ICOT Technical Me_morandom: TM-1251

TM-1251

A Parallel CLP Language GDCC and Its Paralle|
Constraint Solvers for Non-Linear Equations

by
A. Aiba

March, 1993

© 1993, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191~ 5

I c DT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Pararrer CLP Lancuace GDCC
AND 118 PARALLEL CONSTRAINT SOLVER
FOR INON-LINEAR FQUATIONS

Akira Aiba
Institute for New CGeneration Computer Technology
4-28, Mita l-chome, Minato-ku, Tokyo 108, Japan
aiba@icol orgp

1 Introduction

A programming paradigm called constraint logic programming {('LF) was proposed by A. Colmer-
auner [3], J. Jaffar and J-L. Lassex |3] and M. Dincbas [4] as an extension of logic programming.

At ICOT, we started research on CLI in 1986, and we develaped two CLP languages. Oune is a
sequential CLP language called CAL { Contrainte Avec Logique) [1], and the another is a parallel CLP
language called GDCC { Guarded Definite Clauses with Constraints) [9). We introduce the latter in
this article,

When we solve a problem using a conventional programming language, we usually have to give a
of series of detailed instructions for each problem. If we use a high level language, we are sometimes
exempt from this tedious task. The most successful examples of such languages are logic program-
ming languages, such as Prolog. Such langnages can handle logical inferences almost automatically.
However, when we want to solve problems that depend highly on the structure of its domain, logical
inferences are far from sufficient, and we must also give detailed instructions for each problem.

When we want to solve problems in real lile, we olten have to handle various constraints over
several domains, such as integers, rationals, and boolean values. Such constraints are sometimes in
the form of equations, and sometimes in the form of inequalities. CLP was proposed to realize a
high level programming paradigm for these problems. CLP languages are given in the framework of
logic programming languages with some additional facilities for constraint. Their language processors
contain automated solvers for constraint. Such solvers together with strong faculty of logical inferences
for logic programming enable us to have the extremely high level languages needed for various problem
solving.

However, such high quality greatly increase the load on a language processor of a CLP language.
Thus, the more general and powerful a CLP language, the bigger the issue of the efficiency of its
processor. This is one of our reason for introducing parallelism in CLP langnages.

GDOC is aiming at a programming language for efficient and flexible problem solving by construet-
ing its language processor on a parallel inference machine.

2 Parallel Constraint Logic Programming Language GDCC

GDOC is a parallel constraint logic programming language which incorporates the framework of the
ce language [7]. cc is a scheme of the parallel constraint logic programming languages that is an
extension of parallel logic programming language scheme. In cc, the computation is modeled on a
form where multiple agents exchange information by inguiring and modifying the constraints store.
This model can be regarded as a computation model with guards (conditions). The truth or falsity of
a question corresponds to the truth or falsity of a guard constraint, and a modification corresponds

to the process of a budy constraint. Therefore, this framework is very suitable for KL1 [10], that is a
committed-choice parallel logic programming langnage.

2.1 GDCC Language and System

The following is an example of a program written in (G1DDCC. This problem is known as the Pony and
Men problem,

pam{Heads, Legs, Ponies, Men) :- true |
alg#Heads = Ponies + Men,
alg#legs = 4+Ponies + 2+Men.

In the example, expressions starting with “alg#” are constraints that are handled in the algebraic
solver. In a guard, the user can place ask-constraints that are passive constraints, and built-in predi-
cates of KL1. In the above program, “true” is placed in the guard that represents a constraint always
reduced to frue. As with GHC, CDCC 15 a committed choice langnage. Clauses that can be unified
against a query are called candidate clouses. Among the candidate clauses, one clause whose guards
are reduced to true is sclected nondeterministeally.

When the program is executed with the following query:

¥- pam{5, 14, Ponies, Men).
From this, the answer, Ponies = 2, Men = 3, is obtained. [f query
7= pam{Heads, Legs, 2, 3).

is input, then the answer, Heads = 5, Legs = 14, is obtained.

GDCC system consists of @ GDOC shell, that translates users query into its internal form and
provides a simple debugging facility; a compiler, that compiles a GDOC saurce program into a KL1
program; constraint solvers, that solve active (tell) constraints in GDCC programs; and an inferface,
that solves passive {ask) constraints and connects the shell and the constraint solvers.

Unlike sequential systems, all components in GDCC system can run in parallel. That is, a KL1
program compiled from a user's GDCC program and constraint solvers that are invoked from the KL1
program can be executed in parallel, and are synchronized, if necessary,

2.2 Features of GDCC System: Block

Since GDCC has a facility to estimate the real roots of univariate nonlinear constr aints, some variables
may have more than two values. Because GDCC is a committed-choice parallel language, failure in a
bady may cause failure of the entire program. To facilitate searching in GDCC, we need a function
to localize failure. Furthermore, when maximizing or minimizing a function with respect to u set of
linear inequation constraints, we must have a function to designate a set of constraints. For these
purposes, we introduce the mechanism of & “block™ inte GDCC.

The syntax of a block is as follows:

call ((Foals)using Solver- Package for Domain
initial [nput-Con giving Outpul-Con

where, “(foals" represente a sequence of goals, “uging Solver-Package for Domain” indicates that
the block uses a constraint solver designated by Solver-Package, for the constraint domain Demain.
“Initial [nput-Con” indicates an initial constraint set for this block, aud “giving Output-Con”
indicales a constraint set which is the result for the block.

Within a block, there are two kinds of variables: one is local variables and the other is global
variables. Local variables are specified within a block by the built-in predicate of GDCC, alloc/2.
Variables that are not specified within a block by alloc are treated as global variahles.

The following is a GDCC program using blocks:

test :- true |
alloc(200, A),
alg#i=-1,
call(alg#h=1) initial nil giving CO,
call(alg#i=0 } initial nil giving CIL.

When this program is executed by executing the goal “test”, constraint set €0 lhas a conslraint
set “A=1", C1 has a consiraint set “A=0", and the entire computation succeeds,

3 Parallel Constraint Solver for Non-Linear Equations

For a constraint solver to evaluate nonlinear equations in GDCC, we employ the Buchberger Algo-
rithm [2] to compute the so called Grébner Bases that have been used in the field of computer algebra.
This algorithm works on equations on complex numbers, and it satisfies the following conditions re-
quired for constraint solvers: (1) Can the solver decide whether a given constraint is satisfiable? (2)
Given satisliable constraints, can the solver compute the simplest form (called the canonical form of
the constraints) in a certain sense?

We parallelize the algorithm on top of the distributed memory machine, called Multi-PSI by using
the KL1 language. After a series of experiments, we finally achieve a relatively good speedup for the
paralle] system on a distributed memory machine, and we achieve relatively good absolute speed as
shown in table 1.

Table 1: Comparison between existing systems and our system

] Number of Processors
| Benchmarks System 1 2 5| 12| 16
- GDCC 8] 9] s 6] 8
Katanra-4 Vidal's system 710 41 4| -
{Seconds) Giovini's system 40 - -1 -1 -
Katsura-5 GDCC 82| 84| 232123
{Seconds) Vidal's system 1103 | 551 | 146 | 79 | -
Cyc 4-roots GDCC i 1 20 3] 4
(Seconds) Siegl's system 218 - - — |36
Cye S-roots GDCC 230 25| 14 [15| 18
(Seconds) Giovini's system 143 - - -] -
T-6 GDCC 443 | 438 | 155 | BO | 72
{Minutes) | Backelin’s system] - - - -

For a full descripton of Vidal’s , Giovini’s , Siegl’s , and Backelin’s systems, please refer to
the paper on GDCC (9],

4 Concluding Remarks

Experiments to improve the efficiency of GDCC are being carried out with the focuse being on the
algebraic constraint solver. To date, some application programs have been written, and are being
used for evalnation, using GDCC. Application programs include a design support system for handling
robots {8], Voronoi diagram construction, and solving hierarchical constraints in parallel.

Constraint logic programming is the paradigm now drawing the most attention for its fature

potential, due to its high-levelness and declarativeness. However, many improvements are still required
in areas such as, functionfalities, implementation, and heuristics representation.

Low productivity often resnits when an ad hoc approach to problem solving is utilized. Such low

productivity requires new programs to be coreated to address each problem. This could, to some
exlent, be overcome with the constraint logic programming langnage.

Finally, we would like to remark that the KL1 programming environment will be ported on UNIX

machine in FGCS Follow-on Project. In the project, we plan to port GDOC language processor on
top of the KL1 programming environment on UNIX to be able to use GDCC an UNIX machine.

References

1]

2]

[3]

]

[5]

[9]

[10]

A. Aiba, K. Sakai, ¥. Sato, 1). J. Hawley, and R. Hasegawa. Constraint Logic Programming
Language CAL. In Proceeding of the [nternational Conference on Fifth Generation Compuler
Systems 1988, November 1988,

E. Buchberger. Grobner bases: An Algorithmic Method in Polynomial Ideal Theory. In N. Bose,
editor, Multidimensional Systems Theory, pp. 184 232, D. Reidel Publ. Comp., Dardrecht, 1085,

A. Colmeraver. Opening the Prolog III Universe: A new generation of Prolog promises some
powerful capabilities. BYTE, pp. 177-182, August 1987,

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T, Gral, and F. Berthier. The Constraint
Logic Programming Language CHIP. In Proceedings of the International Conference an Fifth
Generation Computer Systems {988, November 1988,

A Jaffar and J-L. Lassez. Constraint Logic Programming. In {th IEEE Symposium on Logic
Programmang, 1987,

K. sakai and A. Aiba. CAL: A Theoretical Background of Constraint Logic Programuming and its
Applications. Journal of Symbolic Computation, (8): pp.589-603, 1989,

V. Baraswat. Concurrent Constrawnt Programming Languages. PhD Thesis, CMU, Computer Sci-
ence Department, Jannary 1989,

S. Sato and A. Aiba. An Application of CAL to Robotics. Technical Memorandum TM-1032,
Institute for New Generation Computer Technology, February 1991.

S. Terasaki, D.). Hawley, H., Sawada. K. Satoh, S. Menju. T.Kawagishi. N. Iwayama
and A. Aiba: Paralle]l Constraint Logic Programming Langnage GDOC and Its Parallel Constraint
Solvers. In Proceedings of the International Conference on Fifth Generation Computer Systems
1992, June 1992,

K. Ueda and T. Chikayama. Design of the Kernel Language for the Parallel Inference Machine.
Computer Journal, December 1990,

