ICOT Technical Memorandom: TM-jEBS

Ti- 1263

A Stochastic Approach to

Gienetic Information Processing

by
A. Konagaya (NEC)

May, 1993

1993, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 —5

I( :D I 4-78 Mita 1-Chome

Minao-ke Tokyo 108 Japan

Institute for New Generation Computer Technology




A Stochastic Approach to Genetic Information
Processing

Akihiko Konagava

C& Systems Research Labs., NEC Corp.,
4-1-1 Miyazaki, Miyamaeku, Kawazaki, Kanagawa 216, Japan
e-mail konagayaf@icsl.cl.nec.co.jp

Abstract

U'his paper stresses the impoitance of stochastic machine learning theory for analyzing genetic infor-
mation such as protein sequences. It is commonly recognized that machine learning theory would
play an essential role to extract important information from the enormous amounts of raw genetic
information generated by biologists. However, it is also true that more flexible and robust learning
methodologies are required to deal with divergence occurring vn the genetic information.

lor this purpose, we adopt stochastic knowledge representations and stochastic learning aigorithma and
show their effectiveness with a stochastic motif extraction system. The system aims to extract stable
comnion patterns conserved in some protem category. In the system. common patterns {stochastic
motifs} are represented by stochastic decision predicates, and a genetic algorithm with Rissanen’s
minimunt deseription lengtl principle is used to select “good stochastic motifs™ from the viewpoint of
increasing prediction performance.

1 Introduction

Rapid impravement of molecular biology technology has succeeded to gencrate enormous ge-
nefic information. such as nucleic sequences and protein sequences. To analyze the genelic
information both computer technology and molecular biology lechnology are required. This
leads to the appearance of new scientific domain named genctic information processing or hio
mformatics,

The goal of genetic information processing is to extraet valuable information from genetic
normation. To achieve this, various computer-based systems have been developed: homol
ogy search systems to retrieve similar genclic sequences from a sequence database, secondar ¥
or tertiary protein structure inference systemns for unknown genetic sequences, motif extrac-
tion systems Lo find common patterns conscrved in protein categories, molecular orbitary or
molecular dyvnamics to simulate the behavior of proteins, ete. To enhance these systems. much
attention has been focused on artificial intelligence technology, especially for machine learning
theory as well as database, image processing and numeric processing technologics. However,
it shonld be noted that very few machine learning theory have succeeded so far Lo extract
hiologically meaningful information.

Let us consider the reasons by focusing on meotif extraction fromn protein sequences. The
purpose of motil extraction is to find common patterns in a prolein category. Such patierns
are important since they are conserved in the evolution process for some reason; in fact, there
is a good correspondence belween conserved patterns and protein active sites and/or special
protemn structures such as Zinc-Finger and Luesin-Zipper[1]. From the viewpoint of artificial
intelligence, motil cxlraclion can be considered as a kind of inductive learning process which
finds rules from given sample scquences. However, extracting valuable motifs is not trivial
becanse (1) almost all motils have exceptions, (2) overfitting may occur when scarching for



the best fitting rules for sample sequences, and (3) combinatorial explosion may eccur when
searching for all motif candidates.

Toovercome Lhese difficulties, we adopt a stochastic knowledge representation and a stochas
Lic learning algorithm. That is, we propose a “stochastic motif™ that represents stochastic
mapptug {rom protein sequences to protein functions or protein structures. A stochastic motif
may conlain exceplions bul is more stable and reliable for discriminating unknown sequences or
predicting protein functions or structures. To represent the stochastic motif, we also proposcd
a stochastic decision predicate, a collection of Horn clauses with a probability to reprosent
reliabilily of each clause. One of the difficulties of extracting stochastic motifs from prolein
sequences is overfitting to the given sample sequences. To avoid this, we adopt Rissanen's Min-
imum Description Length (MDL) principle. We can casily show that the best fitting stochastic
motif 15 unstable in the sense that it depends on the sample sequences. The MDL principle
solves this problem by balancing between the complexity of a motif and its classification er-
rors. It gives a strategy of selecting an optimal stochastic molil on Lthe basis of the sum of the
bit lengths required to encode a stochastic motil and its logarithmic likelihond to the sample
prolein sequences,

To avoid the combinatorial explosion in the motil extraction, we use “genetic algorithms™,
which are a kind of probabilistic scarch algorithm based on the natural evolution process.
The virtue of genetic algorithins is that they offer an efficient generate-and-test search by
meanz of simple genetic operators that simulate “erossover”, “mutation” and “sclection”. Our
experimental results demonstrale that a genetic algorithm extracts stable stachastic motifs i
the MDL principle is adopted for the design of the selection operator or fitness function.

The organization of the rest of this paper is as follows. Section 2 gives a background of
stochastic motil extraction. Section 3 gives a representation for stochastic motifs, which we call
Stochastic Decision Predicales, Section 4 gives a strategy for selecting a good slochastic motif
nsing the MDL principle. Section 5 gives an algorithm for finding optimal stochastic motifs.
Section 6 gives an overview of our stochastic motif extraction system. Section 7 presents exper-
imental results on extracting stochastic motifs based on our propesed methodologv. Finallv, in
section 8 we discuss current difliculties and future works. This work has been done as a part
of the fifth generation computer systems project for the evaluation of the parallel inference
machines.

2 Stochastic Motif

Divergence is one of the characteristics of nature, In practice, it seems difficult to find exact
rules in biology. One of such example is a discrimination rule between birds and mammals.
Birds can be characlerized by simple rules such as having a beak or a bill and wings and laving
eggs, and mammals can be characterized by having four legs and childbirth. But, a strange
animal platypus has a bill and four legs, and lays eggs!

The same thing happens in motif extraction. We can easily find simple common patterns
conzerved 1n most sequences in some protein category. However, such simple common patierns
almost always have exceptions. The exceptions can be eliminated if we introduce more complex
patterns.  Iowever, this is not safe because the resull may be sample dependent and less
eflective for the prediction of protein functions and protein structures in unknown sequences.
To overcome this difficulty, we pursue stable motifs instead of precise motifs, and propose a
“stochastic motil™ which inherently includes exceptions, are more stable, and more naturally
represent protein functions.

Let us show the example of a stochastic motif using cytochrome ¢, a protein which plays an
important role in the respiratory chain. Figure 1 shows some known cylochrome ¢ sequences
for various species. Each character in the sequence corresponds to an amino acid. In most
cvtochrome ¢ sequences, we can find the commeon pattern “CXXCH” where “C7, “X", “K°

[ (=]



Spacies Sequence of Cytochrome
Human FIMKCSQCHTVEK. .
Mouse FVQECAQCHTVEK. .
Chicken LFVQKCSQCHTVEK. .
Snake .FSMKCGTCHTVEE. .
Prawn .FVORCAQCHSAQA. .
Yeast . FKTRCLQCHTVEK. .
Hemp .FETEKCAECHTVGER. .
Tetrahymena CFDSQCSACHATEG. .
Rhodopila FHTICILCHTDIK. .
Microbium .VFEQCKICHQVGP. .
Pseudomonas NWEFEQCMTCHEADE .

Figure 1: A part of cvtochrome ¢ sequences
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Figure 2: A heme ¢ binding in a cvtochrome c



stand for a cvsteine, any amino acid, and a histidine, respectively, and the second “X7 does
not necessary to coincide with the first “X". In fact, the pattern *CXXCH" is biologically
meaningful because il corresponds to a protein function; the two cysteines and the histidine
binds 1o a heme which cytochrome ¢ holds in the center {Figure 2.

As with other motlils, the pattern “*CXXCH" also has exceptions. It does not exist in the
eviochrome ¢ of Euglena, and the pattern *CAXXCH" exists in an adrenodoxin of a pig which
i a different calegory from the eviochrome ¢, A stochastic motif can show the reliability of a
pattern by calenlating the ratio of the number of target protein sequences contaning the pattern
and the number of sequences containing the patiern, as lollows. “Il the pattern - - *CXXCTH”

-3¢ included in the sequence, then the segquence is cyvtochrome ¢ with probability 1307227
and otherwise it helongs to other protein categories with probability 8072/8076." Nole that
the matched sequences for the first clause are elimmated from the total number of sequences

to caleulate frequency for the second clanse,

3 Stochastic Decision Predicates

There are many wavs Lo represent stochastic motifs. As a first step for a stochastic representa-
tion of motifs, we devised the stochastic decision predicate, a natural extension ol a decision list
with probabilities. The stochastic decision predicate consists of linearly ordered Horn clauses
with probability paramelers as [ollaws.

motif(S,cytochrome_c) with 130/227.
:= contain(S,’'CXXCH''}).
motif(5,others) with 8072/B074.

The general form is the following.

ot FLS ) (with py) - Q',n Ao Q,._L .
moti f{S, 50 (with pa) - Qlﬂ P n‘:;]i-i:].

------------------ fm—L)

moli fi 85, Cpoy ) iwith po_q) Q{m_” Ao NGy
mati fl8,Cm ) {with pp) - Q{I’“‘ Ao A Qi":]

Here we call cach “moti f{S, €5} (with p) - QA - A QE:]“ a sfochastic cluuse. I'he
stochastic clause can be read as 5 is categorized into C; with prebability p; if Qi”,- o QE’
all true. We assume sequential interpretation of the stochastic clauses in this paper. That is,
moti f{S.C;) is selected after moti f(S,C ), moti f(S,C;-1) are examined. The body geals
QE” A A Q{” (i = 1.---.m) represent a condition to discriminate a calegory C; when 5 is
given. bBach goal QJE'] consists of the disjunction of goals R:;J: cee H}:: where R}S represents
some predicate that discriminates a calegory ), such as contain(S, o) which 1s true when §
cantains a pattern o.

are

3.1 Semantics of Stochastic Decision Predicate

T'he semantics of stochastic decision predicates are given from the viewpoint of computational
learning theory of stachastic rules[3]. A stochastic decision predicale represents a probabilistic
mapping from protein sequences to categories. The probabilistic mapping can be regarded as a
conditional probability distribution over the categories when a sequence is given, by introducing
a probability structurc on the sequence—category pairs. See the paper (4] for the formal approach
to learning stochastic motifs.



4 The MDL Principle in Stochastic Motif Extraction

We adopt the MDL principle to avoid overfitting when extracting stochastic motifs. For exam-
ple, as we have shown in section 2, the pattern “CXXC1I" has exceptions in the cytochrome
e. Tt is possible 1o avoid these exceptions by adding more conjunctions and disjunctions of pat-
terns such as “AAQCH" and “PGTK M. However, care must be taken so that the obtamed
result does not become sample dependent, that is, overfit to the sample sequences. Therefore,
we adopt the MDL principle to extract simple but stable stochastic motifs which may contain
exceptions rather than precise motifs withoul exceplions.

The MDL principle originally comes from coding theory in communication. The basic idea is
to optimize the number of hits when sending an information by finding a rule and ils exceptions
in the information. The MDIL principle selects a rule such that minimizes the tolal bit length
of the rule and the exceptions.

For example, suppose there is a binary string “100101100". Sending the siring requires 9
bits if we do not use any rule. Less bits are sufficient if we compress the string as three repeals
of “10%" and exceptions “1107 for the third bit of each repeat instead of * in the rule. Total bits

find a more complex rule ta reduce the number of exceptions, but such a rule might require a
longer bit length to be encoded. Therefore. it is important to balance the complexity of rule
and the number of exceptions to reduce the total bit length: this is the MDL principle.

ln our methodology, we apply the MDL principle for extracting stochastic motifs as the way
proposed by Yamanishi for learning stochastic rules: Yamanishi's MDL learning algorithm{3].
In Yamamshi's algorithm, the MDL principle selects a stochastic rule that balances the com
plexity of the stochastic rule and its likelihood of matching the sample data. We follow his
algorithm with slight medification which mainly comes from the difference of stochastic rule
representation: stochastic decision hists and stochastic decision predicates, and some practical
reasons for applving the MDL learning algorithm to the motif extraction.

Our methodology selects a stochastic motif that balances the complexity of representation
and likelihood of matching the sample sequences. The complexity ol a stochaslic motil repre-
sentation s measured by the description lengths Lo encode the probability parameters and Horn
clauses of a stochastic decision predicate. The likelihood of a stochastic motif is measured by
the description length of likelihood, that is, by the logarithmic likelihood of categories when the
sequences are given to the stochastic molafl. The appendix describes the details of caleulating
the description lengihs for a stochastic mofaf,

5 Genetic Algorithms

To overcome the combinatorial explosion in the motil extraction, we adopt a genetic al-
gorithin, a slochastic search algorithm based on the natural evolution process|6]. Genetic
algorithms simulate the survival of the fitiest in a population of individuals which represent
points in a search space. The individnals are often represented by binary strings. A function,
often called a fitness [unction, gives values to the binary strings. The aim of a genetic algo-
rithm s to find a global optimum of the fitness function when given an initial population of
individuals by applying genetic operators in each generation. The genetic operators consist of
the following operators: crossover, mutation and selection.

Crossover

The crossover aperator produces two descendants by exchanging part of two individuals. This
operator aims to make a better individual by replacing a part of an individual with a better
part of another individual. For example, crossover of the strings “000110™ and “LI0I1L" at the
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Figure 3: Mechanism of Simple Genetic Algorithms

third position produces the strings “000111" anel “110110". The candidates of the crossover
operation and the crossover position are randomly chosen.

Mutation

The mutation operator changes certain bit(s) in an individual, For example, the string “000110”
becomes “001110" if mutation oecurs at Lhe third hit. The operation aims Lo escape from search
spaces [rom which individuals cannot escape by means of only crossover operators.

Selection

The selection vperator chooses good individuals in a population according to their fitness val-
nes and the given selection strategy. This operator aims to increase better individuals in the
population while maintaining certain diversity. It simulates the survival of the fittest principle.
Lhe operator first caleulates the relative fitness of all individuals, Then. several lesser individ-
uals are discarded and the same number of better individuals are duplicated according to their
relative fitness values. Note that the selection is probabilistic, not deterministic. So, belter
mdividuals have a higher chance of remaining or being duplicated but this is not guaranteed.
The performance of genctic algorithms is largely dependent on the design of the fitness
function. The most interesting characteristic of our genetic algorithm is in its usc of the MDL
prineiple to calculate the fitness value of a stochastic motif, The description length gives Lhe
appropriate relative fitness values in the population, although smaller is better in Lhis case.

6 The Stochastic Motif Extraction System

Thhis section gives our overview of the stochastic motif extraction system. The target hypothesis
space is the domain of stochastic decision predicates. The search stratogy is the MDL principle.
Lhe search algorithm is an asynchronous parallel genetic algorithm which consists of the set of
subpopulations in which individuals migrate asynchronously. In each su bpopulation, individuals
represent stochastic motifs in the target hypothesis space, and fitness function calculates the
correspanding descriplion lengths of the stochastic motifs represented hy the stochastic decision
predicates,



T'he search time depends considerably on the size of the hypothesis space. A large hvpothesis
space makes it difficult for us to find the optimal stochastic decision predicate in a reasonahle
time. Therefore, as the first step of motif extraction, we restricted the stochastic predicates Lo
the following forms.

motif (S,proteinClass) with pi
:- contain(S,patterni) and
contain(S,pattern2)
motif (3,others) with p2.

That is, we use a predicate motif which discriminates the target protein category protein-
(“fass from other proteins {ofhers) in the database. The discrimination conditions are repre-
sented by the conjunction of a predicate contain. As the pattern candidates in the confuin
predicate, we adopt 128 patterns that oceur frequently in the target proteins.

The mapping from a stochastic decision predicate to a binary string is the following. Each
bit corresponds to one of the 128 patterns. A bit 1 represents the occurrence of the pattern
in a diserimination condition, and a bit [ represents thal the pattern does not occur in the
discrimination condition. For example, suppose we use 3-bit length binary strings whose first.
second, third bits correspond to the pattern *CAXNCH", “PXLXG", *GX R M", respectively.
Then, the binary string “100" represents the following stochastic decision predicate.

motif (3,proteinflass) with pl
;= contain(S,"CXXCH").
motif (S,cthers) with p2.

The binarv sting “0117 represents the following stochastie decision predicate.

motif (5,proteinClass) with pi
:= contain(S,"PELXG"} & contain(s,"GXEM").
motif (5,others) with p2.

According to this mapping, 128 bits binary strings can express 2'% kinds of stochastic deci-
sion predicates. As for the genetic operators, we adopt one-point crossover, one-point mutation
and roulette wheel selection. Other runtime parameters arce the lollowing: the adjustment pa-
rameter is 1.0, the number of subpopulations is 63, subpopulation size 15 16, the crossover rate
is 1.0, the mutation rvate 5 0.01 and the migration rate s 0.5, that 15, one individual per two
generallons m average,

7 Evaluation

Using the stochastic motil extraction svstem, we have already extracted 166 stochastic mo
tifs from the protein calegories that have more than 10 entries in the Protein Identification
Resources { PIR32.0) with currently 9633 entries'. Table 1 shows a portion of the results.

In table 1, the line with percent (%) shows the name of protein category, super family
munber and the number of sequences in the category. The following line shows the common
patterns extracted by the system, deseription lengths and distributions discriminated by the
patterns. The column DL is the total description length of the extracted stochastic motif. The
column CFL, PL and LL are the description lengths of Horn clauscs, a probability parameter
and a logarithmic likelihood to the sample sequences, respectively.

(ytochrome ¢ is a heme-binding protein that carries an electron in respiratory chain. Cy-
tochrome p4ifis a mono-oxygenase containing a proto-heme, Pepsinis an acid protease secreted
from the stomach. Trypsin is a protease secreted [rom a pancreas. Glebin is an apo protein
that construclts a hemoglobin when binding with a heme molecule. fmmunoglobulin C region

'Anuotated and classified entries by homology in pirl.dat.
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Table 1: A Portion of Stochastic Motifs obtained from Protein Sequences

Patterns DL CL PL LL | N7 /N | f"r'-_;",f"."rrg
% cytochrome o (1.0, 140)
CXXCH 300,544 | 18,288 | 10,564 | 280,603 | 137/244 | D386 /UHY

U evtochrome PA30 (21.0, 11)
FRXGXR & GXRXC & RXCXG | 127.788 | 53.523 | 9.018 | 63.247 | 28/28 | 0G00/9605
W pepsin (476.0, 19}

FRXENFD & VPXANC ELHO2 | 3RATS RN 34526 17/18 9613 /9615
Sotrvpsin {438.0, 40}

GWGE L CXNDXG 124.4490 | 31.253 9135 80802 A7/50 B5R0 /B58Y
S oglobin (0020, 156}

PRTXAXNE & HGXXV THT.TA0 | 38383 | 10964 | TLS.A02 | 395/434 | 9138/9199
0 immunoglobulin C region (892.0, 74)

YAMNPAP & CXVXH I 37216 | FT.5TA 9895 | TG 33,495 B517,/9538
oimmunoglobniin Voregion (S86.0, 268)

DEXXYXC I GO2.04T | 20,095 | 10,871 | 661181 | 237/379 | 9223 /9254

1 a constant region of inmunoglobulin €. Immuneglobulin V' region is a variable region of
immunoglobulin .

There are a loi of contraversial izsnes in the biological significance of the obtained results
from the view point of genetic informalion processing.  However, the following observalions
woitld be more controversial those who are interested in machine learning.

7.1 Comparison of the MDL principle and the Maximum likeli-
hood method

Oncof our concerns in the stochastic motif extraction is how the MDL principle works in genetic
algorithms. To show this, prediction errors are compared to the maximum likelihood (ML)
method using the cross validation technique (7] p.73-76). In the ML method, good individuals
are selected using only the description length of likelihood (L1} without consideration for the
complexity of a stochastic decision predicate (C'L + PL).

Using the cross validation technique, the prediction errors can be connted as follows. Firstly,
let S; be a disjoint subgroup of protein sequences S for certain N where S = UL S Let S{ bea
sample set which removes the ¢ th subgroup from the original protein sequences (S) = 5 — 5;).
Then, let M, be a stochastic motif extracted from the sample set S!, and count the number of
prediction errors £ and E using the subgroup S as a test set, where E;” shows the number of
protein sequences that belong to the target protein category but is not frue for the first clavse
of the stochastic motifl M,. E] shows the number of protein sequences that do not belong to
the target protein category but is truc for the first clause of the stochatic motil M.

Table 2 shows the prediction errors for cytochrome ¢ by cross validation method when di-
vided inte 10 subgroups. The results show that the stochastic motifs obtained using a genetic
algorithm with the ML principle are more stable than the ones obtained using a genetic algo
rithm with the ML method. As seen in table 2, the stochastic motifs obtained by the genetic
algorithm with the MIL methaod 15 sample dependent. It shows strong discrimination perfor-
mance for the sample protein sequences (312, £7), bul shows weak predictive performance for
the test sequences (1M, £7).

Contrary to our expectations, this result comes from the difference of convergence speed
between GA with MDI and GA with MI. as shown in figure 4. The upper, middle and lower
lines represents the average description lenglhs of the worst, the average and the best individuals
so far in each generation. It arises not from the overliting caused by the ML method since the
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Figure 4 Average description lengths of the best stochastic motif encountered in each genera-
tion

Table 2: Prediction errors [or Cytochrome C by Cross Validation Method

MDL | ML

o kT 3| 57
e 7 % 1 0
Total 09 | 57

optimal stochastic motif for cytochrome ¢ iz “CXXCH™ in both the MDIL principle and the
MT. method.

The dilference of the convergence speed comes from the bias caused by the MDL princi-
ple. As shown in figure 3, the number of patterns in the best stochastic motif encountered
continuously decrease in case of the MDL principle while it is almost constant in case of the
ML method. This is natural since the description length of Horn clauses basically corresponds
to the number of patterns. In other words, the MDL principle gives a bias for GA lo select
individuals with fewer patterns.

One might think it weuld be possible to reduce the scarch space il the best stochastic motif
can be found n stochastic motifs with fewer patterns. This is true so lar as we have examined.
The largest stochastic motif has four patterns (Histon H1) and most have two or three patterns.
However, it should be noted that we might underestimate the effect of model length (clause
length {CL} in this case) and over-simplificalion may caused by the MDL principle. To show
the intrinsic differences between the MDL principle and the ML method, further investigation
iz required.
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Discussion

The following works remain 1o deal with actual protein sequences on the basis of our method-

ology.

The extension of stochastic decision predicate form: In our experience, the number of
categories for discrimination is limited two, that is, the target category and the others. A
stochastic decision predicate ever two calegories can be constructed by concatenating the
obtained stochastic clanses for each protein category and recaleulating the probabilistic
parameter, although it causes another combinatorial problem: the order of protein cat-
egories. Another inleresting extension is providing other predicates, such as a distance
between patterns. However, one should be careful that such predicates are really useful
for the approximation of protein functions.

[isjunction of patterns: In the current implementation, no form is provided for the
digjunction of patterns on the mapping from stochastic decision predicates to binary
strings on the genetic algorithm. For example, the pattern “CXXCH v AAQCH™ may
be more appropriate since it eliminates three exceptions cansed by Euglinae. Finding the
pattern “AAQCH" is possible if we apply our algorithm to the protein sequences which
eliminate the sequences that match “CXXCH". However, it should be noted that the
patlern “AAGQCH" is not so reliable since there are only three instances in the protein
dala base.

More complex patterns: It is true that the patterns we used in our experiments are too
simple to reflect protein functions. For example, it is a well known fact that in the heme-c
binding motif “CXXCII", no histidine, cysteine, proline nor tryptophan occur in “XX"

10



ane that small amino acids tends to occur there. To represent such information, more
complex stochastic motifs are required. Our early expericuce shows that hidden markov
madels { HMM) seem to be appropriate for this purpose.

» Reducing hypothesis space: Since the MDL principle has a bias against selecting complex
patterns, it is possible Lo eliminate complex patterns, for example, more than five patterns
from the hypothesis space. However, we might overbias to the description length of Horn
clauses. If this is trie, we have Lo change the adjustment parametcr, and also have to
search a larger hypothesis space which may include complex patterns, with more than five
palierns. In that case, genetic algorithms would be more powerful tools than conventional

search algorithms.

9 Conclusion

The importance of stochastic approach for genetic information processing is described using
a motil extraclion system as an example. Our proposed methodology 1s characterized by the
stochastic representation of motifs using stochastic decision predicates, the MDL principle to
avoid overfitting and fast search algorithms using genetic algorithms. Our experimental results
show thal Lhe methodology actually produces a computationally and biologically meaningful
matif for cvtochrome ¢, whose good predictive performance has been statistically proven by the
cross validation method. We believe the methodalogy can also be applied to varions kinds of
discrimination problems in genetic information processing,.
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Appendix: How to Calculate Description Lengths of Stochastic Motifs

The description lengths are calculated as follows. Note that “log” denotes logarithm with
base 2 in the following calenlation. Let LI be description length of likelihoad of categories OV
when the sequences SN are given to the stachastic motif represented by a prohahility parameter
# and Horn clanses M. Let E; be the set of sequences which are false for the 1,---,7 — 1th
clanses and are true for the jih clause. Let NV; be the number of sequences in £, and let r“‘n-’f
be the number of sequences which are in E; and belong to (), the category of the j—th clanse.
Then the likelihood of € when given SV with tespect to a stochastic decision predicate with
a probability parameter f and Horn clauses M, which we denote P{(CY | §V : 0 = M), is
calenlated as follows:

: : I TN
PICY 1SV <My =TT, (1—p) N
i=1
The description length LL is given by —log P{CY | §¥ : 8 « M). which can be calculated, as
follows:

m

LL =3 N{H{(j)+ Dl |l i) (1)
i=1
where p; = N7 /A, and i, is an estimate of the true parameter p!, which is set to be "-T',;J:%,'{Lhe
Baves estimator). In addition, f{p;) and Dgp(f; | fi) are entropy function and Kullback-
Leibler divergence defined as follows: (g} = pilog pi — (1~ phlog(l = #)y Drelin || i) =
pilog & 4 (1 — py) log =&
Let #1. be the description length of the parameter @ = (py. « «« fi, ) for a fixed Horn clanses M.
Since the accuracy {variance) of the maximum likelihood estimator is O(1/v/A), the deseription
length P is given by:

™m Iﬂg :":I_

Let €L he the description length of the Horn clanses M.
In the motil extraction system, C'L is given by:

m kg By
CL = Y [1eg™(D_hj)+(3_hi=1)
i1 =1

i=1

ko hy i
+3°3 (log ( Ll ) ®)
=1li=1l - (2}
+(L7(7) = X7(i)) log(} A | =1)} + log T ]

where L{(i) and X7{(7) arc the number of amino acids and of variables, respectively, in the
pattern in the /—th predicate in the j—th disjunction region of the i—th clause. On the right-
hand of (3), the first term denotes the description length of the number of contain predicates
in the i—th clanse. For any d > 0, log” d denotes log d + loglog d + - - - where the sum is taken
over all posilive terms (Iissanen’s integer coding scheme [5]). 'L'he second term of (3) denotes
the description length of the sequence v, A, A, - -+ in the i—th clause. The third term denotes
the description length of the positions of variables in the pattern ¢ appearing in the predicate
‘contain{S,o)." The fourth term denotes the description length required to describe amino
acids (not variables) included in the pattern o appearing in the predicate ‘contain(5,)". L'he
last term log r denotes the description length of the category ' appearing in the predicate
‘moti f(5,C).

By summing (1}, (2), and (3), we have the lollowing description length DL:
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where A 1s the adjustment parameter.



