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Abstract

There are many sharod atteibtes belween exist
ing weretioe aligners and  Huddens Muarkor Modol
(HM M), A learning algorithm of HMM  called
Viterhs is the same as the iteration of DI-matching
of iterative aligners. HMBM aligners can use the re-
sult of an iterative alipner initially. ineorporate the
similarity seore of amine acids, and apply the de-
tailesl pap cost systems to bmprove the matching
avenracy. (e the other hand. the tterative aligner
can inherit the modeling capahility of HMM. il
provitde the hetter representation of the proteins
J..1u|.|1 muliﬁ.‘. To this kA, w presarpl DWW W
ol several ierative aligners which ineluee the peae-
allel iterative aligner of JOOT and the HMM aligner
of Haussler's group, We compare the merits and
shorteomings of these ahgners, ''his comparison
ciables us to formmlate o better, morve advaneed
aligner through proper integration of the iterative
technigque and HMM techniogue.

Introduction

It is indispensable to align wolliple protein sequeices in
order to understand the relationship among the protein
funciion. the structure. and the amino acid sequence.
The funcfional mofif or the structural mofif are fonnd
when the protein sequences of the same fanction or the
same structure are multiply aligned. There are many
mwethouds to align them which incluede iterative aligrers
sl Heddilere Meordon Model (HMM) alignies.

In order to iwprove e pecformaee of the aligners
and the guality of the resull, several iterative aligners
hvve Been developed which inelnde the parallel iterative
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aligner developed al TOOT {Bshikawa ot al. 1992} This
aligner is based on the Gotoll method (Gotoh 1992)
with its parallel extension and resterefed partitiomng
like the Darton-Steruberg wethod [Barton & Steruberg
1987L It quickly makes mnltiple sequence alipnment of
ol seore on parallel inference machines developod at
[

Tl existing aligners however have two problems.
O 15 achont cxploring wn appropriate gup costs systom,
Both pairwiae aligners and wnltiple aligners which use
DP-matehing algorithms (Needleman & Wunsch 1970}
are suffered froon what kind of score system Lo use,
We have Dayhoff PAM-250 (Dayhoff. Schwartz & Or-
eitt 1974 as a standard stmilavity score system but we
have no standard way of estimating gap costs {Altzchul
1989).

The other is about the representation of the re-
sult.  From the resultant alignment of a certain
protein set. we deterine a specific consensus pat-
tewn called motif (Staden 1988) to represent the set.
Frou the information retrieval poiot of view, its re.
el amld PrEEsLon (Frakes & Baeean-Yoales 1992) s
vather sufficient.  For example, the motif database
syt ProSite (Bairoch 1001}, classifics cach pro-
tein into five sorts on the relationship between each
motif and proteins in Swiss-Drot:  true-positivel frue,
for short). false-negative(missed), potential-hit, un-
known, and false-positive|wrong ). where false-negative
proteins are trae but missed by the motif matching
while: false-positive proteins are picked but wrong, A
romgh estimation is shown in Tahle 1. That estimates
s vecall by troef{truetmissed) and its precision by
l.ruL'Jn"[Lnu: +Wruug}. However, it seemns ipsuflicient for
thoe Liological practical use, Theee is o beade-off Between



ileseription complexity of patterns awd nuprovement of
the vecall audd precizion.

Table 1: Estimeiion of Reeall & Precision of Motifs
[ ProSie ] true I s | wrong | unk. pot.|
VT 787 260 [ BT 75 ] 64D
VY 27306 302 [ 661 BG | 727 |

[ ProSiie || recall I Jrrecisien ]

VT _[[9i6% | 0% |
VI [ 0737 [ W% |

T vsreder bo dnepraove vepresentation capahility of the
wetif and toavoid deseription complxity. we propose
o tndrocdaee probability disteiltion. There are several
velated works that employ probability in the motif rep-
vescitation. for example probability with MDL eriteria
(Rouwagaya & Kondo 1993), Among then. we considor
the Hidden Markov Mordel i the most suitable for rep
resenting the protein elassification, It cepresonts the
protein set by the uetwork whose nodes aned ares love
probability distributions. Thus, it can be regarded as
Hexible imultiple consensus patterns for the protein set.

The Hidden Markov Maodel can be casily applied to
Pt seguence alignimenl. as the DP-matehing alro-
vkl bas boeen applied toi by regarding segnences as
speecl The DP-matehing algovithin and HMM are pop
nlar tools wwong the researelors of speech recognition
In addition. the TMM cmploys several algorithus i
itz statistical modeling. melding the Vit salaorithm
(abiver 1989} chat s the same as the DP-malching,
Thus. the TIMM can be viewed as a coneept Uit en-
compasses the DP-matching.  Protein structure pre-
dietion from sequence (Asai & Hoymnizun 19911 Asai.
Havamim & Ouiznka 19930, aml protein elassification
[White, Stulz & Smith 1991) are velated works of hio-
lgieal information processing nsing HMM,

We take the wmtelligent vefines {Hirosawa 1993) into
aceonnt to consider specific characteristics of single
amiuo acid, such as cysteine{C) and histidine{H) in
the sine fnger wotil The aligned sequences age ro-
fiued By biological kuowledge sucl as motifs in the
Profite. A wnew knowledge representation language
duzrorrs using DOOD and CLP is proposed for repre-
senting soch biological knowledee (Tanaka 1993, This
P however diseisses the previons atage of the refine-
meent wilh biological knowledee bases, We introdnee no
preion knowledge of the protein structnre, function, or
the characteristic of each amino acid at this stage.

Lhis paper i organized ws follows, Section overviews
the variety of cxisting iterative aligners. Section shows
an example of the HMM aligner. Section clarifies their
relationzhip. the possibility of improving mulliple s
fquence aliguing algorithi, and appropriate reprosenta-
tion of the alignment. And Section  enmmnerates our

]

funt e works.

lterative Aligners

In this section. we show an overview on several itera-
tive aligners. The purpose is to comipare between tlese
iterative aligners and the HMM aligner to be mentioned
in Section .

Barton & Sternberg (1987)

Their algorithin to align NV sequences is as follows:{ Bar-
oy & Sternherg T9ET)

{1} choose 2 out of the NV segpiences bo do DP-matching
between them. and olilain the result,

choose T out of the rest N — 2 sequences to do DE-
ntatelang with the last result,

el b omt of the vest ¥ — 3 sequences 1o do DP-
madching with the last result,

(2

{3

)oodo DP-matching between the last sequence and the
Last posnlt, tlen
abtain the final result,

(6]

The following refiuements are done. if necossary,
(1)

(2]

Clineear Lhe 13t sequence to do DM-matching with the
rest ol thae latest pesilt,

choose the 2 sequence Lo do L mateling with the
restoof the latest result,

(35 .

t4) choose the N-th sequence to do DP-matching with
the rest of the latest resnit,

When they do DP-matching between single EROIENCE
and plural sequenees, they employ a specific score Y-
tem for the plural sequences to do a kind of 2-way DP-
matching. which we regard as the profile DF-matching.
An example of the profile is shown in Figure 1.

“This profile is a sequence position-speeilic scoring ma-
trix cowposed of 21 columns (for 20 amino acids and
gap cost) and N rows, where N is a length of probe
(Gribskov. McLachlan & Eisenberg 1987). The probe
i5 a hundie of aligned sequences. When we have o bun-
die of aligned scquences and a new sequence and want
to align all the sequences, we can define the profile of
the bundle and do DP-matching nsing scores of the pro-
lile instead of usual similarity seores, such as PAM-250.
It is ealled the profile DP-matching.

Berger & Munsoun (1991)

Figure 2 shows a brief overview of the algorithn {Berger
& Munson 1991}

(11 Let initial state he unaligned sequences,

(2} partition all sequences randomly into 2 groups Lo do
profile DP-matching, and have the resultant align-
ment,

(3) repeat wutil the score of the alignment converges.
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Fignre 1: An Example of the Profile (Gribskov,
MeLachlan & Eiscuberg 19871

Tl sequences are vandomly partitioned. so 279 ways
of partition may ocenr for n sequences, They ignore
the columm which contains any mnber of gaps esing
the Murata method (Muratn, Richand=on & Sussnun
1985) in order to reduce computation. Teerative eyeles
of the Berger-Munson algorithu needs so mach compun-
tabion Lo Lake more than several hours Lo align practi-
cal seale of the aligniment. Uhns, parallel processing for
this algorithm has been tried at O] (Ishikawa et al.
1992}

Input

(M) \

Iniblal State

Eadilaning

Prafile 0P

Fiesu on one PE

Figure 2: Berger-Munson Method

Gotoh (1992)

The similar algorithm as the Berger-Munson methocd,
it Golol cuplucsizes the importance of the detailed
gap costs {Gotol 1992, Thus, this algorition does not
ciploy profile DP-matching so that it takes mnch time
to execnte every iteration oycie.

Before discussing gap costs. we shonld first define sev-
eval terms, Lot the gap cost of continnons » eolnmns
G b 3 (2= 11 E. wo eall O as opering gap cost and E
as exfendmyg gap ecost. Conventional snnple algorithus
wae (3 = B or B =1

The gap cost systemn of this method treats not only
snch differences between opening and extending gap
costs. The cost of the i-th coliom G, is 375 gk
where g 0 if j-th el de-th sequence of the -
W colmm are botle gages or aoano acds, ollerwise

doe = or E,
ICOT (1992)

The stunilar ulhmrill:lm as Lhe Gotob wethedd, wiih s
pavallel extension (lshikawa et all 1992} and the re-
stricted pavtitioning,  Frgnree 3 shows a brief overview
of the algorith,

i
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Fignee 32 Pavalle] Extension & Restricted DPartitioning
of the Gotob Method

Multiple hranches of the search Lree appearsd akb
the restricted pactitioning stage are evaloaled o par-
allel with plural processing elements {PEs) in every it-
eration,  Every possible partitioning into two groups
of aligned sequences can be evaluated by Z-way DI
watehing with the Gotol gap cost svstem in parallel,

The restricted partitioning is an effective henristic
technigue. N sequences are partitioded into & and N-&
according to the Derger-hMunson method and the Cio-
toh wethod. Through the evaluation of the method,
it. is found that simaller & makes larger improvement. in
DPF-matching score. Thus, weset E=1 or £=2 and call
this henristics as restricted partitionimyg. It rescoobles
the Barton-Sternbery, method in doing DP-matching be-
tween plural sequences and a few sequences,

Alignment using HMM

In Lhis section, we show an HMM aligner to clarify
the elationship between iterative aligners meutioned i



Section ad the leavning algovithon of the HMM aligner,

Haussler et al.(1993)

Thewr Medden Markow Network (HMNet) is shown in
the Figinre 4. which i intaitively the simplest model for
Ehe nmlgiple sequeace alignment. The snonnt of pro-
tein =equence data i3 wot enough for complicated AM-
Wet to learn ils probability distributions, Table 2 shows
the amonnt of the sequences in representative protein
databases. They ave moch fewer than the mnount nsed
in the speech recognition ell. The complexity of the
HMMNet. which 0 L'i'-:_{]_:ulu]:-‘; tar tliae 1.111:11_*5,;:1.1_“[]0" Cafr-
Lility of the oo, wets Bower if we cannot prepave
enemigle clati

Taktlee 22 Statistics of Protein Databases
| Datalises || NRDEB "I Swis-lrat | POR
| (TT93] T TTO03) | Vo4 (19937 | 1992 |

Froteis || 61870 | 47204 158 | 1146
T e Ii M 138 M 0.5 M

NEDR: (Harris, States S Hunter 1093),

In Figure 4. cobunns of the HMNet roughly corpe-
spond to the columms in the alignnent. thongl the
numnber of the columus of the HMNer is generally fewer
Ehan the alignoent,  There are tleee kinds of nodes.
dl-node. -node amd wenode, which respectively corne
spond to deletion. inscrtion aud matching of residies
against the model, Only w-nodes have probability dis-
tribmtions. which correspond to the wnltiple consensus
patterns with probability, This restriction is to redues
paraineter ol the model,

d, d, d,

m, m, m, m, m,

Figure 4 Hudden Markov Network of the Hanssler
{Hanssler et al. 1993)

Their estunating algorithm is the Viterbi approxima-
tion (Haussier et al, 1993).

{1} Iitially ares from every node and every menode have
tlat probability distrilbmtions,

12} the most probable path throngh the model for each
input protein sequence is determined by the Viterbi
alparith.

{3) probahility is virtually a bit increased where the paih

i loncaebend

{4) probability distribution of every node and we is rees-

timated according to the sum of the virtual increase
of probabilities when every sequence of the protein
sot are once inpat into Lhe HMNe, and

(5} repeat determination of a path and reestimation of

probability disteibabions, until it CONVEIEes.

To achieve the optimal length of the model (the num-
ber of the m-nodes i Figure 4), the length is also rewes-
thmated by model surgery. I the frequency of localed
paths al o cortain d-node is fewer than some threshold.
ur bl frequency at a certain i-node is more than some
threshold, the lenpth of the model is reestimated and
the model is retraived. To avoid the local optimiza-
tion, luearly decreasing noise is adeded to the model
diving the beginning iterations, just as simewdated an-
realing with the sinplist annealing schedule. To avoid
averfitting to the Lest data set. biases are introduced in
the probability estimation process. They say Lhis ap-
pears to be effective when large binses are given at the
trausition probalility from i-nodes to m-nodes,

Evaluation

T this Seetion. we compare iterative aligners with the
HMM aliguer, examine their gap cost systems. and eval-
nate the HMM as representation of protein sets.

Comparison between Iterative Aligners
and HMM

The HMM alizner resemables iterative aligners ratler
than u-way DP-watching algorithms {Carrillo & Lip-
nkan 1988), becanse the former have iterative improve-
tuent process like learning process in the HMM. Existing
iterative aligners shown in Section and the learning al-
gorithm of the Hanssler HMM in Section  employ the
same algorithm for the same objects. The DP-matching
in iterative aligners are called Viterbi approximation in
the HMM. Both iterative and HMM aligners deal with
columus of the alignment as objects. Hence, HMM is
regarded as a meta-algorithm which describes how to
apply DP-matehing to the multiple scquence alignment.
and how to model the aligned sequences. On the other
hand, the learning algorithm of the Haussler HMM re-
mains to be improved o lot, by introducing techningue
of iterative aligners, .

Among iterative aligners. the Barton-Sternberg
method have the highest similarity to the Hanssler
HMM. It lias & one-by-one DP-matching process and
refinement processes, which correspond respectively to
the puth determinimg process and the reestimation pro-
cess of the Hanssler HMM, though the path deteruiin-
ing by Viterbi approximation is not one-by-one pro-
cess practically. It employs the profile DP-matching,
whose treatment of gap costs is similar to the HMM, as
both are independent from horizontal positions of the
residues,



Comparison of Gap Cost Systems

Most ingportontly. HMM treats gap costs nmch easier
that Dr-watching alpovithms, We haove stroggled to
introdlnes detailed gap eost system into vacions DP-
matching based multiple alignment system bt fonnd
no proper way to do so. HMM can also treats similar
ity seore systewn such as PAM-2500 We can introduer
it into the probability distributions of wenodes either
previonsly or after the HMM iz estiniatedd.

The Hanssler HMNet is shown again in Figure 5.0 In
thiz HMM . opening gaps ancd extonding gaps corresponil
1o the probability of the are. Arrows Tetween menodes
are novmal transitions. and oo d-nodes and i-podes
b ti=nodes correspond to the cwd of gaps, Obviously.
insevtion and deletion gap costs as well as gap costs
ab different nodes ave tndependent]y determined in Che
Haussler HMM while they should ber the same cost in
the couventional DPFoneatching algorithins. There was
e clegant way to breat sueh loeality o the conven-
tiouel DP-mtehing, The BMM saturally enables us to
chistingnish important conservidive reglons which con-
baln consensus patterns from other regions of seguences
i the aligmnent process.

— e (Opmning GAS
= EaLecding Sap

i, m, m., m, m

Figure 5 Gap costs in the Hanssler HMM

HMM realizes natural implementation of the gap
cost Py = My = (N=11Pg, which 15 a standard 1n
DP-matching.  [Let the transition probability corre-
sponding o oan epening gap le Aqg oamd an extond
ing gap be Ag. A Lheir costs be Fo o= — log g oand
Pg=—log Ag, then, the gap cost of leagth N in nsoal
HMM is Gy = log AaAp'™ "V = P, + (N=1)Pg.)

The feature specific e the Gotoh method i its e
tailed gap costs, which is also employed by the ICOT
method. It requires some integrity of gap costs betwoeen
insertion and deletion or among colwmus of e HMNet.
We consider it can be realized by durafion modeling
{Itabiner 1989}, It is au implementation technique to
sihstitute the natural gap cost GIN) by any f(N).

Isolated residue problem also seems to be solved by
introdnecing the probability. It iz not essential bat an-
noying. that a certain amino acid matches to a specific
column to separate a long gap into two, mstead that it
should be put at the eilher end of the gap,

HMDM as Representation of Protein Seis

The fuonetional and structural motifs whose fnnetions
ur structures are clemically or physically cleared would
survive, Woe however congider the motifs as representa-
tion of the protein set should be replaced by the IIMM.
We lave a new sequence and want bo classify it among
the cxisting protein sets. Bul we have no HMM rep-
resentation of the set. then. we should ve-alipy the se-
quence with every protein set. or extract motifs previ-
onsly anel search them agamst the sequence. The for-
wer easts expensive. iw matter we have only the resul-
taud aliguinent or we have its profile score. becanse it
neeels DP-mateling which costs Q{N?). The latter has
i trade-off bBetween the complexity of the motils ol
the recall and precision rate. The HMM representation
contains the probability distribution that relaxes the
cotplexity and gains high rates,

However, there is auother trade-off between the rep-
resentation capability and the calenlation speed. There
are no proper indexing systems for motif scarching, but
wetil seanning is alinost the same algorithm as the roege
ular expression search, which has long been researelied
so that many rapid and excellent wethods have been
well-developed. Whereas HMM lhas velatively less ox-
tensive work on reivieval in speech recognition. becanse
vetrievimg the oplimal HMM Lo kaow its elassification
i ol the goal of ched fiell

Invisibility is another problem. Motifs arve described
by repular-cxpression like description, which we can
reacl al woderstanl ecasily, The HMM is i that sense
ratlver mvisible for s

Future Work

[ this =ection. we epumerate owr future work accord-
ing to the evaluation of the HMM as an aligner and a
representation of a protoin set showu i Section

HMM as a Multiple Aligner

We introduce HMBM concepls into the maltiple aligner
in three ways:

i1} weapping detailed gap eost system of iterative aligners
too HMM.

(21 introducing similarity score into its probabality dis-
tribution, and

(1) vsing sequences alipned by iterative aligners as the
imitial state,

[utroduction of the similarity score could be instantly
vxperimented, It is expected to have a good result,
becanse it coutributes to the reduction of parameters
and the mtroduction of similarity, and becanse it has
wer dlefeets from the biologieal point of view. We can
atart cxperiments from the conventional standard seorve
PAM-250. Aligued initial state 15 also expected a good
resalt. Mapping gap costs eould be cxperimented soon,
thongh there remain issues o be settled (see Section ).



HMM as a Representation

Werintroduee HMM eoncepts into the representation of
the protein set by providing ane HMM viewer to exhibit
HMM as well as miotifs and an HMM inverted file to
tiake search faster. For biologists" practical wse of the
protein set representation. we shonld provide some ox-
pression of HMM iy text and/or o display. This ex-
pression is also nsed as comparison with the strwetural
or funclivnal wotifs found by chemical and physical
ueans. As for imverted file or wdex for HMM. we inay
buriled EMMs hievarchically along with. for example, the
protein hicrarchy such as evtochromes. eytochrome .

FA

ael eytochrome =055,

Concluding Remarks

The learning algovithu of HMM is the same as the iter-
ation of DImatching. HMM aligners can use the resnli
of an iterative aligner uutially. incorporate the similar-
ity seores such as PAM-250. and apply the detailed gap
east systems Lo improve the matehing acenracy. On the
other hamd. the iterative aligner can herit the wodel-
ing andd represeutational capability of HMM. We present
ar overview of several ilevative aligners and an HMM
aligueer Lo compare the nierils el shorteomings of these
aligners. Uhis comparison enables us to forumlate a bet-
tew e adlvagiend alipoer tHeromgh proper integration
af the itevative technigue el HVM tevclimigue,

The TIMM is s suitable for representing the prodein
classification. Tt is o natural representation of mnltiple
vonsensns patlerns with probahility distoilmtion. Motif
= useful for represculing clienical and physical analysia,
andd for browsing by biologists, Motifs and HMM will
ronpecale Lo represent protein cliassifications,
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