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Abstract

Thas paper proposcs a new methodology to extract
“stachastes motfs”™ from protein sequences. Lriract
g motifs 5 not trovial becanse (1) almost all matifs
fave cxceplfions, (2} no quanivative erderion las béen
avetlalle o fur for good motifs, and (3) combinaiorial
crploston may ocour when searching for all mobif cau-
didates,

Instead of pursuing precise molifs, we are frymyg
to ertract stochastic mafifs that inherently include ex
cepitons, are moere stable and sedable for represent.
ing tmporfand regions,  As for fhe guanidafive cr-
Terton, we ﬂdupf Ressanen’s Miimum ﬂﬁﬁ-‘.?'!ﬂ!‘mn
Length (MDL} principle fo averd overfitling o sam.
e seguenees. Tooweesd combueatoril eaplosion w
maotef extraefion, we edopd o “genctic algordhm”, a
bind of probabilistic search alyorathon based on the bi-
r?fr.'_i,rir:n! evelution PFrocess. fgur ra';:i:r‘ihtrh!af resudls
demonstrale tha! {he MOL priveple greatly mnereascs
Hie convergence speed of @ genefic algortthm when cr-
Iracimg sfochastie molifs

1 Introduction

Recently, some biologists have focused on searching
for common patterns in protein sequences which bhave
heen prescrved i the evalntion process, Such pat-
terns are called “motifs” and arve considered to repre-
sent special biological funclions {e g Sering protesses
and Cvsteine proteases) and/or special structares (e,
Zine fingers and Leucine sipper n:.:msensus}[]k. How-
ever, extracting motifs is not trivial because | 1) almost
all motifs have exceptions, (2) no quantitative crite-
rion has been avadleble so far for good metils, and (3
combinatorial explosion may occur when searching for
all motif candidates,

ommmon patterns i protemn sequences are good ap-
proximations of protein functions. A good example 15
the well-known motif for the heme ¢ binding sile in s
evtochrome c which plays an important role in the res-
piratory chain, Figure | shows some portions of known
cytochrome ¢ sequences for various species. Each char-
acter in the sequence corresponds to an amine acid.
In meost eytochrome ¢ sequences, we can find the com-
men pattern *CN XN CHT which represents a cystoine,

Species HSequence of Cytochrome ¢
Human - S FIMEC $UHTVER. .
Biuse . EVOECAGCHTVEK. .
Chickern EVRRCHCIITVER .
Snake - FSMECGTCHIVEE. .
Trawn . FVGRCAGEHSAOM . .
Yeasl - SFRUVECLGCHTVER . -
Homp . FETECAECHTVGE. .
Totrahymena . .FOSQCSACHARIEG. .
thodaplla LPHTICILCHTRIR .
Mlercbium CVPEDCKICHOVEE . |

Pseudomonas .

Heme-¢

CWMEFROCMTUHRALR . .

Fignre b Some portwms of cvtachrome o sequences

Cytochrome ¢

= Covalenl bond

=+ Coordinate bond

Figure & A heme ¢ binding in a eyvtochrome ¢



followed by two arbitrary amino acids, followed by an-
olher eysteine, followed by a histidine, In this patiern
the second “X" does not necessarily coineide with the
firsl *X™". The pattern SOX X OH" can be considered
as a motif for a cytochrome ¢, because it corresponds
to a protein function; two cysieines and one histidine
hind to a heme which cvtochrome ¢ holds in the center
{Figure 2).

As with other motifs, the pattern “CX XOH" also
has exceptions. It does not exist in the evtochrome
¢ of Euglena, and the pattern “CXNOH" exists
an adrenodoxin of a pig which i3 o different category
from tlie eytochrome c. In this case, it would be possi-
ble to eliminate such exceptions by introducing more
complex patterns. However, one should not expect
that more complex patterns always represent protein
functions more preciselv, This is because more com-
plex rules may cause overfitting to sample data andd
wonld not necessarily work hetter for the diserimina-
ticn of unknown data, especially in the case of learning
stochastic rules from noisy datal3], ‘Lhis suggests that,
instead of pursuing precise motifs, we should Ery b
tract more stable motifs which may contain exceptions
but work better for the prediction of unknown duta
We call such motifs “stochastic motifs™ in this paper.
The following example gives the flavor of a stachastic
mobif. “If the pattern - TN N OH" - is included
in the sequence, then the sequence is cytochrome «
with probability 130/227 and otherwise 1t belongs to
other protein categnries with probability 8072/8076.
For the representation of a stochastic motif, we also
propose a stochastie decision predicate, which consists
of Hom clauses and their probability parameters.

To establish a quantitative critericn for siochastic
motifs, Hissanen's MDL principlef2] is adopted. This
is because overfitting may oceur if we try to extract
the stochastic motif that best fits Lhe sample nratein
sequences. We can easily show that the best fitting
stachastic mobil 15 unstable in the sense that it varies
according to the sampling of sequences. 'Fhe MDIL
priveiple solves this problem by balancing hetween the
complexity of a motif and 115 classification errers. It
gives a strategy of sclecting a “good” stochasiic mo-
tif on the basis of the sum of the bit lengths required
to encode a stochastic motil and its loganthmic like-
lihood to the sample protein sequences. That is, the
principle enables us to compare a simple stochasta
motif with classification errors and a complex stochas
tie kil without elassification errors, quantilativelv.

To avoid the combinatorial explosion in the motif

exlraction, we use “genetic algorithins", which are a
kind of probabilistic search algorithm based on the bi-
clogical evolution process. The virtue of genetir algo-
rithms is that they offer an efficient generate-and-test
search by means of simple genetic operators that simu-
late “crogsover”, “mutation” and “selection” . Our ex-
perimental results demonstrate that the MDL prinei-
ple plays an essential role for extracting stable stochas-
tic motils in terms of convergence speed of genelic
algorithms. In fact, a genetic algorithm cannat find
stahle stoclinstic motifs without the bias to the com
plexity of stochastic motifs, that . with a maximum
likelihood method, as far as we have seen in our tests.

The organization of the rest of this paper is as fol-
lows., Section 2 gives a representation for stochastic
motifs, which we call Stochastic Decision Predicaies.
Seclion § gives a strategy for selecting a good stochas
tic motif using the MDL principle. Section 4 gives an
algorithen for finding optimal stochastic motifs. Sec-
tion 5 presents the experimental results on extracting
stochastic motifs based on vur proposed methodology
Finally, in section § we discuss current difficulties and
future work. This work has been done as a part of
the filih generation computer systems project for the
evaluation of the parallel infercnee machines,

2 Stochastic Decision Predicates

There are many ways to represent stochastic motifs,
As afirst step for a stachastic representation of maotifs,
we devised the stochastic decision predicate, a natural
extension of a decision list with probahbilitics. The
stochastic decision predicate consists of Horn clauzes
with probability parameters as follows,

motif (5, cytochrome_c) with 137/244.
t= comtain(S, ' "CAXCH' ).
motif(5,o0thers) with 9386/9389,

The general form is the following,

malt (5 O] (with m)} - Q;‘-L,.-., ’*QT,-
mote f( 5,02} (with pz) = B A ‘,,_Q.l:;}

matt 5 Oy | (with g ) - Q'l"'_”n... A QL:::I
mate f{ 5, Co)  [with pe} - Qﬂ"”.-’-. S :‘_1.

I_-Icn: we call each “matif(5,C) (with mlo-
QA A Qy' " a stachastic clause. The storhas-
tic clause can be read as 5 is categorized into ¢, with
probability p, if Q1. Qi_ill wre all true. We assume
sequential interpretation of the stochastic clawses in

this paper. That s, mati f{5 ) is selected after
mair'f{.g.f'fj}, Lmold FUS O 1) are examined. The

hady goals QE" Hores Qil.b (i = L.-.-,m) repre.
seil a condition Lo discriminate a category £ when

& s given. Fach goal QE“ consists of the disjunc-
: - (i, . pht)
tiom of goals Ky 5. b
predicate that discriminates a category ), such as
contain(5, ¢} which is true when 5 contains a pattern
.

2.1 Semantics

FPredicate

The semantics of stochastic decision predicates are
given from the viewpoint of computational learning
theory of stochastic rulesiai. A stochastie decision
predicate represents a probabilistic mapping from pro-
Leln sequences Lo categories. The probahilistic tnap-
ping can be regarded as a eonditional probability
distribution over the categories when a sequence is
given, by introducing a probability structure on the

where RL’I' represents some

of Stochastic Decision



gequence-category pairs. See the paper [4I] for the for
mal approach to learning stochastic motifs.

3 The MDL I'rinciple in Motif Extrac-

tion

In our methodology, the MDL prineiple gives a
new quantitative eriterion for “good” stochastic mo-
tifs. The most important point is that it enables us to
avold overfitting when extraciing stochastic motifs,

For example, as we have shown in the previons see-
tion, the pattern “CXXNTHFT has exceplions in the
evlochrome e It is possible to avoid these exceptions
by adding more conjunctions and disjunctions of pat-
terns such as “AAQCH™ and "POTRK M. However,
care must be taken so that the obtained resolt does
nol hecome too complex and overfit to the sample se-
quenecs. Therefore, we adopt the MDL principle to
extract simple but stable stochastic motils whicl may
contidin exceplions rather than precise motifs without
axceplians,

The MDL principle originally comes from coding
theary m communization. The basic idea is to opti-
mize the number of bits when sending a plece of infor-
mation, by means of encoding a rule and its exceptions
i Lhe piece of information. 'Fl.le MDL principle selects
a rule such that minfmdees the total bit length of the
rule and the exceptions.

The flavor of the MDL principle is the following,
Suppose there i a binary string *1011011007. Sl-"nﬁ
ing the string requires B bils il we do not use any
tule  Less bits are sufficient if we compress the string
using a rule and its cxception. In tlas case, we can
represend the string us three repeats of “L0%" and ex-
cepiions “1107 for the third it of each repeat instead
of * in the rule. The rule requires fog?* = 4.757 bits
sinee we have to choose on of 3% varieties that repre
zent d-character rules using three kinds of characters,
The exception requires {og2® = 3.0 bits. The total bits
becomes 775 bits We mnay find 8 more complex rule
Lo reduce the number of exceptlions, but such a rule
might require a longer bit length. Therefore, it is im-
portant to balanes the complexity of the rule and the
numiber of exceptions to reduce the total bit length.

In oner methodology, we apply the MDL principle
for extracting stochastic motafs in the way proposed
by Yamanishi for learning stochastic rules: Yaman-
ishi’s MDL learning alg&rlthm[ﬂ]\. I his algorithm,
the MDL principle selects a stachastic rale that bal-
ances the complexity of the stochastic rule and its hke-
liheod of matching the sample data. The rest of this
section follows his algorithm with shight modifieation
whicli mainly comes from the difference of stochastic
rule representation, thal is, stochastic decision lists
and stochastic decision predicates, rnd some practical
reasons for applying the MDL learning algorithm to
the motif extraction,

Our methodalogy selects a stochastic motil that
balances the complexity of representation and Likel-
hesodl ol inatching the sample sequences. The complex
ity of a stochastic motif representation is measared by

“elag” denotes logarithm with hase 2

the descriplion lengths to encode the probability pa-
rameters and the Horn clauses of a stochastic decision
predicate. The likelibhood of a stochastic motif 15 mea-
sured by the deseription length of likelihood, that is,
by the logarithmic likelihood of categories when the
sequences are given Lo Lhe stochastic motif. The de-
scription lengths are caleulated as follows.

3.1 Description Length of Likelihood

Let £} be the description length of likelihood
given by logarithmic likelihood of categories when se
quences are given to a stochastic motif. The likeliliood
of the categories can be caleulated using probabilities
associated for categories on each Horn clanse in the
stochastic motil.

Let {5, Cido-oo (8w, Cn) be given N sample se-
quence and category pairs. Let £; be the set of se.
nuences which are false for the 1,-.., j — Ith clauses
and are true for the jth clause, Tet N; be the num-

ber of sequences i £, and let N5 be the number
i i

of sequences which are in E; and belong to the cat-
egory of Lhe j—-ih elavse. Then the likehhood of the
categories (L, -+, € ) when given sample sequences
(5, - 5w ) with respect to a stochastic peedicate
with probabilities (g, -, pa ), which we denote [,
15 caleulated as follows,

ra
AT L w4
L=]]p 7 t1=p)™"

i=l

The description length &L} is given hy —log L
which can be caleulated, as fallows:

m

r!-l: f.-l:l = Z l‘lrl ‘.Htﬁ.:l -+ Dﬁ']‘a{ﬂl “ l-"i.” {lj

=1

where §; = ."'~".-"' SN and piois an estimate of the true
parameter pp, wlhich is set to be i?;.'T%}qj!.hvs* Dayes es.
timator} to avoid the difficulties of caleulating the de.
senption length when N7 = 0 or &, In addition,
Hipiband Dgp(f |l i) are the entropy function and
Kuilback-Leibler divergence defined as follows.

Hig) = = log fs — (1 = @) log(1 - )
= I
b=

The description lengh €(L) indieates the number of
bits required to encode the distribution of positive ex-
amples and negative examples relative to the stochas-
tic decision predicate. The length varies from near
bit?, when py = Qor 1.0 (i = 1, ... ,m), ta N hits, when
o= 0.5{1' =1,---,m) The lorner occurs when the
stochastic decision predicate completely discriminates
the target categories in the given sequences. The lat-
ter occurs when the stochastic decision predicate does
not contribute to any discrimination of the given se.
quences,

Dy (i || o) = ::a-las% +(1 = i) log

e is ot appropriate e neglect the value of Kullback-Leibler
divergence when the value of entropy lunction is small



3.2 Description Length of Probabilities

Let £{£) be the deseription length of the probabil-
ities ' = (fn, - p) for a stochastic decision pred-
ieate.  Since the accuracy [variance) of the maxi-
mum likelihoad estimator is O{1/v/V), the deseription
length £ P) is given by:

(py =3 e (2)

3.3 Description Length of Horn Clauses
Let £{M) be the description length of the Horn
clanses M. #{M) significant|y depends on the encod
ing scheme from Horn clauses to binary strings. The
scheme cught te be designed so that the deseeiption
length can refleet the complexity of the Horn clanses
Lo the motif extraction system, (A is given by

Atk ky K,
(M) = Y (g (3 b+ {3 b -1y
=1

=i =1
P e

+ lo B ) i)
;’g{ El'-. N '

FHL{) = XN () e log(] A | —11) +logr |
where LI(i} and X (7)) are the nwmber of amine
acids and of variables, respectively, m the pattern in
the I—th predicate in the j-—th disjunction cegion of
Lhe i—th clawse. Own the righthand of (1), the first
term denotes the description length of the number of
contain predicates m the i—th clause. For any d = 0,
log™ d denates logd 4 loglogd + - where the sum
15 taken over all positive terms (Rissanei’s inleger
coding scheme {5]}. The second term of (3) denotes
the description lengih to encode the disjunctions and
corjuenctions oecurring in the - th clause. “The thied
term denotes the descniption length of the positions of
variables in the patlern & appearing in the predicate
‘eontainl S, o). The fourth term denotes Lhe deserip-
tion length required to deseribe amino acids (not van-
abdes) included in the pattern o appearing in the pred-
weate ‘eonfain{ S, ). | A | s 20 lor anine acids. The
last term logr dewotes the deseription length of the
eategory O appearing in the predicats “mots f{5 )
4.4 Descriplion l.-t".ngtll of Stuchastic Mo-
tif
By swnwring (1), (2), and {3), we have the follow
ing deseription length f{T) of a stochastic motil rop-
resented by a decision predicate:

HT} i4)
LORL) + MEP) + 2(M )

wheere A 13 the adjustment parameter. The MM, prin-
aiple asserts that one should select the stochastic motif
wlich minimizes the description length £T) . Notice

here that it is still compntationally mtractable to find
the stochastic moiil that minimuzes the description
length (T} when all possible combinations of Homn
clauses are large. Next. we will discuss algorithms to
avoid this canbinatonial explosion of the search space.

4 Genetic Algorithms

Genetie algorithms are stochastic search algorithms
based on the biological evolution process[B]. As in fig-
ure 3, genctic algorithms simulate the survival of the
fittest in a population of individuals which represent
points in a scarch space. The individuals are repre-
sented by binary strings, A funclion, often calied a
fitness function, gives values to the binary strings. The
aim of & genelic algorithm is to find a global optimum
of the fitness function when given an initial popula-
tion of individuals by applying genetic operators in
cach generation. The genetic operators consist of the
Fullm'-"tlli;: craossover, mmtation and selection.

Crossover

The crossover operator produces two descendants
by exchanging part of two individuals. This oper-
ator aims Lo make a better individual by replacing
a part of an individual with a better part of an-
other individual. For exiunple, crossover of the strings
O0TIE aned “1101117 at the third position produces
the strings “0001117 and “110110" . The candidates
of the crossover operation and the erossover position
are randomly ehoser.

Mutation

The mutation cperator changes certain bit(s) in
an andividual. For example, the string “000110" be-
comes “0011107 if mutation oceurs at the third bit.
This operation aims 1o escape from search spaces from
whicl individuals cannot escape by means of only the
crnssover operator.

Selection

The selection aperator chooses good individuals in
a population according to their fitness values and the
given scleckion steategy. This eperator aims to in-
erease better individuals in the population while main-
taining certain diversity. IL simulates the survival of
the fittest prineiple, The operator first calculates the
relative filness mE all individluals Then, several lesser
individuals are discarded and the same number of bel-
Ler individuals are duplicated according to their rela-
tive fitness values. Tn case of roulette wheel selection
strategy, it selects Lhe next individuals with the prob-
abililies in proportion to their retative fikness values.
So, better individuals have a higher chance of remain-
ing or being duplicated but this is not guarcantesd.

One of interesting characteristics of our genetic al-
gorithm is in its use of the MDL principle to calculate
the fitness value of an individual motif. The MDL
length gives the natural relative fitness values in the
popuiation, although the smaller the better in this
T AS:
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5 Evaluation
5.1 The Experimental Motif Extraction
System

The overview of our experimental motif extraction
system is the following. The target hypothesis space
is the domain of stoclastic decision predicates. The
search stratepy is based on Lhe MBL principle, The
search algorithm is an asynchronous paraliel genetic
algorithm which consists of the sel of subpopulations
i which individuals migrate asynchronously, T each
subpopulation, individuals represent. stochastic deci
sion predicates in the target hypothesis space, aned fit-
ness funciion caleulates the corresponding description
lengths of the stochastic decision predicares.

The search tine depends considera Bly an the size of
the hypothesis space, A large hypothesis space makes
it dilficult for us to find the optimal stochastic derision
predicate in a reasonable time. Therefore, as the first
stepe of motif extraction, we restricied the stoclastic
predicates to the following forms.

motif(S,proteinClass) with p:

1= contain(S,patternl) and

contain(s, patternz) ...
motif (S, others) with B2.

That is, we use a predicate motef which discrim-
inates the target protein category profernClass from
other proteins (others) in the database, The eliscrim-
Ination conditions are represented by the conjunetion
of a predicate confain. As the Patlern candidates in
the contain predicate, we adopt 128 patterns that ae.
cur frequently in the target proteins

The mapping from a stochastic decision predicate
to a hinary string is the following. Fach bt corre-
sponds to one of the 128 patterns. A big TEpresents
the accurrence of the pattern in a discrimimation cone
dition, and a bit 0 represents the patiern doss net oc
cur in the discrinnnation comdition. For example, sup-
pose we use 3-bit length binary strings whoase first, sec-

ond, third bits correspond to the pattern “CNVNOHY
CPNLXG, SGX I AMT, respectively. Then, the bi-
nary string “1007 represents the fullowing stachastic
decision predicate,

matif (S, proteinClass) with pt
i= contain(s, “CRXCH"Y),

motif (5, others) with p2.

The binary string “(111" tepresents the fallowing

stochastic decision predicate.,

motif{5,proteinClass) with p1
i- containfS, "PILXG") & contain(s, “GLEN"),
motif (5, others) with p2.

According to this mapping, 128 bits binary strings
can express 2% Linds of stochastic decision predi.
cabes. As for Lhe genetic operators, we adopt one-point
rrossover, ene-point mutation and roulette wheel se.
lection as described in section 4. The values ol other
runtime parameters are: the arjustment parameter is
1.0, the numhber of subpopulations is 63, the subpopu-
lation size is 16, the crossover rate is L0, the mutation
rate is 0.07 and the migration eate is 0.5, that s, one
mdividnal per fwg generalions in average.

5.2 Experimental Hesults

Table 1 contains some of the stochastic motifs ex.
tracted by our experimental svatemn when applicd to
the protein categorics that have more than 10 #n
tries i the Protemn Identification Resources (PTR32.0)
which currently has 9633 entries®. The rest of results
are presented in the appendix,

In table 1, the column P is the super family nom-
ber of the protein category in PIR2.0. The column
StochasticMotif is the conjunetions of patterns ex-
tracted by our system. The columns BTy, 6P
and £{L) are description lengths of a stochastic matif,

I Annotated and clisifed entries by homnolagy in pil.dat.



Table 1: Results of Stochastic Mol Extraction

[ Sdechartic Mol f HTI LA ). LT
1 CRECH ELER AL LB TRE, 50564,
L CRMATHAE N BN ET a4.811 B B, B,
W INEEWYEL WoXT AT A1 0T, B,
F] FARGEANGRONGR XXA g TAR[ A A, AT,
% GROENCE CXXGRCL PRS0 447-695] a8 e, 9.434,
I HMXV L PEEXXNMIO B0 516( R ITA, LR N
A CARDN: ROXXAXLELRXX XY LEER L 2E.2D0E. EBTT,
a CXECNNCLOHE T4 458] R T E.ATT,
A8 EEHEML HANL AFL T2.089 AT ATH, By,
L] ANCHNHE WXENET LER-LL ] T.BTH, BITE,
BO LAKRANLE PEPAXANLFENEREHN LR B.LAT. LN
[1:1.3 AVENL MEEYLULE YE- T AABL VAW, L1
T HEXEMXFLIFF TR ITHTTR SRR,

Cytochrome C (IMDLMLM)

1800 000

Dascrigtion Lergik
1000
1

500

Geamaranan

Figure 4: Average deseription lengths of the best
stochastic molil encountered in each generation

Hore elauses, probabilities, and o logarithinie Lkeli-
hood to the sample sequences,

The eolumn £ is the number of targel prolein se-
quences in the protein sequence database (PIR). The
column Ny, Ny 1s Lhe number of protein sequences thal
become true in Lthe first, second clause of a stochastic
decision predicate. The column N7, NF i the num-
her of protein sequences which belong to the target
protein category in Vo Na, respectively.

The correspondence between Le obtained stoehas-
tic motifs and biologically meaningful regions remains
as future research imsues.

5.3 Comparison of the MDL principle
and the Maximum likelihood method
To demonstrate the effecliveness of the ML prin-
ciple, various indexes including prediction errors, con-
vergence speed are compared to the maximum likeli-
hood method (MLM). In MLM, good individuals are
selected wsing only the description length of likelihood
(L)) without consideration for Ehe complexity of a
stochastic decision predicate (€M) + £(F)).

2 LhL e, WY Ny [ Ng
sao.eenl, . oA mee. eake. soms
AT 14, 17, 6. Az, sasa, w600
T.TLE), 11, 5, bk, ETEEN WEIT
15 658], aa, al. an, WARE, LT
aa3.m29), at, 50, 80, B4, B
13N L34, LS 18, B0, wAEN, WAD3
RS 23, 2. a3, weeR, wELO
30,530, 20, L%, a3, BEOR. WL
8. 81), 13, 12, 12, ETE TN EITEY
L& 203, dl. an an LEL TN LT3
EL TN v, i, (L mia, Ry
L& 38R]. m, . w. R e
2.738), 13 12, [E AT 21
Cytochrome C {MDL/MLM)
g | o
4
¥ M
i
-
2
3a-
o
— oL
o
! - - - T
1 &0 100 150 00

Ceprspralgn

Figure & Average number of patterns of the best
stochastic motif encountered in each generation



Table &: Prediction errors for Cytochrame O Ly Cross
Validation Method

MDLGA T MTAM-GA
E.}“-’: EF 4 a7
;_:;E B a5 0
Dtal a9 57

Using cross validation technique (|T] p.75-76), the
prediction crrors can be counted as follows, Led 5i b
a disjoint subgroup of protem sequences 5 for cortain
N owhere § = UL S, Let 5 be a sample set which
remaoves the § th subgronp from the eriginal prolein
sequences (57 = 5 — 51). Then, let M be a stochas.
tie motif extracied from the sample set 57, and count
the number of prediction errors £} and £ using the
subgroup 5, as a test set, where E'.I zhows the number
of protein sequences that helong to the target protein
calegory but are not frue for the first clause of the
slochastic motif M. £ shows the number of protein
sequences that do notl bejong Lo Lhe turget protein cat
egory but are true for the first clause of the stochastie
matil M.

Table 2 shows the prediction errors fir cvlochrame
¢ by the cross validation method when divided inta 10
subgroups. The best scored stochastie miatif is selected
from 50 trials for eacl subgroups. Each trial requires
200 gewelic algorithin generations.

The results show that the stochastic motifs ob
tained using a genetic algorithm with the ML prinei-
ple (MDL-GA} are more stable than the ones oblained
using a penetic algorithm with 11e ML method (M M-
GAJ Asseon in table 2, the stochastic matifs obifamed
by the genetic algorithm with the ML mcthod is ap-
parently overfitied to the sample protein sequences. Fr
shows slrong diserimination performance for the sam-
ple prolein sequences [F:,m| E7), but shows weak pre-

dictive performanes for Lhe Lest ACUEences fElj;] l:'.' i

Contrary to our expectations, the resulf fdoss not
commies from the intrinsic difference between MDL and
MLM, but comes from the difference of FONVergence
speed hetween MDL-GA and MLM-CA. As in figire 4,
MDL-GA shows good covergence speed compared ko
MLM-GA. That 15, MLM-GTA s Loo slow to Eive ns
the glohal optimum in the searel gpace within rea-
sonable tine. The differonce of the converrenes spreed
comes from the bias caused Ly (he MD% principle.
As shown in fignre 5, MDL-GA rapidly decreases the
nimber of patlerns in the best stochastic motif en.
countered, while MLM-GA gradually decreases. This
is natural since the description length of Horn clauses
basically corresponds to the number of patterns, In
other words, the MDL principle gives a hias for GA to
select individuals with fewer patterns

Figure 6 shows the effectiveness of the bias for the
canvergence speed of a genetic algorithm with the
MIDL principle by changing 1he m:rust.mcnt parame-
ter (A} from 0.0 w0 2.0 The fistogram in 1he Jig-
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Figure 6. Comparison of convergenece gpeed by the
distributions of generations in which the optimal so-
lution is found

ure G shows the distribution of gereralions in which
the optimal solution (CX XCI) s found. In case of
A = 0.0, that is, the genctic algorithm with the maxi-
mumily likelihood method, no oplimum stochastic nes
tif is Tound se far as 10000 generations, In addition,
the same stochastic motif has not been extracted even
i 20000 Enals.

6 Discussion

The following work remains to deal with actual pro-
tem sequences on the basis of our methodology.

* The extension of stochastic decision predicate
form: In our experience, the nnmhber of categories
for discrimination is limited 1o two, that is, the
target categocy and the others. A stochastic de.
cision predicate over two categories ean be con-
structed by concatenating the obtained stochas-
tic clauses for cach protem category and recal-
culating the probabilistic parameter, although it
causes another combinatorial prolilem: in the or
der of protem categories. Another interesting ex-
tension is providing other predicates, such as a
distance between patterns,

# Digjunction of patterns: Tn the current implemen-
tation, no form is provided for the disjunetion
of patterns on the mapping from stochastic de-
cision predicates to hinary strings on the genctic
algorithm. For example, the pattern “CXXCH
V AXXCH" mav be more appropriate since jt
eliminates thres exceptioms caused by Euglinae,



Finding the pattern “AXXCOH™ is possible if we
use {mulliple) alignment information of hoanolo-
gous protein sequences.

e More complex patterns: The patterns we nsed n
ouF experiments are teo simple to reflect protein
functions. For example, it 15 a well known [act
that in the heme-¢ binding motal “CXNOHT, nei-
ther histidine, cyvsteine, proline nor tryptophan
aeenr tn “XX™ and small amine acids tend Lo ee-
cur there. Lo represent such information, more
complex patterns are required. Our early expe
ricnce shows that hidden markov maodels (HMM)
seems to be appropriate for this purpose

e The handling of eategory hierarchy: The current
MDL principle mught select too simple stochas-
tic motifs which have nnL|1'inE to da with the
protein categories. For example, the MUDL prin-
ciple might select only “PCTHAM instead of
SONNOH A POTR M for a milochondria ev-
tochrome ¢, a subcategory of a cyiochrome e
Such selection is wslerable for the purpose of
database search, but less effective in the sense
that it n‘“ﬁhl lose biological meaning.  Such
over-simplification can be avoided hy adding con-
straint that reflects category ||ierar£]|3.

* [leducing hypothesis space; Since the MDD, prin-
ciples has a bias against seleciing complex pat-
terns, it 15 possible to eliminate complex patterns,
for Exampla, maore than five prallerns froms the |:|,;r-
pothesis space. Cne may think it would be faster
to search all candidates less than four patteros
than to use a pgenetic algorithm. Howower, ge-
netie algorithins are alse faster if we change their
mapping so that it only represents combinations
of less than four patterns. Tn addition, we might
bins to the description length of Horn clanses. If
this is true, we have Lo change the adjustinent pa-
rameter, and also have (o seareh a larger hypotl-
esis space which may include complex paiterns
maore than five patterns Tn that case. genetie al-
porithms would be more powerful tools than con-
ventional search algorithms,

o The handling of point mutations and experimen-
tal ambiguity: For example, actual amino acid se-
quences contain muitalion infonmation and special
characters that represeni mllbiguuus elements,
such as D for asparagine or asparatic acid, and
Z for glutamine and glitamie acid. The disjue-
tive form of stechastic decision predicates may
help to some extent. However, sach information
should be counted for the caleulation of descrip-
tiom lengths of the stochastic motifs.

7 Conclusion

We have propased a new methodology for extract-
ing stochastic motifs from protein sequences. Our pro-
posed methodology is characlerizedql}}' the stochastic
represent ation of molils using stechasbic decision pred-
icates, quantitative criterion using the MDL principle
and fast search algorithms using genetic algorithms,

Our experimental results show that the methodology
actally produces stable motifs from real protein se-
quences. The effectiveness of the MDL principle has
been statistically proven and compared 1o the maxi-
mumly hkelthood method, although data are limitted
to cylochrome ¢ in this paper. We believe the method-
ology can also be applied to the various kind of dis-
crimmmation problems on genetic information such as
protein sequences. This work has been done as a part
of fifth generation computer systems project for the
ﬂ’r'FL]“ﬁ.rinrl :}f‘ }H‘lrﬂ.l]ﬂj iIIrHTHI'II.'P IIlﬂCI[ijll_‘E
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APPENDIX: Continued from Table 1
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