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Abstract

Musical theory is dynamic in nature; that is, it changes
with time, gente, artist, and location. For machines to
able to handle such musical Lheory, musical theory should
e regarded as static and, then, be represented symbol-
ically. However, it seems inefficient to formalize all mo-
sical theories. We think that inductive learning is quite
effective in overcoming this difficulty, Since many induc-
tive fearning systeus have been developed recently, it is
promising to apply them to the learning of musical theory.

This paper presents a system which inductively learns
jazz harmony theory. The input data is the real finger-
ing patierns of chords and chord sequences as actually
plaved by a jaze pianist. The output is Horn clavses
which represent the way in which input chords and chord
sequences are played. In the system, notes, chords and
chord sequences are represented as predicates. Therefore,
first-order Horn clauses that include such predicates can
express the relationships between notes, chords and chord
sequences, that is, the harmony theory.

Chur system employs an inductive learning method
hased on inverting resalution, CHFOL,; its primitive oper-
ations are absorption, intra-construction and truncation.
This paper shows how to apply these primitive opera-
tions to the input data and how to derive the cutput.
The absorption operation gives the reasoning of a mu-
sical concept by using the reasoning fram other musical
concepts. "I'he intra-construction operation invents new
musical concepls.  Eventually, the outpul Horn clauses
tell us the musical structure of the input chords and the
chord sequences, and, even, the thinking process of a jazz
pianist,

1 Introduction

Many practical Al technologies have been developed and
established with logic. Al technologies can formally
model human intelligence and thought patterns (infer-
ence, learning, analogy, abduction ete.) Musical activi-
ties are included in human intellectual activities. Thus,
we think that musical information is represented in logic
and the application of Al technologies to it shows promisc
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for enabling machines to handle musical information, al-
though some criticism was levelled at this in the early
days of this field [RoaB2]. In fact, many suceessful systems
have been reported recently [Wid30b] [Wid%0a] [Ebi&7]
[Ebigg] [HA88]. This inclination is supported by the ad-
vantageous properties of logic, which are declarative, sim-
ple and clear semantics. Moreover, that is partially be-
cause recent implementation technigques for solving logi-
cal formulas (theorem provers, Prolog systems etc.) have
achieved high efficiency.

This paper presents a system in which input jazz chords
are represented in predicates one of the AT technolegies,
inductive learnmg, is applied, and the jazz harmony the-
ory is obtaimed in the form of Hoen clauses {HAS2].

2 Inductive Learning System

When some examples are given, inductive learning sys-
tems derive programs or general rules which compute
these input examples. CIGOL [MBBS] is an inductive
learning system; the mput is atomic formulas (possibly
including variables) and the cutput is Horn clauses so
that the input is true w.r.t. the models of the output
Horp elauses Il the output Horn clauses are regarded as
a Prolog program, we can execute them.

CIGOL has  three operators:  absorption, intra-
consiruction and truncetion. These operators are applied
toinput data one at a time, and a set of input data is even-
tually transformed to the Horn clanses that are cutput.
The absorption operation gives the reasoning of a concept
(predicate) by using the reasoning from other concepts.
Far inﬂhmr:nl give:n two atontie formulas

eppend([1,2], [3], [1,2,3])
lppmd-( Izl ¥ {3] ¥ [2 |3]}|

the absorption operation of these two generates a Homn
clause

append([E1],7,[E1Z]} ~— append(X,Y,Z).

The intra-construction operation invents new concepts
(predicates). For instance, given two Horn clauses



reverse([1,X],[XIY]) + reverse([1],Y)
reversel[1,2,X],[XiY]) —
reverse{[1,2],Y),

the intra-construction operation to these two clauses gen-
erates the following Horn clauses,

reverseld, [XI1Y]} —
raverse(B,Y) ,p(A,B,X)

pll1,%],01],%)

p(1,2,X],01,21,%),

where p is newly invented.

During this inductive learning process, CIGOL requires
oracles {navigation by humans), and even the oracles are
translated into the Horn clauses taht are output.

3 Outline of Qur System

When a machine handles musical information, music
should be very carefully formalized; 1.e. the abstraction
of musical objects, and the correspondence between sym-
bolic manipulations and its musical meanings. This is a
general problem in formal representation of music [BalBB)]
[CTss]

Ohar system regards a set of notes satisfying some char-
acteristics as a chord. Thus, 2 chord is represented by a
predicate, the argument of which is a set of notes. The
inpute to our system are predicates representing chords
which sound similar to each other. Hence, & predicate
name merely designates a sef of chords which have the
samme characteristics. The output of the system iz the
Horn elauses which explain the strueture of input chords.
This section describes how to represent a chord in Horn
clauses and shows the appleations of the CIGOL opera-
Lo

Intra-construction: Fig.1 shows the sample input
ehords in conventional notation. The five-voice chords
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Figure 1: Sample Input Chords (A)
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shown in Fig.l are represented in our system as follows:

cfl(1,e},00,a},(0,b),(1,e8),(1.131) (1)

e(l{1,g),(0,a),(0,b),(1,c8),(1,£}]),

where ¢s stands for Cf. As you can see, a note is a pair
of its octave and its pitch class, (oect, pel, and a list
stands for a set. Therefore, the order of the elements
should not be of no concern. When a chord is abstracted,

]

some properties of the chord are ignored: duration, onset
time, timbre of each note ete.

Then, application of the intra-construction operation
to these two chords (1) gives us

c([¥,(0,b},(0,a),(1,¢c8),(1,£3]) — n(N)
al((1,e))
n{{1,g})

These Horn clauses tell us that the input chords share a
common substructure, and only the portion of N is differ-
ent.

On the other hand, we have a dual operator to the
intra-construction operator, calied the common compo-
nent procedure {CCP) [Akad2]. For the same sample,
CCP gives us

c{[{1,e) (X1} ~— ql(E}
e([{1,g) 2]} ~— qix}
qt[{0,b),{0,a),(1,c8),(1,£)]}

These Horn clauses tell us that the input chords share the
cormmon substructure X, and X has some characteristics
designated by q.

Absorption: Similarly, the following chords in the
conventional notation are given (Fig. 2). These chords
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Figure 2: Sample Input Chords (B}

are translated into the following logical formulas.

d{[{o,f),{c,a),{1,c8)])
d(l({2,e8),(1,2),(1,a)])
da([{o,a),{1,e2),(1,2)])

Then, application of the absorption operator to the 3rd
and 1st chords gives us

a([1,y,(s(a),8)]) —d{[(4,B),X,Y]) L.

Sinee this
clavse together with d([(0,2),(0,a).(1,¢c8)]) covers
d{[{1,c8),(1,£),(1,a)]) we get

d{[(o,2),{(0,a),{1,c2)])
d{[1,¥, ({4}, B33} —d([{4,B) X, ¥])

These Horn clauses tell us that recursion can realize chord
inversion.

Ipctavs is an integer, which is represented by the slement zao
and the successor funclion s{).




Chords and chord substructures are represented in
predicates, and, thus, first-order Horn clauses includ-
ing such predicates can express the relationships between
¢hords and chord substruetures, that is, the harmony the-
ory. Herbrand models for the Horn clauses representing
the harmony theory in our method correspond to correct
chords w.r.t. the harmony theary.

Since, our method represents a chord not n a single
term but in a set of Horn clauses (a program), relations
between chords are basically conjunction, disjunction and
negation. Thus, user-defined ambiguous relations cannot
be introduced.

4 Learning of G(f11)

‘I'he previous section gave us a program that can calcu-
late exactly the same output as the input *. This section
gives the program that can caleulate not only the output
including input chords themselves but also chords with
the same characteristics as input chords. Let us consider
the learning of G7(§11) chords actually played by & jazz
pianist, Herbie Hancock [Han89] {Fig. 3). The character-
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Figure 3. Practical Gr(§11) Chords

wl

isties of cach chord in Fig. 3 are briefly mentioned: (a)
the interval between the 1st and 2nd volces 15 a minor
2nd, (b) there are many major 2ud intervals, and the lst
venee is (7, (c) the 3rd note of G7 is missed, and (d) the
top three voices are augmented. These chords are, indeed,
theoretically incorrect. The characteristics of the chords
just given can be reasons, if taken inversely. How can
these chords be learnt and how can we generate chords
with the same lealures? Wa show how our system runs
hﬂ]nw.

Firstly, the note list is put 1o the proper order for effi-
cient lenrning. These chords are described in Horn clauses
as follows:

hE([(1,e),00,a),(0,b),(1,e8),{1,13])
m&([(1,g},(0,a),(0,b),{(1,e8),(1,23])
he([{0,e),(0,1),0(0,a),{1,e53]}
h4([{0,b),{1,ca),(1,1),(1,a}]}

The input the Fig. 3 consists of two kinds of chords, five-
voice chords (hE) and four-voice chords (hd). Since the
definition of h& is the same as (1), we get the same result
{2} with different predicate names.

5inetly speaking, this does not apply ta the absorplion opers-
tiom.

Secondly, we merge the four-voice
chord q([(0,b),(0,a),(1,c8),(1,2)]) (3rd clause of
(2)) and the definition of b4 since we would like to com-
pute more chord instances including both k& and h4 and
with the same characteristics as the previous two. As a
result, the system gets the following input samples:

b4 [(0,a),(0,£),{0,a),(1,c8)]) . (5)
ha([(0,b),(1,es),(1,£),(1,2)])

ha{[(0,b),(0,a),(1,e8),(1,2)])

Sinee these chords all consists of a note and a triplet of
notes (a, cs and £), only the 1st clause is unfolded without
changing the semantics, as follows:

B4([{0,0} X)) — (L)
r([(0,2),(0,2),(1,c8)])

Then, the intra-construction of the 2nd and 3rd clauses
in (5) is computed. Here, we merge r and the result of
the application, and obtain:

ha({[{0,a){X]) «— (X}
ha([(o,e)1X]) « (X
r{[(0,£),(0,a),(1,c8)])
r{[{1,ea),(1,2),(1,a)]}
ril(0,a),{1,e8),(1,1)0)

. (6)

Since predicate r of (6) is the same as (3), we get clauses
equivaient to (4).
Lastly, we have Horn clauses as follows,

hE([{1,e}1X]) — h4(X)
hE{L[(1,g) 1Z]) ~ ha(X)
ha([(0,e) Y1) — £(Y¥)
BACLIO, B 1Y]) +— (¥
r{[{0,£),{0,a),(1,c8)])
r{[1,Y,(e(A),B)]) ~ r{[(A,B),X.¥])

The answer which the program (7) computes is shown
in Fig. 4; in fact the program is slightly modified so that
predicate T generates a finite number of bindings. As you

Figure 4: Answers Generated by Program (7)

can see, each chord has some of the characteristics found
in the original input chords (Fig. 3).

To remove the undesirable output chords, algorith-
mic program debugging by Shapiro [ShaBZ] is applicable.



However, this subject 15 not discussed because of space
limitations.

Notice that the CIGOL operators are notl a.ut.mnat.icall}r
applied as above in the current system.

5 Discussion

Our systemn does not need background knowledge, and,
thus, can learn harmony theory without bias,

Some kinds of musical concepts, such as chord names,
and substitution chords, are regarded as user-defined in
our system, since such coneepts are not definitive. Henee,
either users have to write programs to represent them or
purposefully teach them to our system.

To gencrate chord instances which are not included in
the input but possess the same characleristics requires
expansion of the input sample set in some sense. We
have adopted two methods to expand the input: input
data reordering and zample merging. Stnce it is not clear
whether or not these methods are appropriate and suf-
ficient, we must investigale the theoretical meaning of
these methods further,

Te automate the operator applications and gain more
efliciency, unbiased heuristics for representation and
learning musical theory, meta-control, constraint [Levd],
and typad terms may be needed. Other Al technigues
may alsn be miroduced.

6 Concluding Remarks

This paper has presented the view that logical opera-
tions for inductive learning can transform input sample
chords into the oulput Horn clauses. However, since our
gystem lacks heuristics and meta knowledge to efficiently
apply CIGOL operators, our system is currently realized
by hand simmiation., Therefore, it 18 & future problem
to build a system which automatically applies CIGOL
operators with as little background knowledge as possi-
ble. Presently, we are investigating an inductive learning
system for harmony theory with application of GOLEM
[MFg0].

Since the combination of harmony theory representa-
tion in Horn clauses and inductive learning i3 simple yet
powerful, the system has great versatility. We think that,
in the same way, the framework employed in our sys-
tem can formalize the broader area of musical theory, ie.
notes, chord sequences, melody and rhythm [HA92]. Fur-
thermore, with this framework, many useful logic pro-
gramming research results will be applicabie.
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