(epeueH niesepw)
L=k

(ssnguile a1suxa) saiedoud
s) pue Joslgo uz jo uoiealysadg

B2 5 YUES JUBLIND «
BUBYOUBYEM 51 aweu Buu .
LAB1 TDEUEM Uruiog

soledold 119y pue s108lqo

78

ajoxn() |

“(adeN, pdxadary v “msaim>=X] ||
[A=suweuSuu “y=~Aneoads) -

L4 3OVN S! Aleoads s,.0Up.
{0E it<it ¥ RsaIm>=x] ||

/ \\ [X =aweu"8un “y=a8e]/¥ -

JUIELSUGD [2L13]X2) JA08 18A0 BIE CUAA,,
aapsaums>=y} ||

Jo=0WE SuLn ¢ o1outg, A -

[i d £]

TR T e, s
5 S =

e =y

.¢8buls a1e oup,

N[prE=Eem poT=uBiey yg=aie
‘TUNZo}oA=3uel-‘cuogaye=awey” Jull]fopeys

foee oo [EYURT Y= uFrnfxmﬂ

aumiyos=1omo] ‘eunzoyol=1adda]/iyazo

S eproey T uesew ‘epeuey o) =< Rnsaia

HuoThw nag nE
tweord

werdold Own .
uondwinsse ylm Jsmsue §
% Alanb BUOIIPUOD (g v

) OS] TN ST T N D Sl IS SR

VTSI S N TOR R PN

ajoxin=)

i K%Mﬁmmﬂ; T . i
e XU XINN S | (L waisAs
: aqlmoxm(®-csond lagoxin(9-ciod

______.___J_ﬂ___n ,\

L

———

Cam g T =

]

“[-zieEw
"Nel=anupluesio)

T L ki L

g

BOUR

B
",

uoness |

| aInpowgns [

. 18] 81 uo aAlp s1ed ‘pue|bul uling
b1 syl uo salp Ajlensn sied 'adoiny uj,

] aouelllayu| a|ny pue

A T I

W

TS

1o [= i

SO|NPOA |B2IUDJBIBIH Q.v |

e e e e e T e e T e e e

79

= LY S P R A

L)

Tk

.

- S e

SN M e D~

e T e T

jAclus asea|d

dlf-zo-3001-dag
woly 414 snowduouy

(S41) saiemyjos 884 100
se passisibal are swolshs arexn (Y yiog

:a1oxm() 9sn 0] €

= _ﬁmmﬁj

P T

LI PP EIFC) JESN (S TR U P I Y Pl o

aq esibojolq
(aouadssju) pajenyis ‘aunjonuis ainjes)) -
Buissaooid abenbue) injeu
Buiuoses. |ebsj
suoneo)ddy
13A)05 JUIENSLOD [BLIBIXE [|BD) -
LONLLINSSY Ylim Jamsuy g Aienp [Buoiipuoy -
BINPCIY |E2IYDIBIBIH -

aougjuayu Ausdold -
juIzsuos) ucndwinsgng -

A Jusp| 128100 L

UoISN|oUoD

) [EHOW W IR

T S

T bt ke

-

e

[i e T |

e Bt "

2

L_

._.hﬂ_:_wﬂ.hhﬂru._.__
[euonippe

18A|0S "11S0 [eulax@ [[BD) (9) ¢

(uondwnsse ou)
[§94]

..:11:;

PuaR’

?TER“_? AR
:u_Eum:EEmg:Q
[X="{uer ‘niesew=aweu]ixau -_.p
LAMUBLIXBU SIY 51 JBUM
'SBUYDIBLWE L SUIM EXEAMA 1.,
[UONBLLIOIU| [BUOIIPPY UNm AranDy

for AR P

Alsnb jeuoipuon

S SSETY A DTN P N S NN [N [e I TN) I L o P |

ot uusmm.m“:

_.,____quxlm., 19] EH}HV ui __ Th Hm...n_n:.ff___ﬂmEﬁ

T R - ere

umam:{

o N=ueT e = U] FauU)

e P e

a.z_r_E JXau S;EMEM S| 1BUM. | ManD

o A———

mw =yura]/al [N=E erEmEuEr:#uE
. ==[Z=ue S someu]ixau
~dn aq m speib siy ‘g1 suim ay Jj.,
::_:mrr: =|ear’ uxmbalu:_a:_ua:r:xu::
A LT =g ftezo= ms?:b:nmm=t

BUBYOUBYEAL INOGE 8bpajmouy [8|nK

:o_HQE:mwm E_a, E.e,_mc,q

T T e —

&0

TCTAL LIWfE. CI-"N)(ow
Teels with AT), /99,
Postom

OUTXOTE as a Tool for Natural Language Processing

Satoshi Tojo, Hiroshi Tsuda
Hideki Yasukawa, Kazumasa Yokota, and Yukihiro Morita
Institute for New Generation Computer Technology (ICOT)
4-28 Mita 1, Minato-ku, Tokyo 108, JAPAN

Abstract

We developed a language QurroTe as a tool to deal
with various information of natural langnage process-
ing (NLP)., QurxoTe is a hybrid language of dedue-
tive object-oriented database (DOOD) and constraint
logic programming (CLF) language. The new mech-
anisin of PuryoTe 5 a combination of an object-
orientation concept such as object ddentity and the
concept of medule that classifies a large knowledge
base. In addition, its logical inference system is ex-
tended to be able to make restricted abduction. We
first apply QuzroTe to the sorted feature structure of
constraint-based grammar formalisms. Next, we show
that QurxoTe can contribute to the description of
situation-based semantics. We implemented a system
to maks abductive reasoning to clanfy hidden infor-
mation. Alss we resolve the problem of noun plirase
reference.

1 Basic Structure of QuryoTe

This section outlines QuraoTz[13, 14] as a tool for
NLF. Qurxore is classified as both a DOOD aud CLP
language. It has the following features that are also
useful in NLP:

* 00 features, such as object identity,

+ attribute-value data structure with subsumption
constraints,

¢ efficient information description with modules
and inheritapee hierarchy, and

o question and answer with assumptions.

QuTxOTE system is implemented with the KL1 lan-
guage, a parallel logic programming language for the
parallel inference machioe, PIM, in [COT.

Generally. Qurrors programs consist of subsump-
tion velations among basic object terms {1.1), submod-
ule relations among modules {1.3), and rules.

g1

QurxoTe rules have the following syntax.

head headconatraind body body comadraint
—— —— ——
mnr:ﬁ | HC e=my: B-- || BC

Here, H and B, are ofject/attribute terms. HC and
BC arve constraints. m;, called a module identifer.
specifies the module in which terms or rules resides.
The body, constraint, and module identifier can be
omitted.

The above rule resides in module my. It implies
that, if every B holds in a module m; under con-
straants B¢, then H and counstraints HC held in mg.

1.1 Object Term

Let O Bobj.Cebj, and Var be & collection of ob-
Ject terms, basic obfest ferms, compler objeet lerms,
and weriables, respectively. Then, Obf = Bobj U
Cobj U Var.

Basic object terms are atomic symbols such as cat
and apple.

Subsumption relation C, 15 a partial order rela-
tion between basic object tecms. a © b meaus that
a is more specific than b, or a I1SA b, for example,
cat C animal or animal C creature, Special ba-
sic object terms L and T satisfy %Wz € Bedj, L ©
z,z O 7. QurroTe comprizes a complete lattice from
< Hobj, E>.

A complez ofject lerm s a term having the form
olli = v,y = w, -], where 0 € Bobj and ¥i,1; €
Bobj, vy & 08, Eacl label §; iz called an intrinsic
atirtbute. The ovder of labels is not siguificant, so
ofl=a,m=b] aud o[m=b,l=al, for example, are identi-
cal.

The subsumption relation is extended to treat comn-
plex object terms. For example, when cat C anigmal,

catlage = 2, 5ex =male] C caclage = 2]
:atlcnlnr = Hhit.e] C animal.

1.2 Attribute Term, Constraints, and

Property Inheritance

An afimbute termn is an object term with property
specifications represented as:

head/[lioprvy, laopava ..],

where head € Obj and ¥i.l; € Bobj.op; € {=, —,—
}.vi € Obj. Each label I; is called an extrinsic at-
iribute.

An attribute term can be transformed into an ob-
ject terimn with a set of coustraints.

offl=% & o {ol=x}
oflm — U] = o | {n.mEU}
offa=v] & o | [VCon}

O | € means an object term O with constraint C.
0.1 is called a datted term and specifies the value of
the 1 attribute of an ahject term o, Constraints s a
set of formulas baving the form < term >< op ><
term >, where < ferm > is an object/dotted term.
and < op »€ {2, C}.

By default, the attributes of an object are inherited
by its related objects in terms of C. as follows. This
is called the property inherifance.

elp=V¥%¥l,01Cpl

when macintesh C apple and
red, then macintesh.celer C red

For example,
apple.color
holds.

For complex object terms, however, the values of
ntrinsic attributes uverri;ie those of extrinsic ones.
For example, even if applecolsr = red holds.
apple(color=green) .color remains green and is
not subsumed by red.

1.3 Module and Object Identity

A Qurrore program can be divided into several
moduies. Each module is identified by an object term
called a module identifier and cowsists of a set of rules.

Like many programuming languages. QurxoTe has
an inheritance mechanizm between modules ealled rule
inherifunce. Submodule relation Jg between module
identifiers specifies the rule inheritance. For exam-
ple. when john g common knewledge, all rules in
the module cemmon knowledge are inherited by the
module john, Here, john is called a submodule, while
commonknowledge i3 a supermodule,

To realize vule inlieritance exceptions, each rule can
have an iulieritance mode o.1. or ol. A rule with o

82

prerrides inherited rules which have the samue head. A
rule with 1 is a locel rule, hence is not inherited by the
submodules. Inheritance mode ol is a combination of
o aud 1.

The following example describes the knowledge “In
Europe. cars usnally drive on the right. But cars drive

on the left in Eugland.”

england g eurepe, france Jg europs
europe :: car/[drive = right|:;
england :: (o)carf[drive = lefz|;:

Two object terms are identical if they currently
bind to a literally equal object term except for the ar-
der of labels. For example, if X binds to a. o [1=X,m=k]
and o[m=b,1=a) are identical. In this sense. ground
object terms work as object identifiers.

Within a madule, the values af the identical at-
tributes of identical objects must be equal. In differ-
ent modules that are not in the submodule relations.
liswever, identical ohjects can liave distinet values.

For example, the following pregran becomes ineon-
sistent because john bas a different age value in the
module sit_1993.

5it_1983 :: john/[age=20];;
£it_19%3 :: john/[age=30];;

However, the following is rot inconsistent, when the
submodule relation does not hold between sit_ 1983
and sit_1993,

it _1983 ::
E1t_1993 ::

john/ [age=20];;
john/ [age=30];;

1.4 Answer with Assumptions

A query sentences have the following forms,

Py i Greee- | O
? G- || O PG

- — iy
Here, m; is a module identifier, G, an object/attribute
terur, O a constraint, and PO a program. In response
to a query, QurroTe returns answer substitutions
with & set of constraints ameng dotted terns called
assumplions.

Except for coustraints ameng dotted terms.
QurroTe works like a conventional CLP language [4].
However, dotted term constraints in the body cou-
straints are accumulated a3 asswmptions if they are
not satisfied by the head constraints. Assumptions
can be scen as lacking information in the DB. Deriv.
ing assumptions is a kind of abduction.

Tlhe sccond type of query, which is often used in hiv-
pothetical reasouing applications. adds the additional

Tle interesting point of sentences (4] and (3] is that
the conclusious are different despite application of the
same conditional clanses. This is because there is hid-
den partial knowledge in the two people and this is not
wentioned explicitly. The objective of the program
introduced below is to determine the nationalities of
Bizet and Verdi when they are asked, with inferences
on implicitly meutioned information.

The natural language expressions that correspond
to (4) and {3) are directly trapslated into QurxoTe
as follows:

hypothesis_ a ::
bizet/[naticnality = italy] <=
compatriots{peri=hizet perl=verdi] ;:
hypothesis_b ::
verdi/[nationality = france] <=
compatriots[peri=bizet,per?=verdi] ;;

The first rule says that being compatriols of two per-
sons named Bized and Verdi implies that Bizet's na-
itonalily being [talian in & hypothesis of person A, The
second rule can be interpreted in a similar way., We
need other rules to terminate inference chaining. viz.
the definition of compatriots, bizet, and verdi.

world :: compatriots[peri=X,per2=Y] <=
%/[nationality=N1], ¥/[natienality=N2]
|| {Ni=<patien,¥2=<pation, N1l==N2} ::

verld :: bizet::

warld :: verdi;:

These definitions are valid in every module, viz. in the
mest general module verld, We can write the wodule
hierarehy as follows: ?

hypothesis_a »- world ;;
hypothesis_b »- world ;;

We need to define the subsumption relation before-
hand as follows:

nation »= italy ;;
natien »= france ;:

Tlie above are all af the rules. Please pote that what
person A kuows and what persou B kuows is not men-
tioued anywhere.

Now, we would [ike to introduce how Qurrors
works, First, let us ask the nationality of Bizet:

F-hypethesis_a:bizet/[natienality=N].

Tlie result of inference is as follows:

Mo QUIXOTE syntax, Dy is »-,

*= jAnsuer 1 &+
IF hypothesis_a:verdi.pationality
== bizet.pationality
hypothesis_a:verdi.nationality

=¢ pation
THEN
N == italy

=% inswer 7 =%
N == Unbound

The system relurned two answers. The latter is easy,
for it is similar to conventional Prolog: we can infer
nothiug of the nationality of Bizet because thers iz
no direet reference to it in the chaining of inference
rules. The feature of QuzxoTe is the ability te find
the former answer. In the subsuwmption mapping of
objects. the system can find a minimal model! to sat-
isfy the query, and the system returns the model with
conditions, that is from if to thec.

2.4 Treatment of Noun Phrase Reference

Tn this section, we would like to focus upon the
problem of noun plrase reference. This problem ap-
pears in various forms: opaqueness (de re and de
dicte), anaphora scope, metaphor and metonymy, cou-
fusion of roles and attributes-values, and so on. Here.
we will analyze the following sentences.

Hitcheock saw himself iu that wevie. (G)
Hitchcock saw a unicorn in that movie. [T}

{6) has several possible interpretations: one is that
a person named Hitebeoel saw 2 movie and he was
playing the role of someone. The other is that Hiteh-
cock saw someone was plaving the role of Hitcheock
{in a biographical movie, for example)® (7) refers to
an object that does not exist in this world,

Let us consider the following program:

real::see[agt=hitchcock,obj=X] <=
movie:cast [name=hitsheock,
title=hitcheock_life act=X]::
real::hitchcock:;
movie::cast[name=Y, title=H,act=X] <= M:X;;
movie::cast[namesX,title=H,act=Y]
<= M:Y/[actor=X],real:X;;
hitchcock_life::
man [place=bus_stopl/[actor=hitchcock];;
bitchcock_life::
hitchcock/[actor=orson_welles];;

IThere 12 a possibility that Hitchesck s playing the role of
Hitchcock himself.

programs before the infereuce. For details of the pro-

cedural semantics of QuTxoTe. see [8].
Cousider the following example. [t indicates that

there is a book, and that the shipping fee is 500 yen
if it is hard-cover. or 300 yen if soft-cover.

sit:book;;

sit::ship(fee=500] <= book/[cover->hard]::
sit::ship[fee=300] <= book/[cover->soft];;

The first clause tells us ouly of the existence
of an object, book. and nothing about its proper-
ties. The second clause meaus that if book exists in
sit and the cover property is subswmed by hard,
ship[fee=500] holds in sit. How about asking a
query T-sit:ship[fee=Yen], whicl asks the shipping
fee of the book, to this program? QuIxoTe returns
the following two independent answers. !

sit:book.cover=<hard
sit:book.cover=<soft

if
if

Yen=500
Yer=300

Fach answer makes an assuwmption about the cover
property of beok which comes frowm the body of the
gecond or third clauses. Neither constraints are sat-

isfied by the head constraint, which is empty in Ehis
example, so they are accmmulated as assumptions.

2 NLP in QuIixoTs

2.1 Represeatation of Feature Structure

Consider the sorted (typed) feature structure[3],
upon which the latest framework of HPSG(9] is eon-
structed. It is the feature structure whose nodes are
labelad with sort svmbols. The inberitance mechanism
between supersorts and subsorts enables the efficient
representation of lexicon or gramunat,

For example (1) iz a gimple HPSG-like sorted fea-
ture structure representing the word “run” word,
vp, run, phrase. ov np specifies the sort of each
structure.

word

CAT: [vpl

PH: [run] {1}
| phrase

SUBCAT : [CAT lan]

Attribute terms in QuixoTe are capable of par
tially eescribing information. The basic object term
anel subsumption relation < Hobj,C> in QuiroTE

Lin the syntae of QUIXOTE systen, C is =<,

B4

naturally comprises types and their inheritance hi-
erarchies. To treat the inheritance aud inforinatiou
partiality. it is natural to describe a sorted feature
structure with an attribute term whose head is a ba-
sic object term representing the sort. The property
inheritauce mechanism {1.2) correspouds to the inher-
itauce between sorted feature structures. (1) is rep-
resented by the following subsuinption relations and
two attribute terms.

Y=<word, I=<phrase
¥/[cat->vp, ph->run, subcat=2]
Z/[cat->op]

In comparison with related KH languages. PST
{Partially Specified Term) in CIL{6] and 4-terms in
LOGIN[1} are closely related to the feature structures.
However, attribute terms in QuzroTe are more pow-
erful becanse CIL does not have an inheritance mecki-
anism and LOGIN cannot bandle constraints,

2.2 QUIr0oTE and Situated Inference

We first define a situated inference rule as follows
s kEosafFe- s EelC (2)

This sample tule can be interpreted as follows: if 5,
supports oy, §p supports g2, and so ou, thus we cin
infer that sy supperts gp, under constraint &, In
QuzxoTe, situated inference rules are rephrased as
follows{11]:

sitnation theory Qurrore
situation < module

infon & object term
role & label
supporting (=) & wembership (1)

The most important correspondence between them is
the description of a rule, viz. (2). and a QurroTs
rule (3).

Mo S=my T, M
2.3 Abductive Reasoning in QUWIAOTE

Let us consider the following famous sentences ([10]
P 15 alza in [2] p. 105), that are ntterances made
by two people, A and B, as an example of conditional

reasoning:

A: “IF Bizet and Verdi ave compatriots,

%= hgmeabe Italian.” (4)
B: “If Bizet and Verdi are cownpatriots,
(3)

[g e French,”
v

The first three lines of the program above say that
some agent called kitecheock is watching some actor
X, in the movie called hitchcock 1ife (life of Hitcl-
cock). The fourth line represents that, in the real
world, there is a person called hitchcock. The fifth
to seventh liues claim thet in the situation of some
movie called K, it is probable that:

« the name I can vefer to the very role in the movie,
or

o the name X can refer to the role Y that iz played
by X in the movie.

Finally in the eighth to eleventh lines, two roles, that
of a man at a bus stop and that of hitcheock, are
required in the movie hitchoock 1life.

Here, let us ask what Hitclhcock saw in his veal life.
We acquire the following answers,

7-real:see{obj=X,agr=hitcheock].
™ jAnsier 1 *=

X == man([placesbus_stop]
% Ansuer 2 ew

X == hitchecock

In the case of (7}, there is no object that corre-
sponds to the unicorn in the real world, so cnly one
interpretation can be derived by a similar program.
This means that the unicoru necessarily exists only in
& hypothetical world.

3 Conclusion

We introduced the Quirore language as a tool
to deal with complicated natural language plenowm-
ena. Compared with related works such as F-logic [5]
(as a DOOD language), CLP languages [4, 12}, KRl
languages such as LOGIN[I] and CIL[6], situated in-
ference system PROSIT (7], the vew mechanism of
OuzxoTe is summarized as follows. First, an object-
orientation concept such as object identity is intro-
duced into the logic programming as the fundamental
philasaphy, Secondly, the coucept of module enables
us local definition in a large knowledge-base. Thirdly,
its logical inference system is exteuded to be able to
restricted abduction.

We first applied the sorted feature structure of
QuixoTE to constraint-based grammar formalisms,
and thew we showed that olject identily and mod-
ule in QuryoTe could coutribute to the description
of situation-based semantics.

85

References

(1] H. Ait-Kaci and R. Nasr. LOGIN: A Logic Pro-
grawutiug Language with Built-In [nheritance.
Journal of Logie Programming, 3:183-215, 1986.

J. Barwise. The Situation in Logic. CSLI Lecture
Notes 17, 1989,

B. Carpenter. The Logic of Typed Fenture Strue-
ture. Cambridge University Press, 1992,

J. Jaffar and J-L. Lassez. Constraiut Logic
Programming. In Procesdings of the 1{th ACM
POPL, pages 111-118, Munich, 1987,

M. Kifer. Logical Foundation of Object-Oriented
and Frame-Based Language. Technica! Report
20/14, SUNY at Stony Brook, June 1990,

2]
(3]
[4]

(3]

E. Mukai and H. Yasukawa. Complex Indetermi-
nates in Prolog and its Application to Discourse
Models. New Generation Computing, 3(4):441-
466, 1985.

H. Nakashima, 5. Peters, and H. Schutze. Com-
munication and Inference through Situations. In
FProc. of IJCAT "91, pages T6-81, 1991.

T. Nishioka, B. Ojima, H. Tsuda, and K. Yokota.
Procedural Semantics of 4 DOOD Progranuning
Language Quraore. In SIG-DBS No.94 of
Inf. Proc. Soc. Japan., pages 1-10. 1993. ({in

Japanese),
(9] C. Pollard and I. A. Sag. Head-Driven Phrase

Structure Grammar. University of Clicage Press
and CSLI T'ublications, 1993, (to appear).

{10] W. V. Quine. Methods of Logic (revized edition).
New York: Holt, Rinehart, and Winston. 1939,

[11] S. Tojo and H. Yasukawa. Situated Infercuce
of Temporal [nformation. In Proc. of FGCS92,
pages 195-404, 1992,

[12] H. Tsuda, K. Hasida, and H. Sivai. JPSG Parser
ou Constraint Logic Programming. In Proc. of
§th ACL European Chapter, pages 95-102. 1989

(13] H. Yasukawa, H. Tsuda. and K. Yokota. Objects.
Properties, and Modules in Qurrore. In Proc.
of FGCS 92, prges 257-268, 1992,

[14] K. Yokota and H. Yasukawa. Towards an Inte-
grated Knowledge-Base Managzement System. In
Proc. of FGCS 02 pages 80-112, 1902,

[6]

[8

A Legal Reasoning System on a Deductive Object-Oriented Database

Chie Takahashi Kazumasa Yokota
JIPDEC* ICOT T

Abstract

A legal reasoning system is a large-scale knowledge information processing system imte which maay
technologies such as artificial intelligence, natural language processing, and databases are integrated. From
a database point of view, this application features many kinds of data and knowledge, and provides many
research topics for mext geoeration databases: features of very large databases and knowledge-bases, their
classification, treatment of partial information, query processing containing high-level reasoniug, and so oo,
Further, it suggests ideas for the boundaries between databases and applications. In this paper, we explain
our experimental legal reasoning system that is based on the deductive cbject-oriented database system
Quzxore, and show how the effectiveness of the extended features for next generation databases,

1 Introduction

Recently, legal reasoning has attracted mumch attention from rescarchers in the field of artificial intelligence,
with great expectations for its big application. Legal reasoning systems are very important applications, whose
development, like that of theorem provers, dates back to before artificial intellience was proposed, (for example,
see [3]). In fact, laws are related not only to the judicial world but alse to all secial aclivities. To support
lepal interpretation and reasoning in a wide range of situations, many systems have been developed, including
those capable of plauning tax-saving strategies, negotiation of payment of damages, making contract documents,
predicting judgements and supporting legislation. Many works on expert systems for such applications have been
published, while powerful legal database systems have nol yet been reported.

In the Japanese FGCS (Fifth Generation Computer System) project, legal reasoning systems were considered
quite critical and two prototype |1:ga] reasoning systems were developed: HELIC-II 151 and TRIAL [IE, 11, Qi.

For the above systems, we provide database and knowledge-base management facilities: CQurroTe[l0] and
Kappa-I' [9]. Qurrore is a deductive object-oriented database (DOOD) language and knowledgze representation
language, used {or describing and classifying complex legal data and knowledge, while Kappa-P is a parallel
nested relational database management system, used to store large volumes of legal data. Especially, all data and
knowledge in TRIAL is written in Quraore and some advanced query processing facilities, such as hypothetical
reasoning and hypothesis generation {abductive reasoning), are provided for legal reasoning by QuzxoTe.

in this paper, we report on the experimental system, TRIAL, and illustrate the effectiveness of the advanced
features of the DOOD system. Based on our practical experience, we discuss bhe roles we expect databases to
play in legal applications, and the features that should be provided for next generation databases. This paper
presents new applications of DOOD languages to knowledge information processing by presenting an overview
of the TRIAL system in QurxoTs as an example and discussing the features that will be required by next
generation database systems. In Section 2, we briefly explain the kinds of features needed for legal reasoning.
By way of example, we consider the case of worker’s compensation law, In Section 3, we describe some of the
features of QuzxoTe, based on the above example. In Section 4, we consider the entive example database used
in TRIAL. Lastly, we discuss the features demanded of next generation databases, especially those derived from

legal applications.

2 Legal Reasoning
2.1 Basic Model

The analytical legal reasoning process is considered as consisting of three steps: fact finding, stetutory interpre-
fation, and siatutery application. Although fact finding is very important as a starting point, it is beyond the

*Japan Information Processing Development Center [JIPDEC), 3-5-8, Shibakoen, Minato-ku, Tokyo 108, JAPAN. e-mail:

jtakahaflicol or jp.
Hinstitute for New Generation Computer Technology (ICOT), 21F,, Mita-Kokosai Bldg., 1-4-28, Mita, Minato-ku, Tokyo 108,

JAPAN, e=mail: kyokotafhicot.or.jp.

g6

capabilities of current technologies. So, we assume new cases to already be represented in an appropriate form
far our system. Statutory interpretation is a particularly interesting theme from an artificial intelligence point of

view. Our legal reasoning system, TRIAL, focuses on statutory interpretation as well as statutory application.
Although there are many approaches to statutory interpretation, we follow the procedure below:

¢ analegy detection
Given & new case, similar precedents to that case are retrieved from an existing precedent database.

o rule fransformation
Precedents (interpretation rules), extracted by analogy detection, are abstracted until the new case can be
applied to them, :

» deductive reasoning
Apply the new case, in a deductive manner, to abstract interpretation rules transformed by rule transfor-
mation. This step may include statutory application because it is used in the same manner.

Among these steps, a strategy enabling analogy detection is essential to legal reasoning for more efficient
detection of better precedents, which ultimately determines the quality of the results of legal reasoning. As the
primary objective of TRIAL is to investigate the possibilities of QurxoTe in this area and develop a prototype
system, we focus only ou a small target. That is, to what extent should interpretation rules be abstracted for a
new case, to get an answer with a plausible explanation, but not for a general abstraction mechanism.

2.2 Example

In this paper, we consider a simplified example related to “keroshi” (death from overwork] to discuss the
applicability of Quzxo7Te to legal reasoring. A new case, new-case, is as follows:

Mary, a driver, employed by a company, “57, died from a heari-attack while taking an infermission
between jobs. Can this case be applied to the worker's compensation law?

3 Features of Qurxore

CQuTxoTE 15 based on several concepts: object identity, subsumption relation, subsumption constraint, property
inheritanece, module, submodule relation, and rule inheritance, From a database point of view, the language is a
DOOD language while, from a logic programming point of view, it is thought of as an extended constraint logic
programoing language based on subsumption constraints. There are some differences from the new F-logic[4, 2]:
the representation of object identity, the introduction of subsumption constraints, update semantics, and query
processing, In this section, we explain some of its features, used in the above example. See the details of

QurxoTe in [0, 8, 10].

3.1 Object Identity and Subsumption Relation

Objects in QuzxoTe are identified by extended terms called object terms, that correspond to object identifiers
(oids). An object term consisting of an atomic symbol is classified as basic, while an object term in the form of
a tuple is referred to as complez. [n the sbove example, mary, driver, heart-attack and intermission are basic,
while org[name =“5"] is complex. Generally, an object term is a variable or a term having the following fornu:

ally =ty In =t,] (0 £ 1)

where 0,11, -, lq are basic and ¢y,-- -, £, are object terms. I,---,{,, are called labels.
Object terms are related to each other by a subsumption relalion {a kind of is_a relation). Given partial order
between the basic object terms, it is extended between complex object terms as usual:

orglname = “S5% C org.
orglname = X, president = Y| C org[name = X, president = X|

As the construction of a lattice from a partially ordered set, like that in [1], is well-known, we can assume that a
set of object terms with tep and bot constitutes a lattice, without losing generality. The meet and join operations
of o1 aud oz are denoted by oy | 03 and o) T 04, respectively.

a7

3.2 Subsumption Constraints and Property Inheritance

The property of an object is represented as a subsumption constraint. The pair constituted by an object term o
and a label [, denoted o.l, is called a dotted term, which plays the role of & variable ranging over the domain of
the object terms. Furthermore, a pair constituted by a dotted term and a label is, itself, also a dotted term. If
ty,ta is an object term or dotted tern, then a subsumption constraint is defined as follows:

t) g

That is, a property of an object o is a subsumption constraint with a dotted term starting with o. In other words,
it is defined as a triple coustituted by a label, a subsumption relation, and a value. For example, the result of
the new-case is represented by the following subsumption constraint: new-case result = heart-atiack,

The syntactic construct for representing an object term with subsumption counstraints is called an atéibute
term. Let o be an object term., C a set of subsumption constraints, then o)C is an attribute term. For example,
the following attribute term represents that the new-case is that Mary died from a hearf-atfack while taking an

w7l E!'I"?H-IH.TI: oL

new-case|{new-case. whe = mary,
new-case.while = infermission,
new-case.resull = heart-attack}

There are some syntax sugars in QuzxoTs:
el{el Tt} ¢ of[l—=t] ol{od Tt} & of[l—t] ol{od=t} & of[l=t]

Thus, the above attribute term can be represented as follows:

new-case/[who = mary, while = intermission, resull = heart-attack|

Notice that there are two kinds of properties: those that appear in object terms and those as subsumption
constraints. The former are intrinsic for an object, while the latter are extrinsic for an object, Regarding the
extrinsic properiies, the following constraint solver is applied to a set of subsumpticn constraints:

o=o = eliminated
endo; = 0Co o Co0,00C05 = o0;C0
ooy = o0Colo nbogneCo = oTaalag

Any set of subsumption constraints will produece & unique solution by applying the above rules|7|.
It is matural to assume that extrivsic properties are inhecited by object terms with respect to C-ordering.

Consider the following example:

myocardial-in farcion C heart-attack
heart-attack/[arteriosclerosis — yos]

Since myecardial-infarction is a kind of heari-attack and heart-attack has a property [arteriosclerosis — yes]
myocardial-in farction has the same property by inheritance from heart-attack.
Froperty inheritance between objects is defined by the following rule:

qEop — odEC ol
ofl =t = oyd=t

According to the rules, we abtain downward and upward inheritance, multiple inheritance, and exception as
follows:

oy f|l = t]

ﬂz.l"lf"' t]

oy [l = t], oa [l 1]
oy f[1 =ty | g
o[l — 1 7ta

oift = ta) /[t = ta]

o) C oy, 09|l — ¢

oy Coog,0/[L 1

0y C 01,07 C oy 0/l =

o1 Co3,00 Coog,0 /[l = ta], 03 /(1 = 5]
o1 Jog.op Dog, 09/l =], 03 /[— ta]
o[l — ta]

Frenyl

88

3.3 Rule and Module

A rule is defined as in constraint logic programming, as follows:
ﬂ'n gull“‘lunllﬂ

where ag,ay,---,4, are attribute terms and D' is a set of subsumption constraints. ag is called a head,
ay, -, aq, D is called a body, and a; is called a subgoal A rule means that if the body is satisfied then the head

iz catisfied. If a body is empty, then the rule is called a foct
For example, the following is a rule for judgement,
judgefcase=X|f[judge — insurance]
+judgelcase= X|/[judge - job-causality],
judne[case=X|/[judge — job-ezecution]
I{X E case}.

It means that if the judgement of some case, judge[case = X| where X C case, is jobcousality and job

execulion, then the judgement is insurance.
A module corresponds to a part of the world {situation) or a local database. The module concepts play an

important role in classifying knowledge, modularizing a program or a database, assumption-based reasoning. and
dealing with any inconsistency in & database in Qurrore.
A module is defined as a et of rules as follows:

me ry,ra)

where m is an object term called & modwle identifer (inid) and .-, r, are roles. mois sometimes used instead

of a module itself, if there is no confusion.
The definition of rules is extended for external reference of ohjects:

My o {ﬂg =My Gy, Ty - qnll,ﬂ}

where mg. ™y, -+ -, M, are mids. [t means that the module my has a rule such that il o; and D are satisfied in
the module m; for all 1 € < n, then ap is satisfied in the module my. As an attribute term can be separated
inta an nhjer:t Lerim :'Lnr] &L sl nf con.str.;LinLﬁ, I!.Fu_*. r|1Ee ©an l’m rHW!’iT.LPII as fﬂllnwﬁr

mg = {op|Co & my 10y, My 1 0,]|C)

where g = 0l Ci{0 €1 < n)and C=C U U, U D,
Importing and exporting rules are done by rule inherifance, defined in terms of the binary relation {written

D) between modules, called a submodule relution as Tollows:
my gy, my v R ome o Ry e oy HyUR:, ms o By

where my, my are modules and By, B2 are sets of rules. The right hand side of Jg in a submodule definition may
be a formula of mnids with set operations. For example, if we have

my o {*‘n.f‘u.!’u]r My o {1"4111‘.1.2} g {Tzhf'n]' my Jg my Lhmy
{ma.ma} my g mz\ma

then 4 has {1"|_|_1T:|3, TLJ,,TJl,f;;,T;_:} and Ty has {1"?[,1“12}.
It iz possible for inconsistent knowledge to co-exist by making use of the module mechanism. For example,
consider that it cannot be said for certain whether mary has arteriosclerosis. The following shows how such a

problem is handled:

new-case; ©: mary/|arteriosclerosis — yes|.
new-cases © mary/|arteriosclerosis — nol.

whiere new-case; and new-casey are oot related by submodule relation.
A dotabase or a progrom is defined as the triple {5, M, i) of a finite set of subsumption relations 5, a set of

submodule relations M, and a set of rules R,

89

3.4 Query Processing

Query processing basically corresponds to resolution and constraint solving in constraint logic programming. One
of the main features of data and knowledge in knowledge information processing, such as legal reasoning. is that
the information is partial, that is to say, sufficient information weed not necessarily be given. For example, a new
case might lack some important facts. So, query and an answer is extended for treating partial information.

A query is defined as the pair (A4, P} (written 7-4;; P) of a set of attribute terms A and a program P, where
A is referred to as the goal and P as a kypothesis.

Consider 2 database DB. A query 7-A::P to DB is equivalent to a query 7-4 to DBU P (If DB =
(&, My,) and P = (53, My, Ry} then DBU TP = (51U 5y, My U My, HHy u HAa)). That is, P is inserted into DB
before A is processed. [n other words, P works as a hypothesis for 7-A. As bypotheses are incrementally inserted
into a database, nested transactions are introduced to control such insertions. See the details in [lﬂ'.

An answer is defined as the triple {D,V, E) of a set of subsumption constraints I that cannot be solved
during query processing, a set of variable constraints V' that are bounded during query processing, and the
corresponding derivation flow E. D lacks information in the database, obtained by abduction, V' is an answer in

the sense of constraint logic porgramming and £ is the explanaiton.

3.5 Qurxore System

A Qurvere system consists of a clienf as a user interface in C on UNIX™ and a server as a knowledge-
base engine in a parallel logic programming, KL1, which was designed and developed by ICOT to tun under
UNIX. A server and clients are coonected by the TCP/IP protocol. One of the user interfaces is Qmacs using
GNU-Emacs. while others are windows that are implemented using X-Window and which display some figurcs
graphica.l]y_ The everall architecture is shown i Figure 1, wlile Fi.j_'.lll‘i‘! 2 shows an HX;-LLJLJ:]E of a graphicn.l ﬁg‘ure.

Quixpte Client | Quixote sRIVEr
C, X, GNU Emacs Ki.l
f,
Omacs |~ '
"l'.,.'] K Data |
e nterpreter
1-] i L|+s Manage P

=

.l
Persistence
4 Manaqger

| =__

*

\ s (Kappa)
11__ Sfm;ﬁos

Fig‘u.rc 1: Architecture of QUIXoTe system

-

H@]'Idow L |}:\f Constraint Solver
A\

4 Legal Reasoning on Quzyors

In this section, we explain our legal reasoming system, TRIAL, written as a QuixoTe system. The overall

architecture of the system, written in KL, is shown in Figure 3. QurxoTe supports the functions of rule
transformation and deductive reasoning as native functions besides the database component, while TRIAL

supports analogy detection besides the interface component. All data and knowledge in the database component
is written in QuIveoTs.
A new case, new-case, (in the New Case Database), is represented as the module new-case in QUTXOTE as
follows:
new-case ©t [new-casef|who=mary,
while=1nlermission,
result =heart-attack); ;
relation[state = employ. employee =mary|
/laffiliation=organization[name==§"],
job— driver]}

a0

Figure 2: A window display of a lattice

THIAL

Q nery Registration Answer
[nterfz-.ce Interface Interface

Deductive
Reasoner

Q.!.r:r.m‘rs Da.t.ahasu_'Cnmpnnent (" Dictionary }’

Statute Theory Precedent New Case
Database Databasc Database Database

Figure 3: Architecture of TRIAL

where “" is a delimiter between rules. Assume that there are two abstroct precedents ' of job-causality and

i

Joh-ezecution:

case; o judge[case=X|/[judge — job-execution]
&relation[state =Y, employee = Z| [[canse = X], X
|l{ X € parm.case, ¥ Cparm.state, Z € parm.employee}; ;
casey :: judge[case=X|f|judge — job-causality]
& X/[while = Y, result = Z|,
[|[{ X Cparm.case, ¥ Cparm.while, £ C parm.result},

Note that variables X, ¥, and £ in both rules are restricted by the properties of an object parm. That is, they
are already abstracted by parm and their abstract level (the range of variables) is controlled by parm's properties.
Such precedents are retrieved from the precedent databaze by analogy detection and are abstracted by rule

transformation.
We must consider the labor-law (in the statute database) and a theory {iv the theory database) as follows:

n this paper, we omit the rule transformation step and assume that abstract interpretation rules are given.

21

labor-law :: organizationfname=X]
/[responsible — compensationfobject =Y, money = salary||
s=judge[case=_C] [[judge— insurance],
relation[state = Z, employee=Y]|
[laffiliation=organization[name=X||
IHC Ecase}.
theory = judge|case=X|/[judge — insurance]
=judge(case=X]/[judge — job-causality],
judge[case=X|/[judge— job-execution]
I{X € case}.
Furthermore, we must define the parm object as follows:
parm :; pa.mlu"!cuaie = case, state = relation, while = job,
result = disease, employee = person|.

This object results from abstracting precedents and is used for the control of predicting judgements.

To use parm for case; and casey, we define the following submodule relation:
rarm Jdg case; U cases,

This information is dynamically defiued during rule transformation, because the choice of precedents is experi-

mental.
Furthermore, we must define the subsumption relations:

cise = new-case person o mary
relation 0 employes job-cauvgality 2 dinsurance
disease J heart-aftack job-executton J insurance
jab d intermission

Then, we can ask some questions with a hypothesis to the above database:

1} If nev-case inherits parm and theory. then what kind of judgment do we abtain?

1. new-case : judge{case=new-case|/[fudge = X|;:
new-case g parm U theory.

We get three answers, in which the first is returned unconditionally, while the latter two are answers with
assumptions:

o X Cjobcausality
if new-case: judgelcase =new-case| has judge C job-execution, then X Cinsurance
o if new-case: relation|state=employ, employee = mury| has cause =new-case, then X Cinsurance

2) If new-case inherits [abor-law and parm, then what kind of responsibility should the organization to which
Mary is affiliated have?

- new-cose : organization[name = 87| /[responsible = X|;;
new-case Jg parm U labor-law.

We get two answers with assuuptions;

o if new-case: judge[case =new-case| has judge C fob-erecution,
then X C compensation|obj =mary, money = salary|

o if new-case:relation[state = employ, employee =mary| has
cllgE =nEw-case,
then X C compensation[obj =mary, money = salary]

For analogy detection, the parm object plays an essential role in determining how to abstract mles, as in
case; and casges, which properties or objects are to be abstracted using the properties of parm, and which values
are to be given for the properties of parm. In this experimental system, which adds to the baslc functions of
QuzxoTe, we have experimented with not only hypothetical reasoning and abduction, but also such abstraction,
that is, analegy detection.

For TRIAL's user interface, QuIxoTe returns explanations {derivation graphs) with corresponding answers, if
necessary. The TRIAL interface displays this graphically according te a user's request. By judging an answer on
the basis of the validity of the assnmptions and the corresponding explanation, the user can update the database
or change the abstraction strategy.

The TRIAL system was implemented for four mouths by two persons. This highlights the productivity of
QuizxoTe for such knowledge information processing systems.

82

5 Concluding Remarks

Knowledge information processing applications will play an important role in future information processing
systems, including future generation databases. Legal reasoning systems, one such application, show typical

requirenents for future database systems.
From the experiences of TRIAL, we can list several requirements for next generation database systems, which

need not necessarily be only for legal applications:

e Processing partial informalion
As data and knowledge are often not given in a perfect form, unlike conventional applications, we must

consider ambiguous or erroncous data as well as null values and logically incomplete information such as
negation and disjunction. In QurxoTe, we use subsumption constraints to handle ambiguous and partially
lacking properties. They are useful not ouly to knowledge databases but also to scientific databases.

s [ealizing en environment for thinkmyg experiments
Answers are not necessarily given uniquely in knowledge information processing, but are refined by

repeating trial-and-error querying with the users. In this sense, the features of hypothetiral reasoning and
hypothesis generation are very important.

¢ Fromework of very large database and knowledge-base
Classification mechanisms are very important for storing large databases and knowledge-bases. Subsump-

tion and submodule hierarchies contribute to such classification. Especially, a framework that allows
inconsistent data and knowledge to co-exist is needed.

s Integration of heterogeneous data and knowledge
Even if we consider only one application, we can find various kinds of data and knowledge within it.

For example, legal data includes large amounts of text data as the primary data, and abstracted data
or knowledge (including rules) as the higher level data. Although we have not integrated such data
and knowledge into TRIAL, the integration of such heterogencons data and knowledge will become very

important.

o Knowledge discovery in databases
To classify large databases and knowledge-bases, two kinds of knowledge discovery will be needed: how to

find erronecus and lacking information; how to find new knowledge (abstracted rule in the above example).

* [Iniegration of technologies in related areas
Database technologies have been spreading: for example, we now have deductive databases, database

programming languages, deductive object-oriented databascs, and very large knowledge-bases. More tech-
nologies in many areas such as artificial intelligence, programming languages, and operating systems,

should be embedded into database systems.

Qurrote and p-QurroTe systems, which run under UNIX, have been released as ICOT free software.
We have been extending the features of the systems as next generation database systems and a framework of
heterogeneous, distributed, cooperative problem solvers to enable their application to a wider range of knowledge
information processing applications such as natural language processing and genetic information processing

systoms.

Acknowledgments

The authors wish to thank Nobuichiro Yamameote {Hitachi, Ltd.} for designing and implementing the TRIAL
system, and all the members of the QurroTe project for their valuable advice.

References

[t} H.ATt-Kaci. “Aun Algebraic Semantics Approach to the Effective Resolution of Type Equations™, Theoretical Com-
puter Science, no.45, 1986,

[2] A.J. Bonner and M. Kifer, “Transaction Logic Programming”, Prec. Intl Logic Programming, 1991,

[3] L.O, Kelso, “Does the Law Need 2 Technological Revolution?, Rocky ML Low Rev., vol.18, pp.d78-392, 1946,

[4] M. Kifer, G. Lausen, and J. Wu, “Logical Foundations of Object-Oriented and Frame-Based Languages™, SUNY TR
§3/06, June, 1083,

g3

[5] K. Nitta, Y. Ono, T. Chino, T. Ukita, and 5. Amano, “HELIC-II: A Legal Reasoning System on the Paraliel
loference Machine™, Proc. Int. Conf, on FGCS, ICOT, Tokyo, June 1-5, 15952,

[6] N. Yamamoto, “TRIAL: a Legal Reasoning System {Extended Abstract])”, Joint French-Japanese Workshop on Logic
Programmning, Renne, France, July, 1991,

[7] H. Yasukawa and K. Yokota, “Labeled Graph as Semantics of Objects”, Froc. Joint Workshop of SIGDBS and
SIGAT of IPSJ, Nov., 1930,

[8] H. Yesukaws, H. Tsuda, and K. Yokota. *Objects, Properties, and Modules in QurxoTe", Proc. Int. Conf on
FGCS, 1C0T, Tokye, June 1-5, 1992,

[9] K. Yokota and H_ Yasukawa, “Towards an Integrated Knowledge-Base Management System — Overview of H&D on
Databases and Knowledge-Bases in the FGCS Project”, Proc. Int. Confl on FGCS, ICOT, Tokyo, June 1-5, 1992,

[10] . Yokota, H, Tsuds, and Y. Merita, “Specific Features of a Deductive Object-Oriented Database Language
Qrizxore”, Workshop on Combining Declamtive and Olject-Oriented Databases, (ACM SIGMOD'9S Worlshop),
Washington DC, May 20, 1993,

[11] K. Yokota and M. Shibasaki, “Can Databases Prodict Legal Judgements?™, Joint Workshop of IPSJ SIGDSS and
JIEICE SIGDE (EDWIN), Nagasaki, July 21-23, 1993. (in Japanese}

94

Representation of viewpoint in New HELIC-II

Katsumi Nitta, Masato Shibasaki, Tsuyoshi Sakata, Takahiro Yamaji
Hiroshi Ohsaki, Satoshi Tojo, Takayuki Suzuki

Institute for New Generation Computer Technology (ICOT)

1 Introduction

Since 1991, we have been developing a legal reasoning system, HELIC-II,
on the parallel inference machine PIM [Nitta 92|, developed by ICOT.
Although HELIC-ITis a powerful reasoning system, its inference mechanisms
is not sufficient as a general legal reasoning model. Based on our experience
with HELIC-II, we commenced our work in a new version of HELIC-II last
year. Our goal for the new HELIC-II is to develop a model of general legal
reasoning, and to realize it as a software tool in KLIC [Chikayama 89].

Especially, we focused our attention on the reasoning process of argument
and on the role of standpoint and viewpoeint during argument, because we
fael that the cognitive aspect is vital to creating a viable legal reasoning
model.

In this paper, we introduce the functions of the revised HELIC-II, its
knowledge representation language, and an example of a debate.

2 Overview of the new HELIC-II

2.1 TFunctions of the new HELIC-TI

The new version of HELIC-IT has two main functions. The first creates
an argument for pursuing a given goal. This function consists of devising
arguments to achieve a goal, listing up counter arguments, and to finding
strong, favorable arguments. Therefore, the function is a kind of theorem
prover, corresponding to the first world undertaken by the prosecutor in
court.

The second function creates a counter argument to defeat the other
party's argument. This is realized by changing the relative priorities of
rules or by changing facts. This corresponds to the work of the prosecutor

attorney as they debate,

95

2.2 HELIC-II three layer reasoning model

Our model consists of three layers (Fig.1).

1. Proof layer (Theorem Proving):
The role of this layer is to generate an argument for persuing a given

goal in the form of an inference tree. This layer consists of two infer-
ence engines, namely a rule-based engine and a case-based engine,and
three knowledge sources, these being a conceptual dictionary, a rule
base of legal rules and a case base of case rules. Both inference engines
generate proof trees to reach a single by means of backward reesoning.
The case-based engine applies case rules by similarity-based matching
[Branting 89), [Nitta 92|

2. Defeasible reasoning layer (Reasoning based on viewpoint):

This layer contains a module that handles defeasible reasoning and
viewpoints. Qur defeasible reasoning is based on the concept of priority
between rules [Sartor, G. 93], [Prakken, H. 93]. If two defeasible
rules result in a confiict, a rule that has priority over another rule is
employed. A viewpoint consists of the relative priorities of standpoints,
while a standpoint consists of the relative priorities of legal rules and
case rules,

3. Debate layer (Argumentation):
This layer contains a module that finds a counter argument to de-

feat the other party's argument by reinforcing the current viewpoint.
Therefore, the role of this layer is to provide advice to one of the
parties during debate.

3 A knowledge representation language for the
new HELIC-II

3.1 Overview of NL

We designed a knowledge representation language to develop a legal reason-
ing system based on our previous analysis.

Temporavily, we are referring to our language as NI, standing “New
HELIC-II Language".

96

statute theory case

Argurneniation L]

strategy of debate

EE&M based on view point

goal -

defeasible
feasoning

)

Wi point,

constraint antomym

arguimeart of relaxaton dictiona

0 pu.pogi:,e side _"' miodule: o
i
[- H

¥]

case rules

Figl: Three layers of legal reasoning

NL is an extension of the “LOGIN” [Ait-Kathy 86][Smolka 89] logic
programming language with inheritance, by implicit case, negation as failure,
higher order representation, defeasible reasoning and analytical reasoning.

(1) Type
Type is a set of objects, and the partial order relation of two types, A <t
B, means that 4 is a subset of 8. Type definifion consists of a “feature

definition™ and a “subset relation” between types.

Gl Xuf fuy et s X/ fal-

ti < t; (i is a type symbol, I; is a label,
X, is a variable, f; is a feature definition,
and <7 is a subset relation)

For example, the following is the type definitions of " Japanese is a person
whose nationality is Japan."
person[age:integer, parent:person, nationality:country].
japanese[nationality:japan|.
japanese <7 persom.
japan <7 country.

a7

(2) Terms

Types are classified into werb-type and noun-type. Using these types, we
define different kinds of terms - H-term and y-term.
H-term takes the following forms.

v(er = q1,¢2 = g2,y Cn = Gn)

- wuler = 41,62 = 2, Cn = Ga)
(v is a yp-term whose top level type is a verb-type,
¢; is a case symbol and ¢; is an H-term or ¢-term.)

w-ferm takes the following form.

Xt

Xﬂ{ﬁ = By, e = b,y = t-ﬁ]
(X is a type-variable, { is a type, li is a label, ¢; is a ¢-term.
We can omit “X /", if it is not necessary.)

Let the H-ferm_type be defined as follows.
H-term _type[verb : verbtype, e : Xy, ..., 00 1 Xy
Then, the H-term
vicL = q1,62 = §2,.,€n = gn)

is considered as a syntax sugar of the following 4-term, if none of cases are
omitted.

H-term_typelverh = v,¢1 = q1, ..., Cn = qa

{3) Variables

NL uses two kinds of variables - a type-variable and a H-term-variable.

A type-variable is a symbol whose first character is a capital letter, that
appears immediately a type or in place of a type. [dentical variables are
bound to each other. The following example means “person wishes his child
to love him."

wish(agent=Y/person, object=love(agent=person|parent="Y], object=7Y))

98

A H-term-variable is a symbol whose first character is “@". It appears
just after H-term and used as H-term identifier. In H-term denoted by H-
term-variable, omitted cases are treated as they have universal quantified

variables.
For example, if “place” and “time” are implicit cases of “hit", then the
following rule

crime_of_violence(a-object= @actl) —
hit(agent=X/person, object=7 /person) | @actl.

is interpreted as follows.

crime_of_violence(a-object=hit{agent=X/person, object="/person,
place=W, time=Z)) —
hit(agent=X, object=Y, place=W, time=Z).
In addition to H-ferm-variable, NL uses H-term-constant as H-term iden-

tifier. A H-term-comsient is a symbol whose first character is “#." It also
appears just after H-term. Tn H-term dencted by H-term-constant, omitted

cases are treated as they have skolem constants.

(4) Legal Rules

Legal rules take the following form.

wimg: hge=my:hy,myhe, . my k.
(u is a unit name, m; is a module name, h; can be either H-ferm or
not H-term whose cases can have exiended H-ferm.)

Here, unit nameis a rule name, and not H-term is an H-term to which “not”
is attatched.

Facts are represented by legal rules for which the right hand side is
“true.” We can thus omit the right-hand side to a represent fact.

(5} Case Rules

A Case rule takes the following form.

wimg: hg+— my : hy,mgt hgyoymy s hy | CRC.
(u is a unit name, m; is a module name, k; is H-term or not H-term,
CRC is a constraint relaxation condition)

g9

NL supports the control of unification of specific terms by describing the
fallowing conditions in CRC.

s “limit" specifies the upper limit of type generalization.

e “exact” indicates important types or terms, Important types or terms
should always be satisfed, while other types or terms may not have,

« Function for measuring the rate of satisfied conditions on the right-

hand side of a case rule.
Following is an example of case rule.

u:: liable(agent=tom, object=8injury)
read_a_book{agent=jim, place=housel)|@rcading,
S/surprise(agent=tom, object=jim, place=housel)[@surprise,
fall{agent=jim, source=sofa, place=house1)[@fall,
T/cansality(canse=@surprise, effect=0{all),
injured{agent=jim, place=housel} |@injury,
causality(cause= @fall, place= @injury),
| { limit(surprise, surprise), limit(tom, person), limit(jim, person),
limit{causality, causality), limit(injured, injured),
exact(8), exact(T), exact(@injury), sim > 0.7 }.

The meaning of this rule is “while Jim was reading a book, Tom surprised
him. Jim fell fram the sofa, and was injured. In this case, Tom is liable for

Jim's injury.”

fi) Unit, standpoint, viewpoint
(p P

Ewven though a unit is defined as an identifier of a legal rule or a case rule,
we can extend the definition of a unit to also represent a set of legal rules

ot case rules.
For example, we can define the unit decision of supreme_court whose

members are u; (i > 0).
decision.of supreme.court = {ug, ug, ., Uy}

A standpoinl is a set of priority relations between two units. For exam-
ple, the standpoint “lex_superior” is that decision_of _supreme_court has
priority over decision.of_high_court.

lex_superior :: {decision_of high_courl <g decision.of supreme_court}

100

A viewpoint is a set of priority relations between standpoints. For exam-
ple, the viewpoint “viewl" is that lex_superior has priority over lex_posterier.

viewl :: {lex_posterior <y lez_superior}.

(7) Defeasible reasoning

Defeasible reasoning, based on the priorities of rules is one type of non

monotonic reasoning.
First, we will define some basic concepts. An argument for some goal

p is the minimum set of instances of rules and facts needed to draw p. An
argument B is the counter ergument of argument A, provied if A has a sub-
argument A' for ¢ and B is the argument for —~g. B directly defeats A, if
B is a counter argument of A, if the top of the defeasible rule of B takes
priority over the top of the defeasible rule of A, and if none of the sub-
arguments of B iz defeated by the others. B de feats A, if B directly defeats

the sub-argument of A.
Arguments are classified into defeated arguments, merely pluvsible argu-

ments and justified argumets. A defeated argument is one which is defeated
by sume other arguments. A merely plausible argument is one that is not
defined by any counter argument. A justified argument defeats all counter
arguments. A pleusible argument is a merely plausible argument or a justi-
ficd argument,

Given a goal, facts, a viewpoint and some control parameter, NL will

generate plausible arguments.
7. solve(Goal, Facts, Viewpoint, Mode, SolutionTable).

If we specify “normal mode", NL generates all plausible arguments by
retracting unnecessary arguments. On the contrary, if we specify “analysis
mode”, NL generates all arguments, all counter argunments for each argu-
ment, and all counter arguments for each counter argument, and so on. The
resultant arguments are stored in the solution table.

A solution table contains the arguments that will produce the given goal,
possible counter arguments, and category for each sub-argument. Therefore,
we can draw viewpoints which makes an argument to justified one.

4 Conclusion

We presented averview of the new HELIC-II. On this model, we have been
trying to simulate the dabate using actual cases.

101

The mechanisms of interpretation of legal rules and flexible analogical
reasoning are next subjects of the research of the new HELIC-IL

References

[Ait-Kathy 86] Ait-Kathy, H. and Nasr,R. “LOGIN:A Logic Programing
Language with Builit-in Inheritance.” in “J. Logic Prog.”,1986, vol.3,
pp. 185-215

{Branting 89 L.K.Branting: “Hepresenting and Reusing Ezplanations of
Legal Precedents" in “International Conference on Artificial Intelligence

and Law ® 1989,

[Chen 89] Chen,W. Kifer, M.and Warren,D.5. “HiLog as a Platform for
Database Language” in "Znd Intl. Workshop on Dalabase Programming
Languages"”, Oregon Coast OR, June 1989,

[Chikayama 89] Chikayama,T,ICOT. “A Portable and Heasonably Effi-
ctent fmplementation of KL1." in “International Conference on Logic
Programming”, The MIT Press,1993.

[Gelfond 90| Gelfond,M.,and V. Lifschitz. “Logical Programs with Classical
Negation."in “Proceedings of the Seventh International Logic Program-
ming Conference”, New York:MIT Press, 1990, pp.579-597.

[Nitta 92| Nitta, K. “HELIC-II: a legal reasoning system on the parallel
inference machine.” in “International Conference on FGCS92", 1992,
pp.1115-1124.

[Smolka 89] Smolka,G.and Ait-Kaci.H. “Inheritance Hierarchies: Seman-
tics and Unification” in “J. Symbolic Computation” 1989, pp.343-379

[Sartor, G. 93] Sartor,G. “A Simple Computational Model for Nonmono-
tonic and Adversarial Legal feasoning” in "International Conference
on Artificial Mtelligence and Law", 1993 pp.192-201

[Prakken, H. 93] Prakken,H. “A logical framework for modeling legal ar-
gument” in "International Conference on Artificial Intelligence and
Law", 1993 pp.1-9

102

OWNERSHIP:

A Case Study in the
Representation of Legal Concepts

(Preliminary Draft)

L. Thorne McCarty
Computer Science Department
and
Faculty of Law

Rutgers University
New Brunswick, New Jersey 08903

Abstract

This paper is an exercise in computational jurisprudence. It seems clear that the
field of Al and Law should draw upon the insights of legal philosophers, whenever
possible. But can the computational perspective offer anything in return? We explore
this question by focusing on the concept of OWNERSHIP, which has been debated
in the jurisprudential literature for centuries. Although the intellectual currents here
flow mostly in one direction — from legal philosophy to Al — we show that there are
also some insights to be gained from a computational analysis of the OWNERSHIP
relation.

In particular, the paper suggests a computational explanation for the emergence of
abstract property rights, divorced from concrete material ob jects.

Presented at:
Conference in Celebration of the 25th Anniversary of the IDG
Florence, [taly
December 1-3, 1993

Copyright (€ 1993 L. Thorne MeCarty

103

Butlding wp 2 Legal Ontology from a General Ontology

Takahira Yamaguehi aod Masaki Kurematsuy
Facuity of Engineering Shizuoka University
3-§-1 Johoku Hamamatsu Shizuoka, 432 JAPAN

ABSTRACT

In order to develop legal expert systems, we must build up several legal
knowledge bases: a rule base for provizions for laws, 2 ease base far judicial
precedents, a knowledge base for legal common sense or theory. [f such legal
knowledge bases would be developed independently, the cost would become
enormous. 3¢ a1 to aveid the trouvblesome, in the [ield of knowiedge enginsering,
the research on knowledge sharing and reuse is coming up just now, such as the
ARPA Koowledge Sharing Imitiative io USA. Although there are several issves to
achieve the research, it is ane key issue to build up a wseful domain—specilic
ontology efficiently and correctly. Ino this case, the ontology just mesns the
following! concept primitives that compose legal knowledge bases and a concepl
tree. Because the domain=specific onlology is alse a knowledge base, it needs
much effort te build it up in no support of 2 knowledge base building environment.
S0 this paper comes into 2 mew area on the enviromment to build wp 2 legal
ontology from 2 general cntelogy that has been already developed. The general
ontology comes from a concept dictionary that has been developed at Japan
Electronic Dictionary Research Institute. The development process for a legal
ontology has three steps: (1) a wser (a legal expert) inputs an initial legal
ontelegy, (2) The environment tries to match the initial legal ontology with a
general ontolegy, and (3} The environmeat tries te identify something wrong with
the initial legal ontology wsing knowledge acquisition strategies, and then has
the interaction with the user. The matching mechanism has two level: symbol-level
matehing and knowledge—level matching. The general concepts matched with a legal
comeepl by the former are lower boundaries in 2 maiched space in & gensral
ontology, and cnes by the latter are upper boundaries. The knowledge acquisition
strategies has the following: (1) the difference between depths in twe ontolagy:
(2) the difference betmeen the number of child nodes in them; and (3) the
dif{erence between paths in them. An experiment has been dome 1o the domain of
United Nations Convenlicn on Contracts for the International Sale of Goods. It is
shown that the matching mechanism and strategies have been available to acquire
the definition of legal concepts of act, declaration of inlention, offer, reply,
acceplance and so on.

104

e Knowdadas i

o fior Legai Reasaring

March 18, Northwad e Lindv, #F Satfon, Sponsoned by iCOT

Building up 2 Legal Ontology
from a General Ontology

Goal of Legal Ontology Acquisition

T. Yamaguchi and M. Kurematsu

¥

from General Ontolog

Faculty of Engineering
Shizuoka University

General Ondelopy

Malehing

Feedback

comcepd A
definiiion

Leagal Onitolo

|

Redsiion
Value

!
S

Function Definition

|

Structure Definition
Tret{Depth end Fath)
ibe number of child nodes

|

& Lags! Ontology Besed Envirorment
to Suld up 2 Lege! Mnowdadpe Bese

Common
Sense

105

Structure Level(Node + Child Nodes) Matching

Legs! Ontology

Provisions
for a Law

Concept Primitives
and a Concept Tree

to Describe
Legal World

Judicial

Precedents

Peeudo Legal
Conlext

General Conteni

Norms
or

Legal

Theory

hhmﬂﬂ-mﬁumﬁ— Qm._u...-ﬁ-nu (Juawauyay] Mojag Liwuopayg el iea] dysselary jdasun))

[mme] [me] [2]

= = G
L] L =
[— .__._ -

i [LERER RIS T
m e LRI) TR TER
__.noﬂn frrunay Wasans)
LPYE AOE U] [1
B SE0E ORI L RS
W ‘yaazde jrommd)
{ LIETFLPTE LT ETTHTTEN L5
Hrg [sy riws)
L LRI I LN RS TT } |
apdwmxy |

ABUOIDI(PIOA

Kaeuonoq 1dsduo)

g
O
el
[=
Q
o
= ‘ ¢ £ 5o F

9 jun “o}-uroJay ‘Aienauaq ‘1osassod ‘1aijipowt
<

—

=]

L

"]

i

[}

(]

a

by

[=]

bt

o

4

=

(7]

E

(=

L

g

a

[

‘10 ‘pue ‘siseq ‘souanbas ‘asodand ‘32ulaaNI3009
‘uonipuo? ‘rqunu ‘Anuenb foj-aurn ‘wogy-awn
awan) fxpuueld ‘Auans ‘acepd fjeod ‘20anos fjereul
Juawajdunr ‘osned ‘palqo ‘ydalqo-e ‘yuade

applying knowledge

A Ul Pqe] uonepay 1daduo)

rd

i
A user (a domain expert) inputs an initial

with a general ontology that has a word dic

legal ontology (concept descriptions and
and a concept dic.

a concept tree).
The system matches the legal ontology

The system asks the user something is wrong
acquisition strategies to the matched result.

with the legal ontology,

STEP3

1046

RS |- 33 POTRCE aF BN KREN]
ihm e®uen liLE b pemon

g | e alien _1

Concept definition for
"declaration of intention"

Legal Dictionay before Refinement

mave infarmntion

Lerul

infarmation

a person or an agent that behaves

like a person.

object/1-> intention

goal/1->

cercerm vefini: ar

=L T

[b periiloon e stirn

[graitl-z e

shuwing umese s

will 1o ouber persons

1 B 8 BhE B peraon

107

rgtching @ Legel Ontology
with o Geners] Oneology

1. Matching a legal term in a legal ontology
with a word illustration in a general antology

The matched word illustrations are
—= |ower boundaries in a matched space
in a general ontology.

2. Matching a concept description in a legal
ontology with one in a general ontology.

The matched concept descriptions are
upper boundaries in a matched space
in a general ontology.

Knowledge Acqguisition
(Interview) Strategies

O the difference between depths
in two ontologies

(O the difference between
the number of child nodes
in two ontologies

O the difference between
' paths between two concepls’
in two ontologies

ke

B s

1,0

TR

L

Hig,!

N AT

e
1'; ' T

3
L B

e
oyl

=B

Number of Child Nodes of Legal
Dictionary and General Dictionar
node name h.negnl Dictionary General Dictionary

PErson
hings

lzce

norms

purchase

rice
of intention
seic)
offer
edgement

W

recognition

{:und_iiiﬂﬂ
restriction
action

act
vary
declaration’
reply
acceplance
acknowl-
leave

|methods
lime =7
quantity
umit

IEC |

T(4)

e

P

-t

2
7] ¥

General Dictionary
node name [Legal Dictionary |General Dictionary

oy

of inténtion:

b

T

1tion

restriction ¢
action

Depth of Legal Dictionary and

rson

things

recognition

declaratic

purchiase
price
rmethods
time
place
morms
cO

unit
[aet™
vary
leave

{uorjuuI JOo UORIBPIP)
SAPOU PIYI JO JIQUINUT INOQE NDUIIIJJIP)
0) 3ufpJ023e uoNuyap 3daduo0d jo JuIWIUIY

IO [[Aavuoioig eda

{uoiuIUL JO UONBIE[DIP) TR
apou e jo yiydap —T

INOQE AQUIIIJJIP 3} 0 BUIPIoIIE
uojiurjap 1daouod jo Jusuraulay

e ey
.-vr_-\tr ln:i._.n-i.ﬂhh\u-).?f-

L §ueeand ue pagey .\ﬁ‘i:
o e

e e e

il

...a......a..:._._.:.-:.:.._._. % J
it T da 4 Arenonoig edaty
—— / R
sttt
P
L e © TS, N @ 00 st Tl
B ity
—
o e e)
.r.,._l...n.._._u.__.uauz_q Eani
moensmmmns e (o)

Auni g A D [4ap Lizuoion] eda

108

(uawauyay Jayje dasuon g [edap)aaa], Aysaesangy Jdasuoy

R

(uonuajur jo uoneiedap)
uondriasap 1dadsuod Jnoqe aduIYJIp) 0]
3urp10doe uojtuyap 3daduod Jo JuswaurRy

Taa A feuonog eday

..E.:....,..Fm.n.uﬂ._ﬂw_r._h _.n_.:J

e lio _..uﬁun.m..w

ssaalna <-1@sedind

a0 “Burjan
Hupgiepy [easayd<- 1 yustagduny

Supgunp
e JumFTe-T A5

A E RS SRR TR

uanuay <-T353fq0 uepuul <-[A33fqo ;

b

fuostad e ag| saatyaq 1oy ¢

e .

uosiml 3yl saaryag

suade ue o wossad e <-ypeod |

#

yeup) Juade ue 10 vosiml B <opuod

Traa - PRI IS PRI Fwerrn

muu.r ,m.,..m.ﬂa.:.,u“.m“_ [edar]

AJCUAR (] [E130a5)

R[]

SUIU0SAY [8397] 10J Lreuondi(q plaqiy

ssaadxa <-y/asodand

JAOLI
‘Bunyoe [easAyd <-puswardun
Burjuiyy ym Sunjoe <-I/os5nED
uonuIuI <-1/132lqo

JUDWIDUIIAY I93fe Aeuon)di(] [e39 ul
L U0njuA Ul Jo uoreIRIP,,
Joy uoniurya(y 1daduo)

109

1

A fundamental issue in the design of any Al system is the tradeoff between repre-
sentational adequacy and tractability. The most expressive representations, such as
first-order predicate calculus, suffer from severe tractability problems {Cook, 1971).
Conversely, the most tractable representations, such as vectors of numeric or symbol
features, are severely limited in expressiveness. The most appropriate representation
for a given problem is one that optimizes this tradeoff, maximizing the ability to
represent the factors relevant to problem solving in the domain without sacrificing

Balancing Expressiveness and
Tractability: Expectation-Driven
Problem Formulation

L. Karl Branting
Department of Computer Science
University of Wyoming
Laramie, Wyoming 82071-3682
karl@eolus.uwyo.edu

Abstract

This paper distingnishes two criteria for representational adequacy and iden-
tifies three tasks whose complexity is exacerbated by highly expressive repre-
sentation formalisms: case matching; case retrieval; and problem formulation.
This paper proposes an approach to reducing these costs, termed ezpectation-
driven problem formulation (EDPF), which uses previous cases as models to
guide and constrain the formulation of new cases. Under this approach, previ-
nus rases are represented as a sets of exemplars at various levels of abstraction.
Each exemplar can be nsed as a model for a meaningful portion of a new case.
By constraining the representation of new cases to conform to the represen-
tational conventions of previous cases, EDPF speeds case representation and
reduces the danger of representational inconsistency. Moreover, the similar-
ity hetween a new case and previous cases is determined through the process
of formulating the new case, thus obviating separate indexing and matching
stages.

Introduction

efficiency.

Expectation-Driven Problem Formulation

Two key criteria for representational adequacy can be distinguished. The first
is extensibilily, the ability to express arbitrary sequences of actions. The facts of a
legal case constitute a narrative or story, and a fundamental characteristic of true
stories is that their details can never be precisely anticipated. A case representation
consisting of a template (or, equivalently, a frame, feature vector, or script) to be
mstantiated by the facls of a particular case is incapable of representing configurations
of causal, temporal, or intentional relations that weren’t anticipated in the design of
the template. In view of the unpredictable variety of possible narratives than can
give rise to legal consequences, it is unrealistic to suppose that a template capable of
accommodating all such narratives can be devised for most areas of law. Accordingly,
an adequate representation language must be extensible.

The second criterion of representational adequacy is specificity, the ability to rep-
resent case facts in sufficient detail to express all legally relevant aspects of the case.
The most effective legal arguments are those that are grounded in the particular facts
of the given cases. Such arguments can be produced only to the extent that the
specific case facts on which they are based can be represented. Thus, a system whose
representation language 1s limited in the aspects of a case that it can express will be
able to generate only a correspondingly limited set of distinct explanations.

Relational representations, such as first-order predicate calculus, McCarty’s Lan-
guage for Legal Discourse {McCarty, 1989), and the semantic network representations
of BRAMBLE (Bellairs, 1989) and GREBE (Branting, 1991a), have a high degree of
extensibility and specificity. However, there are three distinct costs associated wﬂ.h
such highly expressive case representation formalisms.

The first is the cost of case matching. The cost of determining the degree of
match between two cases represented as feature vectors is proportional to the number
of features in each case. Similarly, determining the “most-on-point-cases” under the
dimensional approach requires only counting the number of shared dimensions. If
cases are represented using a relational formalism, by contrast, determining the degree
of match requires determining the size of the largest common subgraph. This problem
is, in general, exponential in the size of the graphs.?

The second cost is in difficulty of retrieval. Retrieval is relatively straightforward
when cases are represented as feature vectors because individual case features are
meaningful indices to such cases. Techniques for accurate retrieval of cases represented
as feature vectors have been explored by a number of researchers (Porter et al., 1990;

'K subgraph-subgraph isomorphism, the problem of determining whether two graphs share iso-
morphic subgraphs containing k or more edges, is NP-complete (Garey and Johnson, 1979). How-
ever, the problem of determining the largest k for which there is a k subgraph-subgraph isomorphism
would be in AP only if the complement of k subgraph-subgraph isomorphism were in NP, which
it appears not to be. Thus, determining the largest commen subgraph of two graphs is exponential
in the size of the graphs.

Expectation-Driven Problem Formulation

Kolodner, 1984; Ashley, 1990). By contrast, no general retrieval mechanism for cases
represented using a relational language has been identified that is guaranteed both
to be accurate and significantly faster than exhaustive matching (Branting, 1992b).?

The third, and probably most important, cost associated with highly expressive
representations is the cost of problem formulation, the expression of a problem in a
form amenable to manipulation by a computer. In systems that use featural repre-
sentations of cases, problem formulation is typically quite straightforward, requiring
only assignment of values to cach case slot. Problem formulation in a relational repre-
sentation, by contrast, is typically complex, time-consuming, and prone to error and
inconsistency. For example, representing even a simple story in first-order predicate
calculus is a challenging undertaking even for an experienced logician.’

inconsistencies can arise in two different ways in the formulation of relational
problem representations. First, the very expressiveness of relational representations
makes multiple representations for a single given proposition possible (e.g., “Mary
drove John to work” can be represented as a driving action with Mary as the driver
and John as the passenger, or as a transpertation act with John and Mary as
agents and a car as the instrumentality). Second, a single event can be described
at various levels of abstraction {e.¢., an action an be described as a statement, a
telegraph message, or a written contractual offer).

These difficulties are illusirated by the author's experience with GREBE, which
used a semantic network representation for cases. Representations of GREBE's test
cases consisted on average of 89 tuples, each of which had to be entered by hand. En-
tering cascs of this size was a lengthy process—typically several orders of magnitude
louger than GREBE's run-time-—and the resulting representation often required con-
siderable debugging. Moreover, different knowledge enterers often chose to represent
identical facts differently, creating the danger of inconsistent analyses of equivalent
cases. Limitations in problem formulation, rather than problem solving, prevented
GREBE from being usahle in any practical setting (Branting, 1991a).

Devising a suitable representation for legal applications therefore requires chart-
ing a course between the Scvlla of representational inadequacy and the Charybdis
of intractability, The approach proposed by this paper is based on the observation
that meaningful cases are not arbitrary collections of facts, but share a high degree
of semantic and structural similarity te one another. As a result, previous cases can
be used as models to guide and constrain the formulation of new cases. This process,
termed ezpectation-driven problem formulation (EDPF), can significantly speed the
formulation of new cases and significantly reduce the danger of inconsistent repre-

="c|-we1.-'er| retrieval techniques satisfying these criteria have heen devised for specialized Ly pes of
graphs (Coak, 1989).
#See (Davis, 1990) for an extensive exploration of these complexities,

112

Expectation-Driven Problem Formulation

sentation of equivalent facts. Moreover, representing new cases in terms of previous
cases has the benefit that the degree of similarity between the new and old cases can
be determined as a side effect of formulating the new case.

The next section describes how cases can be represented in a manner that permits
portions of multiple precedents to be used in the representation of new cases. Section
three then sets forth an algorithm for expectation-driven problem formulation and
sketches an example of how the algorithm could be used in the domain of contracts.

2 The Constituent Structure of Cases

The primary impediment to using past cases as models for the formulation of new
cases is that a new case may resemble aspects of multiple past cases. The solution
to this problem rests on the observation that useful knowledge seldom consists of
isolated facts, but instead lends to consist of collections of related facts. A simple
example is a frame. The object/slot/value triples constituting a frame can be viewed
as a collection of propositions that are related because they all concern the same
object.

In general, it is natural to manipulate a collection of facts as a unit if it can be
viewed as an instance of some more abstract concept. There is abundant psychological
evidence that most human concepts are characterized by have multiple exemplars
of varying prototypicality (Murphy and Medin, 1985; Lakoff, 1987). A concept at
one level of abstraction may therefore have multiple instances, each of which can be
described by a sct of relations applving to concepts at a lower level of ahstraction. See
Figure 1. A set of facts (i.e., relations applied to objects) constituting an exemplar of
a concept is termed the elaboration of the exemplar. Conversely, a concept of which
a given set of facts is an elaboration is a composition of the facts. A precedent case
can therefore be represented as sets of domain relations among objecls at the same
level of abstraction and sets of elaboration relations among objects at different levels
of abstraction. The benefit of this representation from the siandpoint of problem
formulation is that each exemplar of a concept occurring in a precedent can provide
a model for representing an instance of the coucepl in a new case.

If precedents are represented as sets of exemplars, then when a user adds a concept
to a new case under construction the system can fetch the elaboration of the most
prototypical exemplar of the concept and present it Lo the user as a set of suggested
additional facts. The user can accept, reject, or modify these suggested facts. The
rejection or modification of suggested facts may make some other exemplar of the
concept match the given facts better, so the system may change its suggestions based
on the user’s reaction. An added concept may itself occur in the elaboration of some
more abstract concept. The most prototypical instance of the more abstract concept

113

Expectation-Driven Problem Formulation

Concept
iﬂilﬂy instance
exemplar] - exemplarN
ltlahmtion lelabﬁrmjan
concept
i
7 Eﬂl‘lE!‘.‘p’l
/r/:'l,
concept

inmnc/ \nglaﬂﬂﬂ

Figure 1: A hierarchy in which concepts have multiple exemplars, each consisting of
a set of relations among concepts at a lower level of abstraction.

that best matches the case under construction can be fetched and used to suggest
possible additional facts at the same level of abstraction as the fact just added.
Thus, viewing precedent cases as collections of exemplars permits the construction
of new cases to be guided and constrained by the structure of the precedents. When
this process of new case representation is completed, the relation between the new
case and the precedents that it most closely matches is known, perforce, as a side-
effect of the process of case formulation. The next section sets forth an algorithm for
EDPF and illustrates the algorithm with a simplified example from the domain of

contracts.

3 The Process of Expectation-Driven Problem For-
mulation

The basic requirement for expectation-driven problem formulation is that precedent
cases should be parsed into their constituent structure, i.e., into exemplars, when

added to the system.
Given a set of precedents, each represented as a set of exemplars, the algorithm

for EDPF can be described as follows:

Expectation-Driven Problem Formulation

CURRENT-CASE ~ {}
UNTIL all relevant facts have been represented DO

¢ The user selects an object from a menu and adds it te the current case (or
specifies a new abject). Objects are presented in order of their prototvpicality.
If CURRENT-CASE # {}, the new object should be the slot value of, or have
as its slot value, some object in CURRENT-CASE.

¢ (Downward remindings) IF the object just added represents a concept with
exemplars, THEN DO

— Find the most prototypical exemplar of the concept consistent with the
rest of CURRENT-CASE and present the slot values of the object to the
user as “defaults”, i.e., suggested additions to the facts.

— Provide the user with the option of inspecting alternative instances of the
concept to see if the defaults suggested by these alternatives better match
the user’s intentions.

— Permit the user to modify or reject any default. If this causes the just-
added object to match a different concept instance more closely, refine the
match.

— Permit the user to supply new names for the old case names occurring
in default abjects, propagating name substitutions throughout the default
facts in which they appear. '

e (Upward remindings) IF the just-added obhject O occurs in the elaboration of
instances of more abstract objects {Q'}, THEN DO

— Determine the abject 0! € {O'} whose elaboration best matches CURRENT-
CASE. If multiple instances match the current case equally, choose the
most prototypical, providing the user with the option of inspecting alter-
natives. IF O! is not already a part of CURRENT-CASE, add it, replacing
any inconsistent objects.

— Present any objects in the elaboration of O] that are not already present
in CURRENT-CASE as defaults.

— Permit the user to modify or reject any default. If this causes current case
to match some other composition better than O/, refine the match.

— When the user accepts a default object, follow the same steps as when a
object is added, ie., present slot values as defaults, and prompt user to

accept, reject or modify them.

Expectation-Driven Problem Formulation

Techniques for identifying the elaboration that best matches a given set of [acts.
making a consistent substitution of new case objects for old case objects, presenting
the substituted facts as defaults, permitting the user to cycle through alternative
elaborations, and refining a match based on a user’s rejection or modification of
default facts are set forth in {Branting, 1992a).

The EDPF algorithm can be illustrated with a highly simplified example from
the contracts domain. Suppose that a system contains three precedents whose legal

consequences can be summarized as follows:

¢ P1. There was an offer, an acceptance, performance by the offeror, and non-
perforinance by the offeree. It was held that there was a contract, and offeree

was in breach of it.

¢ P2. There was an offer, an acceptance under substantially modified terms,
and performance hy the original offeree. The acceplance under substantially
modified terms was held to be a counteroffer, which was accepted by the offeree’s

performance.

» P3. There was an offer, a withdrawal of the offer, and a purported acceptance
of the offer. The acceptance was held to be ineffective.

A fragment of a representation of these cases is sct forth in Figure 2. While

innumerable different frame-based or first-order predicate caleulus representations
of these cases are possible, the representation shown in Figure 2 assumnes that the
basic level (Smith and Medin, 1981) for description of contracts cases consists of
illocutionary actions, such as proposing, agrecing, and refusing, and physical actions,
such as transferring money or goods and performing services. Instances of contraciual
concepts, such as offering or accepting, are represented in terms of these basic level
concepts. The basic level concepts themselves have instances with elaborations, e.g.,
there are many different ways to communicate a proposal. Thus, basic level concepts
are at an intermediate level of ahstraction.

In Figure 2, contract and no-centract are instances of the concept contract-case.
Contract has Pl and P2 as instances, and no-contract has P3 as an instance.
The elaboration of P1 is a series of legal actions: an offer, an acceptance, a
performance, and a breach. The elaboration of offeri consists of a statement
by Buyer to Seller whose illocutionary force is a proposal, whose content is a transac-
tion in which Buyer transfers money to Seller and in exchange Seller transfers goods
to Buyer, and whose instrumentality is a telephone.

Suppose that a nser of the system desires to enter a new case consisting of an
offer, a counteroffer, a withdrawal of the counteroffer, and a purported acceptance
of the counteroffer by the original offeror. Suppose that the user begins by enter-
ing the concept telephone, intending to enter the fact that the offeror telephoned a

116

Expectation-Driven Problem Formulation

contract-case

insuny &""m‘

contract no-coniract

P1
eiﬂb-ﬂrauy \ahnral ion xhhumunn

nﬁ:r?-—-}r withdrawal3

Dﬁ'ﬂ'l# acceptancet rformance]
elaboration 569
:lahmanun elaboration 58Q

attempted
}" agreementl breachl acceptanced

pmpcsall

agl: B?Tjr agt: Seller
recip: Seller recip: Buyer i
::}nﬁ:m: comr;:nt: Y # laboration
transaction|: transactionl;
transferil: instr: telephone
agt: Buyer
recip: Seller
theme: moneyl
time: t11
transfert2:
agt: Seller
recip: Buyer
theme: goods|
tme: 112
instr: telephone

Figure 2: A fragment of a knowledge base containing three contracts precedents.

proposal to the offeree. Describing a case in terms of primitives such as telephone
creates the danger of inconsistent representation, because telephona is at a lower
level of abstraction than the illocutionary acts in the basic level of the existing case
library. However, in the portion of the knowledge base shown in Figure 2, telephone
occurs only in the instrumentality slot of an instance of the concept proposal. The
sole reminding is therefore to this instance, propesall. The system therefore sug-
gests the most prototypical instance of propesal consistent with CURRENT-CASE,
propesall, as a defaull.

If the user accepts the default proposal object with the instrumentality slot filled
by telephone, the remaining slots in proposall are then presented to the user as
potential additional facts. If the user supplies a specific name (e.g., “John”) to

Expectation-Driven Problem Formulation

replace “Buyer” as the value of the agt slot in the propesal action. the name will
be propagated through the remaining slots, replacing “Buyer” as the agt in the first
transfer and recipient in the second transfer in the proposed transaction.

proposall itself constitutes the elaboration of an instance of a more abstract
concept in case P1: offer. The system therefore finds the most prototypical instance
of cffer, offerl, and presents it as a default. offeri is, in turn, part of the
elaboration of P1, so the system suggests the next object in the elaboration of P1,
acceptancel, and the elaboration of acceptancel, agreement1, as defaults. Figure
3, which shows this partial representation of the new case, follows the convention that
objects occurring only once in any case are numbered by the case in which they first
appear, e.g., offer1 is the instance of offer that occurs in precedent P1. Objects
that occur more than onee in a case are numbered the the case in which they first
appear and the instance of the object within the case, e.g. transfer12 s the second
instance of transfer that occurs in case 1.

Let us suppase that, as will generally be the case, the user has no idea whether
the requirements for offer or acceptance are salisfied and therefore does not know
whether to accept or reject these defaults. However, the user notes that, unlike
agreementl, the transaction in the agreement action of the new case is not identical
to the transaction in the propesal action. The user therefore inspects alternative
instances of agreement until the user finds one in which the content is the proposed
transaction together with some modifications. When the user accepts this instance of
agreement, agreement2, the current case now matches a different instance of offer,
offer2, in which a proposal was followed by an agreement to a modification of the
proposed transaction. The proposal and agreement actions of the new case are now
matched to offer2. At the level of contractual actions, the new case now consists of a
single offer. This offer still matches P1, so an acceptance action i1s again proposad
as a default, and the elaboration of the most prototypical acceptance, an agree
action, is against suggested by the system as a defanit. However, the new case that
the user wishes to describe consists of an agreement to a modification of the original
offer followed by a retraction of the agreement (i.e., in legal effect, a withdrawal of
the counteroffer). The user therefore inspects alternative instances of contract-case
until the user finds one, P3, in which the action following the offer, a withdrawal,
has a retraction action as its elaboration. The user then accepts the retraction
action as a default. A portion of the representation of the new case is shown in Figure
4,

To summarize this process, the system’s reminding process steers the user towards
the basic level of abstraction at which the current knowledge base is represented—the
level of illocutionary and physical actions—and away [rom the lower level of abstrac-
tion that the user initially atlempts. P1 provides a proposal action, propesall,
that serves as a model for the representation of the proposal in the new case. At a

118

Expectation-Driven Problem Formulation

Pl

.l.l ch
offerl —-geq—)-ﬁ'cceptancel —»

‘4 elaboration i |elaboration

"
¥

: Y
se
proposall ———— 3 agreement|
agt: Jahn agt: Robert
recip: Robert recip:John
content; conlent:
transaction]: trangaction |
transferil; instr; letter
agt: John
recip: Robert
theme: money4d
time: 141
transfer] 2:
agt: Robert
II."..'iF.!Z John
theme: poodsd
time: (42
instr: telephone

Figure 3: Accepting proposall has triggered a series of remindings, shown as
dotted lines, through offerl to precedent P1 and down through acceptancei to

agreementl,

higher level of abstraction, P2 provides a model of an offer, of fer2, that consists of
a propesal followed by an agreement to a modified transaction. Finally, P3 provides
a model of an offer followed by a withdrawal, The new case is therefore represented
using components of all three precedents. When this process is completed. no further
indexing or matching is necessary, since the similarity between the new case and the
precedents is known as a consequence of the process of representation.

4 Conclusion

Expectation-driven problem formulation represents an approach to balancing expres-
siveness with tractability under which the representation of new cases is biased to-
wards the conventions used in representing precedents. Neither extensibility nor
specificity are compromised under this approach because the user can, optionally,

119

Expectation-Driven Problem Formulation

P3

¢:Iaboral:iun

5
offer2 ﬁq—)_ withdrawal3

elaboration
elaboration
1 |
proposall ——— soreement2 retraction’
agl: Juhn apt: Robent agt: Robent
recip: Robert recip:John recip:John
conient. content: content:
transactionl: transaction2; transaction2
transfer] i transfer2l: instr; telegraph
agt: John agt: Joha
recip: Robert recip: Robent
theme: moneyd theme: moneyd+ 1000
time: 14} tirme: 41-10
transfer12: transfer21:
agt: Robert agt: Roben
recip: John recip: John
theme: goodsd theme: gondsd
o time: 142 time: 142 +10
instr: telephone inste: letter

Figure 4: The new case is now represented in terms of exemplars drawn from three
different precedents.

introduce entirely new terms or structures. Indeed, extensibility is facilitated be-
cause existing structures can be arbitrarily nested or concalenated. However, EDPF
makes it far easicr to reuse old structures than to create new ones, and the ability
to generate remindings at multiple levels of abstraction insures that the user will be
made aware of past uses of structures that resemble meaningful portions of the case
under construction.

There are several difficult issues in fully implementing EDPF. First, the effec-
tiveness of EDPF rests on hypothesis that legal cases are decomposable into non-
interacting exemplars. While this hypothesis is consistent with the results of a num-
ber of research projects that have explored decomposition of cases into constituent
structures, e.g., (Branting, 1991b; Veloso, 1992; Redmond, 1990; Sycara and Navin-
chandra, 1991), it has not been rigorously established in the domain of law. Second,
the effectiveness of EDPF depends on the quality of the computer-human interface.
Technically naive nsers are likely to find the process of graphically manipulating ob-
Jects representing actions and events quite unfamiliar. The choice of an appropriate

120

Expectation-Driven Problem Formulation

basic level vocabulary is therefore extremely important to the effectiveness of an
EDPF system. Presenting the natural language equivalent of cach fact in a separate
window, and permitting at least some manipulations (such as accepting or reject-
ing facts) to be performed on the natural language equivalents may make an EDPF

systemn much more comprehensible.
The task of problem formulation is of critical importance if legal systems are to

provide useful advice about complex problems. EDPF represents an effort to bring
the full knowledge of a an automated legal reasoning system to bear on this critical
first step in legal problem solving.

References

Ashley, K. (1990). Modelling Legal Argument: Reasoning with Cases and Hypotheti-
cals. MIT Press, Cambridge, Massachusetts.

Bellairs, K. (1989). Conteztual Relevance in Analogical Reasoning: A Model of Legal
Argument. PhD thesis, University of Minnesota.

Branting, L. K. (1991a). [Integrating Rules and Precedents for Classification and
Ezplanation: Automating, Legal Analysis. PhD thesis, University of Texas at
Austin.

Branting, L. K. (1991b). Reasoning with portions of precedents. In Proceedings
of the Third International Conference on Artificial Intelligence and Law, pages
145-154, Oxford, England.

Branting, L. K. (1992a). A case-based approach to problem formulation. In Pro-
ceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington, Indiana.

Branting, L. I. (1992b). A model of the role of expertise in analog retrieval. In Pro-
ceedings of the Fourteenth Annual Conference of the Cognitive Science Society,

Bloomington, Indiana.

Cook, D. (1989). ANAGRAM: An analogical planning system. Technical report,
Department of Computer Science, University of Illinois.

Cook, S. A. (1971). The complexity of theorem proving procedures. In Proceedings of
the Third Annual ACM Sympoesium onf the Theory of Computing, pages 151-158.

Davis, E. (1990). Representations of Commonsense Knowledge. Morgan Kaufmann
Publishers, Inc., Palo Alto.

121

Expectation-Driven Problem Formulation

Garey, M. R. and Johnson, D. §. (1979). Computers and Intractability. Freman, New
York.

Kolodner, J. (1984). Reirieval and Organizational Strategies in Conceptual Memory:
a Computer Model. Lawrence Erlbaum Associates, Hillsdale, NJ.

Lakoff, G. (1987). Women, Fire, and Dangerous Things. University of Chicago Press,
Chicago and London.

McCarty, L. T. (1989). A language [or legal discourse 1. Basic features. In Proceed-
ings of the Second International Conference on Artificial Intelligence and Law,
Vancouver, B.C.

Murphy, G. L. and Medin, D. L. {1983). The role of theories in conceptual coherence.
Psychological Review, 92:289-316,299.

Porter, B. W., Bareiss, E. R., and Holte, R. C. {1990). Concept learning and heuristic
classification in weak-theory domains. Artificial Intelligence, 45(1-2).

Redmond, M. (1990). Distributed cases for case-based reasoning; facilitating use of
multiple cases. In Proceedings of A4AAI-90, Boston. American Association for
Artificial Intelligence.

Smith, E. E. and Medin, D. L. (1981). Categories and Concepts. Harvard University
Press. '

Sycara, K. and Navinchandra, D. (1991). Influences: a thematic abstraction for
creative use of multiple cases. In Proceedings of the Third DARPA Case-Based
Reasoning Workshop, pages 133-144. Morgan Kaufmann.

Veloso, M. (1992). Learning byiﬂﬂafagicﬂf Reasoning in General Problem Solving.
PhD thesis, Carnegiz Mellon University.

122

A Legal Reasoning System based on Situation Theory

Satoshi Tojo Stephen Wong
Mitsubishi Research Inst., Inc. UCSF
tajo@mri.cojp swong@lrilibrary.ucsf.edu
Abstract

Legal reasoning systems research 1s a new field attracting both Al researchers and legal prac-
titioners. The purpose of this paper is to introduce a formal model of legal reasoning, based on
situation theory. On that abstract model, we show an example of reasoning system implemented in
a knowledge-base management language QuIxoTE, regarding the language as a situaled inference

sysbem.

1 Introduction

Legal reasoning systems research is a new field which has attracted researchers from both the legal
and Al domains. Most legal reasoning systems draw arguments by interpreting judicial precedents
{old cases) or statutes (legal rules), while more sophisticated systems include both kinds of knowledge.
Surveys of the leading projects can be found in [4, 5).

Thus far, those legal reasoning systems seem to have had weak foundation in formalization, and
they have been ad hoc combination of various forms of logical inference. Qur prime purpose of this
paper is to give a sound foundation to legal reasoning system in terms of situation theory [1). And, in
addition, we implement this model into a computational form in Knowledge Base Management System
(KBMS) Quzxote [7]. Regarding the concept of module of QUI¥OTE as situation, we show that the
language can work as a situated inference system. The set of knowledge bases includes a dictionary of
legal ontologies, a database of old cases, and a database of statutes.

The organization of this paper is as follows. Section 2 describes the formulation of legal knowledge
at the abstraction level using the theory of situations. Section 3 illustrates the realization of this

formulation at the KBMS level using QurxoTe, and its situated inference mechanisms. The last section

concludes this paper.

123

2 Situation Theory for Legal Reasoning

This section introduces a formal model for legal reasoning, especially, penal code, at the abstraction

level. The formulation is based on situation theory, so we call it a sitnation-theoretic model (SA1).

2.1 General Terms

The ontologies of SM include objects, parameters, relations, infons, and situations. An object desig-
nates an individuated part of the real world: a constant or an individual in the sense of classical logic.
A parameter refers to an arbitrary object of a given type. An n-placed relation is a property of an
n-tuple of argument roles, ry,---, 1, or slots inte which appropriate objects of a certain type can be

anchored or substituted. For example, we can define ‘eat’ as a four-place relation of Action type as:
< eat:Action | eater:tANIMAL, thing-eaten:EDIBLE-THING, location:LOC, time:TIM >

where cater, thing-caten, location, and time are roles and the associated types, ANIMAL denotes the
type of all animals, EDIBLE-THING denotes the type of all edible substances, and LOC and TIAM are
types of spatial and temporal location.

An infon o is written as < Rel ay,...,8q,1 3%, where Rel is a relation, each argument term a; 1s a
constant object or a parameter, and 1 is & polarity indicating 1 or 0 (true or false). If an infon contains
an n-place relation and m argument terms such that m < n, we say that the infon is unsaturated; if m
= n, it is saturafed. Any object assigned to fill an argument role of the relation of that infon must be
of the appropriate type or must be a parameter that can only anchor to objects of that type. An infon
that has no free parameters is called a perameter-free infon; otherwise, it is a parametric infon. If o is
an infon and f is an anchor for some or all of the parameters that occur freely in o, we denote, by o[f],
the infon that results by replacing each v in the domain of f that occurs freely in & by its value (object
constant) f(v). If [is a set of parametric infons and f is an anchor for some or all of the parameters
that oceur freely in I, then I{f] = {c[f] | o € T}.

SM is a triplet {P,C, =}, where P is a collection of abstract situations including judicial precedents,
a new case, ¢y, and a world, w, that is a unique maximal sitnation of which every other situation is
a part. C is a concept lattice in which objects are introduced and combined with the subsumption
relation (=<'}, that is an is-e relation intuitively, each other. *An object of a type’ is interpreted as ‘an
object is subsumed by another object corresponds to that type’. /=’ is the support relation, and our

interpretation is:

Definition 2.1 (Supports Relation) For any s € P, and any atomic infon o, s |= o if and only if
(iffjoces. O |

124

2.2 Situated Inference Rules

Reasoning in law is a rule-based decision-making endeavor. A legal reasoning process can be modeled
as an inference tree of four layers. The bottom layer consists of a set of basic facts and hypotheses,
the second layer involves case rules of individual precedents, the third layer involves case rules which
are induced from several precedents or which are generated from certain legal theories, and the top
layer concerns legal rules from statutes. An individual or local case rule is used by an agent in an old
case to derive plausible legal concepts and propositions. These rules vary from case to case, and their
interpretation depends on the particular views and situational perspectives of the agents. An induced
case rule has a broader scope and is generalized jfrom a set of precedents. Legal rules are general
provisions and definitions of crimes. They are supposed to be universally valid in the country where
they are imposed, and neutral. That is, the applicability of these rules is independent from the view of
either side (plaintiff or defendant) and every item of information (infon) included is of equal relevance.
Though it rarely happens, it may be possible for an agent to skip one or two case rule layers in attaining
a legal poal.
In such a rule-oriented legal domain, situated inference has the following general form:

Rule 1 {General Rule) spl=0g <= 5, |= 01,82 = 02,..., 5., = o,/ B,

where og, 0, ..., 0n are infons, and 5., 51, ..., 5, are sifuations, O

This rule can be read as: “if s; supports oy, $; supports o,, and so on, then we can infer that s
supports op under the background conditions or constraints B." sq |= g is called the head of the rule
while the remainder is called the body of the rule. The background conditions, B, are required to he
coherent and satisfied before execution of the rule. Note that ¢ |= I/B implies that ¢ U B |= I, where
¢ = I as a shorthand for ¢ = oy,c E 03, ..., ¢ |= 7y,

We are particularly interested in three rule instances: local case rules, induced case rules, and legal

rules. A local rule is as follows:
Rule 2 (Local Rule) Force P, ecricko<ckEl/B... O

where [is called the antecedent of the rule, o is the consequent, and er is the label of the rule, which is
not part of the rule but which serves to identify the rule. Sometimes, we simply write er: c =0 <= I/B,,.
Both o and [are parameter-free. One unique feature of rules in the legal domain is that the consequent
is not disjunctive and often a single predicate. The reliability and the scope of application of a local
rile will be subject to a set of background condilions, B,;. The conditions include information such as
an agent’s goal and hypotheses; these are crucial in debate to establish the degree of certainty and the
scope of applicability of that rule. Usunally, it becomes necessary to take background conditions into

account and investigate what they are. Many case rules exist in one case and often yield incompatible

125

conclusions. But, the background conditions clarify their hypotheses and perspective. When there is
no danger of conclusion, we can write such a rule without stating its background conditions.

Another form of case rule is generalized or induced from several precedents. Owing to its generic
nature, an induced case rule is represented as a constraint between two parametric infons, rather than
parameter-free ones. Denote I" and o' as a set of parametric infons and a parametric infon, respectively,
stich that all parameters that occur in the latter also appear in the former. An induced rule is written
[

Rule 2 (Induced Rule} Foranyey,..,cx € P, e=eUeg, U Ueg, iricl=c' «I'/B;. D

where ¢ is coherent and ir is the rule label. Similarly, a legal rule is:

Hule 4 (Legal Rule) Ir:wi=¢" <= I'/B,. O
where Ir is the rule label and Bj, states the background legal theory, such as the aim of punishment or
the aim of crime prevention, but not both. Such information is crucial in interpreting the antecedent

infons.

2.3 Substitution and Anchoring

When a situation of a new case, ¢, supports a similar antecedent of a local rule of ¢,, one can draw a

coenclusion about the new case that is similar to the consequent of that rule.

Definition 2.2 (Local Rule Substitution) Forcn,co € P, er’ic, = ol iferic, |=o <= [/B., and
e EI'/{B, 80U B,) such that I' =, I. O

where er® is the label of the new rule, 8, is the original background of I’ of the new case, and the
combined condition after the substitution, B = B,..# U B,, is coherent. The notation ~, denotes the
matching relation between two situations. Section 3 discusses how such a matching is implemented in
Qurxore. The function # forms a link that connects ¢, with ¢,. This function replaces all terms (ohjects
and relations) in o and B that also occur in I with their matched counterparts in I'. Normally, the
background conditions are not included.

To combine the conclusions supported by different situations, the background conditions of both
conclusions must be compatible. That is why the background conditions of Rule 1 must be coherent.

Rather than substitution, a consequent is derived from a legal rule or an induced rule via anchoring.

Definition 2.3 (Indueced Rule Anchoring} For ¢,,¢1,..,cp € P such that ¢ = ¢; Uez U ... U ey,
irtieni=olf] ffiricl=o = IfBy, and ¢, |- A Ba(fluBa}. O

Definition 2.4 (Legal Rule Anchoring) Ffor ¢y € P, Ir*: ¢cn E olf] ifIr: w |E ¢ < I/B, and
e = IfIABefluBa}. O

1286

2.4 Matching of Infons and Situations

In order to compare the similarity of 2 new case with precedent cases, we formalize the infon matching
and the situation matching. Suppose that a concept lattice is given, where the subsumption relation

(*=<") is defined between concepts. E(c) is a function that extracts ‘rel’ from an infon o.
Definition 2.5 (Infon Matching) For any two infons o; and o,

1. If there is a R{o3) such that R(o,) =< R(o3), and R{o3) =< R{o3) in a given concept laitice, then

&y and &, are interpreted as weakly matched infons.
2. If R{g1) = R(oz), then then oy and o3 are interpreted as partially matched.
3. If all the abjects that constitute two infons are identical, then the infons are exactly matched. O

We give concepts of situation matching below. Note that the concept of situation matching is indepen-

dent of that of infon matching.

Definition 2.6 (Situation Mateching) For situations & and 53,

1. If, for every infon in s,, there iz an infon that can match it i 53, and vice versa, then the two

situations are interpreted as exactly mateled situations.

2. For any oy in &, there is an infon o7 in 57 thal can malch o), situation 5, can be partially
matched with sifuation s2. (Note that this partially matehing relation is one way; even though 5,

can be partially matehed with 55, 53 may not be partially matched with 81.)

X’//-y. For any oy in 51 whose relevance value is larger than a given threshold level, there is an infon a;

in sz, that ean be matched with oy, 5, can be partially matched with s, w.r.t. relevance value. O

Among several matching definitions, we will adopt weakly matching for infons and partially matching

w.r.l. relevance value for situations, in implementation of the following section, for practical reasons.

Let us consider the following pair of descriplions:

Spew = {€ abandon, mary®F™
< [eave, mﬂfy“’“’,junc"bj“‘ »)
soid |= {€ abandon, jim®9¥™ tomoebiect grelevance o
< leave, jim™™ tomobieet grelevance -,
& pﬂﬂr,jim"ﬁ"", lre!:mn:: }}
If the threshold value is 2, then s, can be partially matched with s, w.r.l. the value £, On the other
hand, if 1 is the threshaold instead, s,.,, cannot be partially matched with s,y w.r.t. the value 1.

In fig. 1, the combination of facts, case rules, induced rules, and legal rules is depicted.

127

— — ——

case rule

i
|
0

it
d

metching substitution

M e

legal rule n

anchoring

G Cw

old generalized induced rule
caseg ————

1
G

anchoring

new Case

i

Figure 1: The combination of rules

3 Modeling of Legal Knowledge in Quizxo7e

This section introduces the language of Qurxo7e (7] and shows how this language can represent the
SM concepts in computable form. A typical QuryoTe database includes the following data structures:
(i) the subsumption relations among basic abjects, (ii) the submodule relations among modules, and
(i1i) rules. Our legal reasoning system consists of three databases: a legal dictionary, cases, and statutes.
Accordingly, we first introduce the objects and modules of QuryoTe and explain the data structure of
the legal dictionary, then describe the use of QuTroTs rules to represent case-based rules and statutes.

In QuryoTe, the concepts of SA4 are rephrased as follows:

SM Quryxore

situation modile

infon attribute term

relation name basic object

type subsuwmption

role label

supporting relation (|=} | membership in module ()

3.1 Description of Case and Rule

A QurroTe rule has the following form (compare with Rule 1):

head head _constraints body body_romatrainta
e o - ", . o
my = H | HC e=my:By,...,m.: B, |l BC i

128

where H or B; are objects, and HC and BC are sets of formulas (constraints) using subsumption
relations. Intuitively, this means that if every B; holds in a module m; under the constraints BC, then
H and constraints HC hold in mg. The head constraints and module identifiers can be omitted, and
the body constraints, BC, of a rule then constitute the background conditions for that rule.

This study regards a case as being a situation, that is, a set of anchored sentences. Below, we

describe a case which is a simplified description of an actual precedent [3].

Mary's Case

On a cold winter’s day, Mary abandoned her son Tom on the street because she was very
poor. Tom was just 4 months old. Jim found Tom crying on the street and started to drive
Tom by car to the police station. However, Jim caused an accident on the way to the police
station. Tom was injured. Jim thought that Tom had died in the accident and left Tom on

the strest. Tom froze to death.

This aforementioned case contains some human objects and several events with different relevancy.

‘T'he arder of values of the relevance attribute is represented by a subsumption relation, (11 =< 12 =¢

13).

mary_case :: {mary, tom, jim, accident, cold},
poor/[agent=mary, relevance=11],
abandon/ [agent=mary,

coagent=tom/ [mother=mary, age=4months], . relevance=12],

find/[agent=jim, object=tom/[state=cryingl, relevance=11],
make/[agent=jim, object=accident, relevance=12],
injure/[agent=jim, coagent=tom, by=accident, relevances12],
leave/[agent=jim, coagent=tom, relevance=13],

death/[agent=tom, cause=cold, relevance=13]};;

The attorneys on both sides interpreted Mary’s case according to individual perspectives: onc is tle
responsibility of Mary's actions and the other is that of Jim's. For instance, one attorney reasoned that:
“If Mary hadn't abandoned Tom, Tom wouldn't have died. In addition, the cause of Tom's death is not
injury but freezing. Therefore there exists a causality between Tom’s death and Mary"s abandaning.”

Another lawyer, however, argued differently: “A crime was committed by Jim, namely, his aban-
doning Tom. And in addition, Tom’s death was indirectly caused by Jim's abandoning Tom. Therefore,

there exists a causality between Tom’s death and Jim’s abandoning.”

129

For a legal precedent, these contradictory claims are documented together with the final verdict
from the judge overseeing that precedent. QurroTe models these arguments with two case rules of

different interpretations of causality.

crl :: responsible/[agent=mary,for=death]
=
abandon/[agent=mary,coagent=tom] ,

death/[agent=tom, cause=abandon/[agent=mary, coagent=tom]];;

cr? :: responsible/[agent=jim,for=death/[agent=tom]]
=
leave/[agent=jim, coagent=tom],

death/[agent=tom, cause=leave];;

The idea of an induced rule is to abstract some of ground terms in local case rules. As an example,

when there are several similar accident cases, the attorneys may make the following generalization:

irl :: responsible/[agent=X, tosY, for=Inj]
o=
Acc/[agent=X],
Inj/lagent=Y, cause=hcc]
|l {Acc =< accident, Inj=<physical_damage,

X =< person, Y =< parson};;

In ir1, traffic accident and injury are abstracted to variable Acc and Inj and subsumed by their super
concepts in the legal dictionary.

Legal rules, or statutes, are furmal sentences of codes. We provide a penal code in linguistic form
(Japanese penal code, article 199): “In case an intentional action of person A causes the death of person
B and the action is not presumed to be legal, A is responsible for the crime of homicide.”

The QuryoTe representation of this code is:

1rl :: responsible/[agent=A, to=B, for=homicidal
€=
Action/[agent=A],
illegal/[act->Action],
death/[agent=B, cause->Action],

Il {Action =< intend, A =< person, B =< person};;

130

In the description above, illegal[agent=A, action = Action] claims that the action Action done
by A, such as self-defense, is not legal. The statute for the legality of self-defense is described as follows

(Japanese penal code, article 38):
1r? :: illegal/[act = Action]
=
Aetion,
Il {ihction =< intend}::
The concept of anchoring of SM, mentioned in Section 2.3, is realized in QuzxoTe by invoking

appropriate rules within a case or statute description.

3.2 Query Processing
Let us consider Mary’s case, where QuT.voT¢ draws several conclusions by making different assumptions.
In response to the query:
f-respeonsible/[agant=jim, tostom, for=homicide].
that means “Is Jim responsible to Tom for the crime of homicide?, QuTx0Te returns the following:

** ! ansvers exist ##
** Answer 1 *=

IF mary_case:death.cause =< leave THEN
YES

=% Ansyer I *=

IF mary_case:death.cause =< traffic_accident THEN

YES
The first answer is one interpretation of the causality in Mary’s case: if the cause of Tom’s death is
some event under Jim's leaving Tom, then Jim is responsible for the homicide. The latter answer says
that Jim is responsible if Tom had been killed by Jim's traffic accident. It happens, however, that the
latter does not hold, so that the inquiring agent starts a new query which adds information about the

cause of Tom’s death.
?-mary_case:responsible || {mary_case:death.cause==lsave}.
in response to this second query, the Qur.voTe system replies as follows,

%] answar exists %
** Ansyer 1 =*

IF mary_case:death.cause == laava THEN YES

131

Thus, we have shown the implementation of our situated inference model in QurxoTe.

4 Conclusion

In this paper, we formalized legal reasoning in terms of SM, where precedent cases and new accidents

were regarded as situations, and various kinds of rules as situated inference rules. We also showed that
the abstract model was implemented in QurxoTe for prototyping. QuI¥oTe could represent contexi-
dependent knowledge and situated inference for knowledge base applications. The ability of Quryors
to model abstract concepts of situation theory in a database environment may pave the way for the

knowledge-base (KB) community to tackle concrete, demanding problems, such as building a large scale

(B for general linguistic concepts.

References
(1] J. Barwise, The situation in Jogic, CSLI Lecture Notes 17, Stanford, CA, 1988.
[2] K. Devlin Legic and information, Cambridge University Press, 1991.

[3] K. Nitta, Y. Ohtake, S, Maeda, M. Ono, H. Ohsaki, and K. Sakane, “HELIC-II: A legal reasoning

system on the parallel inference machine,” Proc. Int. Conf. of Fifth Generation Computer Systems,

ICOT, Tokyo, June, 1992, pp. 11151124,

[4] E.L. Rissland, (ed.), Special issue: Al and Legal Reasoning, Part 1, International Journal of

Man-Afachine Studies, Vol, 34 No. 6, June 1991,

[3] E.L. Rissland, (ed.), Special issue: Al and Legal Reasoning, Part 2, International Journal of
Man-Muachine Studies, Vol. 35 No. 1, July 1991,

(6] S. Wong, “A sitnation-theoretic model for trial reasoning,” Proc. of the 6th Int. Symp. on legal
knowledge and legal reasoning systems, Tokyo, Oct., 1992, pp. 32-54.

[7] K. Yokota, II. Tsuda, Y. Morita, S. Tojo, H. Yasukawa, “Specific features of a deductive object-
oriented database language QUIXOTE" Proc. of the workshop on combining declarative and
object-oriented databases, ACM SIGCMOD, Washington, D.C., May 29, 1993.

132

A Legal Reasoning System based on Situation Theory

Satoshi Tojo Stephen Wong
Mitsubishi Research Inst., Inc. University of California
at San Francisco
(tojo@mri.co.jp) (swong@lrilibrary.ucsf.edu)

133

1 General Terms
o infon <& rel gy, a3, -, 8,1 3.
— 1: polarity (positive/ negative)
= parametric/ parameter-free

— saturated/ unsaturated

ancher f

o!f] : parameter-free

for a set of infons I, I[f] = {of]le € I}

situation

‘abstract’ situation for state of affairs (soa)

ex. case, accident, world, spatio-temporal location, knowledge and belief,

modality, ..., and so on.

supporting

-

sEoiffs3e.

» coherent

No two same infons, each with different polarity.

compatible

-

Two situations are colierent.
Vs, uC s, s k= (Jrgujeiff 3f,s = o|f]
Ya,uC 8,8 = (Vi € ulg iff ¥f, s = alf]

seEliffVeelsEa

134

2 Situated Inference Rules

2.1 General Rule

Rule 1 (Situated inference rule) For infons: Ty Ty oeny O,

ssFoco+si Eo,sE g, E/B O

2.2 Rules for Legal Reasoning
Suppose P as a set of cases,

Rule 2 (Local Rule) Force P, clo¢ck I/B.,. O

Rule 3 (Induced Rule) For anycy,..,cx € P, e =, U, U... Uegy. ¢ =o' < I'/B,.

O

Rule 4 (Legal Rule) w ¢’ « ['/B,,. O

135

3 Substitution and Anchoring

1[f] olfl

Figure 2. Anchoring for Legal Rules

136

4 Dictionary

T
nominal pmd:l:at:
state ‘““'“:"
abstract thing \
proccss acchieved event
physical thing
love peace beautiful
chair injure
vase kick it
I | kill
1.1h | !
| ' /
\ \ 1 ; /
\ ! " / /
1II. f
\ \ 1 ! /
\\ | ; Iy
~ W b s -

Figure 3: The Structure of Lexicon

137

5 Matching of Infons and Situations

5.1 Infon Matching

o =< R abe, 0 @
gy =& Hayag,bs, 02,10

exact matching H; = H;, a; = az,---,1; = 12
partial matching R; = H,.

weak matching A; and HA; have a common superconcept.

Rell Rel2

Figure 4: Common Superconcept in Lattice

138

5.2 Situation Matching

1. Exact] matching

2. Partial Matching

Figure 5: Situation Matching (1)

3. Partial Matching with Relevance

Figure 6: Situation Matching (2)

139

Example.

T

{« abandon, maryss*™
& leave, mary®#™ jupe®eet 3.1

@ h {{ ahaﬂd&n,jim““’”1tgmﬂi'.rﬂti._ arzﬂzwnnz -
< leave, JIm™™, LomPect Qrelevance
<& poor, jim®#e" | refevance 1

o

—— — — —

4 \
case rule
Corme I (2
|
matching | lsuhstitutiun

Tt —

|

|

e

Gl Qo
3

induced rule

legal rule
__,_}_
_ anchoring

anchoring i @
'[new Case :I @

old generalized

Cdse

Figure 7: The combination of rules

140

6 Implementation in QUIXOTE

SM | QurxoTe

situation module

infon attribute term

relation name basic object

tvpe subsumption

role label

supporting relation (=) | membership in module {:)

mary_case :: {mary, tom, jim, accident, cold},
poor/[agent=mary, relevance=11],
abandon/ [agent=mary,
coagent=tom/[mother=mary, age=4months], relevance=12],
find/[agent=jim, object=tom/[state=crying], relevance=11],
make/[agent=]im, object=accident, relevance=12],
injure/[agent=jim, ceagent=tom, by=accident, relevance=12],
leave/[agent=jim, coagent=tom, relevance=13],

death/[agent=tom, cause=cold, relevance=13]}::

c »= cri;;

crl :: responsible/[agent=mary,for=death]
<=

abandon/[agent=mary,coagent=tom],

death/[agent=tom, cause=abandon/[agent=mary,coagent=tem]];:

€ »- ¢ri;;

cr2 :: respensible/[agent=jim,for=death/{agent=tom]]
<=

leave/[agent=jim, coagent=tom],

death/[agent=tom, cause=leave];:

irl ::responsible/[agent=X, to=Y, for=Inj]

=

141

Acc/[agent=X],
Inj/[agent=Y, cause=Acc]
Il {Acc =< accident, Inj=<physical_damage,

X =< pefsun, Y =< person};;

1rl :: responsible(agent=A, to=B, forshomicide]
<=

Action/[agent=4],

illegal/[act->Action],

death/{agent=B, cause->Action],

Il {Action =< intend, A =< person, B =< person};;

1r2 :: illegal[act->Action]
=
Actien,

|| {hetion =< intend};;
?-responsible/{agent=jim, to=tom, for=hemicide].

** I ANSWers exist ==
#* Answer 1 ##

IF mary_case:death.caese =< leave THEN

YES

** Answer 2 =%

IF mary_case:death.cause =< traffic_accident THEN

YES

?-mary_case:responsible || {mary_case:death.cause==leave}.

**¥ 1 answer exists ==
®% Anewer 1 s

IF mary_case:death.cause == leave THEN YES

142

Representation of Legal Knowledge by Logic
Flowchart and CPF

Hajime Yoshino~

Abstract

The essential points in developing any method to represent legal knowledge are that:
{1} the method is easy for lawyers to understand and use, (2) it has the sufficient ability
to express legal knowledpge in detail, and {3) it is applicable to farmalizing legal reasoning.
For (1) I have suggested the legal knowledge representation by logie flowehart. For (2) and
(3} T have offered the Compound Predicate Formulas (CPF) and developed it. In this paper
I will explain these two methods, illustrating some examples, and also give the rigorous
foundation of CPF based on logic i.e. the establishment of its syntax and semantics.

1 Introduction

In order to make up the legal knowledge base, one should abstract lega! knowledge from
literal sources such as legal articles, judicial precedents or textbook of laws, or from tacit
knowledge of lawyers that is not expressed explicitly in the form of letters, and store that
knowledge into data base on computers. Knowledge is, however, different from simple data
in that knowledge is structured and formalized systematically so that computers can infer by
making use of it. Therefore, how to formalize legal knowledge, in other words, how to represent
legal knowledge, namely the way for legal knowledge representation, is the crucial problem for
establishing legal knowledge base.

The essential points in developing any method to represent legal knowledge are that: (1)
the method is easy for lawyers to understand and use, (2) it has the sufficient ability to express
legal knowledge in detail, and (3) it is applicable to formalizing legal knowledge reasoning. For
(1) I have suggested the legal knowledge representation by logic flowchart. For (2) and (3) 1
have offered the Compound Predicate Formulas (CPF) and developed it. In this paper I will
explain these two methods, illustrating some examples, and also give the rigorous foundation
of CPF based on logic i.e. the establishment of its syntax and semantics.

This paper is organized as follows. Chapter 2 attempts to illustrate the method of legal
knowledge representation by logic flowchart. Chapter 3 deals with the reasons of the introdue-
tion of Compound Predicate Formulas (CPF), practical applications of CPF to legal reasoning,
and its syntax and semantics.! Chapter 4 is the summary.

*Meiji Gakuin University:1-2-37, shiro-kane-dai, minato-ku, Tokyo, Japanie-mailihycshino@tansei.u-
tokyo.ac jp.
¥ As the axiomatic system we adopt the prevailing standard one, Therefore we will not preseut it in this paper,

143

2 Representation of Legal Knowledge by Logic Flowchart

2.1 What is the Logical Flowchart of Legal Norm Sentences

Legal norm: sentences have the structure of "legal requirement-legal effect.” [t means that
when the legal requirement is met, the legal effect comes to occur. The legal requirement is
composed of logical combinations of some legal requirement factors (legal facts). We can express
this structure by a sort of flowchart, to put it more pracisely, by a logical flowchart. Figure 0
shows the fundamental structure of legal norm sentence by logical flowchart.

Code/Mase of flowchart

Pra itlon of the relevaat
lege] morm sstlance

'l

Ligal rogiilremant fastiar 1
Cods §

Lagn] reguiressst faotor 0

Couda €
Lagm]l regalreseal feclor O Legal w?‘r:-nl fuctar TV

(et) (o)

Figure 0, Fundamecntal Structure of Logic Flowchart of Legal Norm Sentence

In Figure 0 above, rectangular boxes stand for legal requirement factors (legal facts); lines,
their logical combinations; ellipses, (no) occurrences of legal effects; part above the starting line,
the presupposition of a given flowchart; the header of the flowchart, the code name and its title,
Rectangles added vertical lines on both sides show that they have their child flowchart(s) to
decide whether the requirement concerned is satisfied or not. When the decision of each legal
requirement factor is affirmative, to put it another way, the proposition concerned is proved, we
proceed to the next lower rectangle (i.e. the next lower legal requirement) which is continued
by a vertical line, in principle. When the decision is negative, we proceed to the next box which
is continued by a horizontal line, in principle. This flow of decision from top to bottom is taken
to be not only a logical structure but the order of decision, and in many cases the order of time.

2.2 Principles of Logic Flowchart of Legal Norm Sentences

Here we will explain the principles that build up logical flowcharts of legal norm sentences
in terms of the logical structures of legal norm sentences. The logical norm structure of a unit
legal sentence consists in a combination of the legal requirement and legal effect. The relation

144

obtains that when the former has been met, the latter comes to occur. The combination of both
is a logical one. In other words, the logical norm sentence has the logical structure that the
requirement is the antecedent and the logical effect is the consequent: these can, therefore, be
combined with logical operators, i.e., implication ("if": "—"), contra-implication ("only if":
"+—"), equivalence ("if and only if": "+——"). Denoting the legal requirement by V and the
legal effect by F', the logical structure of legal norm sentences can be expressed as three types
of logical propositions.

(1) V — F: (if V, then)
(2) V «— F: (only if ¥, then F)
(3) V «— F: (if and only if ¥, then F)

In type (1), V is a sufficient condition for F; in type (2), V is a necessary condition for F: in
type {3), V is a necessary and sufficient condition for F. Replacing V with F in type (2), (2)
is reduced to type {1). Type (2) is logically equivalent to the following:

(4) ~V —~ F

Type (1), (2) and (3) can be respectively expressed by logic flowcharts (Figure 1).

(m (). {2) (1)

v -V v v
] na

O @ >O®

Figure 1. Fundamental logleal structurs of & unit luﬂ nom sentence

The legal requirement can be analyzed into its legal requirement factors. The legal
requirement factors, which are logically combined with each other, constitute one (unit) legal
requirement that is combined with one legal effect. They are logically combined by the logieal
operators: conjunction ("and™: " - ") and disjunction (*or™: "V"). When the factors are of
the legal requirement V1, V2, V3, the logical structure of the legal requirement results in three
types (7), (8), and (9). The logical formulas correspond to the following logic flowcharts in
Figure 2.

145

(157 ({¥1 v VE=F)={ ~{¥V1 v V2) =~F}} {16) {iv1 v Y2}~ F)

| 1 |

La! L Vi
™ n no

yes e
v v L

--—J'res . ----,—I'ftim

Flgure 4, From the fundamental formula of legul norm sentence to a complete formula

The law has a hierarchical systematic structure, in which more abstract concepts involve
legal concepts with concrete contents and mmore abstract concepts are concretized by more
concrete concepts. This is also the case with the combination of legal norm sentences, and the
latter is much concretized by the former. The principle for integrating legal norm sentences
which have a different degree of abstraction (or concretion, as is the same meaning) lies in the
definition of a rule. Namely, two norm sentences are combined with each other by the logical
operator for equivalence "+—". When a more abstract legal requirement factor V1 consists of
more concrete Jegal factors V1.1 and V1.2 and V1.1 is further coneretized by VI1.1.1 and V1.1.2,
then the logical formulas and logic flowchart will be expressed as in Figure 5.

(1700 ¥1 e v2em=F) (180IV) == (V1.1 =VL.2}] (19MIV1 1 == (V111 - ¥1.1.2))

1 e — SppRp——

| v V1.1 V119
e 00 n

yes .. yes o ot. yei

K v1.2 . Vi.1.2
n .l o — na

VT YES

yes
! r) {~F) [n) ~¥1 ¥i.1- {-ﬂl'l.'l}

Figure 5. The logical structurs of hierarchical connection of legal norm sentences

In Figure 5 above, the relation between (17) and (18) as well as (19) may well be called
a main-sub, or parent-child relation. That is, (17) is parent of (18), and (18) is child of (17).
The same thing can be said for {18) and (19). Namely, (18) is parent of (19).

146

2.3 Examples of Logic Flowcharts of Legal Norm Sentences

I will show two examples of logic flowcharts of legal norm sentences in Figure 2A and
2AA. Both are taken from United Nations Convention on Contracts for the International Sale
of Goods(CISG). In Figure 24 we can see the legal effect of "formation of contract” and the
legal requirement which has the effect occur. This figure corresponds to Art 23 of CISG. In
this figure, the thick rectangle indicates that the concepts which are expressed in rectangles or
ellipses are described in some place of the articles concerned, and the thin rectangle indicates
that the concepts are not contained in any place of the articles in question. Figure 2A4 is
the child flowchart to decide whether the first legal requirement factor 2AA "An offer of A has
become effective at T1" is satisfied or not. Figure2AA is based on Article 15 in the said law.

[ZA Contract is concluded) § 2 3

—_—

ZAA
Offer with the content A

has become effective at T1

ZAB
An acceptance of the offer has

become effective at T

ZA
Contract with A
iz concluded at T

~2A
It is not that contrsct with A
i3 cocluded at T

Article 23

A conlract is concluded at the'moment when an acceptance of an offer becomes
elfective in accordance with the provisions of this Convention,

147

[2AA Effsct of offer has ocourred) §16

ZAAA
There iz an offer with the content A
ZAAD
There Is a counter—offer with A
]
ZAAB
The offer has resched the afforss st T
~2AAC
not (The withdrawal has becoms effective befors the tiss TL)
r
ZAA ~ZAA
Offar with A hes becoss affostive st T not {0ffer with A has become effective at T)

2.4 Advantages of Legal Knowledge Representation by Logic Flowchart

The method of legal knowledge representation by logic flowchart has the following ad-
vantages. Firstly, lawvers can easily build up this lowchart by themselves and understand the
contention of it. Secondly, for lawyers to build up this flowchart makes clear the order belween
lawyers' judgments, which they make tacitly, and the time order among legal facts. Thirdly,
to build up this flowchart is effective for systematizing legal knowledge. In doing so, we may
discover or confirm legal common knowledge that is presupposed among lawyers, and, above all,
we may abstract knowledge as a frame for systematizing knowledge. However, this flowchart
has its limit in that the formulation is basically in the level of propositional logic. To obtain
more precise representation of legal knowledge dependent upon the inner structure of sentences,
we need to formalize this knowledge in terms of predicate logic. | have developed the Com-
pound Predicate Formulas, which is a conservative extension of predicate logic. Next chapter
is concerned with this.

3 Representation of Legal Knowledge by Compound Predi-
cate Formulas (CPF)

3.1 Why CPF?

In this section I will explain the reason why I have introduced CPF, not others. To say
the reason in brief phrases, in order to represent legal knowledge adequately and plainly. To

148

clarify this point, we will take a simple example from legal sentences and present the difficuity
of representing such a sentence by the standard first order logic. Consider this:

Ex. John made an offer to Mary, and it was accepted.

It is difficult to express the whole sentence in the standard first order language, for the standard
first arder language does not contain any device {or representing the referential expression "it”.
We can symbolize, in the above sentence, "John made an offer to Mary" as "offer (John, Mary),"
but how can we symbolize "it was accepted™? We all agree that the referential pronoun "it"
that is part of the above sentence refers “an offer of John to Ma rv.” Unfortunately the first
order language has the ability to refer only individual entities but not any state of affair such
as an offer made of John to Mary. As far as we are in the standard first order language, we
must content ourselves with symbolizing the above example like, using a predicate p{.Xy, X3},
of fer(John, Mary). Thaugh, this symbolizing does not reflect the inner structure this sentence
has. This fact implies that the standard first order language is not rich enough to adequately
represent legal sentences, and therefore to describe legal reasoning.

In short, the standard first order language lacks the means to refer to each legal act,
which involves "that contract” or "the trade at 15:00 on Feb. drd, 1994." Moreover the standard
language has no device to represent referential pronouns, say “that.” What we really need is
some richer language that enables us to deal with these eXpressions.

3.2 Some Precedent Approach
3.2.1 Lambda Abstraction

For instance, if the sentence "X contracts with ¥* is formalized as "contract,” then the
relation of contracting is , according to lambda notation, described as:

AXAY (contract{ X,Y))

In general given a predicate, lambda operators form the expression that refer to the concept
the predicate denotes. However, by this lambda abstraction it is very difficult to designate any
particular contract e.g. "the contract made between John and Mary at that time.” Again what
we would like to cbtain is the method for referring each concrete instantiation of given legal
relations rather than one for any abstract concept,

3.2.2 Class Notation

Then what if the class notation 7 In this notation, relations corresponds to classes and

each instance, for example:
A = {X : acceptance{ X))

O ={Z:3X3Y (of fer(X,Y)ANZ =< X,V >}
JZ(Ze0nZeA)

A and O show (the extension of)a concept of "acceptance” and a concept "offer,” respectively,
Then the below (1) is obtained as the translation of a legal sentence *X made an offer to Y and

it was accepted”:

149

(1) 323X 3 (of fer(X, YA £ =< X, ¥ > Aacceptance(Z))

As (1) shows, the class notation is adequate for denoting a concept itself while this method is
clearly not satisfactory for denoting its particular instance. Indeed each instance is a certain
element of a given class, as already noted. Many of expressions in natural languages however,
involve ample pragmatical i.e. contextual information, and it is hard to specify a purposed set,
considering much contextual information, and even though the specification is acquired, the
formula is all too often complex for us to understand. Also the class notation does not have

any type of apparatus to represent referential pronouns. In legal sentences and legal reasoning,
one does mect with referential expressions frequently.

3.3 A New Device—ID-symbols

In the previous section we have recognized that some approaches to overcoming difficulties
as to the standard first order language are inadequate to express each individual legal act or to
deseribe the sentences with referentials in the form which reflects the inner structure of them.
Now we are in a stage to offer a new device for coping with these puzzles: 1D-symbols. Though,
before introducing [1)-symbaols we will account for the rough idea of them from which they stem.

Let us suppose that:
Iooffer{Z X YV):Z isanofferofl X to ¥,
2. acceptance(W, Z):1 is the acceptance of Z,

If we assume these formulas, then a sentence "An offer of X to Y was accepted.” would be
formalized as follows:

(2) 3Z(of fer(X, Y, Z) hacceptance(Z, W)

Compared (2) with (1), we find that {2) is more simple and plain, for in the assumptions
expressions within which they contain the way for referring to a certain specified individnal
legal act or relation had been posited. And this is how we contrive a device called ID-symbols.

In general for any predicate p(X,..., A),
D= p(Xy, X
is the predicate in question. For instance, for a predicate "contract{Mary,John),”
T — contract{ Mary, John)

expresses & contract between Mary and John. In other words, it is the name of that contract.
Using ID-symbols, the formula (2) is more concisely rewritten as

(3) acceptance(—, ID — of fer,)

Here | would like to emphasize, as the characteristics of [D-symbols, this sort of nominalization,
i.e. an ID-symbel forms the name of a particular instance in a given concept. (Recall that
notations by lambda operators or classes form the name of a concept itself.) As one more
example, "the reject of that offer” is, by ID-symbols, formalized as

150

(4) ID —reject(—, I D — of fer(—), —)

Using [1)-symbols, we can easily deal with such a relatively complex case.

We may note, in passing, that, for ID-symbols to function as names, it is necessary that
the obvious identity criterion for the referents of Id-symbols is given. Tt means that for particular
instances of a concept the condition of continuity through time must be defined. So as to define
that condition, we ought to define each legal concept strictly. But this problem is the matter
of law and not that of logic.

3.4 Outline of Syntax of CPF

The following attempts to define the syntax of CPF. Most portions are the same as the
standard first order language, CI'FV is highly different from the language so far in that CPI
has new devices such as case symbols® and [D-symbols. We have to define an describe the
syntactical behaviors of ID-symbols more fully than here, But our concern here restricted only
to program clauses. So we will think only quantifier free part i.e. Horn clause:

B Ay, .. 4,

where B, A,,..., A, are literals.
The syntax of CPF is as follows:

1.Basic Vocabulary:
1.Lindividual variables: X, X, ... 7\, Ty ...
1.2.individual constants: a,,a;,...

1.3.case symbols agt :,0bj :, goa :,tim 1, ...

l.4.predicate letters: p;,p;,...

1.5.list symbols [,]

1.8.logical constants: -, — ¥

1.7.commas, parent heses: (7,

2.terms and formulas:

2.1. Variables, individual constants and ID-symbols are terms,

2.2. If t is an individual constant, an individual variable or an ID-symbol, then agt : t, obj :
t, tim : 1, goa : t are terms. (e,¢3,...5tand for case symbaols.)

238. [, .)il i< n))is a list.

2.4. pl[ty,-..,1,]) is a formula.

*Case symbols are a notation contrived to express Lhe inner structure of prodicale ex plicitly. Ou the syntactic
and semantic status of case symbols, we may leave 1o another occasion.

151

2.5. f A and B are formulas, then =4, 4 —~ B are formulas.

2.6. If A(X) is a formula, then VX A{.X) is a formula.

2.7.The definition of ID-symbaols: For the predicate representing legal concept p([t), ..., 1:]}
ID = p([ti,....ta]}is an ID-symbols of its predicate.”

2.8. For a predicate p([ty.....1.]), plLIE =p,[t1,...,1a]) is & formula as well.?

2.9. An expression is a formula only if it can be shown to be a formula on the basis of conditions
2.4-2.6, 2.8.

Other logical constants are introduced by the definitions below:
AABES(~B— A)
AVBE B — -4
AXAX 2 (VX -AX)

3.5 Legal Knowledge Representation in terms of CPF

Having defined syntax of CPI", we state legal knowledge representation using CPF. Here
we cite an article and show how it can be translated into a formula of the language of CPF.

CISG artiele 23: A contract is concluded when an acceptance of an offer becomes effective.
1. contract{11) — co,[agt : [X,Y], 0bj : C]): A contract C was made between X and V.

2. acceptance(ID — ac,|agt : X,obj : ID — of,gou : ¥Y]): X accepted D —o0f to Y

3. of fer(ID — of [agt : X, goa: ¥, 0bj : C]): An offer C was made to ¥ by X.

4. be — concluded(TD — be,|obj : ID — co,tim : T']): 1D — co was concluded at time T

5. become — ef fective(1D — be,[obj : 1D — ac,tim : T)): 11— ac became effective at time T.

Based on these, the above article is translated into the formula below,

be — concluded(ID — be,[obj : T2 — co,tim : Ty])
Aeontract(1D — co,[agt : [X, Y], 0bj : C'])—
become — ef fective(1D — be,[obj : 1D — ac,tim : T}]}
macceptance([— ae,[oby : TD = of])
meffer(lD —of [agt: X, goa: ¥, obj : (7])
Such a formula is called Flattized CPF formula{ FCPI'), and it is equivalent to the CPF formula

below:

TWe will omit the arguments in]D-symbals unless leading to misunderstanding. Derivatively we will define

ID-symbaols aboaut predicate symbols as well,
*The former is called the formula without TD-symbol, the latter the formula with TD-symbol as a matter of

convenience. As casily seen, we need a formula we need a formula to assure pliy, ... fn) == p(ID —p t1,....0a)
Jf we make an axiomatic system for a CPF.

152

be — concluded(ID — be,[obj : contract(ID — co, lagt : [X,¥],0bf : C]), tim :))—

become = e f fective(1 D — be, [obj : acceptance(I D — ae, logt : X, goa: ¥,

obj :of fer(1D —of [agt : X, goa: Y, 0bj : O3], tim : Ty])
This formula is an abbreviation of the above FCPF formula. Legal sentences are described and
stored into knowledge base in this form. To execute the predicational reasoning, these formulas
are compiled (flattized) into FCPF above.?

Next is the outline of procedure of the flattization. Any CPF formula A is flattized into
an FCPF formula, i.e., for any CPF formula A,

1. if A contains no formulas which have the form of p(ID—p,le; :d,. .. 6t q(1D—q, k.- .en:
(1 <i<n)in A, the formula is not flattized.

2. if A contains any formulas described in 1, choose the left-most one in that formulas, replace
c¢:q(fD - ¢,[]) with c: 7D — g, and replace the original formula with the below one,

pUD —p[..e:ID—q,.) ngiID=q,[])

3. lepeat the procedure of 2 until it is not applicable.

3.6 Application of CPF to Legal Reasoning

in CPF ID-symbols play an important role. We have already seen some advantages of
ID-symbols. In this section T will expand an advantage by the introduction of ID-symbols in
legal reasoning, Since our CPF has its basis on the standard first order language, we can use
inference rules of it. Besides that, 11)-symbols increased the power of our language so that we
could deal with some legal reasoning cases that have been difficult to cope with so far. For
example, let us consider an inference like this:

Premisel. A made a contract with 0.

Premise2. If that contract is effective, then A can claim to payment to B,
Premise3. That contract is effective.

Conelusion. A can claim payment to A,

We will be in trouble with this inference if we have to formalize this within the standard first
order language, The trouble is derived from that the standard predicate logic has no deviee for
referring to any particular instance like “that contract”. On the other hand, CPF tells us that

the above inference is valid. The formalization by CPF is below:
Premisel’. contract(11) — co, A, B)
Premise2’. claim — payment(A, B) — is — ¢ fective(ID) — ie, [T} — co)

Premise3’. is —ef fertive(ID — ie, D — ¢o)

*This Aattization is, substantially, the procedure of converting & many-sorted formula into a onesorted one,

153

Conclusion’. claim — payment(A, B)

Notice that we can deal with this inference not because we have extended the inference rules
of the standard first order logic (in fact we have not extended them), but because we have
introduced [N-symbols, which enables us to refer to particular instances of a given act. That
is to say, in the case of quantifier-free part, CPFL is an extension of the standard first order
langnage,

I would like to suggest more two points about the usage of ID-symbols: in an inference
(1) even if a particular ID-symbol is used with its argument not specified, we may identify
the ID-symbol safely, and (2) when a particular ID-symbel is used and embedded in another
[D-zymbol such as a case , JD — r(ty,..., 1D — contract,... 1.}, we might be in trouble as to

the identification of given plural ID-symbals,

3.7 Semantics of CPF

We can define semantics of CPF as usual. Only difference between usual first order
language and that of CP'I" is the introdoction of ID-symbols in the latter,
The definition of a model of CPF 15 as follows.

Definition 3.7.1 (Level of ID-symbols) Given an [D-symbol 1D = P(t),...,t.) , the num-
ber of Il-symbols in TD — P(t,...,t,) is called a level of the ID-symbol, and we erpress it

as LEVEL(ID = P(ty, ... 1.)).

Definition 3.7.2 M =< D{= DU Dy U {L}) T > 15 a maodel of CPFL with respect to gl =
g1Ug) =

1. By and Dy are a class of individuals and a class of time points respectively. We stipulate
that hnilh= 0. L E' Iy UDQ.

2. INDVARY v Dy and go: TIMV AR — D;.
3. Ift is an individual constant, [(t) ¢ D,.
4. Given an n-place predicate p, f(p) C D" where D is a Carlesian product of D with n times.

G.interpretation of ID-symbols Civen a predicate p(ty,...,1,), the interpretation of its 1D-
symbol 1,(ID = p(ty,...,t,)) is defined by the induction on the level of the ID-symbol.’
H{ID = p) is a function defined on D. & If LEVEL((11) = p(ty,.. atel))=n 22, and
the interpretation of ID-symbels of the level less than n have been defined, then I (1D —
plty,.. . tq)) is defined as follows:

[If(IID —p) # U, pick up an a such that a € I(ID — p) so that [{ID -
Pty .. 1)) = a.

BINDVAR, TIMVAR are the set of the individual variables and the get of the time variables respectively.

*f, is a fumetion such that for o variable X, 10X} = ¢(X) and for a term t of the other kind, I{t) = I{t).

"In a special case, J{JD — p) is a function. As to the reason why we have defined in a more general way, we
will explain later. The meaning of an [D-aymbol is substantuially identical to the meaning of constant in the
case of quantifier-free formulas.

154

2. Otherwise, 1,(1D — p((1(),...,(1,))) = L.

Definition 3.7.3 (Satisfaction of the Formulas) We definc the satisfaction of the formulas
of CPF by the induction on the complezity of them. Namely, for any model M =< D, [>and
any assignment g,

Lo M g pltys. o ote) =< Iolth),... L(ty) >€ I(p)®

Ll My pldD = pty,.. . 1) ==< L(t),... Soltn) =€ I{p)'?
2. My A &= ME, AY

3. ME;B—Ae ME, AorME, B

4. M | VXA(X) o= Ve'stg' =x 9,(M =y A(X))'2

We should explain the idea behind the model construction above. Interpretation of 1D-
symbols needs special explanation. If we understand an ID-symbol by analogy to a function,

I —=re -:rl-” .,.‘:" Te—— X,H,.

Namely,
ID - T[Xh.. . n.Xﬂ] = -k‘n,-'.]_

Therefore, we are tempted to define as follows: given an assignment g,
L(ID -r(Xy,...,X,)) = o ID — 7)< Xy)y 0(X0) >)

where I(fDD —) is a function.

I(ID-r) is a function with non-empty range, its corresponding role of [{ID —r) in
ordinary language is that of a singular term. We have expressions of this kind, For example,
“that contract between a and b"is such an expresw i any case, can we say that the above
mentioned contract is unique or many or none? iere are several contract between A and B,
and we can't determine the special one by the lack of information, then the decision remains
obscure. Suppose that there are several contracts between A and B such as the contract on
March 17, and the contract on November 16. For this reason, it is possible that when debating,
they misunderstand each other what contract they are talking about. And it is also possible
that when we infer about some contract, we do so without complete knowledge of the contract.
Rather it seems that such a reasoning is typical in our ordinary life.

We would like to comment on the interpretation of ID-symbals.

¢ If we don’t have enough information of ID-r to make it function, then /{/D—+) would be a
correspondence. But if it is a function, then there will be no problem of misidentification.
In this case we can think with appropriate objects.

U g A should be read as: g satisfies A in M. Tn CPF predicate of Whe original form, every argument of Lhe
predicale appear within a list, but for the sake of cunvenience, we employ predicates in a standard form. Thers
is no essential difference helween then,

""The satisfaction is defined in the same way for atomic formula without ID-symbols plir,, .., in) and atomic
formula with IM-eymbols PID =g ba,... 40).
M e, Ashould be read as: g does not satisly A in M.

Wgmxy' < forany ¥ at. ¥ £ Xg(V) = g'(Y)

155

4 Conclusion

We have so far heen stating the quantifier-free part of CPF (syntax, legal knowledge
representation using it, semantics, and so on). At the end we are going to summarize in short
merits of introducing CPF, especially 1D-symbal.

o CPF makes expressive capacity richer, and can mention each legal acts of buying and
selling.

s CPF makes legal knowledge representation which has clese form to natural language.

In this way CPF has big advantages. Above all the best significance of this paper is to
give a logical basis of CPF.

I would like to state further tasks. [have hesitated offering the explanation of case
symbols in order to avoid making cbscure the forms of argument, but they are an important
tool. Case symbols are a device for clarifying that which role terms play in a predicate. 1t is
interesting to give semantics to such a category of grammar.

Ithen have often mentioned the characteristics of ID-symbols as a demonstrative pronoun.
Mext steps, we must consider other kinds of demonstrative pronoun {indexicals such as "17,
demonstratives such as " the book 1 have ™ and so on) from the wider point of view. Now I
present two points to counsider in future.

How to formally identify objects that are represented by making some extension of first
order language

¢ How to combine ID-symbols and many sorted language

References

[1} Ebbinghaus, H.D., J.Flum and W.Thomas, Mathematical Logic, Springer,1984.
(2] Gupta, A., The Logic of Common Noun, Yale University Press, 1980.

[3] Rbdig. J, Uber die Notwendigkeit einer besonderen Logik der Normen,
in Rechtstheorie als Grundlagenwissenschaft der Rechtwissenschaft,
hrsg.v. Albert, H.,Lulmann, N.,Maihofer, W.,Weinberger, O.,Jahrbuch fir Rechtssoziologie
und Rechtstheorie Bd,2(1972)

[4] Smullyan, R., First-order Logic, Springer,1968.

[5] Yoshino, Hajime, Uber die Notwendigkeit einer besonderen Normenlogik als Methode
der juristischen Logik in Gesetzgebungstheorie, Jurisitische Logik, Zivil- und Prozefirecht
Gedichtuisachricht fir Jiirgen Ridig, Springer-Verlag Berlin Heidelberg 1978

[6] Yoshino, Hajime, Possibility of Applying Computers to J udicial Process, (the prize paper
of The YOMIURI Newspaper Company). The YOMIURI, evening edition, 22nd December
1983, page 9.

156

[7] Yoshino, Hajime, 'Application of computer to reasoning in legal adaptation process, in Law
and Computer, No.3, June, 1985, pp.77-94 {in Japanese)

[8] Yoshino, Hajime, 'Logical Structure of Law and the Possi bility of Computer Aided Legal
lieasoning’ in: ARSP({Archiev fiir Rechts- und Sozial philosophie) Beihefte Nr.30, 1986, pp.
185-2012

[9] Yoshino, Hajime, et al. "Legal Expert System Les-2' in: Proc. of "The Logic Programming
Conference '86", 1986, pp. 68ff. (in Japanese)

[10] Yoshino, Hajime, et al. 'Legal Expert System Les-2", in: Wada, E. (Ed.)Logic Programming
'86 (Lecture Notes in Computer Science 2G4, 1987, p.a6ff.

[11] Yoshino, Hajime, A research report on Legal Expert System, March, 1989, Association for
Machine System Promotion, pp.51-81 (in Japanese)

[12] Yoshino, Hajime, A research report on explication of legal knowledge structure and devel-
opment of legal knowledge-base. March, 1990, Association for Machine System Promotion,

pp.27-32, pp.41-35 (in Japanese)

157

