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Absiract

This paper presents multiple-context objects for a parallel cooperative problem solving system which
consists of an object mode! and knowledge sources. The object model is a set of active objects which have
functions for constraint satisfaction and multiple-context processing. A knowledge source has rules to solve a
subproblem, and the rules access objects. Constraint propagation via objects supports cooperation between
knowledge sources. An object contains a node network for multiple coniext management. The node network deals
with combinations of multiple values of slots of an object. A prototype of a cooperative design system has been

developed on a multiprocessor machine Multi-PSI using the concurrent logic programming language K11,

1. Introduction

To solve a large-scale or complex problem, the problem is divided into subproblems. Partial solutions are
got by solving the subproblems and then by integrati ng the partial solutions, a solution of the whole problem is
gol. For example, in functional design of a microprocessor, the problem is divided into subproblems, such as
behavinral design, structural design, timing design, and so on. But, because the structure of the microprocessor is
undefined and all subproblems share design data, designers must cooperate with each other to get a consistent
solution in the actual design. This type of problem requires a cooperative problem solving technigue.

A blackboard model is a cooperative problem solving model and cooperative design systems based on it have
been developed [Rehak 85] [Bushnell 87] [Temme 88]. A blackboard system consists of a blackboard and several



knowledge sources, Each knowledge source has knowledge 1o solve a subproblem, The knowledge is represenied as
a set of rules in most of the systems. A knowledge source reads data from the blackboard and wrilcs data o the
blackboard, The data on a blackboard are inteprated into a design solution,

"The goal of our research is to develop a parallel cooperative problem solving system for design problems in
which there are heavy dependencics between the subproblems. The architecture of existing blackboard systems is
unsuitable for parallel cooperative problem solving. Though several parallel blackboard systems have been
developed, the efficiency is not so good,

Enowledge sources can run in parallel in principle. But, there are problems to realize a parallel blackboard
system. Most of the systems are built on sequential machines and cannot be executed in parallel. One of the major
problems is scheduling. A scheduler of the gysiem controls execution of knowledge sources and SUpPPOrts
cooperation among them, To parallelize 2 blackboard system, the schedoler must schedule paralle]l execution of
knowledge source. But, it is difficull 1o reatize efficient parallcl scheduling. Another major problem is
implementation of a blackboard, As the black board iz shared by knowledge sources, access 1o it may be a system
bouleneck. Furthermore, it is difficult to implement the blackboard on g multiprocessor machine without a shared
memory.

Cooperation among knowledge sources is important because of dependencics between subproblems. It is
difficult 1o get a consistent solution by simply merging partial solutions after solving the subproblems. If a
COngisient snlulmn is not obtained, knowledge sources must backirack and generate other partial solutions, A
paralic] cooperative sysiem needs a blackboard which can conuribyte greatly to cooperation among knowledge
sources. Many candidates for partial solutions are Eeneraled and a combinatorial explosion may be cansed in design
problems. A mechanism is needed 1o prune the search tree. But a blackboard lacks this because it is simply a
shared memory. An active blackboard is needed for parallel cooperative problem solving.

We present a multiple-context object for a parallel cooperative problem solving system in this paper. This
system has an object model which consists of multiple-context objects. Multiple-context objects have facilities for
constraint sausfaction and multiple-contexi processing. First, we discuss the parallel cooperative problem-solving
meddel in section 2, Then, we present a multiple-context object with a constraint satisfaction facility and show
cooperation among knowledge sources via multiple-context objects in sections 3 and 4 . Our prototype of a design

syslem using multiple-context objects is described next in section 5 and section 6 discusses related work.

2. A Farallel Cooperative Problem Solving Model

2.1 A Problem Solving Model
We propose a parallcl cooperative problem solving model composed of the object model and knowledge

sources. Figure 1 shows the structure of the model. The object model consists of objects. In & design system, an



object model is a design object model which represents a design solution. We classify design knowledge into
knowledge about design objects and knowledge about design methods [Nagai 88). Knowledge aboul design objects
can be represented as a design object model [Ohsuga 85). We represent the knowladge aboul design objects using
classes of objects. Class definitions represent knowledge about design objects, such as basic structure of design
objects, available parts, constraints between parts, and so on. We can define constraints on objects in the
declarative form [ Yokoyama 90].

We also represent a design solution as a set of ohjects (instances) which satisfies design requirements. An
object of the design object model provides facilities for cooperation among knowledge sources. Cooperation is
based on consisiency maintenance and constraint propagation by the multiple-context objects. Knowledge about
design methods is divided and stored in knowledge sources. Each knowledge source has different design knowlzdpe,
including heuristics, for each subproblem which is used to solve the subproblem. All knowledge sources share a
design object model and each can access part of the object model; that is, a knowledge sonrce reads values of slots
{instance variables) of objects of the abject model, penerales partal solutions, and puts them as new values of

other object slots,

2.2 Approach

Objects can run in parallel in our system. Furthermore, to exploit parallelism, an ohject is implemented as a
setof processes which can run in parallel. A knowledge source is a set of fine-grained processes. We can distribute
processes of both objects and knowledge sources o processor elements of a mulliprocessor machine,

The system should deal with a lot of data for efficicncy. Ours can deal with plural candidates for a partial
solution. Those candidates are generated and processed using pipeline processing. The interface between a
knowledge source and objecis is based on daia-Mlow architecture using streams, We can get the effect of pipeline
parallelism by processing data in a succession by processes connected by streams.

We have developed a prototype of the system using K11 language on a Mulii-PSI machine [Uchida 88). KL1
15 a concurrent logic programming language based on GHC langunge {Ueda 5], In KL1, a stream is a chain
represenied as a list, Multi-PS1 is a mulliprocessor machine wilh distributed memories. KL1 is suitable for

process-based concurrent programming. Further, fine-grained processes are realized with litle overhead.
3. Multiple-Context Object

3.1 Object Definitivn
An object model is a set of objects. We represent knowledge aboul design objects as class definitions.
Objects (instances) represent a design solution or an intermediate solution, And they store design data in their

slots. Slot names and constraints on the slots are declared in a class definition. We can represent a constraint on



slots as a predicate, an equation, or an inequality. A knowledge source accesses slots of objects. But, in general,
different knowledge sources access differcnr objects or different slots accordin £ to their viewpoints, Figure 2 shows
a class definition for a microprocessor. An ohject of the class "microprocessor” has slots, such as "aly”,
“internal_bus”, behavior”, and so on. The class definition describes the constraint of prohibition on a combination
using a nogood predicate which shows that a combination of values of slot “internal_bus” and slot "control® must
not be "1-Bus" and “Instruction-Prefetch”, This means that the constraint prohibits combination of the one-bus
structure as an intermal bus structure and instruction prefeich as a control method. Another constraint on slot
"performance”, slot “average_number_of_steps” and slot “machine. cycle” is represented as an equation.

The translator of the system translates class definitions to KL1 programs. Fach object is implemented as a
selof processes. An object interprets messages and executes operations for the messages concurrently. Knowledge

sources access an object model in parallel excepl for access to the same sloi of the samc ohject.

3.2 Constraint Satisfaction

An object in our system has a constraini satisfaction mechanism and keeps its stale by satisfying given
consiraints. When a knowledge source sets a value in a slot of an ohject, the object evaluates any constrainl on the
slot. There are two types of consraint evaluation. One is 1o evaluate a constraint passively and the other, actively.,
Passive constraint evaluation tests whether a constraint is satisfied ar not when an ohject gets all values of slots of
the constraint. For example, when an object gets the values of X, yand z of constrainl x > y + z, the passive
constrainl evaluation tests whether the set of values satisfics the constraint or not Passive constraint evaluation is
used (o get a consistent solution. Maintaining consisiency of intermediaie solutions is important in cooperative
problem solving and parallel processing. Consistency maintenance evaluaies constraints passively and keeps the
state of an object satisfying constrainis, When knowledge sources set values to slots of an object, the object
evaluates constraints on the slots and rejects combinations of values that violate the constraints,

Active constraint evaluation calculates a value of a slot using a constraint when an ohject gels the values of
other slois. For example, when an object gets the values of x and y of constraint x = y + z, active constraint
evaluation calculates the valuc of z. Active constraint evaluation is applied to the type of constraint thai can
detcrmine a unique value of a sloL Active constraint evaluation realizes constraing propagation among knowledge
sources via an object model without direct communication. A knowledge source influences other knowledge
sources indirectly by constraint propagation and this effect is used for cooperation among knowledge sources,
Figure 3 shows an example of constraint propagation. The value of slot ¢ is caloulated by evaluating the
constraints with the value of slot a, and the value is propagated to other knowledge sources, Though this is an
example using a constraint on slots of one object, we can use constraints between plural objects for propagation
between ohjects.

Constraint propagation realizes cooperation among knowledge sources with no shared data. Execution



sequence does not affect cooperation, because the direction of propagation is determined dynamically during the run

time.

3.3 Multiple-Context Processing

The system should simultaneously deal with plural candidates for a partial solution to exploit parallelism and
gel high efficiency. A multiple context ohject in our system has a mechanism (o deal with multiple values of a
slol. Context means the state of an object and the state is represented as a combination of values of slots,

Conventional systems represent multiple contexts as a context tree [Waliers 88]. Figure 4 shows an cxample
context tree. The tree structure grows as new values are set (o slots. But, consistent contexts do not incrcase
monntonously, because inconsistent contexts must be rejecied. Inconsistent branches of a context ree should be
pruned as early as possible for efficiency, Figure 4 also shows that nlural contexts may become the same siate,
because execution sequence is nondetcrministic and execution of knowledge sources is parallel and asynchronous.
Thoese contexts should be unified immediately to remove redundant processing, Multiple context management
facilitics are needed for pruning and unification.

We present a multiple-context object which has a node network for multiple-context processing. A node of
the nelwork manages a combination of slots. Figure 5 shows an example nidc network. The node network forms a
lattice. The head of the node network is the body of an object. Each slot of the body poinis 0 a node which deals
wilh values for the slot. A following node deal with a superset of the set of slots dealt by the precedent nodes. The
tail is a node for all the slots of an ohject,

A node swores constraints on slots dealt with by the node. 1t receives daia from the precedent nodes and
combines the data. It has functions for constraint evalnation, The node stores only the combinations of values that
satisfy the constraints and rejects combinations that violate them. Figure 5 shows that the tail node stores the
combinations of values of all the slots that satisfy all the: constraints.

If all nodes for combinations of slots were Eenerated, many nodes would be generated for an object. To reduce
the nodes, the translator provides a facility 1o generate only the nodes for essential combinations. Two kinds of
combinations are essential: the combinations referred to by constraints and the combinations referred 1o by
knowledge sources. The translator analyze class definitions and knowledge source definitions and optimizes node
nelworks,

When an object is created, its node network is generaled. Each node is a process. An object is a set of
processes that run in parallel. Node processes are connected with streams, The translalor attaches demons to the
node processes. The demons send referred combination data 1o knowledge sources,

4. Cooperation via Multiple-Context Objects



4.1 Knowledge Source Definition

A knowledge source is a forward chaining production system which we represent as a set of rulcs. Figure 6
shows an example of knowledge source definition, We define rules in the if-then form. A rule is fired when its
condition part matches the data of ohjects of the object model. The rule in the example shows that if the class of
an object is "microprocessor” and the value of its slot "behavior” is B, the value D is generated using a function
called "generate_data_path™ with value B and the value D is sl 0 slot "data_path” of the object.

All matched rules are fired simultaneously without conflict resolution 1o exploil parallelism. If different rules
are fired for the same slots of an object, different values are set to the same slots and the object has multiple
coniexts. A multiple-context obhject maintains cansistency of ils contexts,

A knowledge source executes inference according to changes of values of object slots. A knowledge source
receives changed data from abjects, generates intermediate data, and sets the intermediate data to the objects, Here,
intermediate data mean a partial solution generated in the design process. Intermediate data are set to slots of
objects. An ohject combines intermediate data. Cambined daia of an object mean contexts of the object, The
constraint evaluation mechanism of an object tests if s contexts salisfy constraints and prunes inconsistent
CORICXIS,

The translator translates rules of knowledge sources 1o KI1.1 programs. When a rule sets data (o a slot of an
object, the rule must specify the context. The translator provides a facility for a rule 1o specify the context. For
example, consider the rule shown below.

if
class{Obj, microprocessor),
Slot(Obj, (slot 1, X)hX=1
then
sel_slot(Obj, {slet_2, 2]);
This rule means that if the value of slot "slot_1" of an object belonging io class "microprocessor” is at 1, value 2
is set to the slot "slot_2" of the object. The execution part of this rule js translated to the form shown below.
set_slot{Obj, [{slot 1, 1},
{slot_2, 2)1y;
Both the value of "slot_2" and the value of “slot_1" are set simultaneously, This translation is needed for
consistency maintenance,
One rule is translated o one clanse of KL1 and is execuled as a process. We can disuibute rules of a

knowledge source to plural processors. Rules that maich dala of objects can be fired and executed in parallel.

4.2 Cooperative Behavior

The parallel cooperative problem solving system in this paper is based on the data flow architecture.



Knowledge sources and ohjects are connected with streams, Consiraint propagation and consistency maintenance by
multiple-context objects support cooperation between knowledge sources,

Figure 7 shows a simple example of the system which is composed of four knowledge sources and a design
object model, The node network of the object of the design object model is optimized. We simplify the
represeniation form of rules in the figure. First, when a design requirement is given, rules in knowledge sources 1
and 2 arc fired in parallel without conflict resolution, and the values 1 and 2 are set to stot 2 and the values 3 and 4
are set to shot b, Those data are sent to node a and node b, respectively, siored there, and propagated to the node (a,
b). Here, node a means the node which deals with the values of slot a, and node (a, b) means the node which deals
with combinations of values of slot a and slot b. The node generates combination data that satisfy the constraints
given to the node, stores them, and propagates them to the node (a, b, ¢). The node evaluates the constraints on
slot a, slot b and slot e actively and gets the values of slot ¢. Then, the node stores combination data, and sends
values of slot ¢ 1o node ¢,

Then the rules of knowledge source 3 which refers 1o slot ¢ are fired, and the combination of values of slot ¢
and slot d are set o node (e, d) for consistency mainlenance a5 mentioned in the previous subsection. Only the
combinations that satisfy the constraint on slot ¢ and slot d are stored. Both the combination data of node (a,b,c)
and node (¢, d} are propagated 1o node (a, b, ¢, d}, and the node generates combinations of values of slot a, slot b,
slot ¢ and slot d. Note that the node penerates only the consistent combinations. When plural precedent nodes deal
with the same slot as an element of slol combinations, only the consistent combinations are generated. The value
of the slot of one precedent node and the value of the shot of another precedent node must be equal in the consistent
combination. Node (a, b, ¢ d) generates only the combinations (1, 4, 5, 6) and (2, 3, 5, 6) as consistent

combination data. Finally, knowledge source 4 outputs the data as solutions,

3. A Prototype Parallel Cooperative Design System

5.1 System Structure

We developed a prototype system for functional design of a microprocessor, We simplified the design process
to allow the system 1o be built with a few rules and ohjects. The goal of prototype development is to evaluale the
effect of multiple-context objects, not o build a design system. The system inputs design requirements, such as
instruction set and performance requirement and outputs design solutions, such as behavior description and data
path at the register transfer level. We analyzed the functional design of the microprocessor and divided the problem
into five subproblems: architectural planning, behavior design, block design, data path design, and liming design.

The prototype system consists of a design object model and six knowledge sources: five knowledge sources
for the subproblems and a knowledge source to output the design solutions. Class definitions for a design object

model are represented in the form shown in Figure 2 and rule definitions of each knowledge source are represented



in the form shown in Figure 6, The number of mules is about 30 and most of the rules are for generating
candidates for intermediate solutions,

The system has been implemented on Multi-PS]. We use static load balancing 10 allocate all the 1asks before
starting the job. We distribute knowledge sources and nodes of objects to processor elements of the multiprocessor

machine,

5.2 Results

There are many candidates for intermediate solutions in this problem. Though there are only a few solutions
that satisfy all requirements, if all the candidates were combined without consistency maintenance, about a
thousand candidate solutions would be generated. Our system execules design cooperatively, pruning the candidales
that violate constraints, Most nodes deal with less than ten combinations of candidates because the nodes generate
only consisient combinations, Therefore the parallel cooperative problem solving system presented in this paper is
effective for problems in which there are many candidates for solutions, though anly a few of them are consistent,

We got speedups of 2 times with 4 processors and of 2.7 times with 8 processors. These were not as good as
we expecied. The number of active processors of the system decreases ag processing advances. All processors are
active early, but only one or two Processors remain active in the last stage of processing, We need o apply the
Sysiem o a large-scale problem and use elficient load balancing to gel betier speedup against the number of
processors. We think thar a dynamic load balancing strategy is needed.

6. Related Work

There are many concurrent ohject-oriented languages and systems, but few systems have a facility for
muliiple-comexy processing. There are also constraint-based object-oriented languages, but an ohject of the systems
has only one context. We think that a multiple-context object is effective for parallel systems and it is not
restricted to just the parallel cooperative problem-solving system presented in this paper.

Research on parallc] systems for Al has been done in various domains. Bug developing an efficient parallel or
distributed cooperative problem-solving system is difficult because of dependency among subproblems and
nondeterminism of reasoning. A number of parallel or distributed blackboard systems have been developed
|[Engelmore 88] [Jagannathan §9]. But, it is not 50 easy to parallclize a blackboard system, particularly a system
with a scheduler for control.

There are several approaches to exploit parallelism in a blackboard system: blackboard interaction operations,
concurrent execution of knowledge sources, interal execution of a knowledgs source, and so on [Corkill 89]. But
getting high efficiency is difficult with only these appronches. 1 is important to exploit knowledge parallelism,
pipeline parallelism, and data parallelism [Nii 88). It has been reported that dealing with many data is effective for
efficiency [Rice 89].



Poligon [Mii 88] [Rice 89] is an intercsting approach to a parallel blackboard system. Mo scheduler exists in
the system and rules can be invoked in paraliel, Rules are associated directly with the nodes on the blackboard, The
associated nodes and the rules are distributed in the multiprocessor, The association is executed at compile-time,
Poligon has been developed with applications of real-time signal understanding and data fusion in mind. The
Pligon approach is effective in these domains. But in design problems, our target domain, many candidates for
partial solutions are generated and a combinatorial cxplosion may be caused. Qur system provides facilities 1o
reject candidates that violate constrainis on a design object and to maintain consistency for pruning of the search
iree and avoiding combinatorial explosion.

Our system provides (acilitics 10 manage consistent multiple contexts for efficient parallel cooperative
problem solving. This is realized by a node network of a multiple context ohject. ATMS (Assumption-based Truth
mainienance System) [de Kleer 86) provides a facilily (or mainienance of consistent multiple contexts, We can
realize multiple-context management without redundancy using ATMS regarding values of slots as assumptions,
But the number of nodes would be enormous if a value of a slot is regarded as an assumption. Though the form of
the node network of our system is like the environment lattice of ATMS, the node of our system deals with a
combination of slats, not a combination of valucs, Each node deals with plural combinations of values, namely,
multiple contexts. Furthermore the node network is optimized by the rranslawor. The number of nodes is minimal
in our system for efficiency, Another problem to apply ATMS 1o node networks is that we mast declare many
nogoods 1o reject both combinations violating constraints and meaningless combinations (for cxample, the
combination of slot_ a= ] and slot a=<2isa meaningless combination),

The node network of our system has a facility to get data that match condition parts of rules of knowledge
sources. The node network has part of the functions of the RETE network [Forgy 82]. But the node of our system
has facilities for constraint satisfaction. If our system is oplimized, we may be able 10 get an efficient parallel

production system.

7. Conclusion

We presents multiple-conteal objects for a parallel cooperative problem solving system. The system consists
of an object model and knowledge sources which solve subproblems. The object model contains a multiple-context
object which has functions for constraint satisfaction and consistenc y maintenance, Multiple context management
is realized by a node network whose nodes deal with combinations of values of slats of ubjects. Cooperation
between knowledge sources is supported by constrant propagation via multiple-context objects,

The system is based on data flow architecture. Nodes of node networks of objects and rules of knowledge
sources are implemented ns processes and they arc connected by streams. We can distribute the processes to
processor elements and execute them in parallel. The system is implemented using concurrent logic programming
language K11 on a multiprocessor machine Mulli-PSL



According to our experience in applying the system to a simple functional design of microprocessor, we
think that the system is effective for problems, such as design in which there are many candidates for partial
solutions. But we need to improve the system to get higher cfficiency and an efficient load balancing strategy is

also neaded,
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