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Abstract

This paper describes 2 parallel inductive learning al-
gorithm for adaptive model.based diagnosis. Although
the model-based syslems are more robust than the rule-
bazed systems, they require more computation lime.
This 13 because they lack beuristic knowledge. On the
other hand, human experts can learn and wtilize such
knowledge from experience. Therclore, in order to re-
alize elicient model-based diagnnosis, learning capability
from experience 13 ipdispensable. We had proposed an
inductive lezrning mechenism but unfortunately it took
much computation time. In crder o reduce the com-
putation time, this paper proposes a parailel learning
slgorithm. The experiential knowledge is represented as
& fault probability mode! and the propesed algerithm
searches Lhe mosl appropriste one oul of all Lhe possihie
inndels. [n arder to search effectively, a partial srder is
introduced inte the sexrch spacs. By using this erder-
ing, two kinds of search control mechanisms, that are
local preming and global pruning, are developed. The
algorithm is implemented in KL1 language on a paral
lel inference machine, Multi-I'51. The experimental re-
sults show the effectiveness of the mechanisms. [t is also
ghown that the 18 PE implernentation is ahoul 11 Limes
as fast as the sequential one,

1 Introduction

Since the creation of the MYCIN system|Shortliffe 1976],
must ol expert systens, bave incorporated the idea of
representing their knowledge in a form of symptom-
failure association rules. Those experl systems that take
rule-based approach have two major inherent disadvan.
tages. First, those systems lack robustness because they
cannot deal with unexpected cases which are not covered
by rules in their knowledge bases, Second, their knowl-
edge bases are expensive to be created and maintained,

There has been a series of research to tackle those
problems,  The mest distinct ones are on model
based methads, ie. firsi-principle methods.  Model-
based methods use design descriptions, such as structure

and behavior descriptions [Davis 1984, de Kieer 1087,
Genesereth 1984).

However, model-based dia;n:stic systems are gener.
ally not as efficient as rule-based ones since they require
more complex computation. This is becavse they lack
heuristic knowledge which human experts usvalfly uti.
frze. We have been workiog on a research Lo explore
a genoeral architecture to realize an a.dap!.i*-'e diagnostic
agent and introduced its basic architectiure[Koseki 1089,
Moreover, an expenmental svstem  based on the
architecture [Kosekiet al, 19%0a, Keoseki et al. 1930h,
Ohta et al. 19912, Ohta et a! lgglh: have been devel-
eped. The system realizes adaptability with learning ca-
pabilily renm its expperience. The experisnlial knowledge
is represented in & form of a fault probability model of
target system components. With this experfentiz] knowl-
edge, it is able Lo diagnose a failing component faster
with a fower Lesls than pure model-based systems.

However, it takes much computalion cost to learn ex-
periential knowledge. This s because the hypothesis
space to scarch grows rapidly with the size of the tar
gel problem. In order to reduce the computation time,
we developed a parallel learning algarithm.

The algorithm wtilizes twe kinds of scarch control
mechanism, that are local pruning and glebal pruning.
The search space is divided and assigned Lo each proces-
sor so that the transmission of lecal pruning informatian
does nol require interprocess commmunication. The in-
Lerpracess comrmunication is restricted to the plausibie
global pruning information.

The algorithem is implemented o KL1 language on a
paraliel inference machine, Multi- P51 The experimental
results show that the implementation using 16 PEs is
about 11 times as fast as the sequential ane.

Section 2 presents the mechanism of the adaptive di-
agnostic sysiem. In section 3, the probabilistic-maodel
learning problem is described. A parallel learning algo-
rithm is presented in section 4, and experimental results
are shown in section 5.



2 Adaptive Diagnosis Mechanism

This section presents the architecture of an adaptive
medel-based diagonosis. We can observe two kinds of
intelligeatl hehavior in maiztenance expert’s diagaostic
procedure, First, they can gquickly identify a faulty com-
ponent with a little information utilizing their experi-
ence. Second, even if a novel symptom arises, the expert
can reach a conclusion, by consulting with other informa-
tion sources, such as design deseription manuals. They
can reason which component might have gone wrong and
caused the symplom Lo appear, by knowing how the svs-
tem iz supposed to work.

Ta realize thoze kinds of intelligent behavior, the svs.
tem consistes of several modules as shown in Figore 2
L. The knowledge base consists of design knowledge
and ezperienticl knowledge, The design knowledge rep-
resents a correct model of the targel devies, It eonsists
of streetural deseriplion which expresses component in-
terconnections and behavior deseription which expresses
compooeat behavior. The experiential knowledge is ex-
pressed as component failure probability for each com-

ponent.
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The general flow of the diagnostic system 15 shown
in Figure 2-2 The system keeps a sel of suspeclbed
components as a suspect-list,
nol-suspeeled strategy|[Tanaka et al. 1989 Lo reduce the
number of the suspects in the suapect-list, repeating the
test-and eliminate cycle,

[L starts with getiing an initial symptom, It ealevlates
an initial gugpect list from the given initial symptom by
performing & model-bazed reasoning.  After obiaining
thve initial suspect-list, the svslem repeats a test-and-
elimunile cyele, while the oumbers of suspects s greater
than one and an effective test exisis. A sel of tesls is
penerated by the tast pattern generator. Amonp the gen-
erated tests, the most cost effective one is selected as the
next test to be performed. The selected test is suggested

Ane it takes elirmenale-

and fed into the targel device. By feeding the Lest mio
the target device, another set of observation ie oblained
as a iest result and 15 used Lo eliminate the non-failure
COMPONENs.
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Fig. 2-2 Dlagnasziz Flaw

In order te compute Lest effectivencss, the system uses
fault probabilitv distribetion for each component. The
rmechanism emploved in the system s basically same as
the one found in the reference [de Kieer 1889). 1 is
50 called minimum entropy lechaigue where enlropy is
calculated from the faclt probability for each suspected
component. llere, an entropy E{5L) of & suspect-list
81 = defined in terms of the estimated probabiiities of
each component in the list. Let 55 denote the sel of
suspected components,

SL = {5, 55, 5.,

and let propac Bl D=1, po 2 0 be failure proba-
bilitipz of suspects 5,, 5, ... 5, Then an entropy £(51)

is defined as

E[SL) = - ip,:ogp,.

sl

The system evaluales gain[T) for all of the available
tests.  [n addition to this value, the svslem considers
the test execution cost Lo select a cost oflective test, The
gvstem selects a Lest according to the following evilua.
tion funciian.

gain| T fewat[ 1)

AL first, the diagnostic svstem does nol know the prob-
ability distribution [or 2 target deviee. “Iherefore, it
should assume that the all of the compenonts have the
same faull probability. However, the sysiem becomes ef-
ficient a5 it acquires information on the faull probabilivy
from itz experience. Thiz i hecause it can estimale more
precize probability distribution and can genecate more
eflective test sequence. In the nest section, & learning
mechaniam is presented.



3 Learning Probabilistic Models

The performance of the diagnostic mechanism relies an
the correctness of the presumed probability distribution
of components. However, it is not easy to predicl ap-
propriate probability for each component from obgerved
duta, especially when the number of observed data is
smail.

For example, consider a diagnosiz of & network sys-
bem with 100 modems and 100 communication terminals,
Here, we assume thai 10 modems have broken down in
the past {once for each). A simple estimate concludes
that each of the 10 components has higher fault proba.
bility than any other componest, However, human may
presume that a modem has higher fault probability than
a terminal berause modems have broken 10 times b Lhe
past and terminals have never broken. Therelore, it is
important to select an appropriaie estimation method
Lo derive a presise probability distrilintion {probabilistic
madel ).

Here, we consider an exampie of a target device which
consists of 16 components. The wbserved number of
faults for each component is shown in Table 3-1. Sev.
eral attributes for each component are also showas in the
Lable

Table 3-1  Example
Cl,'l]’"_]”i:ll.l‘ it | Attributes o, of Obs.
Type Age {Times)

1 a I 1

7 " | old 0

3 b | new 11

4 b | old E]

b C | mew 1

& '3 | nld 1

7 d IR [}

& d wld [}

G e new 1]
10 3 old [}
11 f e 1
12 f ald L]
13 E iy L
14 E | ol &
15 b | omew 1
16 3 ald 0

Ficst, we consider the relationship between the compn-
nent bype and the fault [requency. A type b component
seems Lo heve & very high fault probability. And 1L may
be natural to conclude that trpe g component has alsa
glightly higher probability than the other samponents.
O the other hand it is dangerous te conclude Lthat each
of the other components has different {zult probability,
e.p., Lhe fault probability of type ¢ component is about
twice as large as type a component's. Decause the dilfer
ence betwsen the number of ohservation may be due Lo
an accident.

Next, we consider the relationship between component
age and the fault probability. In the example, it seems
that the component age does net affect the fault prob-
ability, Therefore, in order Lo estimale the Taull prob.
ability distribulion precisely, it is important to consider
cemponent Lype.

In general, some attribuies are imporiant Lo estimale
the fault pmba.hil';t}- and the other attributes are not sg
impartant. Moreaver, a combination of several abtributes
may be important. For instance, in the above example,
we had better ta consider component age, in the case of
the component type is g

In arder to estimate the probability distribution pre-
cisely, we must find relevant atiributes {and/or their
combination) and consider how Lo estimate with those
attributes,

Here we define the presumption problem. Consider
a scb ool events X = {2, %2,..,2«} and altribotes
a,as,....08,. Hope, we assume that the events are ex-
haustive and mutually exclusive, and Lhat the domain for
earh attribute oy {j =5 1,2, n) is 2 finite set Dom{a;).
As shown in Tahle 3=2, for each event, =z, a wvalue,
v, (€ Dem(n,)), for each attribute, a;, is given. Also,
7, the number of chservations s given.

Table 3-2  Tahle af avents
Event Attributes Mo. of Obs.
£ ag |-} &, {Limmes)
Iy 11 i | Vie my
Iz Ua ver | b Via ns
T3 'y L] T Vim n3 |
- LR L g T Ymn M

The problem is 1o presume the probability f; for cach
event x,, from the number of observations n,. If enouglh
amount of data are given, it seoms to be easy Lo estimale
the probability appropriately. However, il only a few ob-
sorvalion dale arc given, we must consider the notse al-
fection. Therefore, it is important te extract seliable n-
formatian by avoiding Lhe nuise affection. In order o es-
Litate the fault probability appropriately, we introduced
an induetive learzang mechanism [Nakakuki ot al. 1900,
Nakakuki et al. 1981k, Kakakuki et al. 104ke].

In the hearning mechanism, a presemplion free iz used
to express a prababilistic medel, Using a presumption
iree, all the evenls are classified inte several groups
Here, cach evenl in a proup is assumed Lo have the same
fault prabability. Therelore, the probabilities for indi-
vidual events can be caleclate Trom & presumption iree.
The details are described below,
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Fig. 3=1 Presumption tree

As shown in Fig. 3-1, o presumption tres consists
of several branching nodes apd leaves. An atiribute o
corresponds to each branching node, and subset Ay ol
ﬂorr:[n_,-:l corresponds to eachk branch. Here, each Ay,
sk sabisly the following conditions.

AgNdAe=d [[#k)

LAy = Dem{a;)

A presumption tree classifies all possible evenls into sev
eral groups. For example, the tree in Fig. 3-1 has four
leaves, therefore, the events are classthed inte four groups
by using the tree as & decision tree[Quinian 1986].

Forexample, &y 15 a group of events which corresponds
te leal 1. Each event in & is considered to have the same
fauli probability. Here, for each leaf &, let 1ts correapond-
ing group of event be X, and for all event =, € Ay, let
the sum of w; be Op. By using & presumption treg, the
prebability § for each event r; € X, can be calewlated
as follows:

I Feex
|X!i E:.EI Ty

hE shuwu al'_ll'Jl't_‘" a :_1 f{'ﬂﬁ'l,ll[t}'l Li1 i LFH". T‘HIIIt‘_"HIILH o I.JI ':J]J'
abilistic madel. The problem is te find the most appro-
priate presumpticn tree for given datea.

As a criterion for the seleclion, we introduced the min-
imum description length {MDL]} criterion [Rissaner 1972,
Hissanen 1983, Rissanen 198G!  Rissanen argued thal
the least description length model is expected to hit for
presuming the future events better than any other mod-
els, Here, description length for 2 model is defined as
the sum of the model-conplexity and model-fitness for
the given data. The description length of a presumption
tree is the sum of:

b=

(1) Code lenglh of a tree, and

{2} Log-likelihood(distance) between the tree and ob.
secved data.

The eode lenglhfmodel camplexity ), L1, fur 2 presump-
tinn tree ig defined as falinws[Nakakuki e al. 19910

Ll= Z iDEI:n—ﬁI!;+:]+Zl]UgD.+
=€ Ut eq 2
E{J""E (ke = 1) + logcl{ke, L]}
e F ;

Here, Fois a sel of all the branching nodes and Q)
is a sel of all the leaves.  For each branching node
z, I, is the number of branches, 4, is the depth of
the node, k; = |Dem{a;)| (&, is a corresponding at-
irihute for node 2), n is the number of attributes, and
el i) = ::.'L:' if - < k., otherwise 1. On the other
hand, log-likelihood (model fitneas), L2, between a model
and observed data is defined as follows,

L2= -3 nilogj

Here, fi, is the presumed probability that is derived by
using the model. The total eode leagth is the sem ol L1

and L2

4 A Parallel Learning Algorithm

4.1 Local Pruning Mechanism

As described in the previous section, the problem is to
search the leasl description lenglh tres out of all the
possible presumption trees. A heuristic algorilthm for
the problem was implemented [Nakakuki el al. 1291b] for
a sequential machine by using branch-and-bound tech.
nigue. The fullowing summarizes the algorithm and then
propases a paraliel version of the algarithm.

tiere, iot the length of 2 presumplion free 77 be denoted
by L{T7). It is the sum of model complexity{L1{T)) and
the model fitness (L3[T1]. Intuitively, a large tree has
lazge model-complexity, and a small tree bas large{bad)
madel-fitness[Nakakuki el al. 19914]. In erder to discuss
such cheracteristics more precizely, we introduce a par-
tial eeder “=" ameng the possible presumptlion trees.
The order is defined as:

Presumption trec T, can be oblained
by replacing some leaves in presump-
tion tree Ty with branching nodes,

Iyx1, =
el

Far example, presumplion tree 1 m Fig, 4=1 can be
abtained by replacing leal 2 in T, therefore,

Ty = 15,

Similarly,
T.»T, ond T,» T,.



letuitively, Ty = T, means T3 is strictly Jarger than Th.

ai ai
a
x Y z x ¥
Ta L]
Fig. -1 Example

If T» = Ti, then the following inequalities hold by the
definition:

FHT) = LL{T:)
L2} 2 E2(Ts)

Therefore, for & certain presumption preblem, if a pre-
sumption tree T is a maximal one under the crdering,
then L2(T) will take the least value, say L2y L2pgiw
can be casily caleulated in advance. By using these
characteristicz, we ran effectively find a least description
length tree.

The proposed algorithm searches Lhe space of possible
presumption trees, [4 tests simpler tree before testing
more complex anes. That is, if there are bwe presumption
trees 7' and T sueh that 77 = T, the system calculales
the length of T before trying U".

[lere, consider that the leagth of a tree ¥ has been
tested, Then, the system considers the necessity of test-
ing T" which iz mare comples than T (e, T'>=T). Ifit
turred out 1o be unnecessarv(ie., there is no possibility
that T has sherter length than T), theo all ihe trees
which are more complex than I alse turns out to be un-
necessary to examine. The details of this technigue are
a3 follows.

In order to decide the necessily, the algorithm tests
Lhie fullowing prusiug condition:

log [m—d. + 10+ log(ks — 1) 4 log cl{kpdp)

+ L3 = I'EI:T} =0

Here, = is one of the leaves in T and its cnrrc:zpunding
node in T 35 a branching node. [f the ineguality holds,
it is not necessary lo caleulate the length for T

proof  First, it is clear that the following inequality
holds by the definition of L1:

L1(T") = LI(T}

Zlogin=dy + 1)+ log(k; = L)+ log el{k; Ie)-

Second, the following ineguality holds sbviowsly:
La(T") = L3(T) = L2y = L2(T).

Here, if the sum of the right hand sides of the above
two inequalities s positive{i.e., the pruning condition
halds), then the sum of the left hand sides will be posi-
tive. Henee,
LUTY 4 L2(T°) = L1UT) + LYT).
fe LIT) = LT

Therefere, it is no! necessary to teat T ]

Here we consider to implement a parallel version of the
algorithm. It is natural to divide the search space and to
assign each sub-space to individual processar, Howewver,
we must be carelul when we divide the search space be-
vause the performance of the sysiem 15 greatly affected
by the dividing method, For example, in Fig. 4-2(a},
the search space is divided inle four parks and each of
them are assigned to processor gy to p,. Here, we as
apme that ps found thal the hatched area in the figure
can be eliminated from the search space, Then p: must
transmit that information te ether processors. On the
olher hand, if we divide the search space as shown in
Fig. 4-2(b), then p; can reduce the search space with:
out communicating with other processors. Therefare, it

is betler to divide the search space so that the reduction
can b done locally 1n & processor.

~

)
(o]
R

"'"-—-.,__‘__. L
(b}

Fig. 4=2 Search Space Division

In the presumplion problem, the search space has a
tree siructure. Each node in the search tree corresponds



to a possible presumption tree. Moreover, for a internal
node of the search tree, each of its child node corresponds
Lo a presumption Lree which has longer description lengih
thaz the parent node's corresponding one. Therelore, for
example, the root node of the search tree corresponds to
ihe simplest presumption tree.

If & search process examined node T, and the pruning
condition for a child node of T is satisfied, then the sub-
sree below the child node can be pruned (Fig. 4-3{a)).
This means that the prooed ares iz included in a subtree
which has node T as a roat. In other word, parallel search
for multiple disjoint subtrees can be performed indepen-
dently, The algorithm we propose divides the search tree
into several disjoint subbtrees and searches sach of them

with individual processor {FiE. 4-3(b)).

(a)

Search Trea

{b)

Local Pruning

Fig. 4=23

4.2 Global Pruning Mechanism

There is another kind of search tree pruning mechanism.
If a certain process finds that a presumpiion tree T has
less description length than ever known, then cach pro.
cessor need not to Lest a tree that seems bo have longer
description length thaz Tp. The rest of this secticn de-
scribes details of this technigue

Here we consider ten presumption trees 7" and TV such
that T = 7" Then

LT+ LT
= LUTY + L2nrw
=1 L-II:T] + LE;”H.

Here, if newly found iree Ty, which has sharter deserip-
tion length than ever known, =alisfies the proning con-
E[]tinn .

LIUT) + Lipssw 2 L(Te)

then, from the above inequalities, we can conclude:
FUTYy + LT = L{Ta}

ie. L(T') > L(Ty).

Therefore, it is nol necessary to examine T, Therefore
if we find a presumption Lree which has shorter length
than ever known, then some portion of the search space
will be abie to be eliminated.

However, reducible part of the search tree may be dis-
tributed widely throughout the search space. In other
words, the pruning information should be announced to
zll ef the ether processors. Therefore, it is important to
consider the trade-off between the increase of communi-
cation cost and the reduction of computation cost. That
iz, in & searching process, if a presumplion iree is found
to have shorter length than ever known, then the length
of the tree should not always be announced 1o the ather
ProCcessors.

in order to solve the problem, & simple mechanism is
incorporated. That is, the newly found length i= trans-
trtted only if it is over z bits smaller than the previously
koown least length. Here, r 15 & threshold value.

5 Implementation and Results

The learning alporithm was implemented in KL1 lan-
guage on Multi-P5I a distribulec-memary mulli proces-
sor machine. First, we implemented the algerithm with
the local pruning mechanism. The experiments were per.
formed by using up to 16 PEs in parallel. As a sample
l:]i.i.:‘l.II afault hist.l:pl'_'r' whici l.'.mni:lri.m.-l:! ahouat 100 fault ex-
armples was given. The computation time was measured
5 times, and we took the average. The speedup curve of
the example is shown in Fig. 5-1.

Speadup

10 4

1
12345678 910111213141516 #PE

Fig. 5=1 Speedup of the Algarithm

The implementation using 16 PEs is about 11 times as
fast as the sequential implementation {1 PE). There is a



possibility of further speedup by equalizing the load of
each PE. An example of the overall load distribution is
illisteated in Fig. 5-2. The difference of the load amaong
the PEs may be improved by adding & dynamic load
balancing mechanism inin the system. Development of
this mechanism iz under investigation,

Load IMstribution

Fig. 5-2

Mext, we implemented the glabal pruning technigue in
addilien te the local pruning mechamsm. The thresheld
value for transmission is set ta 2. This value was acguired
empirically.

The perfermanee of the algurithm with both the local
and plobal prening mechanism is shown in Tahle 5-1

algorithen. One is an algorithm with local pruning mech.
anism (Local), and anolher version incorporates both lo-
cal and globel pruning mechanism (Local=Glebal). Both
of them are executed with 16 PEs.

The results show Lhat the global pruning mechanism
improved both of the pumber of reductions and execution
time about 20% to 30% in comparison with the loecal
pruning version. Fig. 5-3 shows an example of acquired
presumpiion Lres,

ne: et dutat -
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Isla) Cassl telal Las. dwd,  Lewsd
$.131 Lo T W33 130 43T 3L
Fig. 5-3 Example of Acquired Tree
6 Conclusion

This paper has described a paraliel learning algorithm
far adaptive model-based diagnosis.

The algorithm is

Table 5-1 Performance of the Algorithms
{a) )
Me. of Reductions 1
Loca. | Local+Clobal |
Example | RTOVLE 55865
[ratin] 1.0 0.64 i
Example 2 603235 21588851
{ratio) .00 0.71
Twample 3 | 30773602 | 23342833
{ratio] 106 0.7T6
(b) |
Execution Time [msec)
Local [ chnlv{];ul:d
Example 1 4532 447
l ‘ratia) 1.00 0.73
Example 2 GOS0 11282
‘ {ratio] 1.0d 0.70
Exarnple 3 109832 a0344
‘ {ratio) L.0a 51

Fach experiment is performed with three randomly

generated examples. The number of reductions and the
execution time are measured for the two versions of the

— i

mased on branch-and-bound technique, and lecal and
global pruning mechanisms are incorporated inko the al-
gorithm. The 1§ PE implementation with local prun-
ing mechanism is shown to be about 11 times as fas? az
the sequential one. Mereover, the giobal pruaing mecha-
aism i3 shown o have an ability 10 accelerate the parallel
search,

Future work is {0 inprove the heuristics used in the
pruping process. Il we can find more effective global
pruning criterion which can be computed with low time
complexity, it scems Lo be possible Lo perlorm super-

linesarly.
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