f_QTTg_achnical Memorandom: TM-1262

Thi-1262

An Asynchronous Fine-Grained

Parallel Genetic Algorithm
by

T. Maruyama, A. Konagaya
& K. Konishi (NEC)

Moy, 1993

s, 00T

Mitz Kokusai Bldg. 21F (03)3456-3191 ~5

|| :D I 4-2% Mita 1-Chome

Manato-kue Tokvo 1O Tapan

Institute for New Generation Computer Technology

An Asynchronous Fine-Grained Parallel Genetic Algorithm

Tsutornu Maruyama, Akihike Konagava and Keichi Konishi
C&C System Research Laboratories, NEC Corporation

4-1-1 Mivazaki Mivamae-ku Kawasaki Kanagawa 216 JAPAN
maruyvama@csl.elnec.cojp

Abstract

In this paper, we propose a new asynchronous fine-grained parallel genetic algorithm.
This algorithm has two important features, (i) all svnchronizalions during recombination
and selection are eliminaled by applyving the operators 1o an individual in a processor and
the youngest ancestors in other processors, and (ii} the values of the voungest ancestors
are broadcast among processors in order to maintain wide-ranging comparison in the
selection. These features make it possible to cxploit a great deal of parallelism without
inereasing the probability of falling into locally optimal solutions.

Experiments on graph partitioning show good results. The quality of the partitions
found by this algorithm is almost the same as a sequential genetic algorithm with the
same genetic operators. The speedup of this algorithm is about 14718 times using 13
processors. This high performance gain makes it possible to find good solutions much
faster than heuristic algorithms for graph partitioning.

1. INTRODUCTION

Genetic algorithms show especially good performance when they are combined with
heuristic algorithms, because heuristic algorithms climb up local hills efficiently and ge-
netic algorithms lead the cntire search towards optimum solutions. There are two im-
portant 1ssues in order to achieve high performance gain by parallel processing of these
hvhrid approaches.

One is to eliminate all synchronizations in genetic algorithms. The time required for
applving heuristic algorithms to each individual can vary considerably. Thercfore, if there
are synchronizations in the genetic algorithm, the speedup by parallel processing is limited
by the slowest individual,

Another important issue is to maintain as good quality of solutions as sequential genelic
algorithms. Local selection methods are widely used in asynchronous and fine-grained
parallel genetic algorithms{1-1] in order to reduce overheads for parallel processing such as
synchromization and inter-processor communications. In these methods, an individual in
a processor is compared with its neighborhood, and replaced by one of the ncighborhood
or its parent. However, the small size of neighborhood in the local selection methods
increases the probability of falling into locally optimal solulions.

In this paper, we propose a new asynchronous fine-grained parallel genetic algorithm.
This algorithm has two important features, First, all svnchronization in recombination
and selection are eliminated by applying the operators to an individual in a processor

1

and the voungest ancestors in other processors. Second, the selection operator compares
ax individual in a processor with all the youngest ancestors in other processors nsing the
values of the ancestors broadcasted among processors. These features make it possible to
exploit a great deal of parallelism without increasing the probability of falling into locally
oplimal solutions.

This paper 15 organized as follows, Section 2 briefly describes genetic algorithms. Sec-
tion 3 presenls the asynchronous fine-grained parallel genetic algorithm. Section 4 de-
scribes the graph partitioning problem and heuristic algorithms. Section 5 introduces a
parallel algorithm for graph partitioning which combines the proposed algorithm and the
minent algorithm. Section 6 presents the experimental results, In Scction ¥, conclusions
arc given,

2. GENETIC ALGORITIIMS

Genetie algorithing are stochastic search algorithms based on ideas from genetic and
evolutionary theory Genelic algorithms simulate the survival of the fittest of a number of
individuals, which represent points in a search space. A step ol genetic algorithmn, called a
generation. consisis of the following operators: recombination {crossover), mutation and
selection. The recombination operator produces Lwo descendants by exchanging & part of
two individuals, called ancestors. This operalor causes a long jump in the scarch space.
To the contrary, the mutation operator changes only a small part of an individual. This
operator searches close to a peint in the search space. The selection operator simnlates
the survival of the fittest principal. This aperator first caleulates the relative fitness of all
individuals. Then, several worse individuals are discarded and the same number of better
individuals are replicated according to their relative fitness.

3. AN ASYNCHRONOUS FINE-GRAINED PARALLEL GENETIC ALGO-
RITHM

In this section, we introduce a new asvnchronous fine-grained parallel genetic algorithm.
In order to achieve high performance, the algorithm has to satisfy the following two
TequiTETENtS,

+ Exploiting maximum parallelism
+ Good guality of solutions

The proposed algorithm has two important features. First, the recombination and se-
lection operators are applied to an individnal in a processor and to the voungest ancestors
in other processors. This feature makes it possible to exploit maximmm parallelism by
eliminating all synchronization in the algorithm. Second, all individuals are compared
with all the voungest ancestors in other processors using the values broadcasted among
them. This wide-ranging comparison reduces the probability of falling into lecally optimal

solutions.
3.1. Asynchronous Genetic Operators

There are two kinds of synchronizations in genetic algorithms. One is in recombination,
and the other is in selection. In our algorithm, these synchronizations are eliminated by

2

using buffers to store a few ancestors and by applving the recomhbination and selection
operators to an individual in a processor and the voungest ancestors in other processors,
Fach processor has

« an individual,

* buffers which store a lew ancestors and

» values of the youngest ancestors in other processors

The recombination operator praduces only one offspring by replacing a part of an in-

dividual with one of the youngest ancestors in other processors. T'he selection operator
lirst calculates the relative fitness of an individual in the processor and all the voungest
ancestors in other processors nsing the values broadeasted among processors. If the indi-
vidual can survive {the first selection of the individual N-1 in figure 1}, the value of the
mdividual s broadeast to all processors, and then it is copied into a [ree buffer. This copv
becomnes the vonngest ancestor of the processor. Ancestors which are not being accessed
by other processors are discarded. If the individual can not survive (the first selection of
the individual 1 in figure 1}, one of the youngest ancestors in another processor is selected
according to the relative fitness and copied into the processor as a new individual of the
processor. Before starting the remote copy, two values are broadeast from the Processor,
One is the decrement for the value of the selected ancestor. The value is decremented in
order to prevent the ancestor from being copied repeatediv. The other is the value of the
new individual. A bad value is assigned to the individual, because this individual is a
copy af an ancestor and should not be copied agaim.

3.2, Critical Sections

In this aigorithm, there are three critical sections. One is the update of the buffers.
Il the buffers are being accessed during the update, an incorrect ancestor may be copied
by ather processors. In the implementation, the buffers are locked during the update,
becanse only several pointers are changed during the update.

The other two are the race conditions in the update of the value of the selected ancesior.
[irst, suppose that PEQ sclects the voungest ancestor in PEj as a new individual of PEi.
IF PEJ just linishes its selection and nupdates the value of the youngest ancestor during the
selection in PEL, PEi might decrement the value incorrectly when it finishes its selection.
In the implementation, the broadcast of the decrement by PEi 15 canceled, if the value of
the youngesl ancestors is updated during its selection.

Sccond, suppose that PEi selects the voungest ancestor in PEj as the new individual of
PEL. Il PEk starts its selection before the value of the sclected ancestor is decremented,
PEK may select the same ancestor as its new individual. This excessive copy of ancestors
mereases the probability of falling into locally optimal solutions. However, the computa-
lion time for the selection is very small, and can be ignored il the broadcasting on the
parallel machines is fast enough, which is the common case in current parallel machines.

3.3. Scalability

In this algorithm, the number of the individuals is limited by the speed of the broadcast-
img. However, by using a multi-population strategy [3, 6], we can exploit more paralielism.
In this strategy, each population has a number of individuals in it, and exchange a few
individuals between populations from time to time. In [5, 6], it was reported that this
strategy can find as good solutions as the single population strategy.

i

Individual 0 Individual 1 Individual M-1

] [x1 - %]
v] []

Hewrilic Heurit:c Heuwritic
Alporithm Algocithm Algorithme

R: Recombinaton
M: Mutation
5: Selection
B: Broadcast
Drecr: Decrement

| 4‘ | Waluc: New Value of the individual
5
*___
B{Value) _
L M | '
ll Heunitic
Algorithm
Algortinm
o B(Decr, Valug)
:

Figure 1. Asynchronous Genetic Operators

4. THE GRAFPH PARTITIONING PROBLEM AND HEURISTIC ALGO-
RITHMS

The graph partitioning problem iz to decompose a graph into two subgraphs so that
the size of each subgraph is bounded and the cut size (the number of edges that connect
1o cells in both subgraphs) is minimized. Graph partitioning is an important process in
many areas of computers (e.g. design of circuils, mapping). The recursive decompaosition
of the problems can dramatically reduce the complexity of the problems.

Mincut-based partitioning|7, 8] is a technigue to decompose a graph into two subgraphs
efficientlv. This technique, however, often falls into locally optimal solutions. In order
to get a good pariition, we have to apply the algorithm repeatedly varving the initial
partition.

I'he hierarchical clustering with mincut exchange methods {(IICMIZ)/9] is a heuristic
algorithm which aims to produce a good initial partition for the mincut algorithm. IFirst,
the HCME recursively merges clusters until only two clusters are left, starting from clus-
ters which have only one cell in them. In this step, cluster pairs with high connectivity are

sclected as clusters to be merged. Then, it recursively applies the 1-opt mincut algorithm
(see [7. 8]) on clusters, decomposing the clusters in the inverse order. The HOME can
find better partitions than the l-opt mineut algorithm, though it requires 5°7 times of

computation time.

5. AN ASYNCHRONOUS FINE-GRAINED PARALLEL GENETIC ALGO-
RITHM FOR GRAPH PARTITIONING

In this section, we introduce a parallel graph partitioning algorithm which combines
the l-opt minent algorithm and the asynchronous fine-grained parallel genetic algorithm,

Two kinds of recombination operators are used in this algorithm. Heth recombination
operators replace a part of the partition with a part of a different partition first. In
general, this replacement destroys the constraint of partition sizes. Then, one operator
moves the cells with the highest gain (the reduction in the number of edges when the cell
is moved) between subgraphs, until the constraint of partition sizcs is satisfied. On the
other hand, another operator moves the cells at random.

The mutation operator simply exchanges a certain amount of cells between two sub-
graphs. In general. the mutation operators changes only a small part of individuals. How-
ever, small changes of the individuals are immediately restored by the mincut algorithm.
In order to exit from local optimum by mutation operators, a greater part of imdividuals
have to be changed. In the implementation, one of the recombination operators or the
mutation operator is applied in each generation.

6. RESULTS

We partitioned six examples from real gate array designs on a Sequent Symmetry
which s a shared memory parallel machine with 15 processors. The results described
below are the average of 100 runs. In all evaluations, the time for loading the graph
data is not included. The parameters of the genetic algorithm are not tuned for each
graph partitioning. In all experiments, the recombination operators replace about 40%
of a partition with those of different partition. The ratio of applving the recombination
and mutation operators is fixed to 7:3. The ratio of applying two kinds of recombination
operalors is fixed to 1:1.

We evaluated the performance of four algorithms below. All algorithms are implemented
m L,

L. APGA - the asynchronous fine-grained parallel algorithm (the proposed algorithm)

2. SPGA — a synchronous parallel genetic algorithm

3. The l-opt mincut algorithm

4. The HCME algorithm
[the synchronous parallel genctic algorithm, all the genetic operators are applied after
applying the mincut algorithm lo each partition. Therefore, the quality of solutions
found by this algorithm is almost the same as a sequential genetic algorithm with the
SAllC operators.

Table 1
Cut size after the same number of the mincut algorithm is applied {average of 100 runs)

APGA SPGA
Examples #cell Average Best{I'robability) Average Best(Probability)
testl 249 36.0 36(1.00) 36.0 36(1.00)
test2 il 71.0 T 1.00) TLO TLL.00)
testd 1861 254.0 25000.04) 254.8 231{0.18)
testd | 569 24%.4 241(0.29) 243.9 241{0.21)
lestd 3006 302.9 292(0.01) 304.1 292(0.01)
testh 3373 186.2 186(0.56) [6.2 186(0.84)

Quality of Partitions

Table | compares the cut size by the two genetic algorithms afier the same number of the
mineut algorithm have been applied (960 times 1n total = 61 generations in average). The
cut sizes fonnd by the proposed algorithm (APGA } are almost the same as the synchronous
algorithm (SPGA). This means thal the asynchronous operators in the proposed algorithm

do not degrade the quality of solutions.

Convergence Speead

Figure 2 and 3 show how the cut size improves as the searches progress. The hor-
womtal axes of the figures show the average of the generation of the individuals. The
asynchronous genelic algorithm (APCA) converges as fast as the svnchronous genetic al-
gorithm (SPGA L This means that the asvnchronous operators don't make the convergence
speed slower at all. Figure 4 and 5 compare the scarch speed of the genetic algorithms
and the heuristic algorithms. The search by the asvnchronous algorithin converges o
good partitions within the time for 20 runs of the minent algorithm. This is much faster
than other algorithms. Because of this fast convergence, the proposed algorithm shows
the best results from the beginning to the end of the search.

Parallelisin
Figure 6 compares Lhe search speed of the proposed algorithm (APGA) and the syn-

chronous parallel algorithm (SPGA) wilh a sequential genetic algorithm. The speedup of
the proposed algorithm by parallel processing is about 14 18 times compared with the
sequential algorithm, and about 2 times compared with the synchronous algorithm. This
very good performance cames from the increase of the total cache size by using 15 pro-
cessors, and the difference of the number of the mincut applied for each solution. Figure
7 shows the time for applying the mincut algorithm on each individual. The horizontal
axis is the cut size after the mineut algorithm i applied, and the vertical axis is the aver-
age execution time of the mincut algorithm {normalized by the average time from initial
partition). The execulion time becomnes shorter as partitions are improved. Therefore,
within the same amount of time, the mincut algorithm is applied to better partitions more
often, and better partitions become much hetter as the search progresses. Hy repeating
this process, the proposed asynchronous algorithm can find a good selntion very quickly.

G

00 T T T T T) T
APGR (1SPE) -o
‘ SPGR (15PE)} -+
290 - -
280 -
a
H
e
“ 270 F -
'
A
O
280 E
250 E
+
zdu i 1 L 1 i L 1
0 5 10 15 24 25 30 i5
Generation

Figure 2. Cut size (testd)

400 T T T T 1 T T
AFGA (15PE} ——
S5PGA (15PE) -+--
380 P -
a Jelb e
Rl
[4]
-
=
L 140 F o
3120 + ~
300 - .
0 5 10 1s 20 25 a0 35
Generation

Figure 3. Cut size (test3)

=T

40

ang

- T T T T
I sequantial GR [1PE1 —+—
APGA [1%PE] sds
chGh [13PE] -B--
aso -} HEME (15PE] we
i mincat [15PE) -
4
a
289 0
Fe
it
$
u B
G . [
1 Y
5 T e
i ﬁ}’: i"
s
260 F Y
=]
i
b
250 F
v 20 a0 &0 2o Lof
Time(ae&s] ! the sverags wxecubion Lipwe of

the mincul algerlthmiead

Figure 1. Cub size (lestd)

404 B S - . - .
Ies aequancial G4 | 1PE} —#=—
i AFGA 118PE| -=—-
! SBGR 115PE] D
HCME (15PE| ~#--
Y mineut (L5FE] - _
R
£
Y
&
S
Wwa o m
] - N
o -
- i
i i3
= i
LETEN
H
1 E
4
120 P
e l : . : L
20 a0

Bl B0 100
Timeiger] ! tha aversge axemition time of the minsut algosrithmi

sac]

Figure 5. Cut size (testd)

Lo]

a0 T T :
APGA (Eestd [/ LEPE) #—
APGA (taseS [1GRE) -+
SPCA ltestd / 15PE) -B--
ERGA (test§ f 1S5PE! -me-
15 F -
Ef' L SRR R S Sy
& i e 1
5 ‘-__"‘“"-1—...
Ul g -8 Bom Beeigere Y c R WG
" . " ST B PR « FF] -n""ﬂ
o - - =
" e e e
5 | 4
¥ 4 :
Q 5 im 15 a0

Distance from che Best Partition [%)

Figure 6. Speedup Ly parallel processing (testd and testd)

E 1.1 T T T T T T T T T

“

&

Pt]
! 1

' I

& 0.4k (-
-

(=]

H

-~ @.8 F 1
L

Tima | machdto= average exec
]
m
r

i A L i

L S —— a L
0 250 I 1540 400 450 so0 550 oo 650 TR
Cut size

Figure 7. The average time required for applying the mincut algorithms in test4

7. CONCLUSIONS

In this paper, we have proposed a new asynchronous fine-grained parallel genetic al-
gorithm. This algorithm has two important features, First. all synchronization during
recombination and selection arc eliminated in order to explait maxinum parallelism. Sec-
ond, each individual is compared with all other individuals in the seleclion using the
values broadcast among processors in order to reduce the probability of falling into lo-
callv optimal solutions.

Lxperiments on graph partitioning show good results. The guality of the partitions
[ound by this algerithm is almost the same as a sequential genetic algorithm with the
same genctic operators. The speedup of this algorithm is about 14718 times using 13
processors. This high performance gain makes it possible to find good solutions much
faster than heuristic algorithms,

The scalability of this algorithm is limited by the speed of the broadcasting. In order
to exploit more parallelism, we can combine the algorithm with the multi-population
strategies. Then, the algorithm achieves high performance in cach population.

ACKNOWLEDGEMENT

This material is based upon work supported by the Fillh Generation Computer Project.
We would like to thank Dr. Takashi Chikayama for giving us a chance to develop parallel
genelic algorithing as a part of the evaluation of the concurrent object-oriented language

ATUM 90101

REFERENCES

I M. Gorges-Schleuter, “ASPARAGAS An Asynchronous Parallel Genetic Optimization Strat-

egy”. P'roc. of Intl. Conf. on Genetic Algorithm, 1980, pp 422-427.

P. Spiessen and D. Manderick, “A Massively Parallel Genetic Algorithm - implementation

and First Analysis”, Proc. of Intl. Conf, on Genetic Algorithm, 1991, pp 279-286,

$ G von Laszewski. “Intelligent Structural Operators for the k-way Graph Partitioning Prob-
lem™. Proc. of Intl. Conf. on Genetic Algorithm, 1991, pp 45-52.

4 R Callins and D. R. Jefferson. “Selection in Massively Parallel Genetic Algorithms”,
Proc. of Intl. Conf. on Genetic Algorithm, 1991, pp 249-256.

7 H. Muhlenbein, M. Schomish and J. Born. “The Parallel Genetic Algorithm as Function
Optimizer”, Proc. of Intl. Conf. on Genetic Algorithm, 1991, pp 271-275.

i J. P. Cohoon, W. N. Martin and D. S. Richards, A Multi-population Genetic Algorithm
for Solving the K-Partitioning Problem on Hyper-cubes”, Proc. of ICGA'L, PP 244- 2484,

7 B, W Kernighan and 5. Lin. *An Efficient Heuristic Procedure for Partitioning Graphs™,
Bell Systems Technical Journal, 1970, pp.241-307.

8 oM. Fiduccia and R. M. Mattheyses “A linear Time Heuristics for Improving Network
Partitions”, ACM/IEEE design Automation Conf., 1982, pp.175-181.

§ M. Edahiro and T. Yoshimura, “New Placement and Global Routing Algorithms for Stan
dard Cell Layouts”, Proc. of 27th DAC, 1990, pp 642-645.

10 K. Konishi, T. Maruyama, A. Konagaya, K. Yoshida and T. Chikayama, “Implementing
Streams on Parallel Machines with Distributed Memory™, Proc. of Intl. Conf, on FGCS'92,

[

10

