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Abstract

The proteins will he classified by Successive Staie Splitting {555} algorithm without previous
knowledge of the proteing. The 555 for allophone modeling, which was proposed by Takami
and Sagayama, enables to ohtain an appropriate Hidden Markov Network automatically, and
the Hidden Markor Model simultaneously. We apply it to the protein classification by regarding
amine acids as phonemes. The Hidden Markov Model can be a representation of the clussified
proteins and used as an index of similarity search in protein databases

Introduction

Protlein Classification — Superfamily in PITL 1t i5s one of the most important issues in pro-
tein analysis to research how to classify protein sequences appropriately. Proteins are classified
by various factors such as their functions, structures, or organizations, but we consider it most
invaluable to classify proteins by their sequences. Protein sequence classifications are used for
an index system for similarity searches, which contain the similarity of amino acid sequences and
the similarity of protein structures, so that we can predict [unctions and structures of unknown
proteins.

There 1z a conventional classification called superfomily in a protein sequence database,
PIR[G). It classifies protein sequences by similarity scores of DP-matching using some similarily
score system between amino acids, It is however inefficient in practical use by two reasons. One
is because of the imbalance in frequencies. ‘I'here are many superfamilies of single protein while
several snperfamilies of large amount of proteins. We should emphasize local similarities with
various scores instead of such total similarities with scalar scores as superfamily classifications.
The other is the computational cost. [t is necessary to do many DP-matching procedures in
order to determine the appropriate class. Each DP-matching costs O N?) where N is the length
of Lhe sequences,

Protein Representation — Molifs in ProSite [t is another important issue to research
how to represent the classified proteins. Through the alignment of the protein sequences, we
determine a specific consensus pattern (matif)[8], or a variation of protein sequences (profile)[4]
to represent the classificd proteins. The former uses only regular-expression-like patlerns of
amino acids as representation of the groups of protein sequences while the latter uses a kind of
probability distribution of amino acids as the representation,



From the information retrieval point of view, the recall and precision [3] of motifs are rather
sufficicnt. For example, the motif database system, ProSite[l], classifies each protein into five
sorts on the relationship between motifs and proteins in Swiss-Prot{2]: true-positive(true, for
shart), false-negative(missed), potential-hit, unknown, and false-positive(wrong), where false-
negative proteins are true but missed by the motif matching while false-positive proteins are
picked but wrong. A rough estimation is shown in Table 1. That cstimates its recall by
true/{true+missed) and its precision by true/{true+wrong).

‘table 1: Estimation of Recall & Precision Rate of Motifs

F"ersion ” true | missed | wrong |.u|1knnwn potential | recall ] precision |
[ ProSite 7 || 10787 260 | 571 ] 75 630 [ 97.6 % | 94.0 %
ProSite 8 || 12736 352 661 | 86 W 973% | 95.0%

However, it seems insufficient for the biolagical practical use. There is a trade-off between
complexity of patlerns and improvement of the recall and precision. For example, a motif “apple
domain” in ProSite shows quite complicated pattern:

Cox(3)- [LIVMEY]-x(5)- [LIVMEY]-x(3)-[DENQJ- (LIVMFY]-x(10)-C-x(3)- C-T-x(d)-
Cx-[LIVMEY]F-x-[FY]-x(13,14)-Cox-[LIVMF Y | [RK)--[ST}-x( 14,15 )-8-Gx-[ST]
[LIVMFY]-x(2)-C.

Capital letters correspond to amino acids, letiers in syuare brackets indicate alternatives, and
the string “r{n)" means n-residues of any amino acids. “(m,n)" is a representation of a reglon,
It is natural that such a complex paltern scores 100% in both its recall and precision. It is not
appropriate for the comparison between motifs or the recognition of the relationship hetween
patterns and funetions,

SSS and TIMM  We use Hidden Markov Model (HMM) [7) as the represcntation of the pro-
tein classification [10) and Successive Stale Splitting (555) algorithm [9) as their classification
algorithm. It is important to generate a precise and robust HMM: representation capability is
necessary for the precision of the model, whereas simplicity is necessary for the robustness of
the model. In arder to build the robust and precise HMM, it is quite essential to determine
an approptiate Hidden Markov Network (HMNet). The SSS algorithm automatically builds an
appropriate HMNet with the mazimum Ekelihood eriterion.

It is essential to introduce probability distribution to the representalion of the protein clas.
sification. It improves representation capability and reduces description romplexity, There are
several related works that emplay probability in the motif representation, for example, prob-
ability with MDL criteria [5]. We consider the Hidden Markay Maodel is the most suitable
for representing the protein classifieation. It represents the protein set by the network whose
nodes and arcs have probability distributions. [t can he regarded as flexible multiple consensus
patterns for the protein set.

SSS Algorithm in Protein Classification

We show an overview of the 535 algorithm [9]. At every step, we explain 555 algorithm for
plicnemes {allophone modeling), and show the difference between phonemes and amino acids.
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Figure 1: $SS Algorithm [9] — Every box indicates the Hidden Markov Network (HMNet)
of respective stages of the 855 algarithm. Fach circle represents a state and each arc between
circles represents a state-transition in the HMNet. Every state has a self transition, but the
corresponding looped arcs are omitted in this fizure for the simplicity.

Step (: Training of the Initial Model Let the initial model be the HMM of one state,
whose output is according to the probability density function (PDF) of the diagonal-vovariance
2.mixture Gaussian. The model is trained by all data with a learning algorithm such as forward-
backward { Baum- Welch} algorithin or Viterdi algorithm.

As amino acids have discrete distribution while phonemes have continuous distribution, we
should find out commeon grounds between them te apply 5SS algorithm to the protein classifi-
cation. There are two approaches: to put amino acids into a continuous space and to develop a
discrete 858 algorithm. We chose former approach.

We provide a continuous space out of 20 amino acids using Dayhoff PAM-250 as a distance
matrix, so that amine acids can be mapped onto the continuous space (a confinuous prolein S55).
It is = kind of Multi-Dimensional Scaling (MD5). It is the easiest way though PAM-250 shouid
be properly biased to make such space. PDFs of the diagonal-covariance 2-mixture Gaussian
are applied to the continuous space of amino acids, so that we can apply the continuous 588
algorithm to the proteins.

Step 1: Calculation of Distribution Size We should choose one state to split. For each
state 7, a criterion o; by Eq.(1) is calenlated in the original phoneme 585, It represents a size
of the output PDF of 2-mixture CGaussian on the state S(i). It is applicable as it is to the



copiinuous protein S58.
K 2

di=5%" g:kz ni, oa’ = Anoa’ + daom® + Aada(par — pia)? (1)
L ITk
K: parameter dimension,
Mgy gyt weight coefficients of mixture Gaussians of 5(i),
FE§N 0y fhiEs k-th means of (1},
gan?, am’s k-th variances of §(i),
U the number of training samples for 5(i),
o k-th variance of all samples.

Step 2: Split of the State The state S{m) of the largest d,, is split into two states, 5'(m)
and S{ M), where M is the current number of the states, Both §'(m) and 5{M) have the output
PDFs of siugle Gaussian while §(m) had a PDF of 2-mixture Gaussian. Each PDF of single
Gaussian corresponds to each Gaussian of the 2-mixture PDF.

There are parallel splitting called coniertual split and sequential one called temporal split in
the phoneme SS5. We choose either by estimating mazimum likelihood of both contextual split
F. and temporal split F.

— Contextual Split §'(m)and S{M) are concatenated in parallel by the contextual split (zee
Figure 1). Since all paths on S(m) should be split into two, all training samples should
also be split. The samples are split by a contexiual factor {such as preceding phonemes or
succeeding phonemes) to maximize Py, which is estimated by Eq.(2).

F= '“j,’-x Eﬂlu me'[!-f.n:h pas(ya)), (2)
!
yuvar.-yri:  I-th sequence (sample},
1 the length of {-th scquence,
J: a series of positions of [-th sequence on S(m),
L TE a subsequence of yyyey...yy on S(m),
Pelu ) total likelihond for v on 8'(m),
parly): total likelihood for y 4 on S{M).

After maximum J is determined, corresponding residues ¢ 5y are distributed to the states
S'{m) and S{M) by Eq.(3).

eni € Em (pwlyn) < o)), (3)
eqt € Eng, (pmlunt) > par{yn)),

Eia,: aserics of residues on §'(m),
Eps,:  a series of residues on S{(M),

= Temporal Split §'(m) and S5(M) are concatenated in series by the temporal split (see
Figure 1). There are two models: $'(m)-5(M) and S(M)-8'(m). Thus, F, is estimated

by Fe.(4).
F, = max meM{Y}:PMm{Y}}- (4)

Y all samples on 5(m),
Pwm(Y):  total likelihood of the model 5'(m)-S( M),
Pum(Y):  total likeliboud of the model §(M)-S'(m).



Step 3: Retraining of the Model The model which contains two states with single Gaussian
PDF, 5'{m) and S(M), should be retrained by all samples, so that all states have PDFs of 2-

mixture Gaussian again.

Step 4: Change of Distribution  When the number of states is increased to a prescribed
number, the model is retrained as all states have single Gaussian PDFs.

Computational Cost of 5SS

The computational cost of the ariginal phoneme 555 algorithm is practical. An upper limit is
set to the number of the states, which increases by one when the split ococurs at every eycle.
Thus the number of iteration of this algorithm is limited.

It needs moderate computation at every step of the cycle: estimations of the size of the
distribution at all states (Step 1), calculations of P. and P, (Step 2), and a training of the HMM
(Step 3). Step 1 and Step 2 are rather negligible, and Step 3 has several practical algorithms
such as the Haum-Welch algorithm we chose. The cost of the continuous protein 555 will be
practical, becanse the protein 552 is almost the same algorithm as the original one.

Future Work

Discrete Protein S8§5 When we apply 558 algorithm to the protein elassification, we can
think of a discrele profein 555 using multiple alignment as another idea. It is essential that
proteins can be split into two groups while it is not so essential that proteins can be regarded
as mixture of any parametric PDF such as Gaussian. At Step 0, it is rather reasonable to split
proteing according to the multiple alignment scores, though the search for optimal partition of
gsize N needs at least 2%~ | trials of two group alignment. It is invaluable to discover good
estimation to reduce computation,
At Step I, we can use entropy for the decision eriterion instead of d; in Eq.(1). It can be
estimated by Dy, in Eq.(5):
Dy, = Zp'r log pr, (5)

where p, is the frequency of the residue r.

At Step 2, the parallel split corresponds to the distribution of protein sequences into two
groups, We should somehow reduce the number of trials of such splitting, because there are
2N-1 _1 ways where V15 the number of proteins. It is the same problem as the one at Step 0.

The sequential aplit corresponds to the vertical partition of the alignment. There are not so
more than L ways of partitions where L is the length of the alignment. In other words, there are
not more than 21" ways where L' is the length of the longest sequence. It is the rather reasonable
number of trials than the parallel split, though every trial needs one alignment procedures for
each part of sequences.

The discrete protein 533 algorithm is impractical nnless we have any idea to reduce compn-
tation at Step 0 and Step 2.

Continuous P'rotein S55: other scalings for the amino acids  We can usc various indexes
such as the clectric charge or the hydrophobicity instead of the space made from PAM-250.

Through an investigation of the resultant HMM, we can recognize what kind of indexes are



influential for every specific characteristics, such as alpha-helix domain of secondary structures
or DNA binding sites of functional demains.

Concluding Remarks

The 555 algorithm enables to obtain an appropriate Hidden Markov Network antomatically,
and the [idden Markov Model simultaneously. Its effectiveness is confirmed in phonemes [9].
The proteins will be classified by 853 algorithm without previous knowledge of the proteins.
We apply it to the protein classification by regarding amine acids as a continuons variant and
implemented the continuous protein S55 algorithm.

References
(1] Bairoch, A.: PROSITE: A Dictionary of Protein Sites and Patterns, User’s Manual, (1991).

[2] Bairoch, A.: EMBI Data Library: SWISS-PROT Prolein Sequence Database Release Notes,
Helease 20, (1991).

13| Frakes, W.B. and Baeza-Yates, R.(ed.): [nformetion Retrieval, Data Structures & Algo-
rithms, Prentice Hall, (1992).

(4] Gribskov, M., McLachlan, A.D. and Eisenberg, D.: “Profile Analysis: Detection of Distantly
Related Proteins”, Proc. Natl Acad. Sci. 1/54, Vol.84, pp.4355-4358 (1987),

(5] Konagaya, A. and Kondo, H.: “Stochastic Motif Extraction using a Genetic Algorithm with
the MDL principle™, HICSS 26, pp.746-753 (1993).

[6] National Biomedical Research Foundation: PIR Docwment CXFSD-1081: CODATA Ex-
change Format Specification, Ver.2.1, {1991).

[7] Rabiner, L.R.: “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition”, Proe. IEEE, Vol.77, No.2, pp.257-286 {1989).

[8] Staden, R.: “Methads to Define and Locate Patterns of Motifs in Sequences”, CA BIOS,
Vol.4, No.1, pp.53-60 (1988).

[9) Takami, J. and Sagayama, 5.: “A Successive State Splitting Algorithm for Eficient Allophone
Maodeling”, IEEE, (1992).

{10] Tanaka, H., Asai, K., Ishikawa, M. and Honagays, A.: “Hidden Markov Models and ltera-
tive Aligners: Study of their Equivalence and Possibilities”, ISMB 1, (1993).



