ICOT Technical Memorandom: TM-1186

TM-1186

Proceedings of the FGCS Workshop on

Knowledge Representation and its Applications

by

H. Yasukawa (Matsushita)

March, 1993

© 1993, 1COT

Mita Kokusat Blde. 21F (033456-219] ~-5

|C GT 4.28 Mita 1-Chome

Minato-ku Tokva 108 Japan

Institute for New Generation Computer Technology

Proceedings of
the FGCS Workshop on
Knowledge Representation
and its Applications

6th June 1992
Shiba Park Hotel

Contents

Organizing Committee

Preface

Abductive Reasoning

Abductive Logic Programming’
Robert Kowalski (Imperial College, UK)

Explanation in the Situation Calculus
Murray Shanahan (Imperial College, UK)

Explanation Reconfiguration in Abductive Reasoning
Makoto Motoki (NEC, Japan)

Representational Issues

A Network Representation Scheme for Logic Programs
Stephen T. C. Wong (1COT, Japan)

Expansion and Succession in the MERM Mental Representation Model
Alfredo M. Maeda (Univ. of Tokushima, Japan)

Frame-based Conceptual Representation for Bidirectional Machine Translation
Koichi Takeda (IBM, Japan)

Processing Issues

Bottom-up Parallel Parser by Model Generation Theorem Prover
Masayuki Fujita (1COT, Japan)

Automatic Generation of Semantic Code Trees
Ryouichi Sugimura (Matsushita, Japan)

Dynamics and Flexible Inference
Koiti Hasida (1COT, Japan)

Organizing Committee

Hideyuki Nakashima, Co-Chair ETL, Japan

Syun Titiya, Co-Chair Chiba University, Japan

Hidek: Yasukawa, Co-Chair Matsushita Electric Industrial Co. Ltd., Japan
Robert Kowalski Imperial College, UK

Preface

This volume contains the papers presented at the FGCS'92 Post-Conference Workshop
on Knowledge Representation and its Applications held in Tokyo, Japan, on 6th June,

1992.

The workshop was intended to be a place for discussing about wide range of topics
around knowledge representation and its applications.

Around 30 researchers worldwide participates the workshop, and among them, nine
speakers gave talks. They made the workshop a place for significant discussions.

We would like to thank all the participants, especially nine speakers giving impressive
talks. We also thank members of ICOT for their help in organizing the workshop.

Abductive Logic Programming
DRAFT

October 1991, revised January 1992

A.C. Kakas
Department of Computer Science,
University of Cyprus,

75 Kallipoleos Street,
Micosia T.T.134, Cyprus,

H.A. Kowalski, F. Toni
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate
London SWT 2BZ, UK.

Abstract

‘This paper is a survey and critical overview of recent work on the extension of Logic Programming to
perform Abductive Reasoning {Abductive Logic Programming). We outline the general framewark
nf Abduction and its applications to Knowledge Assimilation and Defauit Reasoning, concentrating
an the use of Abduction to clarify the understanding of Negation as Failure as a form of Default
Reasoning. We also analyse the links between Abduction and the extension of Logic Programming
phtained by adding a form of explicit negation. Finally we discuss the relation between Abduction
and Truth Maintenance,

1 Introduction

This paper is a survey and analysis of work an the extension of logic programming to
perform abductive reasoning. The purpose of the paper is to provide a critical overview
of some of the main research results, in order to develop a common framework for evaluat-
ing these results, to identifv the main unresolved problems, and to indicate directions for
future work. The emphasis is not on technical details but on relationships and common
teatures of different approaches. Some of the main issues we will consider are the contribu-
tions Lhat abduction can make to the problems of reasoning with negative or incomplete
information, the evolution of knowledge, and the semantics of logic programming and its
extensions,

The philasapher Pierce first introduced the notion of abduction. In [Peirced1) he identified
three distinguished forms of reasoning,

Deduction, an analytic process based on the application of general rules to particular
cases, with the inference of a result,

Induction, svnthelic reasoning which infers the rule from the case and the result.

Abduction, another form of synthetic inference, but of the case from a rule and a result.

Pierce further characterised abduction as the “probational adoption of a hypothesis™ as
explanation for observed facts (results), according to known laws. “It is however a weak
kind of inference, because we cannot say that we believe in the truth of the explanation,
but only that it may be true”[Peirce3l].

Abduction is widely used in common-sense reasoning, for instance in diagnosis, to reason
from effect to cause [PopleT3, Charniak&McDermott85]. We consider here an example
drawn from [Pearl87].

Example 1.1
Consider the following theory T

grass-is-wet «— rained-last-night
grass-is-wet +— sprinkler-was-on
shoes-are-wet +— grass-is-wet.

If we ohserve that our shoes are wet, and we want to know why this is so, rained-last-night
is a possible explanation, i.e. a set of hypotheses that together with the explicit knowledge
in T implies the given observation. Sprinkler-was-on is another alterative explanation.

Abduction consists of computing such explanations for observations. It is a form of
non-monotonic reasoning, because explanations which are consistent with one state of a
knowledge base may become inconsistent with new information. In the example above
the explanation rained-last-night may turn out to be false, and the alternative explanation
sprinkler-was-on may be the true cause for the given observation. The existence of mul-
tiple explanations is a general characteristic of abductive reasoning, and the selection
of “preferred” explanations is an important problem.

1.1 Abduction in logic

Given a set of sentences T a theory presentation), and a sentence G (observation), the
abductive task consists in finding a set of sentences A (abductive explanation for i) such
that:

(1) TUA E G,
(2) T uUA is consistent.

The first property corresponds directly to Peirce’s definition of abduction. The second
condition is a natural additional requirement. This characterisation of abduction is in-
dependent of the language in which T, G and A are formulated, The logical implication
sign = in (1) can alternatively be replaced by a deduction operator .

Cox and Pietrzykowski |[Cox&Pietrzykowski86] specify other desiderable properties of
abductive explanations. For instance, an explanation should be basic, i.e. cannot be
explained in terms of other explanations. For example, in example 1.1 the explanation

grass-1s-wet

for the observation

shoes-are-wet

is not very satisfactory, because it is not basic. An explanation should also be minimal,
1.e. not subsumed by a different one. For example, in the propositional theory

rp = q
p = qr

{q.r} is a non-minimal explanation for p while {g} is minimal.

In practice we want to restrict the set of sentences that can be part of an explanation.
This restriction is generally domain specific. Typically, we are interested in explanations
which convey some reason why the observations hold, e.g. we do not want to explain
one effect in terms of another effect, but in terms of some cause. Hence the explanations
are often required to be only in terms of sentences that belong to a special pre-specified
class called abducibles. Notice that there are no general criteria for deciding what is an
abducible or not. In this paper we will assume that the abducibles are always given.

Additional criteria have also been proposed to restrict the number of candidate explana-
Lions:

¢ Once we restrict the hypotheses to belong to a specified set of sentences, we can

further restrict, without loss of generality, the hypotheses to atoms {that “name”

these sentences) which are predicates explicitly indicated as abducible, as shown in
[Poole8Ba).

¢ In section 1.2 we will discuss the use of integrity constraints to reduce the number
of possible explanations.

* Additional information can help to discriminate between different explanations, by
rendering some of them more appropriate or plausible than others. For example
[Sattard:Goebel89] use “crucial literals” to discriminate between two mutually in-
compatible explanations, When the crucial literals are tested. one of the explana-
tions is rejected. More generally in [Evans&Kakas91a) the notion of corroboration
is used to select explanations. An explanation fails to be corroborated if some of its
logical consequences are not observed. A related technique is presented in [Sergot83],
where information is obtained from the user during the process of query evaluation.

* Moreover various (domain specific) criteria of preference can be specified. They
impose a (partial) order on the sets of hypotheses which leads to the discrimination
of explanations [CharniakéMcDermott85, Brewka89, Hobbs et al.91]

So far we have presented a semantic characterisation of abduction and discussed some
heuristics to deal with the multiple explanation problem, but we have not described any
proof procedures for computing abduction. Various authors have suggested the use of
lop-down, goal-oriented computation, based on the use of deduction to drive the gen-
eration of abductive hypotheses, Cox and Pietrzykowski [Coxd:Pietrzykowski86] con-
struct hypotheses from the “dead ends” of linear resolution proofs. Finger and Gene-
sereth [Finger&zGenesereth85) generate “deductive solutions to design problems™ using the
“residue” left behind in resolution proofs. Poole, Goebel and Aleliunas [Poole et al.§7)
alsu use linear resolution to generate hypotheses. In contrast, the ATMS [deKleerS6,
Reiter&deKleers7) computes abductive explanations bottom-up.

Abduction can also be applied to logic programming. A general logic program is a set
of Horn clauses extended by negation as failure [Clark78], i.e. clauses of the form:

A+~ Lh“wLn

where each L, is either an atom A; or its negation ~ A; 1 A is an atom and each
variable occurring in the clause is implicitly universally quantified. Abduction can be
computed in logic programming by extending SLD and SLDNF [Eshghi&Kowalski88,
Eshghi&Kowalski89, ChendWarren89, KakasdzMancarella90b, Kakas&Mancarella9la]. In-
stead of failing in a proof when a selected subgoal fails to unify with the head of any rule,
the subgoal can be viewed as a hypothesis. This is similar to viewing abducibles as “ask-
able” conditions which are treated as qualifications to answers to queries [Sergot83]. In
the same way that it is useful to distinguish a subset of all predicates as “askable”, it is
useful to distinguish certain predicates as abducible. In fact, it is generally convenient
to choose, as abducible predicates, ones which are not conclusions of any clause. As we
shall remark at the beginning of section 5, this restriction can be imposed without loss of
senerality, and has the added advantage of ensuring that all explanations will be basic.

There are other formalisations of abduction. We mention them for completeness, but in
the sequel we will concentrate on the logic-based view previously described.

e |[Reggia83, Allemand et al .87 present a mathematical characterisation, where abduc-
tion is defined over sets of observations and hypotheses, in terms of coverings and
parsimony.

e [Levesque89] gives an account of abduction at the “knowledge level”. He characterises
abduction in terms of a (modal) logic of beliefs, and shows how the logic-based
approach to abduction can be understood in terms of a particular kind of belief.

In the previous description of abduction we have briefly discussed both the semantics
and a proof procedure for abduction. The relationship between semantics and proof
procedures can be understood as a special case of the relationship between program speci-
fications and programs. A program specification characterises what is the intended result
expected from the execution of the program. In the same way semantics can be viewed as
an abstract, possibly non-constructive definition of what is to be computed by the proof
procedure. From this point of view, semantics is not so much concerned with explicating
meaning in terms of truth and falsity, as it is with providing an abstract specification
which “declaratively” expresses what we want to compute. This specification view of
semantics is eflectively the one adopted in most recent work on the semantics of logic
programming, which restricts interpretations to Herbrand interpretations. This restric-
tion to Herbrand interpretations means that interpretations are purely syntactic objects,
which have no bearing on the correspondence between language and “reality”.

One important allernative way to specify the semantics of a language, which will be used
in the sequel, is through the translation of sentences expressed in one language into
sentences of another language, whose semantics is already well understood. For example
if we have a sentence in a typed logic language of the form “there exists an z of type ¢ such
that the property p holds” we can translate this intc a sentence of the form 3z (p(z) A t(x)),
where { is a new predicate Lo represent the type {, whose semantics is then given by the

1ln the sequel we will repressnt NAF ma ~.

familiar semantics of first-order logic. Similarly the typed logic sentence “for all z of type
t such that the property p holds™ becomes the sentence Vz(p(z) «— #(z)). Hence instead
of developing a new semantics for the typed logic language, we apply the translation and
use the existing semantics of first-order logic.

1.2 Integrity Constraints

Abduction as presented so far can be restricted by the use of integrity constraints, as
previously mentioned. Integrity constraints are useful to avoid unintended updates to a
database or knowledge base. They can also be used to represent desired properties of a
program [Lever91].

The concept of integrity constraints first arose in the field of databases 2nd to a lesser
extent in the field of Al knowledge representation. The basic idea is that only certain
knowledge base states are considered acceptable, and an integrity constraint is meant to
enforce these legal states. When abduction is used to perform updates (see section 2), we
can use integrity constraints to reject abductive explanations.

Given a set of integrity constraints, I, of first-order closed formulae, the second condition
(2] of the semantic definition of abduction (see section 1.1) can be replaced by:

(2') T'U A satisfies I.

As previously mentioned, we will generally consider as hypotheses in A atoms drawn from
predicates explicitly indicated as abducible. In the sequel an abductive framework will
be given as a triple (T, A, I), where A is the set of abducible predicates, i.e. A C 4 2,
Note that the set of integrity constraints can be empty. In this case the semantics of the
abductive framework (T, A, @) is that indicated in the original definition.

There are several ways to define what it means for a knowledge base KB (T U A in our
case) to satisfy an integrity constraint ¢ (in our framework ¢ € J). The consistency
view requires that:

N B satisfies ¢ iff KB U ¢ is consistent.

Alternatively the theoremhood view requires that:
K B satisfies ¢ iff KB = o,

These definitions have been proposed in the case where the theory is a logic program P by
Nowalski&Sadri87] and [Lloyd& Topor85) respectively, where K B is the Clark completion
[Clark 78] of P.

Another view of integrity comstraints [Reiter88, Reiter90, Kakas& Mancarella90b],
{Kowalski90, Kakas91] regards these as epistemic or meta-level statements about the
content of the database. In this case the integrity constraints are understood as statements
at a different level from those in the knowledge base. They specify what is true about the
knowledge base rather than what is true about the world modelled by the knowledge base.
When later we consider abduction in logic programming (see sections 4,5), the semantics
of integrity constraints will be defined in the spirit of this third view, as statements that
must hold about a separately defined (abductive) logic program.

*Here and in the rest of this paper we will use the same saymbol A to jndicate both the set of abducible predicates and
the sat of all their ground instances.

For each such semantics, we have a specification of the integrity checking problem. Al-
though the different views of integrity satisfaction are conceptually very different, the
integrity checking procedures based upon these views are not so different in practice (e.g.
[Lloyd& Topor83, Decker86, Kowalski&Sadri87]). They are mainly concerned with avoid-
ing the inefficiency which arises if all the integrity constraints are tested after each update.
A common idea of all these procedures is to render integrity checking more efficient by
exploiting the assumption that the database before the update satisfies the integrity con-
straints, and therefore if integrity constraints are violated after the update, this violation
should depend upon the update itself. In [Kowalski&zSadri87] this assumption is exploited
by reasoning forward from the updates. This idea is exploited for the purpose of checking
the satisfaction of abductive hypotheses in [Eshghi&Kowalski89], [Kakas&Mancarella90d],
[Kakas&Mancarella91a). Although this procedure was originally formulated for the con-
sistency view of constraint satisfaction, it has proved equally appropriate for the semantics
of integrity constraints in abductive logic programming.

1.3 Applications

In this section we briefly describe some of the applications of abduction in Al

Abduction can be used to generate causal explanations for fault diagnosis {see for
example [Console et al.89], [Preist&Eshghi92]). In medical diagnosis, for example, the
candidate hypotheses are the possible causes (diseases), and the observations are the
symptoms to be explained [Reggia83, PooleB8b]. Abduction can also be used for model-
based diagnosis [Reiter87, Eshghi90]. In this case the theory describes the “normal”
behaviour of the system, and the task is to find a set of hypotheses of the form “some
component A is not normal” that explains why the behaviour of the system is not normal.

Abduction can be used to perform high level vision (e.g. recognition of graphical ob-
jects [CoxdePietrzyvkowski®6]). The hypotheses are the objects to be recognised, and the
observations are the descriptions of objects.

Abduction can be used in natural language understanding to interpret ambiguous
sentences [CharniakfzMcDermott85, Stickel89, Hobbs90, Gabbay&Kempson91j. The ab-
durtive explanations correspond to the various possible interpretations of such sentences.

In planning problems plans can be viewed as explanations of the given goal state to be

reached [Eshghi88, Shanahan89].

These applications of abduction can all be understood as generating hypotheses which are
causes for observations which are effects. An application that does not necessarily have
a direct causal interpretation is knowledge assimilation [KowalskiT9, Miyaki et al.84,
Kunifiji et al.86, KakasfzMancarella91a). The assimilation of a new datum can be per-
formed by adding to the theory new hypotheses that are explanations for the datum.
Database view updates [Kakas&Mancarella90b, Bry90] are an important special case
of knowledge assimilation. Update requests are interpreted as observations to be ex-
plained. The explanations of the observations are transactions that satisfy the update
request. We will discuss knowledge assimilation in greater detail in section 2.

Another important application which can be understood in terms of a “non-causal” use

of abduction is default reasoning. Default reasoning concerns the use of general rules
to derive information in the absence of contradictions. In the application of abduction
to default reasoning conclusions are viewed as observations to be explained by means
of assumptions which hold by default unless a contradiction can he shown |Pooleffa,
EshghidKowalski88]. As Poole [Poole88a] argues, the use of abduction avoids the need
to develop a non-classical, non-monotonic logic for default reasoning. In section 3 we
will further discuss the use of abduction for default reasoning in greater detail. Because
negation as failure in logic programming is a form of default reasoning, its interpretation
by means of abduction will be discussed in section 4.

2 Knowledge Assimilation

Abduction takes place in the context of assimilating new knowledge (information, belief or
data} into a theory (or knowledge base). There are four possible deductive relationships
between the current knowledge base (KB), the knowledge, and the new KB which arjses
as a result [Kowalski79)].

1. The new information is already deducible from the current KB. The new KB, as a
result, is identical with the current one.

2. The current KB = KB, UKB; can be decomposed into two parts. One part KB,
together with the new information can be used to deduce the other part KB;. The
new KB i1s KB, together with the new information.

3. The new information violates the integrity of the current KB. Integrity can be re-
stored by modifying or rejecting one or more of the assumptions which lead to the
contradiction.

4. The new information is independent from the current KB, The new KB is obtained
by adding the new information to the current KB.

In case (4) the KB can, alternatively, be augmented by an explanation for the new datum
(Kowalski79, Kunifiji et al.86. Kakas&Mancarella91a). In [Kunifiji et al.86] the authors
have developed a system for knowledge assimilation (KA) based on this use of abduction.
They have identified the basic issues associated with such a system and proposed solutions
for some of these.

Various motivations can be given for the addition of an abductive explanation instead
of the new datum in case (4) of the process of KA. For example, in natural language
understanding or in diagnosis, the assimilation of information naturally demands an ex-
planation. In other cases the addition of an explanation as a way of assimilating new
data is forced by the particular way in which the knowledge is represented in the theory.
Consider for example a problem of temporal reasoning formulated in the Event Calculus
[Kowalskif:Sergot86], This contains an axiom that expresses the persistence of a property
#* from the time that it is initiated by an event E to a later time T:

holds-at(P, T} « happens(E),
time(F) < T,
initiates(E, P),
persists(time(E), P, T'),

New information about the predicate holds-at can be assimilated by adding an expla-
nation in terms of some event that generates this property together with an appropri-
ate assumption that the property persists [Eshghi88, Shanahan89, Kakas&Mancarella89).
This has the additional effect that the new KB will imply that the property holds until
it is terminated in the future [Shanahan89]. This way of assimilating new information
can also be used to resolve conflicts between the current KB and the new information
[Kakas&MancarellaB9, Shanahan89]. Suppose for example that the current KB contains
the fact (expressed informally) “Mary has bookl at time to” and that the persistence
axiom predicts that *Mary has bookl at time ¢,” where 5 < t;. The new information
“John has bookl at time ;" contradicts the prediction, and cannot be added explicitly
to the KB. It is however possible to remove the contradiction by adding the explanation
that an event has happened where “Mary gives John bookl between fg and #;".

Once a hypothesis has been generated as an explanation for an external datum, it itself
needs to be assimilated into the KB. In the simplest situation, the explanation is just
added to the KB, i.e. only case (4) applies without further abduction. Case (1) doesn’t
apply, if abductive explanations are required to be basic. However case (2) may apply,
and can be particularly useful for discriminating between alternative explanations for
the new information. For instance we may prefer a set of hypotheses which entails in-
formation already in the KB, i.e. hypotheses that render the KB as “compact” as possible.

Example 2.1

Suppose the current KB contains
P 9
P
T — q
r o+— 8

and r is the new datum to be assimilated. The explanation g is preferable to the expla-
nation s, because ¢ implies both r and p, but 5 only implies r.

Notice however that the use of case (2) to remove redundant information can cause prob-
lems later. Il we need to retract previously inserted informations, entailed information
which is no longer explicitly in the KB might be lost.

It 1s interesting to note that case (3) can be used to check the integrity of any abductive
hypotheses generated in case (4).

Any violation of integrity detected in case (3) can be remedied in several ways [Kowalski79).
The new input can be retracted as in conventional databases. Alternatively the new in-
put can be upheld and some other assumptions can be withdrawn. This is the case with
view updates. The task of translating the update request on the view predicates to an
equivalent update on the extensional part (as in case (4) of KA) is achieved by finding an
abductive explanation for the update in terms of ground instances of extensional pred-
icates |Kakasé:Mancarella90b). Any violation of integrity is dealt with by changing the
extensional part of the database.

The general problem of belief revision has been studied formally in [Gardenfors88, Nebel89,
Nebel9l, Doyle9l]. Girdenfors proposes a set of axioms for rational belief revision con-
taining such constraints on the new theory as “no change should occur to the theory when
trying to delete a fact that is not already present” and "the result of revision should not
depend on the syntactic form of the new data”. These axioms ensure that there is always
a unique way of performing belief revision. However Doyle argues that, for applications
in Al, this uniqueness property is too strong. He proposes instead the notion of “eco-
nomic rationality”, in which the revised sets of beliefs are optimal with respect to a set
of preference criteria on the possible beliefs states. This notion has been used to study
the evolution of databases by means of updates [Kakas91b).

KA and belief revision are also related to truth maintenance systems. We will discuss
truth maintenance and its relationship with abduction in section 6.

3 Default Reasoning viewed as Abduction

Default reasoning concerns the application of general rules to draw conclusions pravided
the application of the rules does not result in contradictions. Given, for example, the
general rules “birds fly” and “penguins are birds that do not fiy” and the only fact about
Tweety that Tweety is a bird, we can derive the default conclusion that Tweety flies.
However, if we are now given the extra information that Tweety 15 a penguin, we can
also conclude that Tweety does not fly, In ordinary, common sense reasoning, the rule
that penguins do not fly has priority over the rule that birds fly, and consequent this new
conclusion that Tweety does not fly causes the original conclusion to be withdrawn.

One of the most important formalisations of default reasoning is the Default Logic of
Reiter [Reiter80]. Reiter separates beliefs into two kinds, ordinary sentences used to
express “facts” and default rules of inference used to express general rules. A default
rule is an inference rule of the form

cr{z]l : Mf.'?jl,r-T:l,- u-.ﬁn'[-'l'}
¥(z)

which expresses, for all ground instances ¢ of ¢ 3, that +(t) can be derived if ce(f) holds
and each of §,(f) is consistent, where a(z), Bi(z), ¥(z) are first-order formulae. Default
rules provide a way of extending an underlying incomplete theory. Different applications
of the defaults can vield different extensions.

As already mentioned in section 1, [Poole et al.87, Paole88a| proposes an alternative for-
malisation of default reasoning in terms of abduction. Like Reiter, Poole also distinguishes
two kinds of beliefs:

¢ beliefs that belong to a consistent set of first order sentences JF representing “facts”,
and

* beliefs that belong to a set of first order formulae D representing defaults,

Perhaps the most important difference between Poole’s and Reiter’s formalisations is that
Poole uses sentences (and formulae) of classical first order logic to express defaults, while

*We use the notation r to indicats a tuple of variables =;,.. ., r..

— 13

Reiter uses rules of inference. Given & Theorist framework (F, D}, default reasoning can
be thought of as theory formation. A new theory is formed by extending the existing
theory F with a set A of sentences which are ground instances of formulae in D. The
new theory F U A should be consistent. This process of theory formation is a form of
abduction, where ground instances of defaults in D are the candidate abducibles. Poole
(theorem 5.1 in [Poole88a]) shows that the semantics of the theory formation framework
(F, D) is equivalent to that of an abductive framework (F', A, B) (see section 1.2) where
the default formulae are all atomic. The set of abducibles A consists of a new predicate

Pu(z)

{for each default formula
w(zr)

in D with free variables z. The new predicate is said to “name” the default. The set F
is the set F augmented with a sentence

¥z [pu(r) = w(z))
for each default in D).

The theory formation framework and its correspondence with the abductive framework
can be illustrated by the flying-birds example.

Example 3.1
In this case, the framework (F, D) is 4
F ={ penguin(z) — bird(z),
penguin(z) — - fly(z),
penguin{Tweety),
bird(John)}
D ={ bird(z) — fly(z)}. (1)
The priority of the rule that penguins do not fly over the rule that birds fly is obtained
by regarding the first rule as a fact and the second rule as a defaunlt. The atom fly(John)
is a defaunlt conclusion which holds in F U A with
A = { bird(John) — fly(John)}.
We obtain the same conclusion by naming the default (1) by means of a predicate
birds- fly(z), adding to F the new “fact”
birds-fly(z) — [bird(z) — fly(z)] (2)

and extending the resulting augmented set of facts 7' with the set of hypotheses A" =
{ birds-fly(John)}. On the other hand, the conclusion fly(Tweety) cannot be derived,
because the extension

A = { bird(Tweety) — fly(Tweety)}
i= inconsistent with JF, and similarly the extension
A' = { birds- fly(Tweety) }

iz inconsistent with F'.

4Here variables ccowming in formulas of F are sssumed to be universally quantified. However, formulas of D) are to be
understood as schemata standing for the set of all their ground instances.

Poole shows that normal defaults without prerequisites in Reiter’s default logic

: MB(z)
B(z)

can be simulated by Theorist (abduction) simply by making the predicates 3(z) abducible.
He shows that the default logic extensions in this case are equivalent to maximal sets of
ground instances of the default formulae 8(z) that can consistently be added to the set

of facts.

Maximality of abductive hypotheses is a natural requirement for default reasoning, be-
cause we want to apply defaults whenever possible. However, maximality is not appro-
priate for other uses of abductive reasoning. In particular, in diagnosis we are generally
interested in explanations which are minimal.

In the attempt to use abduction to simulate default rules in general, however, Poole
needs to use integrity constraints. The new theory F U A should be consistent with these
constraints. Default rules of the form:

afz) : MB(z)
Y(z)

are translated into “facts”, which are implications
Hz) — alz), Mp(z)

where My is a new predicate, and Mpa(z) is a default formula (abducible). An integrity
constraint

= My(z) — - 8(z)

15 needed to link the new predicate appropriately with the predicate 4. A second integrity
constraint
= Ms(z) — =v(z)

is needed to prevent the application of the contrapositive
—alr) — —y(z), My(r)

of the implication, in the attempt to make the implication behave like an inference rule.
This use of integrity constraints is different from their intended use in abductive frame-
works as presented in section 1.2,

Poole’s attempted simulation of Reiter's general default rules is not exact. He presents
a number of examples and argues that, where the two formulations differ, Reiter's de-
fault logic gives counterintuitive results. In fact, it is possible to dispute some of thesc
examples. But, more importantly, there are other examples where the Theorist approach
arguably gives the wrong result. The most important of these is the now notoriaus Yale
shooting problem of [HankséMcDermott86, Hanksé&McDermott87]. As [Morris85] and
[Eshghi&Kowalski88] argue. this can be reduced to the simple propositional form

P~y

§ +—»~ T,

Hanks and McDermott showed, in effect, that the default theory, whose facts consist of
the two propositional sentences above and whose defaults are the two normal defaults

M~y :M~r

has two extensions: one in which ~ r, and therefore ¢ holds; and one in which ~ ¢, and
therefore p holds. The second extension is intuitively incorrect. Hanks and Mc Dermott
showed that many other approaches to default reasoning give similarly incorrect results.
However, [Morris88] showed that the default theory, which bas no facts but contains the

two non-normal defaults M~g M~y

P q
vields only one extension, containing ¢, which is the correct result. In contrast, all natural
representations of the problem in Theorist give incorrect results.

As |Eshghi&Kowalski88], [Evans89] and [Apt&Bezen90] observe, the Yale shooting prob-

lem has the form of a logic program, and interpreting negation in the problem as negation

as failure yields only the correct result. Moreover, [EshghiéKowalski88] and [KakasdMancarella89]
show how to retain the correct result when negation as failure is interpreted as a form of
abduction.

On the other hand, the Theorist framework does overcaome the problem that some default
theories do not have extensions and hence cannot be given any meaning within default
logic. In the next section we will see that this problem also occurs in logic programming,
but that it can also be overcome by an abductive treatment of negation as failure. We will
also see that the resulting abductive interpretation of negation as failure can be regarded
as a hvhrid which treats defaults as abducibles in Theorist but treats clauses as inference
rules in default logic.

The inference rule interpretation of logic programs, makes logic programming extended
with abduction especially suitable for default reasoning. Integrity constraints can be used,
not for preventing application of contrapositives, but for representing negative information
and exceptions to delaults.

Example 3.2
The default (1) in the flying-birds example 3.1 can be represented by the logic program

fly(z) = bird(z), birds- fly(z),

with the abducible predicate birds-fly(z). Note that this clause is equivalent to the
“fact™ (2} obtained by renaming the default (1) in Theorist. The exception can be repre-
sented by an integrity constraint:

= fly(z) — penguin(z).

The resulting logic program, extended by means of abduction and integrity constraints,
gives similar results to the Theorist formulation of example 3.1.

In sections 4 and 5 we will see other ways of performing default reasoning in logic
programming. In section 4 we will introduce negation as failure as a form of default

lg —

reasoning, and we will study its relationship with abduction. In section 5 we will consider
an extended logic programming framework that contains clauses with negative conclusions
and avoids the use of explicit integrity constraints, in some cases.

4 Negation as Failure as Abduction

We noted in the previous section that default reasoning can be performed by means of
abduction in logic programming by explicitly introducing abducibles into rules. Default
reasoning can also be performed with the use of negation as failure (NAF) [Clark78] in
general logic programs. NAF provides a natural and powerful mechanism for performing
non-monotonic and default reasoning. As we have seen, it provides a simple solution to
the Yale shooting problem. The abductive interpretation of NAF that we will present
below provides further evidence for the suitability of abduction for default reasoning.

To see how NAF can be used for default reasoning, we return to the fiying-birds example.

Example 4.1
The NAF formulation differs from the logic program with abduction presented in the last
section (example 3.2) by employing a negative condition

~ abmermal-bird(z)
instead of a positive abducible condition
birds- fly(z)
and by employing a positive conclusion
abmormal-bird(z)
in an ordinary program clause, instead of a negative conclusion
- flylz)

in an integrity constraint, The two predicates abnormal-bird and birds- fly are opposite
to one another. Thus in the NAF formulation the default is expressed by the clause

fly(z) — bird(r), ~ abnormal-bird(z)
and the exception by the clause
abnormal-bird(z) — penguin(z),
In this example, both the abductive formulation with an integrity constraint and the NAF
formulation give the same result.
4.1 Logic programs as abductive frammeworks

The similarity between abduction and NAF can be used to give an abductive interpreta-
tion of NAF. This interpretation was presented in [Eshghi&Kowalski88] and
{Eshghid-Kowalskig9], where negative literals are interpreted as abductive hypotheses that
can be assumed to hold provided they are consistent with the program and a canonical
set of integrity constraints. A general logic program P is thereby transformed into an
abductive framework (P*, A%, I*) (see section 1) in the following way.

e A new predicate symbol p (the opposite of p) is introduced for each p in P, and A"
is the set of all these predicates.

e P* is P where each negative literal ~ p(t) has been substituted for by pr(1).
e I- is a set of all integrity constraints of the form %

¥z~ [p(z) A p*(x)] and
Vz(p(z) V p*(z).]

The semantics of the abductive framework {P®, A%, I*}, in terms of extensions P°U A
of P*, where A C A", gives a semantics for the original program P. A conclusion Q
holds with respect to P if and only if @ has an abductive explanation in the framework
(P*, A*, I*). This transformation of P into (P", A", I} is an example of the method,
described at the end of section 1.1, of giving a semantics to a language by translating it
into another language whose semantics is already known.

The integrity constraints in /* play a crucial role in capturing the meaning of NAF. The
denials express that the newly introduced symbols p* are the negations of the correspond-
ing p. They prevent an assumption p*(t) if p(t) holds. On the other hand the disjunctive
integrity constraints force a hypothesis p(t) whenever p(t) does not hold.

Hence we define the meaning of the integrity constraints J* as follows: An extension
P*U A (which is a propositional Horn theory) of P~ satisfies I* il and only if for every

ground atem ¢,
PrUuA B tAtT, and
PFrUA E t or PPUA E ¢t

[Eshghi&Kowalski89) show that there is a one to one correspondence between stable mod-
els [Gelfond& Lifschitz88] of P and abductive extensions of P*. We recall the definition
of stable model:

Let P be a general logic program, and assume that all the clauses in P are ground. For
any set M of ground atoms, let Py be the definite program obtained by deleting from P:
i) each rule that contains a negative literal ~ A4, with A € M,

ii) all negative literals in the remaining rules.

If the minimal (Herbrand) model of Py coincides with M, then M is a stable model for
F.

The correspondence between the stable model semantics of a program P and abductive
extensions of P* is given by:

¢ For any stable model Af of P, the extension P*U A satisfies I*, where
A = {d"|dis a ground atom,d € M}.
¥In the original paper the disjunctive integrity constraints were written in the form
Demof{ P*u &, p(t)) v Demo{P U &, p*(1}),

where f is any ground term. This formulation makes explicit & particular (meta-level) interpretation of the disjunctive
integrity constraint. The simpler form
¥z lp(r) v p7(=]]

is neutral with respect to the interprecation of integrity constraints,

e For any A such that P*U A satisfies J*, there is a stable model M of P, where
M = {d|dis a ground atom,d* ¢ A}.

Notice that the disjunctive integrity constraints in the abductive framework correspond
to a totality requirement that every atom must be either true or false in the stable model
semantics. Several authors have argued that this totality requirement is too strong, be-
cause it prevents us from giving a semantics to some programs, for example p +~— ~ p. We
would like to be able to assign a semantics to every program in order to have modularity,
as otherwise one part of the program can affect the meaning of another unrelated part.
We will see below that the disjunctive integrity constraint also causes problems for the
implementation of the abductive framework for NAF.

Notice that the semantics of NAF in terms of abductive extensions is more syntactic than
model-theoretic. It is a semantics in the sense that it is a non-constructive specification.
Similarly, the stable model semantics, as is clear from its correspondence with abductive
extensions, is not so much a semantics as a non-constructive specification of what should
be computed. The computation itself is performed by means of a proof procedure.

4.2 An abductive proof procedure for logic programming

Iu addition to having a clear and simple semantics for abduction, it is also important to
have an effective method for computing abductive explanations. Any such method will be
very useful in practice in view of the many diverse applications of abductive reasoning, in-
cluding default reasoning. The Theorist framework of [Poole et al.87, Poole&Ra) provides
such an implementation of abduction by means of a resolution based proofl procedure.

In their study of NAF through abduction Eshghi and Kowalski [Eshghi& Kowalski89] have
defined an abductive proof procedure for NAF in logic programming. We will describe
this procedure in some detail as it also serves as the basis for computing abductive ex-
planations more generally within logic programmuing with other abducibles and integrity
constraints (see section 5),

The abductive proof procedure interleaves two types of computation. The first type, re-
ferred to as the abductive phase, is standard SLD- resolution, that generates (negative)
hypotheses and adds them to the set of abducibles being generated, while the second type,
referred to as the consistency phase , incrementally checks that the hypotheses satisfy
the integrity constraints for NAF, J*. Integrity checking of a hypothesis p*(t) reasons
forward one step using a denial integrity constraint to derjve the goal — p(t). Thereafter
it reasons backward in SLD-fashion in all possible ways. Integrity checking succeeds if all
the branches of the resulting search space fail finitely, in other words, if the contrarv of
p"(1). namely p(1), finitely fails to hold. Whenever the potential failure of a branch of the
consistency phase search space is due to the failure of a selected abducible, say ¢*(s), a
new abductive phase of SLD-resolution is triggered for the goal «— g(s), to ensure that
the disjunctive integrity constraint ¢*(s) V g{s) is not violated by the failure of both ¢*(s)
and g(s). This attempt to show g¢(s) can require in turn the addition of further abductive
assumptions to the set of hypotheses which is being generated.

“We use the term “consistency phane” for historica] resscns. However, in view of the precise definition of integrity
constraint satisiaction, same other Lerm might be more AppTOpriale.

= 19_

A ={p'}
. —p
b
— g — 1
o ! | A = {p,r

—_— -

[] ‘ I
o [

Figure 1: computation for example 4.2

To illustrate the procedure consider the following stratified logic program, which is a
minor elaboration of the propositional form of the Yale shooting problem discussed in
section Jd.

Example 4.2

8 = ~7p

p — ~4q

g +— ~7r
The query — s succeeds with answer A = {p*, r*}. The computation is shown in figure 1.
Parts of the search space enclosed by a double box show the incremental integrity checking
of the latest abducible added to the explanation A. For example, the outer double box
shows the integrity check for the abducible p*. For this we start from «— p (resulting
from the resolution of p* with the integrity constraint - (p A p")) and resolve backwards
in SLD-fashion to show that all branches end in failure, depicted here by a black box.
During this consistency phase for p* a new abductive phase (shown in the single box)
is generated when ¢" is selected since the disjunctive integrity constraint ¢* V g implies
that failure of g* is only allowed provided that g is provable. The SLD proof of q requires
the addition of r* to A, which in turn generates a new consistency phase for r* shown in
the inner double box. The goal «— r fails trivially because there are no rules for r and
so r* and the enlarged explanation A = {p", r"} is consistent. Tracing the computation
backwards, we see that ¢ holds therefore ¢* fails and, therefore p* is consistent and the
original query +— s succeeds.

In general, an abductive phase succeeds if and only if one of its branches ends in a white
box (indicating that no subgoals remain to be solved). It fails finitely if and only if all
branches end in a black box (indicating that some subgoal cannot be solved). A consis-
tency phase fails if and only if one of its branches ends in a white box (indicating that

integrity has been violated). It succeeds finitely if and only if all branches end in a black
box (indicating that integrity has not been violated).

It is instructive to compare the computation space of the abductive proof procedure
with that of SLDNF. It is easy to see that these are closely related but that they have
some important differences. A successful derivation of the abductive proof procedure
will produce together with the usual answer obtained from SLDNF additional informa-
tion, namely the abductive explanation A. This additional information can be useful in
different waye, in particular to avoid recomputation of negative subgoals. More impor-
tantly, as the next example will show, this information will allow the procedure to handle
non-stratified programs and queries for which SLDNF is incomplete. In this way the
abductive proof procedure generalises SLDNF significantly. Furthermore, the abductive
explanation A produced by the procedure can be recorded and used in any subsequent
revision of the beliefs held by the program, in a similar fashion to truth maintenance
systems [Kakas&Mancarella9la]. In fact, this abductive treatment of NAF allows us
to identify a close connection between logic programming and truth maintenance sys-
tems in general (see section 6). Another important difference is the distinction that
the abductive proof procedure for NAF makes between the ahductive and consistency
phases. This allows a natural extension of the procedure to a more general framework
where we have other hypotheses and integrity constraints in addition to those for NAF
(Kakas&Mancarella90b, KakaséMancarellad0c, Kakas& Mancarelladid].

To sce how the abductive proof procedure extends SLDNF, consider the following non-
stratified program.

Example 4.3
§ — p
5 +~— g
p = ~9q
qy ~ ~FP

The query + s has no SLDNF refutation. Moreover, the SLDNF proofl procedure,
executing the query, goes into an infinite loop. However, in the corresponding abductive
framework the query has two answers, A = {p*} and A = {g°}, corresponding to the two
stable models of the program. The computation for the first answer is shown in figure 2.
The cuter abductive phase generates the hypothesis p* and triggers the consistency phase
for p shown in the double box. In general, whenever a hypothesis is tested for integrity, we
can add the hypothesis to A either at the beginning or at the end of the consistency phase.
When this addition is done at the beginning (as originally defined in [Eshghi&Kowalski89])
this extra information can be used in any subordinate abductive phase. In this example,
the hypothesis p* is used in the subordinate abductive proof of ¢ to justify the failure
of ¢* and consequently to render p* acceptable. In other words, the acceptability of
p" as a hypothesis is proved under the assumption of p*. The same abductive proof
procedure, but where each new hypothesis is added to A only at the successful completion
of its consistency phase, provides a sound proof procedure for the well-founded semantics
[VanGelder et al 88].

Example 4.4
Consider the query « p with respect to the abductive framework corresponding to the

W
-

A ={p")
- q
-7
| -
1—!‘} 4—q'
| oid
O n
O

Figure 2: computation for example 4.3

following program

~ T
9

~ 4
Ll P_

TTTT

= T

The abductive proof procedure succeeds with the explanation {g"}, but the only set of
hypotheses which satisfies the integrity constraints is {p”}.

So, as [Eshghi&Kowalski89] show by means of this example, the abductive proof proce-
dure is not always sound with respect to the above abductive semantics of NAF. Tt is
possible, however, to argue that it is the semantics and not the proof procedure that is at
fault. Indeed, [Saccad:Zaniolo90, Przymusinski90] and others have argued that the total-
ity requirement of stable models is too strong. They relax this requirement and consider
partial or three-valued stable models instead. In the context of the abductive semantics
of NAF this is an argument against the disjunctive integrity constraints.

An abductive semantics of NAF without disjunctive integrity constraints has been pro-
posed by [Dung9la]. The abductive proof procedure is sound with respect to this improved
semantics. [Satoh&Iwayama92], on the other hand, show how to extend the abductive
proof procedure of [Eshghi&Kowalski89] to deal correctly with the stable model seman-
tics. Their extension modifies the integrity checking method of [Kowalski&zSadri87] and
deals with arbitrary integrity constraints expressed in the form of denials.

Finally, we note that, in order to capture the semantics more closely for programs such as

p — p where ~ p holds, we can define a non-effective extension of the proof procedure.
that allows infinite failure in the consistency phases.

4.3 Negation as hypothesis revisited

[Dung9la] replaces the disjunctive integrity constraints by a weaker requirement that the
set of negative hypotheses A be maximal. Unfortunately, simply replacing the disjunctive
integrity constraints by maximality does not work, as shown in the following example.

Example 4.5
With this change the program

pe=~4q
has two maximally consistent extensions A; = {p"} and A; = {q°}. However, only
the second extension is computed both by SLDNF and by the abductive proof procedure,
Moreover, for the same reason as in the case of the propositional Yale shooting problem
discussed above, only the second extension is intuitively correct.

To avoid such problems Dung defines a more subtle notion of maximality. He associates
with every logic program P an abductive framework (P*, A*, I*) where I* contains only
denials

Vz-lp(z) A p*(z)]
as integrity constraints 7. Then, given sets A, F of (negative) hypotheses, i.e. A C A
and £ C A" E can be said to attack A (relative to P*) if P* U E + p for some
P" € A. Dung calls an extension P*U A of P* preferred if

s P U A is consistent with I and

* 4 is maximal with respect to the property that for every attack E against A (relative
to FP*) A attacks E.

Thus a preferred extension can be thought of as a maximal consistent set of hypotle-
ses that contains its own defence against all attacks, In [Dung9la] a consistent set of
hypotheses A (not necessarily maximal) satisfying the property of containing its own de-
fence against all attacks is said to be acceptable (to P*). In fact, Dung's definition is
not formulated explicitly in terms of the notion of attack and defence, but is equivalent
to the one just presented.

Preferred extensions solve the problem with disjunctive integrity constraints in exam-
ple 4.4 and with maximal consistency semantics in example 4.5. In example 4.4 the
preferred extension semantics sanctions the derivation of p by means of an abductive
derivation with generated hypotheses {¢* }. In fact, Dung proves that the abductive
proof procedure is always sound with respect to the preferential semantics. In exam-
ple 4.5 the definition of preferred extension excludes the maximally consistent extension
{r" }, because there is no defence against the attack g

The preferred extension semantics provides a unifying framework for various approaches
to the semantics of negation in logic programming. [Kakas§&Mancarella91b] show that
it is equivalent to Sacch and Zaniolo’s partial stable model semantics [Saccad:Zaniolo90].
Like the partial stable model semantics, it includes the stable model semantics as a Epe.
cial case. Dung also shows that the well-founded model [VanGelder et al.88] is the least
consistent extension that can be constructed bottom-up from the empty set of negative
hypotheses, by adding incrementally all acceptable hypotheses. Thus the well-founded

"For simplicity we continue ts indicate the abductive framework for NAF in the eame way.

semantics is minimalist and sceptical, whereas the preferential semantics is maximalist
and credulous.

[Kakasé:Mancarella9lc, Kakas&Mancarella91d] propose a modification of the preferred
extension semantics. Their proposal can be illustrated by the following example.

Example 4.8

In the abductive framework corresponding to the program
p ~= ~4q
g — ~4q

consider the set of hypotheses A = {p"}. The only attack against A is E' = {g"}, and the
only attack against E is E itself. Thus A is not an acceptable extension of the program
according to the preferred extension semantics, because A can ot defend itself against
E. The empty set is the only preferred extension. However, intuitively A should be
acceptable because the only attack E against A attacks itself, and therefore should not
be regarded as an acceptable attack against A.

To deal with this kind of example, Kakas and Mancarella modify Dung’s semantics, in-
creasing the number of ways in which an attack E can be defeated. Whereas Dung only
allows A to defeat an attack E, they also allow E to defeat itself. They call a set of
hyvpotheses A stable if

e A is maximal with respect to the property that for every attack E against A (relative
te " UA)YE U A attacks E.

Note that here the condition “P= U A is consistent with J*” is subsumed by the new
maximality condition. Like the original definition of preferred extension, the definition of
stable set of hypotheses was not originally formulated in terms of attack, but is equivalent
to the one presented above.

[KakasizMancarella91d] argue that the notion of defeating an attack needs to be liberalised
further. They illustrate their argument with the following example.

Example 4.7
Consider the program P

8
P
q

trr

=R T

TTrt

T

Here the only attack against the hypothesis s* is E = {p*}. But although P* U{s"} U E
does not attack £, E is not a valid attack because it is not stable (or acceptable) according
to the definition above.

To generalise the reasoning in example 4.7, we need to liberalise further the conditions
for defeating E. Kakas and Mancarella suggest a recursive definition in which a set
of hypotheses is deemed acceptable if no attack against any hypothesis in the set 1s
acceptable. More formally, given an initial set of hypotheses Ag, a set of hypotheses 4,
is acceptable to Ap iff

for every attack E against A\ Ag, F is not acceptable to A U Ag.

The semantics of a program P can be identified with any A which is maximally acceptable

to the empty set of hypotheses {.
Notice that, as a special case, we obtain a basis for the definition:

A is acceptable to Ap if A T A,

Therefore, if A is acceptable to # then A is consistent.
Notice, too, that applying the recursive definition twice, and starting with the base case,
we obtain an approximation to the recursive definition

A is acceptable to Ay if for every attack E against A\ Ag, E U A U Ag attacks E.

Thus, the stable theories are those which are maximally acceptable to @, where accept-
ability is defined by this approximation to the recursive definition.

4.4 The abductive proof procedure revisited

As mentioned above, the incorrectness (with respect to the stable model semantics) of
the abductive proof procedure can be remedied by adopting the preferred extension or
stable theory semantics. This is because the different phases of the proof procedure can
be interpreted in terms of the notions of attack and defence. To illustrate this interpreta-
tion, consider again figure 1 of example 4.2. The consistency phase for p*, shown m the
outer double box, can be understood as searching for any attack against p*. The only
attack, namely ¢°, is counterattacked (thereby defending p*) by assurning the additional
hypothesis r*, as this implies g. Hence the set A = {p*, r*} is acceptable, i.e. it can
defend itsell against any attack, since all attacks against p* are counterattacked by r* and
there are no attacks against r*. Similarly, figure 2 of example 4.3 shows how the attack
q" agamst p” is counterattacked by p® itself.

In general, the proof procedure constructs an acceptable set of negative hypotheses, a
subset of which is sufficient to solve the original goal. The remaining hvpotheses are
necessary to defend this sufficient subset against any attack. With the help of this new
interpretation it is possible to extend the proof procedure to capture more fully the stable
theory semantics and more generally the semantics given by the recursive definition for
acceptability at the end of section 4.3. The extension of the proof procedure invalves
temporarily remembering a (selected) attack E and using E itself together with the subset
ol A generated so far, to counterattack £, in the subordinate abductive phase.

For example 4.6 of section 4.3, as shown in figure 3, to defend against the attack ¢* on
p". we need to temporarily remember ¢* and use it in the subordinate abductive phase to
prove g and therefore to attack ¢* itself.

This reinterpretation of the original abductive proof procedure in terms of an improved
semantics, and the extension of the proof procedure to capture further improvements

it the semantics, is an interesting example of the interaction that can arise between a
program (proof procedure in this case) and its specification (semanties).

5 Abductive Logic Programming

Abductive Logic Programming (ALP) is an extension of LP that supports abduction in
general, and not only for NAF. This extension was introduced already in section 1, as

A ={p‘}
- p

| ot

i -

= 4q
— q°

|]

O

Figure 3: computation for example 4.6 with respect to the revisited proof procedure

the special case of an abductive framework (T, A, I), where T is a logic program. In this
paper we will assume, without lost of generality, that abducible predicates do not have
definitions in T, i.e. do not appear in the heads of clauses in the program T 5 This
assumption has the important advantage that all explanations are thereby guaranteed to
be basic.

Semantics and proof procedure for ALP have been proposed by [EshghifeKowalski88),
[KakasézMancarella90a] and [ChenfWarren89]. Chen and Warren extend the perfect
model semantics of [Przymusinski89) to include abducibles and integrity constraints over
abducibles. Here we shall concentrate on the proposal of Kakas and Mancarella, which
extends the stable model semantics. '

5.1 Generalised stable model semantics

|kakas&Mancarella90a) develop a semantics for ALP by generalising the stable model
semantics for logic programming. Let (P, A, I) be an abductive framework, where F is a
general logic program, and let A be a subset of A. M(A) is a generalised stable model
of (FP. A, I} iff

o M({A)is a stable model of P U A, and

« M{A) E I

¥In the case in which abducibile predicates have definitions in T, suxiliary predicates can be introduced in such & way
that the resulting program has no definitions for the abducible predicates, This can be done by means of a transformation

sitmilar o the one used to separate sxtentional and intensional predicates in deductive daisbsses [Minker82). For example
for each abducible predicaie ajz} in T we can introduce & new predicate ig)x) and add the clause

alz) = ba{x).

The predicate a(x) la not abdusible anymare, while §3{2) broomes abducible,

Here the semantics of the integrity constraints I is defined by the secand condition in the
definition above. Consequently, an abductive extension P U A of the program P satisfies
T'if and only if there exists a stable model M(A) of P U A such that I is true in M(A).
This is in the spirit of the epistemic or meta-level view of integrity constraints discussed
in section 1.2, in the sense that the integrity constraints I are statements that must hold
true about the program P U A without the integrity constraints.

The generalised stable models are defined independently from any query. However, given
a query (J, we can define an abductive explanation for Q in (P, A, I} to be any subset A
of A such that

e M[{A) is a generalised stable model of (P, A, T), and

» M(A) E Q.
Example 5.1
Consider the program P:
peb
gv—a

with A = {a. b} and integrity constraints J

= [g A b] and
g Vb

The interpretations M(A,) = {b, p}, where A; = {8}, and M(A;) = {a, ¢}, where A, =
{a}, are the only generalised stable models of (P, A, I). Moreover A; i1s an abductive
explanation for p.

An alternative, and perhaps more fundamental way of understanding the generalised
stable model semantics is by using abduction both for hypothetical reasoning and for
NAF. The negative literals in (P, A, I} can be viewed as further abducibles according to
the transformation described in section 4. The set of abducible predicates then becomes
A L A", where A* is the set of negative abducibles introduced by the transformation.
This results in a new abductive framework {P*, A U A*,] U I"}, where [* is the set of
special integrity constraints introduced by the transformation of section 4. The semantics
of the abductive framework (P*, A U A*, I U I") can then be given by the sets A" of
hypotheses drawn from A UA" which satisfy the integrity constraints I U J*.

Example 5.2
Consider P:

P = b~g

g = a
with 4 = {a, b} and T = {}. f Q is — p then A" = {b, ¢*, a*} is an explanation for
in (F°, AU A", I"). Note that a” is in A" because I* contains the disjunctive integrity
constraint @ V a”,

Kakas and Mancarella show a one to one correspondence between the generalised stable
models of (P, A, I} and the sets of hypotheses A that satisfy the transformed framework
(£, AU A", T U I"). Moreover they show that for any abductive explanation A* for a
query @ in (P*, A U A", J U I"), the subset A consisting of abducibles only in A is an
abductive explanation for Q in (P, A, I,

—_—T —

Example 5.3
Consider the framework (P, A, I) and the query @ of the example 5.2. We have already

seen that A® = {b, ¢*, a"} is an explanation for @ in (P*, A U A", I*). Accordingly the
subset A = {b} is an explanation for Q in (P, A, I).

Note that the generalised stable model semantics as defined above requires that for each
ahducible a, either a or a* holds. This can be relaxed by dropping the disjunctive integrity
constraints a V a* and defining the set of abducible hypotheses A to include both a and «*.

Generalised stable models combine the use of abduction for default reasoning (in the form
of NAF) with the use of abduction for other forms of hypothetical reasoning. The first
kind of abduction requires hypotheses to be maximised, while the second kind usually
requires them to be minimised. The definition of generalised stable models appropriately
maximises NAF hypotheses, but neither maximises nor minimises other hypotheses. In
practice, however, the abductive proof procedure generates only hypotheses that are rel-
evant for a proof. Because of this, it tends to minimise the generation of both kinds of
hypotheses. On the other hand, the proof procedure also generates as many hypotheses
as it needs for a proof. In this sense, it tends to maximise the generation of hypotheses.
This property of the proof procedure and its relationship with the semantics needs to be
investigated further.

5.2 Abductive proof procedure for ALP

In [Kakas&Mancarclla90b, Kakas&Mancarella90c, KakasfMancarella90d] proof proce-
dures are given to compute abductive explanations in ALP. These extend the abductive
proof procedure for NAF [Eshghi&Kowalski89] described in section 4.2, retaining the ba-
sic structure which interleaves an abductive phase that generates and collects abductive
hypotheses with a consistency phase that incrementally checks these hypotheses for in-
tegrity. We will illustrate these extended proof procedure by means of examples.

Example 5.4

Consider again example 4.2, The abductive proof procedure for NAF fails on the query
«— p. lgnoring, for the moment, the construction of the set A, the computation is that
shown inside the outer double box of figure 1 with the abductive and consistency phases
interchanged. i.e. the type of each box changed from a double box to a single box and vice-
versa. Suppose now that we have the same program and query but in an ALP setting
where the predicate r is abdueible. The query will then succeed with the explanation
A = {g". r} as shown in figure 4. As before the computation arrives at a point where r
needs to be proved. Whereas this failed before, this succeeds now by abducing r. Hence
by adding the hypothesis r to the explanation we can ensure that ¢ is acceptable.

An important feature of the abductive proof procedures is that they avoid perform-
ing a full general-purpose integrity check {such as the forward reasoning procedure of
Kowalskid&5adriB88]). In the case of a negative hypothesis, ¢° for example, a general-
purpose forward reasoning integrity check would have to use rules in the program such
as p ~— ¢" to derive p. The optimised integrity check in the abductive proof procedures,
however, avoids this inference and only reasons forward one step with the integrity con-
straint ={g A ¢"), deriving the resolvent «— g, and then reasoning backward from the

EB_

A ={¢}
- — 9
-7
D — I,_Ill = T
A ={q,r}

= r

. |

l]

l

Figure 4: extended proof procedure for example 4.2

resolvent.

Similarly, the integrity check for a positive hypothesis, r for example, avoids reasoning
forward with any rules which might have r in the body. Indeed, in a case, such as the
example 5.4 above, where there are no domain specific integrity constraints, the integrity
check for a positive abducible, such as r, simply consists in checking that its complement,
in our example r*, does not belong to A.

To ensure that this optimised form of integrity check is correct, the proof procedure
15 extended to record those positive abducibles it needs to assume absent to show the
integrity of other abducibles in A. So whenever a positive abducible. which is not in A ls
selected in a branch of a consistency phase the procedure fails on that branch and at the
same time records that this abducible needs to be absent. This extension is illustrated by
the following example.

Example 5.5
Consider the program

p = ~qr

g ~ r
where r is abducible and the query is p (see figure 5). The acceptability of q" requires
the absence of the abducible r. The simplest way to ensure this is by adding r* to
A, This, then, prevents the abduction of r and the computation fails. Notice that the
proof procedure does not reason forward from r to test its integrity. This test has been
performed backwards in the earlier consisteney phase for ¢°, and the addition of » to A
ensures that it is not necessary to repeat it,

The way in which the absence of abducibles is recorded depends on how the negation
of abducibles is interpreted. Under the stable and generalised stable model semantics,

— 28 —

A={} A={q}
- =9
— gt T
A={g,r}
n]
A= {¢*, r}

Figure 5: extended proof procedure for example 5.5

as we have assumed in example 5.5 above, the required failure of a positive abducible is
recorded by adding its complement to A. However, in general it is not always appropri-
ate to assume that the absence of an abducible implies its negation. On the contrary, it
may be appropriate (see section 5.3) to treat abducibles as open rather than closed, and
correspondingly to treat the negation of abducible predicates as open. As we shall argue
later, this might be done by treating such a negation as a form of explicit negation, which
is also abducible. In this case recording the absence of a positive abducible by adding its
complement to A is too strong, and we will use a separate (purely computational) data
structure to hold this information.

Integrity checking can also be optimised when there are domain specific integrity con-
straints, provided the constraints can be formulated as denials ® containing at least one
literal whose predicate is abducible. In this case the abductive proof procedure needs
only a minor extension [Kakas&-Mancarella90c, Kakas&Mancarella90d]: when a new hy-
pothesis is added 1o A, the proof procedure resolves the hypothesis against any integrity
constraint containing that hypothesis, and then reasons backward from the resolvent. To
illustrate this extension consider the following example.

Example 5.6
Let the abductive framework be:

¥MNotice that any integrity constraint can be transformed into s denial {possibly with the introduction of new auxiliary
predicates). For example:

F—q = =g a-gl
PV g s =[=pa g

—_ 30 —

&:{a}
a
. /\
4—q" d—b
— 4
A = {a, b}
b
] — b O
[|
]

Figure 6 extended computation {or example 5.6

P: s+—a It =la A p
pe=~y —la A g]
g+— b

where a, & are abducible and the query is — s (see figure 6).

Assume that the integrity check for a is performed Prolog-style, by resolving first with the
first integrity constraint and then with the second. The first integrity constraint requires
the additional hypothesis b as shown in the inner single box. The integrity check for b
is trivial, as b does not appear in any integrity constraint. But A = {a, b} viclates the
integrity constraints, as can be seen by reasoning forward from b to g and then resolving
with the second integrity constraint —[a A ¢]. However, the proof procedure does nat
perform this forward reasoning and does not detect this violation of integrity at this
stage. Nevertheless the proof procedure is sound because the violation is found later by
backward reasoning when a is resolved with the second integrity constraint. This shows
that & = {a} is unacceptable because it is incompatible with b which is needed to defend
A against the attack ¢”.

In summary, the overall effect of additional integrity constraints is to increase the size
of the search space during the consistency phase, with no significant change to the basic
structure of the backward reasoning procedure.

The abductive proof procedures described above suffer from the same soundness prob-
lemn shown in section 4 for the abductive proof procedure for NAF. This problem can be
solved similarly, by replacing stable models with any of the non-total semantics for NAF
mentioned in section 4 (partial stable models, preferred extensions, stable theories).

Finally, we note that the abductive proof procedures described here perform many of
the functions of a truth maintenance system. The relationships between ALP and truth
maintenance will be discussed in section 6.

5.2 Stable model semantics extended with explicit negation

In general logic programs, negative information is inferred by means of NAF. This is ap-
propriate when the Closed World Assumption (CWA) [Reiter78], that the program gives
a complete definition of the positive instances of a predicate, can safely be applied. It
is not appropriate when the definition of a predicate is incomplete and therefore “open”
(OWA), as in the case of abducible predicates.

For open predicates it is possible to extend logic programs to allow explicit negation in
the conclusions of clauses. {As we shall see later, in sections 5.7 and 5.8, this is related to
the use of integrity constraints expressed in the form of denials.) In this section we will
discuss the extension proposed by [Gelfond&Lifschitz90]. This extension is based on the
stable model semantics, and can be understood, therefore, in terms of abduction, as we
have already seen.

Gelfond and Lifschitz define the notion of extended logic programs, consisting of
clanses of the form:

Ln — LH,H,L,“... i Lm+1.,...,"“-' Ln.

where n > m > 0 and each L, is either an atom (A) or the explicit negation of an atom
(= A). This negation denoted by “=" is called “classical negation” in [Gelfond& Lifschitz90].
However, as we will see below, because the contrapositive of extended clauses do not hold,
the term “classical negation” is inaccurate. For this reason we use the term “explicit nega-
tion” instead.

The semantics of an extended program is given by its answer sets, which are like stable
models but consist of both positive and (explicit) negative literals. Perhaps the easiest
way to understand the semantics is to transform the extended program P into a general
logic program P' without explicit negation, and to apply the stable model semantics to
the resulting general logic program. The transformation consists in replacing every occur-
rence of explicit negation —p(t) by a new (positive) atom p'(t). The stable models of P,
which do not contain an implicit contradiction of the form p(t) and p(t), correspond to
the consistent answer sets of P. The corresponding answer sets of P contain explicit
negative literals — p(t) wherever the stable models contain p'(t). In [Gelfond& Lifschitz90]
the answer sets are defined directly on the extended program by modifying the defini-
tion of the stahle model semantics. The consistent answer sets of P also correspond to
the generalised stable models (see section 5.1) of P’ with a set of integrity constraints

= [p(z) » p'(z)], for every predicate p.

In the general case a stable model of P’ might contain an implicit contradiction of the
form p(t) and p'(t). In this case the corresponding inconsistent answer set is defined
to be the set of all the ground (positive and explicit negative) literals. It is in this sense
that explicit negation can be said to be “classical”. The same effect can be obtained by
explicitly augmenting P’ by the clauses

q(z) — plz), p(z)

for every predicate symbol ¢ in P'. Then the answer sets of P simply correspond to the
stable models of the augmented set of clauses. If these clauses are not added, then the
resulting treatment of negation gives rise to a paraconsistent logic, i.e. one in which
contradictions can be tolerated.

Notice that, although Gelfond and Lifschitz define the answer set semantics directly with-
out transforming the program and then applying the stable model semantics, the transfor-
mation can also be used with any other semantics for the resulting transformed program.
Thus [Przymusinski90] for example applies the well-founded semantics to extended logic
programs. Similarly any other semantics can also be applied. This is one of the main
advantages of transformational semantics in general.

An important problem for the practical use of extended programs is how to distinguish
whether a negative condition is to be interpreted as explicit negation or as NAF. We will
discuss this problem in section 7.

5.4 Simulation of abduction through NAF

[Satoh&Iwayama91] show that an abductive logic program can be transformed into a logic
program without abducibles but where the integrity constraints remain. Although they do
not employ explicit negation, the transformation implicitly simulates explicit negation by
the introduction of new predicates. For each abducible predicate pin A, a new predicate
p' is introduced representing the complement !° of p and a new pair of clauses:

plz) —~p'(z)

Pz} «—~ p(z)

18 added to the program. In effect abductive assumptions of the form p(2) are thereby
transformed into NAF assumptions of the form ~ p'(t). Satoh and Iwayama apply the
generalised stable mode] semantics to the transformed program. However, as we have al-
ready remarked in the case of the semantics of explicit negation, the transformational se-
mantics, which is effectively employed by Satoh and Iwayama, has the advantage that any
semantics can be used for the resulting transformed program (e.g. as in [Pereira et al.91a],
see helow).

Example 5.7
Consider the abductive framework (P, A, I') of example 5.1. The transformation generates
a new theory P' with the additional clauses

!
d 4=~

WZaroh and Iwayama wse the notation 5°(r) instead of p'iz) and consider only propositional programs.

33 —

a —~a
b=~V
¥V e—=~bh

P’ has two generalised stable models that satisfy the integrity constraints, namely M’ =
M(A) U {@'}) = {bp,a'}, and M’y = M(A;z) U {¥'} = {a, g, ¥} where M(A,) and
M{A,) are the generalised stable models seen in example 5.1.

Similar methods for transforming abductive assumptions into NAF assumptions are em-
ployed by [Inoue91b] and [Pereira et al.91a]. They transform extended logic programs
augmented with abduction into extended logic programs without abduction by adding to
the program a new pair of clauses

p(z) +=~ =p(z)
- p(z) &~ p(z)

for each ahducible predicate p. Notice that the transformation is identical to that of
Satoh and Iwavama, except for the use of explicit negation instead of new predicates.
[Inouedlb] and [Pereira et al.91a] assign different semantics to the resulting program.
Whereas [Inoue9lb| applies the answer set semantics, [Pereira et al.91a] apply the well-
founded semantics and the extended stable model semantics of [Przymusinski90]. The
well-founded semantics can be thought of as representing a minimal incomplete view of
the warld and the extended stable model semantics as representing different ways of ex-
tending this view by abducing negative hypotheses. [Pereira et al.91c| have also developed
proof procedures for this semantics. These procedures can be used as abductive proof pro-
cedure for ALF.

As mentioned above, |Pereira et al.91a) understand the transformed programs in terms
of (three-valued) extended stable models. The extended stable model semantics has the
advantage that it gives a semantics to every logic program and it does not force abducibles
to be cither believed or disbelieved. But the advantage of the transformational approach,
as we have already remarked, is that the semantics of the transfiormed program is inde-
pendent of the transformation. Any semantics can be used for the transformed program
{including even a transformational one, e.g. replacing explicitly negated atoms = p(t) by
a new atom p'(1)).

5.5 Computation of abduction through TMS

[Satoh&:Iwayama9l] present a method for computing generalised stable models for logic
programs with integrity constraints represented as denials. The method is a bottom-up
computation based upon the TMS procedure of [Doyle79]. Although the computation
is not goal-directed, goals (or queries) can be represented as denials and be treated as
integrity constraints.

Compared with other bottom-up procedures for computing generalised stable model se-
mantics, which first generate stable models and then test the integrity constraints, the
method of Satoh and Iwayama dynamically uses the integrity constraints during the pro-
cess of generating the stable models, in order to prune the search space more efficiently.

Example 5.8

Consider the program P:
p = q
r +— ~¢g

g — ~r

and the set of integrity constraints [= {-p}. P has two stable models M, = {p, g}
and M; = {r}, but only M, satisfies I. The proof procedure of [Satoh&Iwayama91]
deterministically computes only the intended model M;, without also computing and
rejecting M.

5.6 Restoring consistency of answer sets

The answer sets of an extended program are not always consistent.

Example 5.9
The extended logic program:

= fly(z) «~ bird(z)
fly(z) + bat(z)
bat(Tom)

has no consistent answer set,

As mentioned in section 5.3, this problem can be dealt with by employving a paraconsistent
semantics. Alternatively, in some cases it is possible to restore consistency by removing
some of the NAF assumptions implicit in the answer set. In the example above we can re-
store consistency by rejecting the NAF assumption ~ bird(Tom) even though bird(Tom)
does not hold, We then get the consistent set {bat(T'om), fly(T'om)}. This problem has
been studied in [Dung91b] and [Pereira et al.91b]. Both of these studies are primarily
concerned with the related problem of inconsistency of the well-founded semantics when
applied to extended logic programs [Przymusinskio0].

To deal with the problem of inconsistency in extended logic programs, [Dung91b| applies
the definition of the preferred extension semantics to a new abductive framework derived
from an extended logic program. An extended logic program P is first transformed into
an ordinary general logic program P’ by renaming explicitly negated literals —p(?) by
positive literals p'(1). The resulting program is then further transfarmed into an abductive
framework by renaming NAF literals ~ g¢(t) by positive literals ¢*(t) and adding the
integrity constraints
Yz g(x) A g(x)]

as described in section 4.3. Thus if p’ expresses the explicit negation of p the set 4" will
contain p"~ as well as p*. Moreover Dung includes in I* additional integrity constraints of

the form
Vz-[p(z) A p(x)]

to prevent contradictions,

Extended preferred extensions are then defined in the same way as preferred extensions in
section 4 but with this new set I* of integrity constraints. The new integrity constraints

— 35 —

in I* have the effect of removing a NAF hypothesis when it leads to a contradiction.

[Pereira et al.91b] employ a similar approach in the context of Przymuszynski’s extended
stable models [Przymusinski90]. It consists in identifying explicitly all the possible sets
of NAF hypotheses which lead to an inconsistency and then restoring consistency by re-
moving at least one hypothesis from each such set. This method can be viewed as an
application of belief revision, where if inconsistency can be attributed to an abducible hy-
pothesis or a retractable atom (see below section 5.7), then we can reject the hypothesis
to restore consistency. In fact Pereira, Aparicio and Alferes have also used this method
to study counterfactual reasoning [Pereira et al.91d].

Both methods can deal only with inconsistencies that can be attributed to NAF hypothe-
ses, as shown by the following example.

Example 5.10
It is not possible to restore consistency by removing NAF hypotheses given the program:

P

'-1?]_

However, [Inouedlb, Inouedla] suggests a general method of restoring consistency, which
is applicable to this case. This method (see section 5.8) is based on [Poole88a] and
|Geflner90] and consists in isolating inconsistencies by finding maximally consistent sub-
programs. In this approach a knowledge system is represented by a pair (P, H), where:

1. P and H are both extended logic programs,
2. P represents a sel of facts,
3. H represents a set of assumptions.

The semantics is given using abduction as in [Poole88a] (see section 3) in terms of theory
extensions P U E of P, with E € H maximal with respect to set inclusion, such that
P U E has a consistent answer set. '

In this approach, whenever the answer set of an extended logic program P is inconsistent.
it is possible to reason with it by regarding it as a knowledge system of the form

(8, P).

For example 5.10 this will give two alternative semantics, {p} or {-p}.

5.7 Abduction as retractability

An alternative way of viewing abduction, which emphasises the defeasibility of abducibles,
is retractability [Goebel et al.86]. Instead of regarding abducibles as atoms to be con-
sistently added to a theory, they can be considered as assertions in the theory to be
retracted in the presence of contradictions until consistency (or integrity) is restored (c.f.
section 5.6).

One approach to this understanding of abduction is presented in [Kowalski&Sadri88].
Kowalski and Sadri present a transformation from a general logic program P with integrity

— 36

constraints J, together with some indication of how to restore consistency, to a new general
logic program P’ without integrity constraints, Restoration of consistency is indicated by
nominating one atom as retractable in each integrity constraint !'. Integrity constraints
are represented as denials, and the atom to be retracted must occur positively in the
integrity constraint. The (informally specified) semantics is that whenever an integrity
constraint of the form

=fp A q]

has been violated, where the atom p has been nominated as retractable, then consistency
should be restored by retracting the instance of the clause of the form

F+—T

which has been used to derive the inconsistency. Notice that retracting abducible hy-
potheses is a special case where the abducibility of a predicate a is represented by an

assertion
alz).

To avoid inconsistency, the program P with integrity constraints J can be transformed to
a program / without integrity constraints which is always consistent with I: and if P is
incomsistent with I, then P’ represents one possible way to restore consistency (relative
to the choice of the retractable atom).

Given an integrity constraint of the form

~lp A gl
where p is retractable, the transformation replaces every clause of the form
per
by the clause
pe—r~q

where the condition ~ ¢ needs to be further transformed, if necessary, into general logic
program form, and where the transformation needs to be repeated for every integrity
constraint. Kowalski and Sadri show that if P is a stratified program with appropriately
stratified integrity constraints I, so that the transformed program P’ is stratified, then
I computes the same consistent answers as P with J.

The Kowalski-Sadri transformation is (almost) the inverse of the Eshghi-Kowalski trans-
formation, which interprets NAF as abduction. To see this, consider again the proposi-
tional form of the Yale shooting problem.

Example 5.11

Given the program
pe—r~gq
ge=n~r

applying the Eshghi-Kowalski transformation gives

p~gq

"' Many different atoms can be retractable in the same integrity constraint. Alternstive ways of nominating retractable
atoms correspond to aliernative ways of restoring consistency in F.

ger
=[p A p]
=g A g
=[r A

together with the disjunctive integrity constraints. To apply the Kowalski-Sadri transfor-
mation these disjunctive integrity constraints are replaced by the stronger (but retactable)
assertions

p*
e
r.
Applying the Kowalski-Sadri transformation now yields

- o

p
g

r.

R
rrrt1

e

If we are only interested in the clauses defining the predicates, p, ¢ and r, in the original
program, this can be simplified to

pe—~4q

g~

which 1s the original program.

It is interesting to note that the (informal) retraction semantics of the intermediate
program with integrity constraints and retractable assumptions yields the single {correct)
semantics for this example, namely the one in which the assumption ¢~ is retracted. It
would be useful to study the retraction semantics in more general and more formal terms
and to compare it with the preferred extension and stable theory semantics.

The retraction semantics and the associated transformation can be applied more generally
to cases of default reasoning where the retractable atoms do not correspond to abducible
predicates.

Example 5.12
Consider the program

fly(x) — bird(z)
walk{z) — ostrich(z)
bird(z) — ostrich(z)
ostrich(John)

and the integrity constraint

= [fly(z) A ostrich(z)],

with fly(z) retractable. The integrity constraint is violated, because both ostrich(John)
and fly(John) hold. Integrity can be restored by retracting the instance

fly(John) « bird(John)

of the first clause in the program.

Similarly the transformed program avoids inconsistency in general by replacing the first
clause and the integrity constraint by the more restrictive clause

fly(z) « bird(z), ~ ostrich(z).

5.8 Rules and exceptions in logic programming

One problem with the retraction semantics is that the equivalence of the original program
with the transformed program was proved only in the case where the transformed program
18 locally stratified. Moreover the proof of equivalence is based on a tedious comparison
of search spaces for the two programs. This problem was solved in a subsequent paper
[Kowalski&Sadri90] by re-expressing integrity constraints as extended clauses where the
retractable atoms are expressed as explicitly negated conclusions. By appropriately mod-
ifying the answer set semantics to retract clauses whose positive conclusions eontradict
clauses with negative conclusions, the equivalence of the original program and the trans-
formed program can be proved more simply and without any restrictions. Moreover, the
new formulation with explicitly negated conclusions is more informative than the earlier
formulation with integrity constraints, which only constrained positive information and
did not add negative information explicitly.

In the new formulation it is natural to interpret clauses with negative conclusions as ex-
ceptions, and clauses with positive conclusions as default rules. In the flying-bird example
of the previous section, in particular, the integrity constraint

= [fly(z) A ostrich(z)]
with fly(r) retractable would now be formulated as an exception
= fly{z) — ostrich(z)

to the “general” rule
Sly(z) — bird(z).

To capture the intention that exceptions should override general rules, the answer set
semantics is modified, so that instances of clauses with positive conclusions are retracted
if they are contradicted by explicit negative information,

howalski and Sadri also present a new transformation, which preserves the new semantics,
and is a more elegant form of the original transformation. In the case of the flving-birds
example the new transformation gives the clause

fly(z) & bird(z), ~ = fiy(z).

This can be further transformed by “macroprocessing” the call to - fly(z), giving the
result of the original transformation

fly(z) — bird(z), ~ ostrich(z).

In general, the new transformation introduces a new condition
~ = p(t)

into every clause with a positive conclusion p(t). The condition is vacuous if there are
no exceptions with = p in the conclusion. The answer set semantics of the new program
is equivalent to the modified answer set semantics of the original program, and both are
consistent. Moreover, the transformed program can be further transformed into a general
logic program by renaming explicit negations = p by new positive predicates p’. Because
of this renaming, positive and negative predicates can be handled symmetrically, and
therefore in effect clauses with positive conclusions can represent exceptions to rules with
(renamed) negative conclusions. Thus, for example, a negative rule such as

= fly(z) — ostrich(z)

with a positive exception
fly(z) «~ super-ostrich(z)

can be transformed into a clause
= fly(z) « ostrich(z), ~ fly(z)

and all occurrences of the negative literal = fly(z) can be renamed by a new positive
literal fly'(z).

A more direct approach to the problem of treating positive and negative predicates sym-
metrically in default reasoning is presented in [Inoue91b, Inoue9la] following the methods
of [Poolef8a] and [Geffner90] (see section 5.6 for a discussion). This work is another in-
teresting application of the notion of maximal consistency to extend logic programming
for default reasoning.

As a possible direction for future work, it would be desiderable to reconcile the different
approaches of Inoue and of Kowalski and Sadri. Such a reconcilation might attempt
to treat NAF hypotheses and other kinds of defaults uniformly as cases of abductive
reasoning, generalising appropriately the preferred extension and stable theory semantics
of NAF.

5.9 A methodology for default reasoning with explicit negation

Compared with other authors, who primarily focus on extending or modifying the se-
mantics of logic programming to deal with default reasoning, [Pereira et al.91a] develop
a methodology for performing default reasoning with extended logic programs. Defaults
of the form “normally if g then p” are represented by an extended clause

p +— ¢, ~ —namegp, ~ =p {3)

where the condition namegp is a name given to the default. The condition ~ —p deals
with exceptions to the conclusion of the rule, whilst the condition ~ —namegp deals
with exceptions to the rule itself. An exception to the rule would be represented by an
extended clause of the form

“namegp +— r

40 —

where the condition r represents the conditions under which the exception holds. In the
flying-birds example, the second clause of

fly(z) « bird(z), ~ - birds-fly, ~ - fly(z) (4)
= birds- fly(z) +~ penguin(z) (5)

expresses that the default named birds- fly does not apply for penguins.

The possibility of expressing both exceptions to rules as well as exceptions to predicates
is useful for representing hierarchies of exceptions. Suppose we want to change (3) to the
default rule “penguins usually don’t fly". This can be done by replacing (5) by

= fly(z) + penguin(z), ~ = penguins-don't- fly(z), ~ fly(z) (6)

where penguins-don't- fly is the name assigned to the new rule. To give preference to
the more specific default represented by (6) over the more general default (4), we add the

additional clause
- birds- fly(z) ~ penguin(z), ~ - penguins-don't- fly(z).
Then to express that superpenguins fly, we can add the rule:
—penguins-don't- fly(z) «— superpenguin(z).

[Pereira et al.91a] use the well-founded semantics extended with explicit negation to give
a scmantics for this methodology for default reasoning. However it is worth noting
that any other semantics of extended logic programs could also be used. For example
[InoueYlb, Inouedla] uses an extension of the answer set semantics (see section 5.6).
Moreover Inoue bases his method on a slightly different transformation, where exceptions
to conclusions of rules do not need to be given explicitly by the extra-condition ~ —p in
equation (3).

Note that these methodologies can be seen as a refinement of the direct use of the trans-
formation presented in section 5.7.

5.10 Abduction through deduction from the completion

In the proposals presented so far, hypotheses are generated by backward reasoning with
the clauses of logic programs used as inference rules. An alternative approach is presented
in [Console et al.91]. Here clauses of programs are interpreted as if-halves of if-and-only-if
definitions that are obtained from the completion of the program [Clark78] restricted to
non-abducible predicates. Forward reasoning with the only-if-halves of these definitions,
starting from the observation to be explained, generates abductive hypotheses deductively.

Given a logic program P with abducible predicates A without definitions in P, let P
denote the completion of the non-abducible predicates in P. An explanation formula
for an observation () is the most specific formula F such that

FPe U {0} E F,

where ' is more specific than F' iff = F' — F".

11

The authors define also a proof procedure that generates explanation formulas for obser-
vations. This proof procedure unfolds a given observation O by means of the completion
F-. Termination and soundness of the proof procedure are ensured for a restricted class
of programs (i.e. hierarchical). The explanation formula resulting from the computation
characterises all the different abductive explanations for O, as exemplified in the following
example.

Example 5.13
Consider the following program P

wobbly-wheel +— broken-spokes
wobbly-wheel «— flat-tyre
flat-tyre +~— punctured-tube
flat-tyre — leaky-valve,

where the predicates without definitions are considered to be abducible. The completion
Fe is:
wobbly-wheel — broken-spokes V flat-tyre

flat-tyre «— punctured-tube V leaky-valve.
If O is wobbly-wheel then the most specific explanation F is
broken-spokes V punctured-tube v leaky-valve,
corresponding to the abductive explanations &; = {broken-spokes}, A; = {punctured-tube)
and A; = {leaky-valve].

A discussion of the general phenomenon that reasoning with the if-halves of definitions
can often simulate reasoning with the only-if-halves, and vice versa can be found in
[Kowalski91].

6 Abduction and Truth Maintenance

In this section we will consider the relationship between truth maintenance (TM) and
abduction. TM systems have historically been presented from a procedural point of view.
However, we will be concerned primarily with the semantics of TM systems and the rela-
tionship to the semantics of abductive logic programming.

A TM system is part of an overall reasoning system which consists of two components: a

domain dependent problem solver which performs inferences and a domain independent
TM svstem which records these inferences. Inferences are comunicated to the TM system

by means of justifications, which in the simplest case can be written in the form

P+=P,sPn

expressing that the proposition p can be derived from the propositions py,...,p.. Jus-
tifications include premises, in the case n = 0, representing propositions which hold in
all contexts. Propositions can depend upon assumptions which vary from context to
contexl.

TM systems can also record nogoods, which can be written in the form

"[Ph-qunL

42 —

meaning that the propositions py,...,p, are incompatible and therefore cannot hold to-
gether.

Given a set of justifications and nogoods, the task of a TM system is to determine which
propositions can be derived on the basis of the justifications, without violating the no-
goods.

For any such TM system there is a straight-forward correspondence with abductive logic
programs:

e justifications correspond to propositional Horn clause programs,

» nogoods correspond to propositional integrity constraints,

® assumptions correspond to abducible hypotheses, and

s contexts correspond to acceptable sets of hypotheses.

The semantics of a TM system can accordingly be understood in terms of the semantics of
the corresponding propositional logic program with abducibles and integrity constraints.

The two most popular systems are the justification-based TM system (JTMS) of [Doyle79]
and the assumption-based TM system (ATMS) of [deKleer88).

6.1 Justification-based truth maintenance

A justification in a JTMS can be written in the form

P PivevoaPray ™ Pasiee 3™ Py

expressing that p can be derived (i.e. is IN in the current set of beliefs) if py,...,p, can
be derived {(are IN) and pn+1,...,Pm cannot be derived {are ouT).

For each proposition oceurring in a set of justifications, the JTMS determines an IN or
OUT label, taking care to avoid circular arguments and thus ensuring that each propo-
sition which is labelled IN has well-founded support. The JTMS incrementally revises
beliefs when a justification is added or deleted.

The JTMS uses nogoods to record contradictions discovered by the problem solver and to
perform dependency-directed backtracking to change assumptions in order to restore

consistency. In the JTMS changing an assumption is done by changing an OUT label to
IN.

Suppose, for example, that we are given the Justifications
P~y

g +—~r

corresponding to the propositional form of the Yale shooting problem. As [Morris88]
abserves, these correctly determine that ¢ is labelled IN and that r and p are labelled
OUT. If the JTMS is subsequently informed that p is true, then dependency-directed
backtracking will install a justification for r, changing its label from QUT to IN. Notice

43

that this is similar to the behaviour of the extended abductive proof procedure described
in example 5.4, section 9.2.

Several authors have observed that the JTMS can be given a semantics corresponding
to the semantics of logic programs, by interpreting justifications as propositional logic
program clauses, and interpreting ~ p; as NAF of p;. [Pimentel&Cuadrado89, Elkan90,
Kakas&Mancarella90¢, Giordano& Martellid0}, in particular, show that a well-founded la-
belling for a JTMS corresponds to a stable model of the corresponding logic program. Sev-
eral anthors [Reinfrankd: Dessler89, Fujiwaral-Honiden89, Elkan90, Kakas&Mancarella%0c|
exploiting the interpretation of stable models as autoepistemic expansions
[Gelfond& Lifschitz88], have shown a correspondence between well-founded labellings and
stable expansions of the set of justifications viewed as autoepistemic theories.

The JTMS can also be understood in terms of abduction using the abductive approach
to the semantics of NAF, as shown in [Kakas&Mancarella90c|, [GiordanoéMartelli90],
[Dung9le). This has the advantage that the nogoods of the JTMS can be interpreted as
integrity constraints of the abductive framework. The correspondence between abduction
and the JTMS is reinforced by [Satoh&Iwayama9l], who give a proof procedure to com-
pute generalised stable models using the JTMS (see section 5.5).

6.2 Assumption-based truth maintenance

Justifications in ATMS have the more restricted Horn clause form

D ¥~ PlyseeyPn-

However, whereas the JTMS maintains only one implicit context of assumptions at a time,
the ATMS explicitly records with every propesition the different sets of assumptions which
provide the foundations for its belief. In ATMS assumptions are propositions that have
been pre-specified as assumable. Each record of assumptions that supports a proposition
p can also be expressed in Horn clause form

P = f1,...,0

and can be computed from the justifications, as we illustrate in the following example.

Example 6.1
Suppose that the ATMS contains justifications
p ~ a,b
p +~— bed
g ~ a,c
g — d, e
and the single nogood
—(a, b, e)

where a, b, ¢, d, e are assumptions. Given the new justification

rep4q

- 44 —

the ATMS computes explicit records of r's dependence on the assumptions:

r — a,be
r — boede

The dependence
r+— abd e

is not recorded because its assumptions violate the nogood. The dependence
re—a b e d

is not recorded because it is subsumed by the dependence

r+—a,b ¢

[Reiter&zdeKleer87) show that, given a set of justifications, nogoods, and candidate as-
sumptions, the ATMS can be understood as computing minimal and consistent abduc-
tive explanations in the propositional case (where assumptions are interpreted as abduc-
tive hypotheses}). This abductive interpretation of ATMS has been developed further by
{Inouedl], who gives an abductive proof procedure for the ATMS.

Given an abductive logic program P and goal G, the explicit construction in ALP of a
set of hypotheses A, which together with P implies G and together with P satisfies any
integrity constraints [/, is similar to the record

G~ A

computed by the ATMS. There are, however, some obvious differences. Whereas ATMS
deals only with propositional justifications, relying on a separate problem solver to instan-
tiate variables, ALP deals with general clauses, combining the functionalities of both a
problem solver and a TM system. Ignoring the propositional nature of a TM system, ALP
can be regarded as a hybrid of JTMS and ATMS, combining the non-monotonic negative
assumptions of JTMS and the positive assumptions of ATMS, and allowing both positive
and negative conditions in both justifications and nogoods [Kakasé:Mancarellad0c]. Other
non-monotonic extensions of ATMS have been developed by [Junker89] and
[Rodi&:Pimentel01].

It should be noted that one difference between ATMS and ALP is the requirement in
ATMS that only minimal sets of assumptions be recorded. This minimality of assumptions
1s essential for the computational efficiency of the ATMS. However, it is not essential for
ALT. but can be imposed as an additional requirement when it is needed.

7 Conclusions and Future Work

In this paper we have surveyed a number of proposals for extending logic programming to
perform abductive reasoning. We have seen that such extensions are closely linked with
other extensions including NAF, integrity constraints, explicit negation, default reason-
ing, and belief revision.

— 45 —

Perhaps the most important link, from the perspective of logic programming, is that be-
tween abduction and NAF. On the one hand, we have seen that abduction generalises
NAF, to include not only negative but also positive hypotheses, and to include general
integrity constraints. On the other hand, we have seen that logic programs with abduc-
tion can be transformed into logic programs with NAF together with integrity constraints
or explicit negation. The link between abduction and NAF includes both their semantics
and their implementations.

We have argued that semantics can best be understood as providing a specification for
an implementation. From this point of view, a semantics is a “declarative” specification,
which might be non-constructive, but need not be concerned with meaning-theoretic no-
tions such as “truth” and “falsity”. Thus an overtly syntactic, but non-constructive,
specification given in terms of maximally consistent extensions is just as much a “seman-
tics” as one involving {covertly syntactic) stable models.

We have seen the importance of clarifying the semantics of abduction and of defining a
semantics that helps to unify abduction, NAF, and default reasoning within a common
framework. We have seen, in particular, that an implementation which is incorrect under
one semantics (e.g. [Eshghi&Kowalski89]) can be correct under another (e.g. [Dung91a]).

Despite the recent advances in the semantics of NAF there is still room for improvement.
Omne possibility is to explore further the direction set by [Kakas&Mancarella91d] and
[Dung9la] which characterises the acceptability of a set of hypotheses A recursively in
terms of the non-acceptability of all atacks against A. Another is to identify an appropri-
ate concept of maximal consistency, perhaps along the lines of the retractability semantics
suggested by |KowalskifSadri88]. The two possibilities need not be mutually exclusive.
The former. recursive specification would be closer to an implementation than the latter.
But the two specifications might otherwise be equivalent.

The use of abduction for NAF is a special case. It is necessary therefore to define a
semantics that deals appropriately both with this case and with the other cases. In par-
ticular, we need to deal both with abductive hypotheses which need to be maximised for
default reasoning and with other abductive hypotheses which need to be minimised. It is
interesting that the abductive proof procedure can be regarded as both maximising and
minimising the two kinds of abducibles. It maximises them in the sense that it (locally)
makes as many abductive assumptions as are necessary to construct a proof. It minimises
them in the sense that it makes no more assumptions than necessary. Perhaps this is
another case where the implementation of abduction is more correct than the (semantic)
specification.

It is an important feature of the abductive interpretation of NAF that it possesses an
elegant and powerful proof procedure, which significantly extends SLDNF and which can
be extended in turn to accommodate other abducibles and other integrity constraints.
Future work on the semantics of ALP needs to preserve and develop further this existing
close relationship between semantics and proof procedure.

The abductive proof procedure needs to be extended and improved in various ways. One

such extension is the generation of non-ground hypotheses, containing variables. This
problem, which has been studied in part by [Eshghi88], [Poole87] and [Chen& Warren89],

involves the treatment of the equality predicate as a further abducible. Because NAF is
a special case of abduction, the problem of constructive negation in logic programming
Chan88, Barbuti et al.90] is a special case of constructive abduction.

\We have argued that the implementation of abduction needs to be considered within
a broader framework of implementing knowledge assimilation {KA). We have seen that
abduction can be used to assist the process of KA and that abductive hypotheses them-
selves need to be assimilated. Moreover, the general process of checking for integrity in
KA might be used to check the acceptability of abductive hypotheses.

It seems that an efficient implementation of KA can be based upon combining two pro-
cesses: backward reasoning both to generate abductive hypotheses and to test whether
the input is redundant and forward reasoning both to test input for consistency and to
test whether existing information is redundant. Notice that the abductive proof proce-
dure for ALP already has this feature of interleaving backward and forward reasoning.
Such implementations of KA need to be integrated with improvements of the abductive
prool procedure considered in iselation.

\We have seen that the process of belief revision also needs to be considered within a KA
context. [n particular, it could be useful to investigate relationships between the belief
revision frameworks of [Gardenfors88, Doyle9l, Nebel89, Nebel91] and various integrity
constraint checking and restoration procedures.

The extension of logic programming to include integrity constraints is useful both for
abductive logic programming and for deductive databases applications. We have seen,
however, that for many applications the use of integrity constraints can be replaced by
clauses with explicitly negated conclusions. Moreover, the use of explicit negation seems
to have several advantages, including the ability to represent and derive negative infor-
mation.

The relationship between integrity constraints and explicit negation needs to be inves-
tigated further: To what extent does this relationship, which heolds far abduction and
default reasoning, hold for other uses of integrity constraints, such as those CONCErnIng
deductive databases; and what are the implications of this relationship on the semantics
and implementation of integrity constraints?

Whatever the answers to these questions, it is clear that the combination of explicit
negation and implicit NAF is very useful for knowledge representation in general. It is
important, however, to obtain a deeper understanding of the relationships between these
two forms of negation. It is clear, for example, that if ~ p holds then —p must be
consistent. However, it is not the case that if = p is consistent, then ~ p holds, as in the
following example

p=~p

Thus, there is no simple relationship whereby one form of negation clearly subsumes the
other.

47 —

Another problem, which we have already mentioned, is how to decide whether a negative
condition should be understood as explicit negation or as NAF. One possibility might be
simply to interpret the negation as NAF if the closed world assumption applies, and as
explicit negation if the open world assumption applies. Moreover the presence of any rules
in which the predicate of the condition occurs explicitly negated in a conclusion would
suggest that the open world assumption applies and the negated condition therefore is ex-
plicit. Another, complementary possibility is to recognise that the open world assumption
must apply to any predicate explicitly declared as abducible. Consequently, any negated
condition whose predicate is abducible must be interpreted as explicit negation.

We have seen that explicit negation does not obey the laws of contrapesition. This is
further strong evidence that the semantics of clauses should be interpreted in terms of
inference rules and not in terms of implications. Because of the similarity between default
rules in Default Logic and clauses interpreted as inference rules in logic programming,
this provides further evidence also for the possibility of developing a uniform semantics
and implementation in which NAF, abduction, and default reasoning can be combined.

We have remarked upon the close links between the semantics of logic programming with
abduction and the semantics of truth maintenance systems. The practical consequences of
these links, both for building applications and for efficient implementations, need further
investigation. What is the significance, for example, of the fact that TMSs and ATMSs
correspond only to the propositional case of logic programs?

We have observed a duality between forward reasoning with only-if-halves of definitions
and logic programming-style backward reasoning with if-halves. Could this duality apply
also to a possible correspondence between inconsistency in truth maintenance systems
and failures in logic programming?

More generally, are there other links to be discovered between extensions of logic program-
ming and other uses of logic in Al7 To what extent, for example, does logic programming
need to he extended to include reasoning with disjunctive information? [n particular. can
disjunctions
pVa

he adequately represented by clauses of the form

p==~9q

q =~ p’
We believe that our survey supports the belief that abduction is an important and powerful
extension of logic programming. It also points forward to the possibility that at some

time in the future further extensions of logic programming might be fully adequate and
appropriate for many, if not all, knowledge representation and reasoning tasks in Al

Acknowledgements
This research was supported by Fujitsu Research Laboratories and by the Esprit Basic

Research Action Compulog. The authors are grateful to Katsumi Inoue and Ken Satoh
for helpful ecomments on an earlier draft.

References

[Allemand et al.87] Allemand, D., Tanner, M., Bylander, T., Josephson, J., On the com-
putational complezity of hypothesis assembly. IJCAIST, Milan, Italy (1987)

[Aptd:Bezen90] Apt, K.R., Bezem, M., Acyclic programs. Proc. Tth ICLP, MIT Press
(lﬂgﬂ} 579-597

[Baral&Subrahmanian90] Baral, C.R., Subrahmanian, V.S., Stable and ezfension class
theory for logic programs and default logics. Proc. 3rd lnternational Work-
shop on Non-Monotonic Reasoning, Lake Tahoe, California (1990)

[Barbuti et al.90] Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F., 4 transforma-
tional approach to negation in logic programming. Journal of Logic Program-
ming, Vol.8 (1990) 201-228

[Bidoit& Froixdevaux88] Bidoit, N., Froixdevaux, Ch., Negation by default and non strat-
ifiable logic programs. Internal report 437 (1988)

[Brewka89] Preferred subtheories: an extended logical framework for default reasoning.
Proc. IJCAISO (1989) 1043-1048

[Brogi et al.f0] Brogi, A., Mancarella, P., Pedreschi, D., Turini, F., Compesition operators
for logic theories. Proc. Symp. on Computational Logie, LCNS, Springer
Verlag (1990)

[Bry90] Bry, F., Intensional updates: abduction via deduction. Proc. Tth ICLP90,
MIT Press (1990) 561-575

[(Chan8s Chan, D., Constructive negation based on the completed database. Proc. 5th
ICLP {R.A. Kowalski and K. Bowen eds.) MIT Press, Cambridge, Mass.
(1988) 111-125

{Charniak&McDermott85) Charniak, E., McDermott, D.. Introduction to artificial intel-
ligence. Addison-Wesley (1985)

[Chen&.“’armnsg] Chen, W., Warren, D.5., Abductive Logic Programming. Research Re-
port. Dept. of Comp. Science, State Univ. of New York at Stony Brook
(1989)

[ClarkT8] Clark,K.L., Negation as failure. Logic and Data Bases, Gallaire H. &
Minker.]. eds. (1978) 293-322

[Console et al.89] Console, L., Dupré, D., Torasso, P, A Theory for diagnosis for incom-
plete causal models. Proc. 11th IJCAIB9 (1989) 1311

[Console et al.91] Console, L., Dupré, D., Torasso, P. On the relationship between abduc-
tion and deduction. Journal of Logic and Computation, 2(5) (1991)

[Cox&zPietrzykowski86] Cox, P, T., Pietrzykowski, T., Causes for events: their computa-
tion and applications. Proc. CADES6 (1986) 608-621

[Decker86] Decker, H., Infegrity enforcement on deductive databases. Proc. EDS36,
Charleston, SC (1986) 271-285

[Doyle79] Doyle, J., A4 truth maintenance system. Artif. Intell. 12 (1979) 231-272

49

[Doyled1] Doyle, J., Rational belief revision. Proc. 2nd International Conference on
Principles of Knowledge Representation and Reasoning, Cambridge, Mas-
sachusetts (1991) 163

[Dung9la] Dung, P.M., Negation as hypothesis: an abductive foundation for logic pro-
gramming Proc. ICLP91, MIT Press (1991)

[Dung®1b] Dung, P.M., Ruamviboonsuk, P., Well-founded reasoning with classical
negation. Proc, 1st International Workshop on Logic Programming and Non-
monotonic Reasoning, Nerode, Marek and Subrahmanian eds., Washington
DC (1991) 120

[Dung9ic] Dung, P.M., An abductive foundation for non-monotonic truth maintenance.
Proc. 1st World Conference on Fundamentals of Al, Paris, M.de Glas ed.
(1991)

[Elkan90] Elkan A rational reconstruction of non-monotonic truth maintenance sys-
tems. Artif. Intell. 43, (1990) 219-234

[Eshghi88] Eshghi, K., Abductive planning with event caleulus. Proc. 5th ICLP88, MIT
Press (1988) 562

[Eshghi90] Eshghi, K., Diagnoses as stable models. Proc. 1st International Warkshop
on Principles of Diagnosis, Menlo Park (1990)

[Eshghi&Kowalskif8] Eshghi, K., Kowalski, R.A., Abduction through deduction. Technical
Report, Department of Computing, Imperial College, London (1988)

[Eshghi&zKowalski89] Eshghi, K., Kowalski, R.A., Abduction compared with negation by
Jatlure. Proc. 6th ICLP89, MIT Press (1989) 234-255

[Evans89] Ewvans, C.A., Negation as failure as an approach to the Hanks and McDer-
mott problem. Proc. second Int. Symp. on Al, Monterrey, Mexico (1989)

[Evans&Kakas91a] Evans, C.A., Kakas, A.C., Hypothetico-deductive reasoning. to appear
in FGCS-92 (1992) '

{hakas9lb] Kakas, A.C., On the evolution of databases. Technical Report, Logic Pro-
gramming Group, Imperial College, London (1991)

[Finger& Genesereth85] Finger, J.J., Genesereth, M.R., RESIDUE: a deductive approach
to design synthesis. Report no. CS-85-1035, Stanford University {1983)

[Fujiwarad-Honiden89] Fujiwara, Y., Honiden, S., Relating the TMS to Autoepistemic
Logic. Proc. IJCAI89 (1989) 1199-1205

{Gabbay&Kempson91] Gabbay, D.M., Kempson, R.M., Labelled abduction and relevance
reasoning. Workshop on Non-Standard Queries and Non-Standard Answers,
Toulose, France (1991)

[Gallaired-Nicolas78] Gallaire, H., Nicolas, J.M., Data base: theory vs. interpretation.

Gallaire and Minker (eds.)} Logic and Data Bases, Plenum Press, New York,
(1978) 33-54

[Gérdenfors88] Gardenfors, P., Knowledge in flur: modeling the dynamics of epistemic
states. MIT Press, Cambridge, MA, (1988)

[Geffner90] Geffner, H., Casual theories for non-monotonic reasoning. Proc. 8th
AAAI90 (1990) 524

[Gelfond&Lifschitz88] Gelfond, M., Lifschitz, V., The Stable model semantics for logic
programs. Proc. fifth Int. Conf. and Symp. on LP, MIT Press (1988) 1070-
1080

[Gelfond&Lifschitz90] Gelfond, M., Lifschitz, V., Logic programs with classical negation.
Proc. seventh Int. Conf. and Symp. on LP, MIT Press (1990) 579-597

[Goebel et al.86] Goebel, R., Furukawa, K., Poole, D., Using definite clauses and integrity
constraints as the basis for a theory formation approach to diagnostic rea-

soning. Proc. ICLP86 211-222

[Giordano&Martelli90] Giordano, L., Martelli, A., Generalized stable model semantics,
truth maintenance and conflict resolution. Proc. ICLP90 {1990) 427-411

[Hanks&McDermott86] Hanks, S., McDermott, D., Default reasoning, non-monotonic
logics, and the frame problem. Proc. Am. Assoc. Artif. Intell. Natl. Conf.
Philadelphia {1986) 328-333

(Hanks&McDermott87] Hanks, S., McDermott, D., Default reasoning, non-monotonic
logics, and the frame problem. Al Journal 35 (1987}

[Hobbs et al.91] Hobbs, J.R., Stickel, M., Appelt, D., Martin, P.. Interpretation as ab-
duction. Technical Report 499 Artificial Intelligence Center, Computing and
Engineering Sciences Division (1990)

[Hobbs90] Hohbbs, J.R., An integrated abductive framework for discourse interpretation.
Froc. AAAT Symposium on Automated Abduction, Stanford (1990) 10

[Junker89] Junker, U., A correct non-monotonic ATMS. Proc. 11th [JCAL, Detroit
(1989) 1049-1054

[Inouedo] Inoue, K., An abductive procedure for the CMS/ATMS. Proc. ECAI-90 In-
ternational Workshop on Truth Maintenance, Stockholm, Sweden, Mar-
tins(ed.), Springer Verlag (1991)

[Inoue91a] Inoue, K., Hypothetical reasoning in lagic programs. ICOT Research Center
report {1991}

[Inoue41h] Inoue, K., Eztended logic programs with default assumptions, Proc. ICLP91.
Paris (1991) 490

[Jaffar&rLassez87] Jaffar, J., Lassez, J-L, Constraint Logic Programming. POPLET, Mu-
nich Germany (1987)

[Kakas91] Kakas, A. C., Deductive databases as theories of belief. Technical report,
Logic Programming Group, Imperial College, London (1991)

[Kakas& Mancarella89] Kakas, A. C., Mancarella, P., Anemalous models and abduction.
Proc. 2nd Int. Symp. on Artif. Int., Monterrey, Mexico (1989)

[Hakas&MemcareHaQﬂa] Kakas, A. C., Mancarella, P., Generalized Stable Models: a Se-
mantics for Abduction. Proc. 9th European Conference on Artificial lntell-
gence, ECAI90, Stockolm (1990) 385-391

[Kakas&Mancarellad0b] Kakas, A. C., Mancarella, P., Database updates through ab-
duction. Proc. 16th International Conference on Very Large Databases,

VLBBO0, Brisbane, Australia (1990)

[Kakas&Mancarellad0c] Kakas, A. C., Mancarella, P., On the relation of truth mainte-
nance and abduction. Proc. of the 1st Pacific Rim International Conference

on Al, PRICAIQ0, Nagoya, Japan (1990)

[Kakas&Mancarella90d] Kakas, A. C., Mancarella, P., Abductive logic programming. Proc.
of NACLP90 Workshop on Non-Monotonic Reasoning and Logic Program-
ming, Austin, Texas (1990)

[Kakas&Mancarellala] Kakas, A. C., Mancarella, P., Knowledge assimilation and abdue-
tion. Proc. ECAI90 International Workshop on Truth Maintenance, Stock-

holm, Sweden, Martins(ed.), Springer Verlag (1991)

[KakaséMancarella0lb] Kakas, A. C., Mancarella, P., Preferred ertensions are partial
stable models. to appear in Journal of Logic Programming

[Kakas&Mancarella91c] Kakas, A. C., Mancarella, P., Negation as stable hypotheses. Proc.
1st International Workshop on Logic Programming and Non-Monotonic
Reasoning, Nerode, Marek and Subrahmanian eds., Washington DC (1991)

275

[KakasizMancarella91d] Kakas, A. C., Mancarella, P., Stable theories for logic programs.
Proc. ISLP91, San Diego (1991)

[deKleer86] deKleer, J., An assumption-based TMS. Artif. Intell. Journal 32 (1986)
[kowalski79] Kowalski, R.A., Logic for problem solving. New York: Elsevier (1979)

[Kowalski87] Kowalski, R.A., Belief revision without constraints. Computational Intelli-
gence, Volume 3, Number 3, N. Cercone, G. McCalla eds (1987) 194

(Kowalski90] Kowalski, R.A., Problem and promises of computational logic. Proc. Sym-
posium on Computational Logic, Lloyd ed., Springer Verlag (1990)

[Kowalski9l] Kowalski, R.A., Legic programming in artificial intelligence. Proc. IJCAI9].
Sidney (1991)

[Kowalskid:Sadri87] kowalski, R.A., Sadri, F., An application of general purpose theorem-
proving te database integrity. J. Minker ed., Foundations of Deductive
Databases and Logic Programming, Morgan Kaufmann Publishers, Palo
Alto (1987)

[Kowalski&:5adri88] Kowalski, R.A., Sadri, F., Knowledge representation without integrity
constraints. Technical Report, Department of Computing, Imperial College,
London (1988}

{KowalskideSadrif0] Kowalski, R.A., Sadri, F., Legic programs with exception. Proc. Tth
ICLP30, MIT Press (1990) 598-613

[Kowalskid:Sergot86] Kowalski, R.A., Sergot, M., A logic-based calculus of events. New
Generation Computing, vol.4 (1986) 267

— 59 —

[Kunifiji et al.86] Kunifuji, S., Tsurumaki, K., Furukawa, K., Consideration of a
hypothesis-based reasoning system. Journal of Japanese Society for Artifi-
cial Intelligence, Vol. 1, No. 2 (1986) 228-237

[Lever91] Lever, J. M., Combining induction with resolution in logic programming.
PLD Thesis, Department of Computing, Imperial College, London (1991)

[Levesque89] Levesque, H.J., A knowledge-level account of abduction. Proc. 11th Interna-
tional Joint Conference on Al (1989) 1061

[Lloyd87] Lloyd, J. W., Foundations of Logic Programming. second edition, Springer
Verlag (1987)

[Lloyd&:Topor85] Lloyd, J. W., Topor, R.W., 4 basis for deductive database system. J.
Logic Programming 2 (1985) 93-109

[Marek& Truszczynski®9] Marek, W., Truszczynski, M., Stable semantics for logic pro-
grams and default theories. Proc. NACLP89, MIT Press (1989)

iMinker82] Minker, J., On indefinite databases and the closed world assumption. Proc.
of the 6th Conference on automated Deduction (New York) Springer-Verlag
Leéture Notes in Computer Science, No 138 (1982) 202-308

[Miyaki et al.84] Miyaki, T., Kunifuji, S., Kitakami, H., Furukawa, K., Takeuchi, A.,
Yokota, H., A knowledge assimilation method for logic databases. Interna-
tional Symposium on Logic Programming, Atlantic City, NJ. (1984) 118-125

{Morris88] Marris, P. H., The enomalous eztension problem in default reasoning. Al
Journal 35 (1988) 383-399

[(Nebel29] Nebel, B., 4 knowledge level analysis of belief revision. Proc. 1st Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing, Brachman, Levesque and Reiter eds., San Meteo, CA. Morgan Kauf-
mann (1989) 301-311

[Nebel91] Nebel, B., Belief revision and defaull reasoning: syntar-based approaches.
Proc. 2nd International Conference on Principles of Knowledge Represen.
tation and Reasoning, Allen, Fikes and Sandwell eds., Cambridge, Mas-
sachusetts [1991) 417

[Pearl87) Pearl. J., Embracing causality in formal reasoning. Proc. AAAI 87, Seattle,
Washington (1987) 360-373

[Peirce3l] Peirce, C.S.. Collected papers of Charles Sanders Peirce. Vol.2, 1931-1958,
Hartshorn et al. eds., Harvard University Press

[Pereira et al.91a) Pereira, L.M., Aparicio, J.N., Alferes, J.J., Non-monaotonic reasoning
with well-founded semantics. Proc. ICLP91, MIT Press (1991) 475

[Pereira et al.91b] Pereira, L.M., Aparicio, J.N., Alferes, J.J., Contradiction remonal
within well-founded semantics. Proc. 1st International Workshop on Logic
Programming and Non-monotonic Reasoning, Nerode, Marek and Subrah-
manian eds., Washington DC (1991) 105

[Pereira et al.91¢] Pereira, L.M., Aparicio, J.N., Alferes, J.J., Derivation procedures for
extended stable models. Proc. IJCAI91 (1991) 863-868

|Pereira et al.91d] Pereira, L.M., Aparicio, J.N., Alferes, J.J., Counterfactual reasoning
based on revising assumptions. Proc. ISLP91, San Diego (1991)

[Pimentel&Cuadrado89] Pimentel, S. G., Cuadrado, J. L., A truth maintenance system
based on stable models. Proc. NACLP89, MIT Press (1989)

[Pople73] Pople, H. E. Jr., On the mechanization of abductive logic. Proc. 3rd 1JCAI
(1973) 147-152

[Poole8T7] Poole, D., Variables in hypotheses. Proc. IJCAIBT (1987) 905-908

[Poole88a] Poole, D., A logical framework for default reasoning. Artif. Intell. vol.36
(1988) 27-47

[Poole88b] Poole, DD., Representing knowledge for logic-based diagnosis. Proc. of the Int.
Conf. on Fifth Generation Computer System (1988) 1282-1290

[Poole et al.B7] Poole, D., Goebel, R.G., Aleliunas, Theorist: a logical reasoning system
for default and diagnosis. N. Cercone and G. McCalla eds. The Knowl-
edge Fronteer: Essays in the Representation of Knowledge, Springer Verlag,
(1987) 331-352

{Preist&Eshghi92] Preist, C., Eshghi, K., Consistency-based and abductive diagnoses as
generalised stable models, Proc. FGCS (1992)

[Przymusinski89] Przymusinski, T.C., On the declarative and procedural semantics of logic
programs. Journal of Automated Reasoning, 5 (1989) 167-205

[Przymusinski90] Przymusinski, T.C., Eztended stable semantics for normal and disjunec-
tive pregrams. Proc. ICLP90 (1990) 458-477

Reggia83] Reggia, J., Diagnostic experts systems based on a sel-covering model, Inter-
national Journal of Man Machine Studies, 19(5) (1983) 437-460

Reinfrank&:Dessler89] Reinfrank, M., Dessler, 0., On the relation between truth mainte-

nance and non-monotonic logics. Proc. IJJCAIBY, Detroit, MI (1989} 1206-
1212

-

‘Reiter7T8] Reiter, R., On closed world data bases. Gallaire and Minker eds., (1978)
53-T6

'Reiter80] Reiter, R., 4 Logic for default reasoning. Artif. Intell. vol.13 (1,2) {1980)
81-132

'Reiter87] Reiter, R., A theory of diagnosis from first prineiple. Artif. Intell. Journal
vol.32 (1987)

'Reiter88] Reiter, R., On integrity constraints. Proc. 2nd Conference on Theoretical
Aspects of Reasoning about Knowledge, Moshe Y. Vardi ed., Pacific Grove,
California (1988) 97

[Reiter30] Reiter, R., On asking what a database knows. Proc. Symposium on Compu-
tational Logic, Lloyd ed., Springer Verlag (1990)

(Reiter&:deKleer87] Reiter, R., deKleer, J., Foundations of assumption-based truth main-
tenance systems: preliminary report. Proc. AAAIBT, Seattle (1987) 183-188

[Rodi&Pimentel91] Rodi, W.L., Pimentel, 5.G., A non-monotonic ATMS using stable
bases. Proc. 2nd International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Allen, Fikes and Sandwell eds., Cambridge, Mas-
sachusetts (1991) 485

[SaccadiZaniolo%0] Sacca, D., Zaniolo, C., Stable models and non determinism for logic
programs with negation Proc. ACM SIGMOD-S5IGACT Symp. on Principles
of Database Systems (1990) 205-217

[SatohdzIwayama91] Iwayama, N., Satoh, K., Computing abduction using the TMS. Proc.
ICLP91, Paris (1991)

[Satoh&Iwayama92] Iwayama, N., Satoh, K., 4 correct top-down proof procedure for a
general logic program with integrity constraints. I[COT Technical Report

(1992)

[Sattarf:Goebel89] Sattar, A., Goebel, R., Using crucial literals to select better theo-
ries. Technical Report, Dept. of Computer Science, University of Alberta.
Canada (1989)

[SelmandLevesqued0] Selman, B., Levesque, H.J., Abductive and default reasoning: a
computational core. Proc. AAATI0 (1990) 343-348

(Sergot83] Sergot M., A query-the-user facility for logic programming. Integrated Inter-
active Computer Sytem (eds. Degano and Sandwell) North Holland Press
(1983) 27-41

[Shanahan80] Shanahan, M., Prediction is deduction but ezplanation is abduction. Proc.
LICAIS9 (1989) 1055

[Stickel89] A prolog-like inference system for computing minimum-cost abductive expla-
nations in natural-language interpretation. Proc. Honk Kong Int. Computer

Conf. {1989)

[VanGelder et al.88) Van Gelder, A., Ross, K.A., Schlipf, J.5., Unfounded seis and the
well-founded semantics for general logic programs. Proc. ACM SIGMOD-
SIGACT, Symp. on Principles of Database Systems {1988)

Explanation in the Situation Calculus

Murray Shanahan

Imperial College
Department of Computing,
180 Queen’s Gate,
London SW7 2BZ.
England.

Tel: +44 71 589 5111 x 3076
Email: mps@doc.ic.ac.uk

April 1992
DRAFT

Abstract

Explanation, that is reasoning from effects to causes, is a form of
reasoning fundamental to Artificial Intelligence. The situation calculus is the
oldest and best known formalism for representing change in Artificial
Intelligence. Using the so-called stolen car problem as an example, this paper
explores different techniques for explanation within the framework of the
situation calculus. It discusses two styles of representation for explanation
problems: the standard style found in the existing literature, and an alternatve
style introduced here. Two approaches to explanation arc compared: the
deductive approach usually found in the literature, and a less common
ahductive approach.

Introduction

Much attention has been given to the problem of formalising prediction, that is
reasoning forwards in time from causes to effects, and in particular to the problem of
formalising default persistence to overcome the frame problem [MeCarthy, 1986], [Lifschite,
1986], [Kautz, 1986], [Haugh, 1987], [Lifschitz, 1987], [Shoham, 1988], [Baker, 1989].
Some attention has also been given to the converse problem of formalising temporal explanation
{or postdiction), that is reasoning backwards in time from effects to causes [Morgenstern and
Stein, 1988], [Lifschitz and Rabinov, 1989], [Shanahan, 1989], [Baker, 1989]. Temporal
explanation is certainly as important as prediction, as it underlies planning and diagnosis, as
will as being a lundamental mode of reasoning in its own right, so a thorough understanding of
its nature is basic to Artificial Intelligence.

The situation calculus [McCarthy and Hayes, 1969] is the oldest and best-understood
logic-based formalism for representing change in Al The sitvation calculus results from
choosing one of the simplest ontelogies possible for such a formalism: one which includes
situations, actions and fluents. A situation is an instantaneous snapshot of the world, and a
fluent is anything whose value is subject to change. Despite the simplicity of this ontology, the
situation calculus has considerable expressive power [Gelfond er af., 1991]. This paper 15 a
study of explanation within the framewaork of the sitwation calculus.! Two styles of
representation for explanation problems are compared: the standard style used in the existing
literature, and an aliernative style, And two fundamentally different approaches w explanation
are explored; the deductive approach and the abductive approach. The paper presents the
standard and alternative styles of representation first, then looks at the deductive approach,
using both styles, and finally investigates the abductive approach.

Most atlempts to formalise temporal explanation have adopted the deductive approach
[Morgenstern and Stein, 1988], [Lifschitz and Rabinov, 198%], [Baker, 1989], [Baker, 1991].
Suppose we have a formula T which captures the timeless laws of change in a given domain,
and a formula H representing when certain time-varying facts are true. According to the
deductive approach, the explanation of an additional such fact F will be among the logical
consequences of T A H ~ F. According to the abductive approach [Shanahan, 1989], an
explanation is a formula A such that T A H A A has F among its [ogical consequences.

Throughout this paper, [will vse the so-called stolen car problem (SCP) as a
benchmark [Kautz, [986]. Suppose I park my car in the morning and go to work. At lunch
time, I might reasonably apply default persistence and infer that the car is still where I left it.
However, when I return to the car park in the evening [find that it has gone. Its disappearance
requires an explanation. That is to say, we want to reason hackwards in time to the (possible)
causes of the car's disappearance. In this case, the only reasonable explanation for the car's
disappearance is that it was stolen some time between morning and evening. So my previous
conclusion that the car was still there at lunch time is open to question. The car may have been
stolen any time after I parked it and hefore I observed that it was gone, so T cannot say anything
about its whereabouts at lunch time.

1. Representing Explanation Problems in Situation Calculus

Several authors have attempied to deal with temporal explanation within the framework
of the situation calculus [Lifschitz and Rabinov, 1989], [Baker, 1989], [Baker, 1991]. The
ontology of the sitwation calculus includes situations, actions and fluents. I will employ

! Debates about the limitations of the sttuation calcolus are outside the scope of this paper. However, the
issues discussed are also relevant to other iemporal reasoning formalisms, such as the event calculus {Shanahan,
TRy,

variables of three sorts corresponding to this ontology.? We write Resuli(a,s) to denote the
situation which results when action a is performed in situation s, and we write Holds{(f.s) to
represent that fluent £ holds in situation s. If a fluent holds in a sitation then we say that it has
the value true, and if it does not hold, we say it has the value false.

To represent a particular domain using the situation calculus, we write two sets of
sentences, one set describing which fluents change value as a result of performing each action
(so-called axioms of motion), and one set describing which retain their value (so-called frame
axioms). The main concern of a great deal of research on the formal representation of change
has heen the frame problem, or how to eliminate the need to write explicit frame axioms. One of
the most successful attempts o overcome the frame problem is Baker's [1989], [1991].% His
solution does not suffer from the difficulties pointed out by Hanks and McDermott [1987] and
correctly handles ramifications (derived properties). It can also cope with certain explanation
problems. In particular, Baker [1989] represents the stolen car scenario as follows,

—Holds({Stolen,S0) (SR1)
§2 = Result{Wait,Result{Wait,S0)) (SR2)
Halds({Stolen,S2) {SR3)

Before discussing the merits of any particular approach to explanation, I would like to
question whether this is a good representation of the SCP in the first place. The meaning of
Result(Wait, Result(Wait,$0)) is the situation which results when two successive Wait actions
are performed in situation S0. The asscrtion that $2 equals this situation means that the only
rwo actions which oceur between 50 and 52 are the two Wait actions. Il is implicit in this
assertion that nothing else happens between S0 and S2. However, the whole point of the SCP
is that we do not know what actions take place between S0 and $2. We don’t know what §2
cquals in terms of the Result function. Since the intended meaning of Wait is an action which
has no effect, then it doesn’t seem likely that 52 equals Result{Wait,Result{Wait,S0)).4

However, sincc it is only by default that waiting has no effect, it is still possible to conclude
that one of the wait actions is responsible for the car’s disappearance.

Rather than half-heartcdly asserting that nothing happens between S0 and 52 and
allowing default reasoning to overide this assertion to conclude that wait aclions sometimes
have strange effects, a more correct representation of the SCP asserts nothing about §2 beyond .
the fact that it is the result of a sequence of actions which starts in situation S0. Then the aim of
explanation is to characterise $2 in terms of the result function, that is to characterise the
sequence of actions which starts in S0 and leads to a situation 82 in which the car is gone.

Accordingly, I suggest the following representation of the SCP,

Holds(Car-parked,S0) (ARI])
—Holds(Car-parked,S2) (AR2)
Follows(52.50) (ARZ)

where Follows is delined thus,

2 Variables begin with lower-case letiers, Predicate and function symbols begin with upper-case letiers.
All variables are universally quantified unless olberwise indicated.

3 To follow closely the argument of this paper, the reader will require some knowledge of Baker's
approach o the frame problem,

4 In fact, the very idea of a “wait” action seems rather strange, and the idea of a sequence of two wait
actions seems stranger still, Surely waiting is a pause between actions rather than an action in its own right. A
“sneeze” action might be an appropriate substituie, where sneczing is assumed to have no appreciable effect.

Follows(sc,sa) « sc=sa v (AR4)
Ja.sb [sc=Result(a,sb) » Follows(sh,sa}]

and where we have the following axiom of motion,
—Holds(Car-parked,Result(Steal,s)) (ARS)

The point being made here applies to explanation using the situation calculus in general,
and 1s not restricted to the SCP. Lifschitz and Rabinov [1989] use the same style as Baker to
represent a bloodless vanation of the Yale shooting problem [Hanks and McDermott, 1987). In
the usual Yale shooting problem, we are asked to consider whether the fluent Alive holds as a
result of loading, waiting and shooting, and are expected to conclude that it does not. Lifschitz
and Rabinov use the standard representation of the shooting problem, but then add an assertion
which is equivalent to,

Holds(Alive Result(Shoot,ResultWait, Result{ Load, 50))))

Their approach 1o explanation introduces the idea of a miracle, which is an unexpected
effect of an action. Once again, in their approach default reasoning is expected to overide the
ahove “half-hearted” assertion that nothing happens between loading and shooting to conclude
that in fact the Wait action unloads the gun. As before, [suggest that the task of explanation is
to determine exactly what sequence of actions takes place between loading and shooting. S0 we
might represent the bloodless Yale shooting problem like this.

S1=Result{Load. 50
S3=Result{Shoot,52)
Follows(82,51)
Holds{ Alive, 53}
where Follows is defined as before, and we have the following axiom of motion,
—Huolds(Loaded, Result{Unload,s))

The question then is what S2 equals in terms of the Result function. In what follows,
the style of representation exemplified by [Baker, 1989], [Baker, 1991] and [Lifschitz and
Rabinov, 1989] will he called the standard style, and that suggested here will be called the
alternative style. I will now examine both styles of representation in the context of the deductive
approach to explanation, and later will examine both styles in the context of the abductive
approach.

2. The Deductive Approach in the Standard Style

Underlying the deductive approach to explanation championed by Morgenstern and
Stein [1988], Baker [1989], [1991], and Lifschitz and Rahinov [1989] is a deductive approach
to the assimilation of knowledge. Let us suppose that we have a formula T which represents an
agent’s knowledge about the world. Then, if the agent learns that F is the case, where F is not a
conscquence of T, the deductive approach to assimilating F is simply to add it to T. The
tormula T A F then represents the agent’s knowledge about the world.

Using this approach, how is the SCP tackled within the framework of the situation
calculus? Let's consider the standard style of representation first. In addition to (SR1) 1o (SR3),
we need a frame axiom. A common frame axiom is,

[Holds(f,s) «> Holds(f Result(a,s))] < —Ab(a.f.s) (1)

_59 _—

The frame problem is normally overcome by minimising the extension of Ab in somc
way, using circumscription for example. In Baker's work [1989], [1991], this is achieved by
introducing an “existence-of-situations” axiom, then circumscribing, minimising Ab and
allowing the Result function to vary. This avoids the problem Hanks and McDermotl
encountered with McCarthy's formulation [McCarthy, 1986], [Hanks and McDermott, 1987].
However, since the SCP doesn’t involve actions with preconditions, it doesn’t run into the
Hanks-McDermott problem, and McCarthy's formulation, which minimises Ab and allows

Holds to vary, is adequate.

Initiaily, we know just (SR1) and (SR2). With Wait the only action in the domain of
discourse, nothing is abnormal, so minimising Ab using either McCarthy’s or Baker's
technigue yields simply,

—-Ab(a.f,5)
from which we can conclude,

—Holds(Stolen,S2)

Using the deductive approach to explanation, when we learn (SR3) we simply add it to
(SR1), (3R2) and (1), and derive a new set of conclusions. From (SR1) to (SR3) and (1),
Baker [1989] zets,

AbiWait,Stolen, S0} v Ab(Wait,Stolen,51)

This seems to he the conscquence we intuitively expect, using the standard style of
representation: the car is either stolen during the first Wait action or dunng the second, and we
cannot say for sure which of these disjuncts is true. Minimising Ab simply reduces the set of
models to thase in which one of the disjuncts is true, the other one false, and Ab is false for
everything else. However, this consequence doesn’t really constitute an explanation at all. It
simply says that one of the Wait actions must have been abnormal. From (1), it can be seen that
the abnormality of a Wait action is not sufficient to bring about a change in the value of Stolen.
It is a necessary condition of such a change, not a sufficient one.

Furthermore, if the domain is widened a little, other difficulties anise. Supposc the
domain includes actions with preconditions, thus necessitating a form of minimisation different
to McCarthy's. The hest-known candidates at present are chronological minimisation [Shoham,
19881, [Kautz, 1986), [Lifschitz, 1986), causal minimisation [Haugh, 1986], [Lifschitz, 1987]
and Baker's state-based minimisation [1989], [1991]. As Baker points out [1989],
chronological minimisation, which postpones change until as late as possible, will insist that the
car is stolen during the sceond Wail action; causal minimisation can be modified to cope with
explanation {Lifschitz and Rabinov, 1989], but has problems with ramifications (derived
properties); and his own approach, whilst adequaie for the simple version of the problem
presented above, falls apart as soon as another fluent is introduced which holds in S0.

Why should the need to tackle explanation problems interfere with our efforts to
overcome the frame problem? In a later section, I will discuss the abductive approach to

explanation, which doesn't interfere with minimisation in any way, but first I will examine the
deductive approach applied to the altemnative style of representation suggested in Section 1.

3. The Deductive Approach in the Alternative Style

What happens when the deductive approach to explanation is used with the alternative
style of representation? From (AR1) to (AR4) and (1), we have,

Ja,sa,sb |Ab(a,Car-parked,sa) A sb=Result(a,sa) A
Follows(sa,50) ~ Follows(52,5h)]

—ﬁ'D—

From (AR5} and (1), minimising Ab using either McCarthy's or Baker’s approach, we
hawve,

Ab(a,f,s) &+ a=5teal A f=Car-parked A Holds(Car-parked.s)

and therefore,
dsa.sb [sb=Result{Steal,sa) ~ Follows(sa,50) ~ Follows(52,5h)]

In other words, there is a Steal action between situations SO and S2, which is the
intuitively correct explanation. To simplify sentences of the above form, [introduce a new
predicate. The formula Between(a,s1,52) represents that an action a occurs between situations
51 and s2. and is defined as {ollows.

Between(a,sa,sd) « 3sbh,sc [sc=Result(a,sb) A {ARG)
Follows{sb,sa) A Follows(sd,sc)]

Then, the above explanation of the car’s disappearance can be abbreviated to,
Between{Sweal 50,823

So the deductive approach to the SCP seems to work using the alternative
representation. Unlike the standard representation, the alternative representation doesn’t
encounter difficulties with explanation problems in richer domains. Suppose that we employ
Baker's approach to minimisation — the Result function is allowed to vary, and there is an
axiom asserting, for all possible combinations of fluents, the existence of a situation in which
that combination holds. The problem that Baker reports [1989] using the standard
representation is that the assertion that the car is not in the car park in 52 forces a new
abnormality. There is a vanety of choices for this abnormality, each of which satisfies Axiom
(1) whilst allowing the car to disappear, Unfortunately, in a domain of any complexity, some of
them are both counter-intuitive and minimal.

With the alternative representation, using Baker's approach to minimisation, this
problem simply doesn’t arisc. The assertion that the car is not in the car park in 52 does not
force a new abnormality. Rather, it forces a Steal action to occur between S0 and $2, and Steal
actions are abnormal with respect 1o Car-parked anyway. So the minimisation of Ab is
unaffected,

However, the approach described here is not complete without further minimisation to
eliminate the possibility of other disruptive actions taking place between S0 and $2. Suppose
the domain 15 expanded to include the fluent Guarded, which means that a security guard is on
duly in the car park, and the two actions Start-tea, which represents that the guard goes for a tea
break, and End-tca, which represents that he returns from a tea break. Initially the car park is
guarded, but while the guard is at tea, it is unguarded.

Holds(Guarded,50) {ART)
—Holds{Guarded Result(Start-tea,s)) {ARR)
Holds{Guarded,Result(End-tea,s)) {AR9)

From (AR1) to (AR9), and knowing nothing about the guard's tea breaks, we would
like to conclude by default that the car park is still guarded in S2. Unfortunately, (AR3) is too
weak 1o allow this conclusion. It simply says that there is some sequence of actions between S0
and 52, and does not disallow the possibility that a Start-tea action occurs without a
corresponding End-tza, and that Guarded docsn’t hold in 52,

The alternative style of representation for explanation problems presupposes a
framework which can cope with sequences of actions about which not everything is known. In
the SCP, for example, we don't know what actions have taken place between SO and 52.
However, we would like to assume by default that nﬂﬂ:u'ng happens we don’t know about, thus
permitting the conclusion that the guard is stll on duty in 52, Although the issue is tangential to
the main topic of this paper, I will outline a way to achieve this.

Naively, it seems that what we would like to do is minimise Between in parallel with
Ab. However, in the presence of an existence-of-situalions axiom, this minimisation would be
meaningless, because all possible sequences of actions mapping one situation to another are
present in all models. What we really want to do is to select only models such that the sequence
of actions mapping SO to S2 doesn’t include unnecessary events. Whether or not a model meets
this criteria depends on which situations S0 and S2 denote in that model. In other words, we
would like to minimise Between(a,80,52), letting SO and S2 vary, More generally, the policy
we require is to minimise Between(a,sa.sb) for every sa and sb for which there are situation
constants in the language, allowing all those situation constant to vary.

One way to get this effect might be to use pointwise circumscription [Lifschitz, 1986].
Alternatively, two new predicates can be introduced as follows. The formula Named(s)
represents that there is a situation constant in the language for s (situation s is named). An
axiom schema for Named is assumed which will cover every situation constant. So we have, in
the SCP example,

Named(80)
Named({52)

The formula AbBetween{a sl sh) represents that sa and sb are named, and there i< a
sequence of actions mapping sa to sb which includes a.

AbBerween(a,sa,sh) & Named(sa) A Named(sb) » Between(a,sa,sb)

Then, AbBetween is minimised in paraliel with Ab, and every situation constant in the
language 1s allowed to vary, along with Between and Follows. Since AbBetween is menuoned
only in this axiom, the mathematics of this modification should be relatively simple.3 From
now on, I will assume this new circumscription policy whenever 1 use the alternative style of
representaton,

4. Preconditions and Ramifications

To complete the picture for the deductive approach with the aliernative style, T will
briefly investigate its application Lo an explanation problem involving a precondition. Consider
(AR1) to (AR4) and (ARG) to (ARY),? but suppose that it 15 a precondition of a successiul theft
that the car park is unguarded. So instead of (ARS) we have,

—Holds(Car-parked,Result(Steal,s)) « —Holds(Guarded,s) (ARID)

Now what can we conclude from the fact that the car is not parked in S27 The only
plausible explanation, given the knowledge we have, is that the guard went for tea, leaving the
car park unguarded, and then the car was stolen. As before, [rom (AR1) to (AR4) and (1), we
have,

3 For the argument of the paper 10 go througb, it is only necessary for there to exist some technique
which will achieve the required minimisation, so no proof is supplicd that this particular technique works. The
sketch given here is offered as evidence that a working echnique can be found.

In fact, (AR®) is superfluous in the following examples, but is included For realism.

Ja,sa,sh [Ab(a,Car-parked,sa) » sb=Result(a,sa) A
Follows(sa,S0) A Follows(52,sh}]

From {ARS) 1o (AR10), minimising Ab according to Baker’s approach, we have,

Ab{a.fs)
[a=Steal A [=Car-parked A Holds(Car-parked.s) A
—Holds{Guarded,s)] v
[a=Start-tea A F=Guarded A Holds(Guarded,s)] v
[a=End-tea ~ f=Guarded ~ —Holds(Guarded,s)]

and therefore,

Hsa.sb [sh=Result(Steal.sa) A Follows{sa .50} A Follows(S2,5b) A
-Holds(Guarded, s))

Then, a similar argument applied to the Holds conjunct of the above formula yields,

Zsa,sh,sc,sd [sh=Result{Steal.sa) ~ Follows(sa,80) ~ Follows(52,5b) A
sd=Result{Start-tea,sc) A Follows(sc,50) A Follows{sa,sd))

which simplifies to,
Js [Between(Start-tea,S0,5) A Betwecen(Stcal, 5,52)]

In other words, the guard goes for tea and then the car is stolen — exactly the desired
result. However, if we represent the same knowledge in a slightly different way, using
ramifications, difficulties arise. Let’s introduce a new fluent At-tea, and suppose that there are
other new fluents and actions in the domain of discourse, but no new axioms mentioning the
acuons and fluents already defined. The car park is unguarded while this fluent holds. Instead
of (AR8) and (AR9) above, we have the following.

—Halds(Guarded,s) «— Holds(At-tea,s) (AR1D)
Holds{ At-1ea, Result{ Start-tea, s)) (AR12)
—Holds(At-tea,Result{End-tea,s)) (AR13)

Using this style of representation, the minimisation of Ab is dilferent. We have,
Ab(a,Car-parked,s) 5 a=5teal » Holds(Car-parked,s) A —Holds(Guarded,s)

Abla,Al-lcas) «
[a=Start-tea ~ Holds(At-tea,s)] v [a=End-tca » —Holds(At-tea.s))

and therefore, as before, we have,

Jsa,sb [sh=Resuli(Steal,sa) A Follows(sa,S0) A Follows(52,sb) A
—Holds(Guarded,s))

But, since (ARI 1) is an implication rather than a biconditional, the strongest thing we
can now conclude about Ab with respeet 1o Guarded is the following.

Ab(a,Guarded,s) « a=Start-tea A Holds(Guarded.,s)

Therefore, the conjunct —Holds(Guarded,s) in the explanation cannot be fully
expanded. We are left with the following weak explanation.

63

Ja,s,sc.sd [Between(Steal,5,52) A Ab(a,Guarded,sc) A
sd=Result(a,sc) A Follows(sc,S0) A Follows(s,sd}]

The explanation tells us that some action occurred between S0 and the Steal action, and
that this action was abnormal with respect to Guarded, but it doesn’t give us any idea what the
action was. Of course, it's true that “explanations come to an end somewhere,” but this seems a
little premature. This problem would he particularly acute if the Start-tea action had further
preconditions. These wouldn’t be dealt with at all by this approach. Since (AR11) to (AR13)
constitule 4 perfectly reasonable representation of the domain, it would be better 1o adopt an
approach to explanation which can cope adeguately with ramifications.

5. The Abductive Approach

Abduction is widely considered 1o he a mode of reasoning fundamental to Al [Chamiak
and McDermaott, 1985, Chapter 8], with applications as diverse as diagnosis [Reggia er al.,
1983], [Reiter, 1987], planning [Goebel and Goodwin, 1987], [Eshghi, 1988], plan
recognition [Kautz, 1987], natural language interpretation [Hobbs er al., 1990], default
reasoning [Poole, 1988], [Eshghi and Kowalski, 1989], [Kakas and Mancarclla, 1990] and
explanation, the subject of this paper [Shanahan, 1989]. According to the abductive approach to
explanation in the situation caleulus, given a theory T comprising axioms of motion and the
frame axiom (and any other necessary general axioms, such as Baker's “exislence of
situations’™), and a history H representing that certain fluents hold in cerain situations, 10
explain a new fact F representing that a fluent holds in a given situation we need to find a
formula A such that T A H A A has F among its logical consequences.

In order to aveid trivial or weak explanations, a certain set of predicates arc
distinguished as abducible. Explanations have to be in terms of abducible predicates.
Furthermore, to overcome the frame problem, some [orm of minimisation will be required. So
more preciscly, we say that, given T and H as above, a formula A is an explanation of a fact F
if CIRC[T ~ H ~ A:; P*: Q*] E I and A contains only abhducible predicates, where P* and Q*
are sets of predicates corresponding to a suitable circumscription policy to overcome the frame
problem.” Of course, there may be many such A's to explain any given fact. It is also
convenient 1o avoid explanations which are subsumed by other explanations. So we say that,
given T and H, an cxplanation A of F is minimal if there is no explanation of F which is a
subset of A.

In these abductive terms, what 1s the general form of an explanation problem expressed
in the situation calculus? We are usually required to explain a conjunction of positive or
negative Holds literals. Let’s consider the SCP, using the standard style of representation first.
We want 1o explain (SR3), and we require explanations in lerms of previously unsuspected
abnormalities. So the obvious policy is to make Ab abducible.

Let T be (1) and H be (SR1) ~ (SR2). Let A be Ab{Wait,Stolen,50), and assume either
McCarthy's or Baker's circumsenption policy. As pointed out in Section 2, the abnormality of
one of the Wait actions is a necessary bul not a sufficient condition for the car to be stolen.
Appropriately then, A is not an explanation of (SR3) at all according to the abductive approach.
Similarly, if we let A be Ab{Wait,Stolen,Result{Wait,50)), then it is still no explanation. In
fact, given the standard representation and the abductive approach with Ab made abducible, the
disappearance of the car literally defies explanation. Furthermore, since it incorporates no
knowledge of Steal actions, the standard representation doesn’t permit any explanation of the
car’s disappearance without the inclusion in A of new axioms of motion.

Now let’s consider the altemative style. The explanations we require are in terms of the
sequence of actions which takes place between two siations. So the obvious abduction policy

7 CIRC[y; P*; Q*] denotes the circumscription of the formula w minimising P* and allowing Q* to
vary, where P* and ()* are sets of predicates.

64 -

is 1o make Berween abducible. In the SCP, we want 1o explain (AR2). Let T be the conjunction
of (1) and (AR4) to (AR6), and let H be (AR1) A (AR3). Suppose we minimise abnormality
according to either McCarthy's or Baker's approach, and we also minimise AbBetween.
Consider A=Between(Steal 80,52). Does this consttute an explanation?

Minimising AbBetween yields 52=Result(5teal, S(0). Then, applying (AR35), we have
—Holds(Car-parked,52). So A is indeed an explanation. There are other explanations too, but
each of these invalves a sequence of Steal actions. It is easy 1o see that A subsumes all of these
explanations, and therefore all minimal explanations will be equivalent to A. This approach
bears a strong similarity to that of Green [1969] and Kowalski [1979, Chapter 6] to plan
formation in the situation calculus, in which resolution generates a binding of the form
s=Result{al Result(a2....)) to solve a goal of the form Holds(f,s). This binding conforms
exactly to the abductive idea of an explanaton with the alternative style of representation, where
equality is made abducible.

Note that if we asserted that another action, say going to lunch, occured between S0 and
S2, then this A would still constitute an explanation, and would furthermore be neutral about
the relative order of lunch time and the car’s theft. So it would not be possible to conclude, in
the presence of A, that the car was still in the car park at lunch time.

Next, we'll examine how the ahductive approach fares with the alternative style of
representation with preconditions. Recall the variant of the SCP with the security guard, which
includes axioms (ART) to (AR10). Once again, we want to explain (AR2). This time, assume
Raker’s minimisation technique, to cnsure that the precondition is properly treated. Let T be the
conjunction of an existence of situations axiom with (1), (AR4), (ARG} and (ARE) to (AR10),
and et H be the conjunction of (AR1), (AR3) and (AR7). Let A be,

Js [Between(Start-tea,50,5) A Between(Steal 5,52)]

This time, the minimisation of AbBetween gives $2=Result(Steal, Result{Start-tea,S0)).
Applying (AR8) we get —Holds(Guarded Resuli{Start-tea,50)). Finally, applying (AR10) we
get —Holds(Car-parked,52). So A is an explanation. Again there are other explanations,
involving sequences of Sweal, Start-tea and End-tea actions, and again these are all subsumed by
A, so any minimal explanation will be equivalent 1o A,

The deductive approach didn’t cope well when the same problem was represented in a
slightly different way using ramifications. Let’s see how the abductive approach manages. Let
T be the conjunction of an existence of situations axiom with (1), (AR4), (AR6) and (AR10) to
(AR13). Let H be the conjunction of (AR1), (AR3) and (ART), as before. Does A still
constitute an explanation of (AR2)? The minimisation of AbBetween is the same as before, and
we can still show that S2=Result(Steal,Result(Start-tca,50)). By applying (AR12) and (AR11),
wit sce that —Holds{Guarded,Result{Start-tea,50)). Then, applying (ARI)) we pger
—Holds(Car-parked,$2). So, as before, A 1s an explanation, and all minimal explanations will
be equivalent to 1t

Discussion

This paper is intended to be a critical exploration of various approaches to explanation
within the framework of the situation calculus. I have distinguished a standard and an
alternative style of representation, and two approaches to reasoning, deductive and abductive, 1
have argued that the standard representation 1s counter-intuitive, and that it runs into difficulties
wilh certain examples, using both the deductive and abductive approaches. I have also argued
that the deductive approach, using both styles of representation, is unsatisfactory for certain
examples. Accordingly, | cautiously recommend the abductive approach with the alternative
style of representation. However, a number of issues remain to be discussed.

__55_

For example, the paper has adopted the situation calculus, with circumscription as a
means of default reasoning, and has employed Baker's approach to overcoming the frame
problem, There are, of course, many allernatives. In particular, abduction itself can be used for
default reasoning although I have not addressed this possibility [Poole, 1988], [Eshghi and
Kowalski, 1989], [Kakas and Mancarella, 1990). Neither have I attempted to generalise the
paper’s conclusions to other formalisms for representing change. However, I conjecture that
the lessons learned here will apply to other formalisms, other forms of default reasoning and
other approaches to the frame problem. The justification for this conjecture is the representation
and reasoning techniques discussed are not specific to the formalism or the form of defaul
reasoning used. Similarly, when a technigue goes wrong, it goes wrong for a deep reason, not
for a reason which depends on the formalism or form of default reasoning.

The paper has concentrated on variants of a single example, the stolen car problem. So
how general are the paper’s conclusions? Well, it only requires one counlter-example to show
the inadequacy of a technique, and the SCP has served admirably as the basis of such counter-
examples in this paper. Furthermore, like the Yale shooting scenario in the context of temporal
projection, the SCP is simple but representative of a class of explanation problems we would
like to solve. Considerahle insight into why a technigue fails can be gained from studying how
it fails on a single representative example.

Of course, 10 show that a technigue is adequate, it is not enough to show that it works
on a single example plus a few variants. So what conclusions can he drawn ahout the ahductive
approach, other than that it sometimes works when other approaches fail? The impression given
in this paper is that abduction and deduction are competing approaches to explanation. But one
thing that distinguished the presentations of the deductive and ahductive approaches was that
the former incorporated a definition of explanation. So, it could be argued that abduction isn'ta
particular gpproach to explanation, it is the naturg of explanation. A particular approach to
explanation might perform abduction directly, or it might simulate it through deduction, so long
as the explanations it produced conformed to the abductive definition. Under this interpretation,
there 15 no need to show the adequacy of the ahductive approach, because it supplies the very
criterion of adequacy.

The next issue [wish to address is knowledge assimilation. A problem like the stolen
car problem can be thought of simply as a rcasoning problem — what are the possible
explanations of the car's disappearance. Alternatively, it can be thought of as a knowledge
assimilation problem -— how 1s the fact of the car’s disappearance to be assimilated. The
abductive and deductive approaches to cxplanation imply different views of knowledge
assimilation. Suppose that we have a knowledge base in the form of a formula T. Under a
classical, deductive view of knowledge assimilation, new facts are always added directly to T.
With an abductive view of knowledge assimilation, not every fact is eligible for direet addition
to T. Sometimes the assimilation of a new fact G demands the addition of a formula A of a
certain form to T such that T A AFE G [Kowalski, 1979, Chapter 13]. That is, new facts
sometimes have to be explained through abduction.

Using abduction with the situation calculus, I suggest that assimilating a new Holds
fact, such as the fact that my car is not in the car park in the evening, demands the addition of a
formula representing that certain actions take place, so that the new fact becomes a logical
consequence of the knowledge base. With the stolen car problem, there is a unique minimal
explanation, but this not necessarily the case. One approach to dealing with multiple
explanations is to add the disjunction of all minimal explanations to the knowledge base, but
this issue is beyond the scope of this paper.

This seems to beg two important questions. Why do some facts demand explanation
when others do not? And why are some predicates abducible when others are not? In so far as a
problem like the SCP is viewed simply as a reasoning problem, these questions are not very
important, since the answers have to be writien into the specification of the problem. But taking
the wider, knowledge assimilation view, the questions become more pressing. A simple and
obvious answer is that anything which can be considered a first cause doesn’t require

— 66

explanation, whereas anything which cannot be considered a first cause does require
explanation. For example, we might decide to consider the occurrence of an action as a first
cause, but not the effects of an action, This is a partial justification for making Between
ahducible, and insisting that Holds facts, except those about the initial situation, must be
explained. Clearly though, these issues merit further study.

Finally, an important question is the relationship between abduction and deduction
[Console er al., 1991], [Konolige, 1992]. When do they coincide? Or, if abduction is adopted
as the specification of explanation as suggested above, when does deduction conform to that
specification? And why does abduction work in some cases when deduction doesn’t? In
essence, abduction finds sufficient conditions for a fact to hold, whilst deduction only finds
necessary conditions. Under certain conditions, necessary conditions are also sufficient
conditions. This is the case when the knowledge involved is expressed in terms of
hiconditionals. The frame axiom (1), for example, makes it a necessary and sufficient condition
for a fluent to hold in Result(a,s) that the fluent holds in s, given that a isn’t abnormal in this
context. Furthermore, one-way implications can sometimes hehave like biconditionals in this
way when minimisation is involved, because minimisation often has the effect of “completing”
the implication, thal is turning it into a biconditional. This was the case with Ab in the SCP.
However, there is no reason to suppose that necessary and sufficient conditions will always
coincide, even in the presence of minimisation, as we saw with ramifications. Deduction failed
with the SCP when ramifications were involved hecause the implication (AR11) does not
behave as a biconditional.

Acknowledgements

Thanks to Tony Kakas, Bob Kowalski and Vladimir Lifschitz. The author is supported
by an SERC Advanced Rescarch Fellowship.
References

[Baker, 1989], A.B Baker, A Simple Solution to the Yale Shooting Problem, Proceedings
1989 Knowledge Representation Conference, p 1.

(Baker, 1991], A.B.Baker, Nonmonotonic Reasoning in the Framework of the Situation
Calculus, Arrificial Intelligence, vol 49 (1991), p 5. -

[Chamniak and McDermott, 1985] E.Charniak and D.McDermott, Introduction to Artificial
Iniclligence, Addison-Wesley, 1985,

[Console er al., 1991] L.Console, D.Dupré and P.Torasso, On the Relationship between
Abduction and Deduction, Journal of Logic and Computation, vol 1 (1991), p 661.

[Eshghi, 1988] K.Eshghi, Abductive Planning with Event Calculus, Proceedings Sth
International Conference on Logic Programming (1988}, p 562,

[Eshghi and Kowalski, 1989] K.Eshghi and R.A.Kowalski, Abduction Compared with
Negation by Failure, Proceedings 6th International Conference on Logic Programming
(198%), p 234,

[Gellond et al., 1991] M.Gelfond, V.Lifschitz and A.Rabinov, What Are the Limitations of the
Situation Calculus? in Essays for Bledsoe, ed R.Boyer, Kluwer Academic (1991), p 167.

[Gocbel and Goodwin, 1987] R.G.Goebel and S.D.Goodwin, Applying Theory Formation to
the Planning Problem, Proceedings of the 1987 Workshop on the Frame Problem, p 207,

[Green, 1969] C.Green, Applications of Theorem Proving to Problem Solving, Proceedings
IJCAT 69, p 219.

- BT —

[Hanks and McDermott, 1987] S.Hanks and D.McDermott, Nonmonotonic Logic and
Temporal Projection, Artificial Intelligence, vol 33 (1987), p 379.

[Haugh, 1987] B.A.Haugh, Simple Causal Minimizations for Temporal Persistence and
Projection, Proceedings AAAI 87, p 218,

[Hobbs et al., 1990] J.R.Hobbs, M.Stickel, D.Appelt and P.Martin, Interpretation as
Abduction, Technical Report, SRI International, Menlo Park CA, (1990).

[Kakas and Mancarella, 1990] A.C.Kakas and P.Mancarella, Generalized Stable Models: A
Semantics for Abduction, Proceedings ECAI 90, p 385,

[Kautz, 1986] H.Kautz, The Logic of Persistence, Proceedings AAAI 86, p 401.

[Kautz, 1987]) H.Kautz, A Formal Theory of Plan Recognition, PhD Thesis, University of
Rochester, Rochester N.Y., 1987,

[Konolige, 1992] K.Konolige, Abduction Versus Closure in Causal Theories, Artificial
Intelligence, vol 53 (1992), p 255.

[Kowalski, 1979] R.A.Kowalski, Logic for Problem Solving, North Holland, 1979.

[Lifschitz, 1986] V.Lifschitz, Pointwise Circumscription: Preliminary Report, Proceedings
AAAI 86, p 406.

[Lifschitz, 1987] V Lifschitz, Formal Theories of Action, Proceedings of the [987 Workshop
on the Frame Problem. p 35.

[Lifschitz and Rabinov, 1989] V.Lifschitz and A.Rabinov, Miracles in Formal Theorics of
Action, Artificial Inrelligence, vol 38 (1989), p 225,

[McCarthy, 1986] J.McCarthy, Applications of Circumscription to Formalizing Common
Sense Knowledee, Arificial Intelligence, vol 26 (1986), p 89.

[McCarthy and Hayes, 1969] J.McCarthy and P.J.Hayes, Some Philosophical Problems from
the Standpoint of Artificial Intelligence, in Machine Intelligence 4, ed D.Michie and.
B.Meltzer, Edinburgh University Press (1969).

[Morgenstern and Stein, 1988] L.Morgenstern and L.A Stein, Why Things Go Wrong: A
Formal Theory of Causal Reasoning, Proceedings AAAI 88, p 518.

[Poole, 1988] D.Poole, A Logical Framework for Default Reasoning, Artificial Intelligence,
vol 36 (1988), p 27.

[Reggia er al., 1983]] A.Reggia, D.S.Nau and P,Wang, Diagnostic Expert Systems Based on
a Set Covering Model, International Journal of Man-Machine Studies, vol 19 (1983), p 437.

[Reiter, 1987] R.Reiter, A Theory of Diagnosis from First Principles, Artificial Intelligence,
vol 32 (1987), p 57.

[Shanahan, 1989] M.P.Shanahan, Prediction Is Deduction but Explanation Is Abduction,
Proceedings IJCAI 89, p 1055.

[Shoham, 1988] Y.Shoham, Reasoning About Change: Time and Change from the Standpoint
of Arificial Intelligence, MIT Press (1988).

—

Explanation Reconfiguration in Abductive Reasoning
{(Extended Abstract)
Makoto Motoki
C&C Systems Research Laboratories, NEC Corporation

4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216, JAPAN

e-mail: motoki@ibtl.cl nec.cojp

_ﬁ_l'_

1 Introduction

Abduction is a form of reasoning that derives a plavsible explanation from incomplete knowledge to explain a set of
given data. A number of researchers have proposed abductive reasoning frameworks [8, 1, 5, 6, 3, 10]. Basically, they
all define abductions in the following way: when a set of data p is given, abduction finds an explanation A(C D) such
that TUA Ep, TUA is consistent, where T is a set of consistent facts and [} is a set of hypotheses (not necessarily
consistent].

For use in the real world, abductive frameworks should, additionally, be made defeasible, i.e., in order to make an
existing explanation consistent with a newly generated explanation for a new set of data, it should be possible to
reconfigure the previously existing explanation.

This paper proposes a framework for abduction which includes a mechanism for explanation reconfiguration. That

is, in our framework of abduction, the following definition is added to the above-mentioned definition of abduction:

Assume that an abductive framework has a set of facts T and a set of previously constructed explana-
tions A, such that TUA, is consistent, and that a given data g is lo be explained. When a newly derived
explanation A; of ¢ leads to the inconsistency

Tusjudy g TUA) UAy is inconsisient,
our abductive framework provides a procedure to reconfigure Aj in order to derive A} U A; such that

TuAjuAy Eyg TUA U A, is consistent.

We use extended logic programs [2] as a background theory to formalize our framework. Extended logic programs can
represent a definition of a negative literal {(=a), such as =a — b, and this allows us to introduee into our framework the
concept, used in Theorist [8], of constramis. In Theorist, & consfrain! prevents a hypothesis a from being applicable
under circumstances b,

Our approach to abduction is to introduce contrapositives of constraints (e.g. —a ~— b etc.) and/or other facts (e.g.
b — ¢ ete.) only when they would block the application of a hypothesis (e.g. @ ete.) in a newly generated explanation
Az under the circumstance TU Ay U Aq. Roughly speaking, we use these contrapositives (eg. a — =b and =b — —r)
to derive a new consistent set of hypotheses including all elements of Ay by determining what would be true or false
in A, if a blocked hypothesis a were true. This determination produces the desired reconfiguration of the previous
explanation Ay .

This paper proposes a meta-rule, Empirical Conirapesitive Control {ECC), for introducing contrapositive variants

into our abduction framework.

2 Framework of the Proposed Abduction

This section defines a defeasible abductive reasoning and its framework.

Definition 1 Let Lit be the set of ground literals in the language II. A set of clauses IT are consistent if and only if
there are answer sets of IT and no answer set is Lit. 11 is tnconsistent if and only if there is an answer set of I which
1s equal to Lif.

Definition 2 An abduction framework is a quadruple (T, A, D, C) where

» T is a theory comprised by a consistent set. of clauses of the form H «— Ly,--., L, (H is an atom and H ¢ D),
* A{C D} is a previous explanation for a previous goal g, such that TU A b g,, TU A is consistent,
= [V is a set of hypotheses consisting of literals,

U is a set of constraints consisting of a set of extended logic programs of the form Ly — Ly,---, L, where

Ly € D, and TUC is consistent.

Definition 3 Let T be a set of theories, C be a set of constraints, and A, be an explanation for a goal gy such that
TUCuUA Egq, TUCUA, is consistent. Let Az be an explanation for a new goal g3 such that TUC U A, = gs,
TUC U Ay 45 consistent, but TUCUAUA; is inconsistent, Explanation reconfiguration is to find a sct of explanations
AL U Ay such that TUC UA] U Ay is consistent, (where A} = AIS U AT AT C A A C D — (A, U Ag)).
Here, |= represents the entailment of extended logic programs.
Definition 4 Let T be a set of theories, A, be a previous explanation. Let 7 be the complementary literal of p.
Emprrical Contrapositive Control (ECC) is a meta rule such that

forp—qi- g gn(nz1),

ECC introduces Fqu, - izt Gigr e = HFIHETUCUA Fpand TUCU Ay kg A hq,.;

Basically, £CC introduces contrapositive variants of rules whase both left and right hand sides can be derived from
TUCLUA,. From the definition of explanation reconfiguration, in any case where explanation reconfiguration is needed,
there are at least one pair of complementary literals derived from T U C U 4y U Ay, but no pair of complementary
literal s derived from T'U C U Ay,

According to Definition 2, only constraints derive negative literals, so that, in the answer sel, negative forms of literals
are only those in LY. Thus, in this situation, there is at least one hypothesis, say A, in Ay such that TUCU A, F —A.
Obviously, both left and right hand sides of all rules involving a derivation of ~A can be derived from T'U € U Ay
This indicates that, by using ECC, we can obtain contrapositives of all rules involving the derivation of the negative
form of A in As. Assume that we have R as an atom in A, and have — — @ and @ — Rin TUC. Since ~P Q.1
are derived from T'UC U A, we can obtain the following contrapositives by ECC; P — —fg; =@ — —R. Using these

contrapositives, we can conclude that R in a previous explanation should be removed (=R should hold instead) if P
in a new explanation holds. In this way, we use ECC in the process of explanation reconfiguration. Next section

presents precise procedure of explanation reconfiguration.

3 The Procedure of Explanaiton Reconfiguration

This procedure consists of two parts; consistent explanation generation procedure and explanation reconfiguration
procedure. These procedures return reconfigured explanations for a new goal. In the procedure, P represents the
complementary literal of p.

Explanation Generation(EG)

EG consists of pre explanation gencration(P E) procedure which finds hypotheses necessary for explaining a new goal
7, and consistency check(CC1) procedure which checks consistency of these hypotheses. EG generates an explanation
Ay such that TUC U Ag 15 consistent.

PEG(G, A,)

Let T be theories, D be hypotheses, and A, be previous explanations. When a goal & of the form +— Ay, -+, An 8
given, F¢F starts from a triple (+— Ay, -, Ay, A1,{}) and continues the following procedures until it gets the form of
(false &1, Ag). EG returns Ay, and do CCUT,C, Ag). If (falsc, &), Az) cannol be derived, EG returns “there is no
explanation for G

Assume that the current triple is {— Ay, - -, Aa,80,82)
o if (A € D)&(A; & Ay) then let the current triple be (— Ay, - Ai 1, Ajgr, - An, A A U {4:])
o if 4; € I'"U A, then let the current triple be (— Ay, -+, Ay, Aigr, -+ An, 81,82)

o if A, — By, By € T then let the current triple be (— Ah-n,:‘l;_hﬂh-~-,Bm,.ﬁl..-q.;,-“,.ﬂi.,ﬁhﬁ:-]

CCI(T.C, Az)

» if there is dy € Ay such thal TUC U Ag - d; then return “there is no explanation for G* else do ER.

Explanation Reconfiguration{ER)

ER finds a subset of D, Ay — Discarded U Discarded U Ag U Added, which comprises a consistent answer set a(Il),
and returns the pogitive literals in this set as a new explanation. Here, Discarded represents the set of complementary
literals of all eleinents in Discarded. ©C2 finds the subset of A; negated by Ay, REC finds the subset of A, deriving a
negative form of literal in A, and these two sets comprise Discarded. REC also finds the set Added (€ D—{A;UA))
which are in a(I) iff Discarded are in o(T1).

CCE(T,C, Ay, Aq)

?2

1. Didearded := {}; for every d; € &) if TUC U Ay + d; then Discarded := Discardedu {d,}.

2, i TUCUA, i d; for all d3 € A; then return A, — Discarded U Ay as an explanation for G.
if not, do REC(T,C, Ay, Ay, ECC) where Aj is a subset of A, such that TUC UA, F —d, for all &, € A

REC(T,C, Ay, Ay, ECC)

1. For every p € Al find constraints F e gy, -« -, g such that TUC U A, FPand TUCU A F gy A Ag,

and get their contrapositive variants of the form Po@iv o fi-10Gial, - e — T by using ECC

2. Added := {}. For every g
repeat Find theories gz «— ry, - r such that TUCUA b g and TUCUA F ri A Arg,
get their contrapositive variants of the form F, v, roy e, r — F; by using FCC, and regard ry as
a new q; until FCC introduces no more contrapositive variants,

For every consequence 75

if rj € Ay then Discarded := Discarded U {r;} else if 77 € D — Ay — As then Added — Added U {F7}.

3. Find o' € &; — Discarded U Ay U Added such that TUC U A — Discarded U Ay U Added - —d".
Find d" € Discarded such that TUC U A; — Discarded U Aq 0 Added b d",
if there iz no d" and @ then return (A — Discarded U Ay U Added)

else return “there is no explanalion for &

Example

Assume that a sct of theories are {I' — @Q; 5 +— T, § — =5, R]}, a sel of constraints are {-Q@ — R, S; ~U — Q},
a set of hypotheses {Q,T,U, V], and a previous explanation Ay is {T,U,V}. For a new goal P, EG generates {Q},
CC2 finds TUCUAL F =U (U € Ay), ie., (U} as Discarded. CC2 also finds TUCUAy UAs F —Q (Q € A,). REC
introduces {=5 — Q, R; =R — Q, 5] as contrapositives of =~ — R, S, {=T — =5} as a contrapositive of § — T, and
finds there is no more contrapositive introduced by ECC. As consequences of contrapositives, REC finds =R and =T,
Since T' is a hypothesis in &), REC derives {T} as Discarded. Finally, ER generates {@, V] as a new explanation.

Note that V in Ay, which is not inconsistent with A3, is intact in this procedure.

Some Properties of Defeasible Abduction

ER procedure is a sound procedure of explanation reconfiguration defined in Definition 3.

Theorem [Sounduess of ER procedure] Let T be a set of theories, € be a sct of constraints, I be hypotheses,
Ay be a previous explanation, Ay be a new explanation, A} C Ay, and A’ C D) - (A; U Ag). Assume that ER
returns A} UA"UAs. Ifboth TUCUA; and TUC U A; are consistent but TUCU A, U Ag is inconsistent, then

TUCUA]UA U A, is consistent,

As shown ahove, we proposed a sound explanation reconfiguration procedure by introducing contrapositive varants
af hoth constraints and theories. However, the unrestricted introduction of contrapositive variants deteriorates the
performance of ER procedure and also can cause unwanted side effects.

For example, assume that ECC introduces contrapositives of arbitrary constraints and theories in Example. We
will obtain {~@ — —P; U «— =Q; § — =5} besides those introduced by original ECC.

Clearly, this naive version of ECC produces unnecessary contrapositives for reconfiguration like {=Q «— =F; U +
-Q}. Moreover, this introduces harmful contrapositives like {§ «— =S}. Since this contrapositive variant is exactly
the same form as the original rule, REC procedure results in infinite loop,

On the other hand, ECC introduces contrapositives only when both left and right hand sides of a rule can be derived
from TUC LA, . Furthermore, ER procedure only applies ECC Lo clauses deriving the negative form of a hypothesis
in As [—Q in Example). Thus, in the ER procedure, ECC introduces contrapositive variants of rules if and only if
these rules are in the derivations of —=Q. These controls make it possible for ER to derive hypotheses in &, to be

discarded if Lthe negative form of a hypothesis in A3 can be derived.

4 Discussion & Related Work

This paper presented a framewoark of defeasible abduction capable of reconfiguring previous explanations in accordance
with a new requirement. As a mechanisim to handle defeasible abduction, we proposed a meta-rule ECC which
introduces contrapositive variants of theories and constraints.

While our framework described limited theories to general logic programs, this restriction can be expanded to
extended logic programs by elaborating the consistency checking procedure,

Our framework uses constraints to prevent certain hypotheses from being applicable under a specific circumstance.
This idea is similar to the idea of constraint in Theorist [8). However, when a hypothesis in a newly added explanation
is prevented, Theorist removes this new hypothesis, whereas our defeasible abduction removes a part of the previous
explanation so that the rest of the explanation satisfies this constraint.

Kakas & Mancarella [5, 6] developed abductive framework on general logic programs with integrity constraints,
which is the special case of extended logic programs. In this framework, it's impossible to introduce contrapositive
variants. They did not describe any detailed exposition of their theory for extended logic programs.

Kowalski & Sadri [7] used extended logic programs to express exceptions. Basically, their expression of exceptions
correaponds to our constraint expression. Their approach always prefers negative literals to positive enes. This method
is too limited to deal with explanation reconfiguration.

Inoue [3] proposed an abductive framework based on extended logic programs. This framework focuses on deriving

a plausible explanation for one goal, wheress our framework focuses on the defeasible aspects of abductive reasoning,

74

References

[1] Eshghi, K. and Kowalski, R.: Abduction Compared with Negation by Failure, in Proc. 6k International Conference

on Logic Programming, (198%) pp 234-254

[2] Gelfond,M and Lifschitz, ¥V.: Logic programs with classical negation, in Proc. 7th International Conference on

Logic Programmung, (1990) pp 579-597

[Inoue, K. : Extended Logic Programs with Defaull Assumption, In 8th Internafional Conference on Logic Pro-

gramming, (1991) pp 490-504

[4] Kakas, A.C. and Mancarella, P.: Anomalous Models and Abduction, in Proc. #nd International Symposium on

Artifictal Intelligence, {1989)

[5] Kakas, A.C. and Mancarella, P.; Generalized Stahle Models: A Semantie for Abduction, in Proc. 9th European

Conference on Artificial Intelligence, (1990) pp 385-391

[6] Kakas, A.C. and Mancarella, P.: On the relation between Truth Maintenance and Abduction, in Proe. Pacific Rim

International Conference en Artificial Intelligence *00, (1990) pp 438 443
[7] Kowalski, R and Sadri, F.: Logic Programming with Exceptions, New Generation Computing, 9 (1991) pp 387 400
[8] Poole, D.. A Logical Framework for Default Reasoning, Artificial Intelligence 36 (1988) pp 27-47
[9] Reiter, R.: A Logic for Default Reasoning, in Arisficial Intelligence 18, (1980) pp 81-152

(10} Selman, B. and Levesque, H.J.: Abductive and Default Reasoning: A Computational Core, AAAI-80,(1980) pp
313-348

A Formnal Seheme of Semantic Networls
(Extended Abstract)

Stephen 100 Wang

Ligstitaite For Moo O rirnieral i 'l:'l:l||||lll1l'l Peebaniale Y (10X
SIF . Mt bokusar Bl -2 Mt Minarockn Tokyo ks, Japan
cepnails wong tieot or g Fels #8133 100 Fax] B e T i b

1 Introduction

A sernantic network is s stroctiure for representing knowliedge e a0 patiern of mtereonneeted
wendes aned links [1] Semantic networks Bise Teen o cxtensively i AL appheations. Most
network models of these applicalions. bowever, are pather locsely detined Thes lack o rational
and systemabic means to speeily network cntites sachas nodes and Tinks. Consequently, the
information processing belipvor of these od-do welels are deflicale o peediets Fhiat i, =l
welwork medels, sometines, iy derive eonsitent conclusions ad oaee nol robwst for Tutore
cxpansion or il

Ohjecl-orentation s a pobestidly npoeia paracligon for software progranming. Uompared
teo procedural software progranes. object=onented progeams cxnbin advanbageoms festnres of
inforrstion processing, such as daa cneapsalation aml groperies vt sl offor hener
it ainability, Nevertheless, the ternunology and notations vary wiclelv, amd enerent v there
Dias o one agrecahle wine Lo consteiet Hiese progbanes.

Phe ohservation is that. as disenssed m Section 20 the paradigne of ohbject-orientation can
help 1o provide precise and rigorons specifications of senante networks The purpesas ol Hhis
abstract 1o onthine such o knowlkedge regrosentation selicme Hhal s gromded an the Tormal
:-I.Hnu-tr-rl:r,;ﬂ.iun 1’1{ nhjr‘rf.k: i-,l.nn:l 1.]'|r-i|' |1Hr|.rr'!'rle’3t|.

The type of Al systems eolsidersd e this selenee are fgaeal knowledge=lasod systems. A
semantic network organizes the et of Hat ogieal elanses or senteares i the koowledge otese-
it network of focalized theores. o this wav, i olfers the advantages of cacapsalation ansl
micn lularization. as in object-oriented softwane progranes, and provides e system desigoner witl
a knowledge representation tool more expressive than liest order logre.

This abstract first deseribes the intuitive coneepts bebind the network seheme: properties.
alygeets, relations, and multiple orders of pelntioms bedweein Uese citaties, 1 bhen vighities
1 hsn I N with formal _-."|_::-1'i,ﬁ|‘ﬁ[.iug|h_ JIIHiI]l}' ab the set-theoretieal level he I‘H|ll+‘!-i|"ll1.:-|li|ll.l
sehenw bas been dmplemented in DOOS® s kuowledge representation systein i developing
application prototypes, in particular, i the domsn of structaral sngineering [1].

2 Guiding Principles

The represeatation schemne comprises of three koowledge levels (1) objects, (2} determinate
relationships between objeris. and (3) relations of proportion among these determinale relation-
ships. The philosophical motivation of this structuring of koowledge 35 dus 1o the sarlier wiirk
of Frege[d] and recent extensions of it by Bigelow and Pargettee[2]. Refore presenting a [oroal
accomnt of this structure, in this section. [beiofly deserihe the intuitive concepts of consirurling
thess entities in each of the knowledge lovels.

Il work i based on the anthor's research that was dune at the Center of Advanced Technobogy o Large
Sipyctural Systems {ATLSS), an NSF sponsored Fogineering Hiscarch {enter an Fehigh University, LS4
YEAM0E stands for Dedwctive Object-Oriented Semantic network and is written on top of Quintus Pralaog,

Let i first comsicler lewvel | abjects, One characteristie about tceleling a large struetoral
swstenn suchoas o bridge o a Daibifing. s thal there are meal oljeets in the plivsical worbl which
A keowledge base deseribes, Olservation reveals toooos the properties and relations of geariaenlar
|J||}'hi(':-1.| vibapise s For oosanngehe, a i:ll‘iil;;"’r‘- Eitdler By B macle ont of stee] and = ('|,|||||“_lp|-1l o L
ather 1y pes aof olgest= panels, Hange and wels,

The basie enitwes of a0 nevwork model of a0 physical stroeture are objeets and relations,
A objert s podes anda relation: Betwern two obpects is a0 ik The inleractions ol
pterrelations of these entities consteooe the hebaviors apd properties exhibited by e overall
phiy=pcal strnetare An objeet s colleetben of properiies. A properiy does pol exist on s ow.
Whenever we talk abwont o properiy, we et reler it as a property of some objecl or a sy ol
whjerts There are also muliaple orders of propertes. For example, two obsjeets of different cobors,
sy one gy and The other red share a common property of baving o property whieh i cobor,
TWhawt connmiets oty s a0 secomd wade e prropreriy

Further f we e willong to take the pealist poimt of view, we can Lhen extend Hae wotion
ol alvjecks toward abatract eoncepts. For example. the objects of ome ol 008 applieations Tor
Briche Eatigoe anabvaes inclade nor owly phiysieal components of bridges bt also absteact eon-
cepts sl ax Tracture wechanios aliagnostie procedures, and rewedy solutions, Tl progertios
of these abjects o abstracton, however, are often difficalt (oo obseeve and less determinate
ewee, the saewli-hng of abstrae coteepts g albgects will he subpective and Tae sleguemdent of o
aprplical s,

For devel 2 relatbonis sy obeel= sometines. we can gromnd henn witle the properi s o
|,_r|'|_i|'1'|h. }'.III' i':\..'lllll.lll' li'1|||h.l||-:'|' [|rh_|rw'r._-.' r1|l i'|I1r+"["*|'I|- TlAnse=,]f{]l‘:jl'l:'ﬂ dig ih (NTERT NS I||:|:wl.'-|' |.|'|.'|||
the ot her alygeet we thien this relionship s denoted as moee _essiee (o, s b whoel s reline
beebween the mass preogeerty of o sl o Aaaother exgmipde wondd Bae Ui ssa relation. this selioage
lefites fsnoas o parent aned ehild rela ant= i Bt weenn D r]hliqkr]_-;_ o Awee s te gl paeoperties

Hoawover, ot all bevel 2 pelations test on properties. Cousider Ll analysis al spatial rolat s,
[k seesd o f Suppeesc e tries b ol Vs eelation e it rinsie presperbies ol fewatnage. € e
rrp I Wl -'-I'fnl.-_ir-:1 s ||-c--:'.|||-a'|' i I |Ji'r-" -'Irll.! i 1% e BI,H, 1.'.-'||!.' :-r|||:;-|j|n;| T IH‘lll:_{ l1e-rie .'|.||1|
aac Lhaeee, entarl Ll Tormer beng, west of Bl LalLer Uu|} becanse hers’ = a0 peestieen wlinel e
wist ol 1he ||||.-1ili|r|t wligel cotstitate here, O L E T T ELere s Fher e isbe e 1l _-'.||HI:|H| relanl o=
Pty iy |I-I'I:‘-'ilil.!'llh Amithier onse ol Uix sor s I-HIIlI_H:;I[‘al relations. The relalwn of cardioe 10
fedv i argnably mon solely o prodoet of the properties of related events. Suel kinds of reladions
arves calld inbrinsie relations sod canaon be gronnded o properties alome,

The kueswleadge bovel 35 rekations ol prreeprortion Classify level 2 relations st dapriinibienl o isse

Within caele couvalent class of level 2 level & propoetions will also inpose an ordering. 11 s

this orderig whicl esplans how an clijeet can bae eloser tooa second than 8 s oo thind resarding
certain quantifiable property. e mass lengehe veloeity, amd vobuwe, For example. for thre
}IHir.- ol fr'l_il"'l"-h. S L T L B T N e P11 15 five binwes as |j|;|_:.|_n."i'!.'|' AR db ey | HlK |_i|“,-...‘
He biAssive sk ag . bl oy b oone hemdeed Giges as uassive as e Phe there i an mnportam
respect i which the first 1w pairs are more closely simalarly 1o the another than vither is Lo e
thind Such a comparison can be extemded to eross category similarities. Vwo physical objecls
iy differ s o sl R sane degroe as they differ in, say. length, g o iay be owiee
e iass el awiece the Jengtle of the other, Yoo there s something these two differont ol
shiare, the s degree of proportion: feiee.

The devel 3 velations not oy define a pich network of second-order properiaes amd reladions
aeng objgects, bul also explam the pattern of entailment relabions which hold Ay thee The
expericnee with DOOS applications i the ATLSS center indicates that soch Ligher order rela-
trons work reascnably well T the charneterization of large structiral systems, as the properiio
of plivsical components of such systens generally are comparable. Nevertheless, the Hhpeelevel
structure may ool wlegquite o deacnibe relations concerning non-physical aspects of objects sueh
as preferences and opimions. Owe of the representation methods that supplements the sehee in
dealing with less discriminating relations is presented in [6]. In the following sections. | work o
the wlea of threelevel siructuring of knowledge into a formalized scheme of semantic networks

3 Objects and Properties

T formal banguage wsed s nns of set theors amnd fiest order Jogie willl cusbamary sl
thvereiical =yvmbols aml logaeal connectivies siach as —inegation), vior) Afand). —{omplicatia},
anel mo Tortle, bt withont explicil quatifiers, To refleet thee underlying programming nguag:
Prolog of DEwss o Gl with Free variables is treated asoan existential sentepee Tnoubdivion,
thie elefimitiesn of o consbant <yibaol also nelades o list This definition coabiles s o treal 1he
tstanabation of variahles with constants oniy

A werwork el Woabont the phivsical world is s tuple < Q000 S0/ =0 where 00 s a0 el
ol edsjerts or modis, € s oa=et ol melations or links, 5 b5 o8 oset of integrity consteaints, aml £
in o st of revision ruless An objeet i oan abstraevon of anentity of e plivsieal worll 1E s
clipame tereed b is state whicl in toens s defined by aset of propertes, That s For sy mode|
W oand Alk ()

Definitionn L oo = sereree (b A Dpeg Uag ook A A g (s oa)) wbere i (o] es e waague wamee of
e oot ol gt o) v the &% propeorty of o with the form Espoas s dodovornale value

Dehinatoon 2 Foe any Jeaiagri iy |.I_J|r 11||:'_|l'|'|"f o, p s b I_.f to rs @ vonstand dov. Heon the v i
ws vallid w dv boemnale propoely. ofhsvwse, of Is s oa eavnble. thew the pooporly s called an
s e vapvaine g by

Steetly speeaking. the waenedo) s oalso o propeets of o bot Gt s soggled ont o indieats
vnngeecneas of clieet s moenees Phenrstes the =t of properties of o s Proplal, that s, Propian) =
L ite sk gt P ol b Then, obigeer o ean slse b exgeressed s {rmee (o) Progie) b Progle)
can lw ||:'|rl|ljr'-||---.| Miles Lwes == essient il llh:l|l|.-’”i.l:'.‘~. Fhr].'. [ax] il |il'l'4'1|il.-i|'_'.' [RLEE LI A R
oo bt Pl Toeeer st consists of those non-mherited properties ol olgect o0 b the Lal
Per sl e tiherivesd fooen pacmt vlypee sl o

Phohimabnon 3 For nwn oeonde £ W wnd sy o & 08 Propda) = Fropg (ol L Preop, (0]

Your clarmiy | o les 1||||_'|. H'Illy,lr deternmnate value for SYEFY property [TETT S N (TR T KTEY
preapbenmestal i mvolves properties of pulipls terms sweh oss pdds e oah D addition, e
prcdieate ool a0 property pll s o) s called o dedermmnnbde, ol the sel of determmnaldos of oo
denoend am It oy bwe olgests Taving the sauee set of determinables are saiel o belong 1o
P = g The set ol abjects Lhal are of the same Lype as o s aleline] below

Diobmitions 4§ gpe (0) = Lo b U Lo | TM0) = LMoy)]
Ul ot of vliass e objerts b= defined in terns of their propertes:
Detinition 5 ¢ fassio) = [| Prople) © Proplog)| © 0,

Fuethermete, Forany objects o0, Class{o) is the superclass of (lossia’) or € Tass{a’) ixon
anhe bz oo € frrsad o) iF .I'"i'r.lpfu'] i sthaer of P.l'r.:lll,r{.'ﬂ. L, 0 apssd Ir‘:l i i s hset of Il‘Hh’i[h"_

A st of mnigueness eonditions for the abgects and their properbivs are stated i below, For
any oo £ 0 sach that @ # .

Concition U D osgue s condifion
paane (o) F oaraiiie ir:_, 1

Conclition 2 DUwaeque proporty condidien
I swaeeme (o) # wene{ag), thew Proplog) # Propglo;)

Condition 3 Dewpee dedevmable condition
Il i ool grildag o) € Prap o). then po# py.

Nest, iternal to an ohjert, a property is equivalent to one of the following logical forne:

— TE —

Dehivition 6 Fropeefy form

Focanyg o= O pits o) = plis) fwndd claasy | oo

Jills o) =y A Aoary, o pild=) aweheee oty ooy, aee fiest oo seadeoors bk sy e el
oo efee s ol s wiene oe adber abgects ol O3 Gf=0hn slise)

For cxamgle. comsuber the Teading cvele of o olgeet neeige Mt mmendels e il

Fenvid i _egged g dieigg.) S o s in, g b A ol rrigp -ff!’”."!-l'—-r-"”Jr.lr‘l"'[-rﬂ'f-"hl-irhr- b
Pt o fng = RUPY - fr.lrrafﬁr.lr; r'_.';r'f.l [EE)

Fius nany B oveaed s e fosbing, evele ol abieidae oy, s el b e ioltiplieation of
g, e average slanly tratic throsgh the brslge aned o Guevor of 365 G year)”

S thiat Dkl arapr (s ppingae | anl 1.I|'-'HJ_J_,H_|Fur.Il_rlf.f|'r.l_f'I'Ji'[f.-\-,_rjﬁl.mﬂ,l] AR PROpEerLLes ol
Pl sanee II-I:I_|-I'1_"| T gy Suppeose thiar e [._:lil.rr-,,,|“,].-'.lr'riu;'ll-r_r’;{;ffy_fr'r.l_f_ll"fl“l:I[l"l]_uf,”d:u,] =
Frooplimne g b Ahat b Phee Dieidge s 00 vears ol and e sverage has o trabie load of a1t honsand
e by Then we wondel gt Tomafag ogels CTTE00 e, g 1oas 300 LODE = 3635 = 1 T25000,

Sde that the syntacteal forme of a0 property s sinilar Lo Prolog clanse. This s expeetod
i Thee PHOCYS svsbin i writlon ol Lospr ool Peolog . Soee an abeet comsista of o set of i.ll‘t!l|ﬂ"”-i1‘!-i.
i oean b evesndernsl as B |l::lt'.'|.ii:|':|'1r 1|'II'iJI'.'r. A oectwork o |-|l-:'.'l“.-'.l'|f Lhecires IIIIIH rrjrlnr-c !.|:|1-' '[.||_r~|::|r_lp'
ol i R leelge-based systen alwent the plivsical world. Uhe becalization of el e lanses or
NN 'I”‘l‘I'H I|Il" .-ulx'.nlt.-i,u,--.n |rfI [T :I||.-.|||.:|.1;-:1|| Al |||||:||||;||'|:r,.'||.|.;||| lis |1|'u;ir' |'|.ﬁ_-¢|'|| H}Hh"lli.'h 11
atalogy Soeabpect-arieptalion For software progranns

Phemades e sel ol properies or the loealized theors ol o chjoct woas 1501 wrile, as i
'|=|'~'-1-'.'|| Ik 'I.'h.li' |r| Fil if .u||| rar||_\ .f.‘.rﬁ e exi=t= a0 alerresnibn 1l|.‘ 1 'lrnnrﬁ ol I (ERRI(T] "_Il, ar ANy

shilewel od 40 Uhe rules Bor I ITET Y N RITE TR TAES

Raulee 1 I di vaomale v iy

Foi wny groiwad prapevty plis o) of an obpect o, whor A s wed o rariable, gl o) as frae of
b Dol sach thal Fo b plfsio pliacob o falee of o D6) soch That cother 06 plis') walh
T A R I U EE I 1 TR [E L) O D Y T T

Houler 2 Judodv vomenale poge oy
Fais Ak n'JrrrJ-ﬂi'u.'nuf i iy If.-I:J'_u] v o oaw oo el J-i-’ -“P i frme .I_||-JJ E f_jf}[rﬂ sueh thaf
-|I..t ,l-":" .-'-4":| wilie ¢ is i canpesand Thal susia wliatle s i r.-”.': e Ir;[.l _u:] i ﬂjiknuir:ﬂ

Tl lereation of wnkyown wvilies i Uis selenee dilers Trome the nede of negalion-as-failure
i beasbibpenal Prolog-Based systems, The ceason s that o knowddge-based systen cont ains only
partind kpeswhedge o the plivsieal world Aud whon the svsbonn canmal derive s determinate
prreapenty v anstantiade s indelerminate one i does wol mean that the property s false the
sl For determining the trati=valie of theat progeeis mey bee svailable later during the
bt raction wilh hunean wsers or anollier kiow bealgesfased et

4 Relations

s snhaee baon presents somwe examples aboul the specibications of eelations e O of M. As
settimed e Seclion 20 e Jevel 2 relations are cither gronnded with properties of related
vbgeets o wirimsie in natuee. Asan exaiphe the relation fonger between two objects can be
lefues] i berims af their feaglh properties:

Definition T Fer angy obgrels o o © O Jonge vlor 0wy aff bengthits, op) & Proploy) and
fingth{tsy, o0} € Proplos) such that fs) = fsa1

Tl ot apecify the infereie rules beee as it woubd iepend s particolar logical systems which the network
mes bl bl an, hewever, inferenee pdes of swich sy abvsded includs at least - the equivalee of odus

(R ITEIES
Uhote that the mathemnatical reladjon = lwreater thand x adee s relabion, Helations of this sort, however, are

awer terins ok algecis, S, diller Trenn the semanti relationes or ks discossed in this ahstract .

—7q -

One can also make e of the sapee sel of properties o deline other relations of Fhe L

olyjecta, g, to guant il how ey tnes anobgeot i= longer thian another

Doefinition 8 For ang objoets o on = O fro s onge olog awon) ofl fengtb{bsy o)€ Propda)
warel de gt bl bsn o) € Proplos) siel Bhal o = ds [1ay

I DweRuation = Che e o nlicates how many D o s longer Chan ow

Owe particular tvpe of scnmpte etworks ader wmel <tmly s e inheritanee hierarelineal
petwork whicl s based on paeeni-child relations sieel ss fvaoand ssan't [30 Twe of such
siheritance relabions fse and disg for cxmngle, ean be specilie] s level 2 pelations o the

Tl g tnmer:

Drefinition 9 faberdaace mladens
inaleny oo | off Prroplen) S O ropiae)
alis oy o ff Dol o 100 Preapd e = i

Hasically, nn s eelation defines the setinelisien relation between properties of any two
._|I'|_i.-| L=\ "'“"i reslatpan defines e set-cxeluswnn e It wewe Darbwesem Lw |}|1.i|'i‘l.‘~ 1hat «an ol (I
-,|r~ﬁ|||'-|l 'l-"".“lﬂ. Al fair relation. 1o worrth ||r|||n:_§ Ll aen |r||.i|'|1..=- A 1= el wileritable, From
Phefimition 9, e ean ciemily derive Thal esar is peflesive, trmsmive. aid ey innedrie while disg s
syrnetric . heneeforthe T owill take disg{on o) v aneann vither afesjlon o) or disjlaa, o) the
alisission.

Note tlat another potential portant el gt of does mot leed ilsell to e Creadedl
i Lhees sed 8 lwssrect e .1_||;1|:|,'3-ua fopdercal theere stall Lneks a0 st esliegor rhu'rrr:- ol ""-""""l-'-'ﬂ.."' 11.‘1"
pelations of grarts toowholes) Most selenes ol =cunmie netswork singly consider s eoinples el
o eomnpusite of s comsb et meedes, Tl probdems witle saeh ks ol delinglions, bowever,
AT AN

|'i|"'i|- ann aalew s |al'-'1|||| n = s Gl sapvwe scesd ilaent :|Ir.|r'l te vam Loarmn oiHerent COppros e
ohgeers of listinet qeroperiios Consoler o esample o nedeeslar ehennstey, I one savs Lhal
a teebhane oljeet i ot ling meee tha o meresdogieal <o ol hdrogen, carlaon. amd bomeding,
Pl ot cannet cxpluin. for anstanee. o dillerenes betwesn petliane and botane. Hotane
pipcele e ame nlses poasle "y wl ||.w|r- e (g ann] vaeloon (fotr) atons Bostidedd (URiFLeen |-“|H“-":|
b particular configiration. Secondiv, cortam properties exhibized by o emnposite object ng
pever b csplamed by accunmlated preperties ol s subprts, Propertios of ethane, saely as
s i'|'1-|-',l:i_||1_l‘ |'|||i||| andl wannsAtpar IS I TH FER ST T EEL [ITE ,x|1|:1-lllr"l| e terms of arcunmlated [!ll"!:l['l"‘rli*‘?i
ol s -"'“JI'IH‘“"?' Faagt pmnist loe .xr:||.||||| Jd Biw thierr ambeerae s :11'1'1:ln|.llli|.l‘ For Smne l:'|||.‘-|||i1"i'|| [avwes.
Fhaedly. there often exets conllieting peopertns bebween sibparts. T this selense, poet o f s an
vl Finsie melationy, whale Ll lsebiseiciot ool 1 IRNLIED et i |||r_ir4'l i= b b Fll'(hllli'[of the imderaction of s
sarhprarts nstaemd of the sceummilated progerties of thaemn

Level 3 relations are defimead in wernes of lovel 2 eelations, For example, the relation ofoseos
stabes that an object s closer i length v seeonsd obgeet than 1boaloes tooa third one aoed can he
defined o teris of Flme s dovege e relaton as [ollows.

Detinition 10 For ang o os oy © (0 close el on | fog o) bedds off e s donge r{og o]
and firnee = Jomeepe v oey, o b droded o MOosacde Fhal oy o< ne

It s experted the set of bevels 2 oamd 3 relations e € wonld vary from applications to
ﬁpl_}lh{'ﬂ-l-'lﬂllﬁ- Newverbheless, Ll ||r;||1 III-II'!'\- al l'ur'l.'-!-rlll'Iill;l.', semantic relations diseussed heee s

generie enough for a varety of applicalions,

5 Integrity Constraints

[ntegrify constravats on e senantic elationships (or links) among objecls are mportant in
hoth ensuring the correctiess of the network model and deducing implicit relations between
ohjects. For example. from part_of(a,) aod gurtof (e, o). it follows that part.of{er, o). as
purt of satisfies the constraint of transitivity, Tlis section prosenls 4 set of constraints of the
two seheritance relations defined i Section 1, isa and disg, to exemplify the function of integriry
constraints in 5. For any o, 0y, 00 € ()

— 80

Comstraint 1 fsef o,)

Comstraint 2 ssoiop, ou) A fsal o om) — fsifay, o)
Constraint 3 dis{og on Asalo o) — disjlo, o)
Clomstrait 4 des o) o) — disf{o) o)
Comstraint 5 el o0) — fsitlom_ g

Che e vastly devive Hhis sl of ronsteaints from Definntimon 9. Lot us donobe T3 as 0 set of s
il des porelations e paars of olgects i Woamd #{o) o0 as cither psi oy) o din oy o) The
set of all dediwetive conseaquences of 13 using the inheritance constenints (Constenints | fo o,
Prdog oo b 0 VE ploy o b s weinten s C 03wl i called the nliesitanee sl of 1

ill .=I4|1]l||'='|l. l|t|' EIN nll ill|i:"|'|l-."|.|lr|| r'u||.-.r|-.'|i|||.;-.- |=. rr.-i'r;j'u.-pf.r |'.__|r a lans ”i' i_|||r.:.|-i|"_“,--‘. I'|"|.ill.i|:H|h'
when all relations Lelong o that elass i W oare el of (Tl Tl otion ol uleypuary
i vpeoartant as oo wonld ke we havee an mibericanes set which eludes all privsi Bl snbeerrianes
rebabions dermeabde i o network wedel, Tieowhat fllows, 1 introduee the gobions of e sl ey
adib reclomslaney of U

Diefinition 11 ¢ wnmests ey
Fag sy qwade 8 N anyg oo & (3 o 1 A e) = 0w dvsplan). Mhen oo opewasistond s wid of A
ot foiiis an pwiowsesho nld rr|r|_||rr'||'_ e ol v emceniesisde il

Dietinition 12 /6 dovadum g
Foov wny mode! 11 ang e L0 0t ere r s el aligeed ey & 00 speh Hhat Peagfup = f‘r'rliu[ul .
e e s vodfwardanlds wud :_|I' Wocwmtarns o el ywifanf aligeed, Miear o os redfwnefand

Al arrivad o ew wfirsnation dering the steraerion witli the e wsees aiml oblier kol
edge b svsicnes e Toree Lhee loend sysbenn b clage s abstretion st the plivsical world
hes el thear sl sor ol mhertanee eelations sl ahpeets of the wkeelyimg wetwork el
T NN IR TY ™ FTRE] REPTRRPITET) P TRTY B o FIT O checking the itegrity o a walel durie e DAt is
niseassary . b beleow . | ostonber, st bownd preesef s Best vl sbameimentas e sec e i 10ES Ler el d
Fhee incogsistone s ol redaimelaney of 1 durngg s wpdate. O e meler 140 [6] For the prrowls,
which are elerwead Fromm the shfinitions ol ielieribanee pelations aiml comst s

F1"|' Al el 1 Ay Gy g) = ().
U)o anremsestend G ofes ot 0wl 11}
2 e s redwidant Al on # o wnel thant iso{og e), isagow, o) € €| 1)

dbfad Comsteamts Lo e adeauite e L derivalions of faeom A
(hy Constrainl 4 = aaleguate for the derivations of isjirinbiess relavions i A
Ce) The il ritamee comsteainis s adeguare Tor U o class of fse ol disy relations in
A
Ap (a) W s consistont, then disjlog oo b can be derived Ty applving Consteain 3 aonls.
(01 10 e dwconsistent o then disgiopoeb can be derived by using C'onstrat 3 and
Caosbesimt 1 i Al Last step.
Ho(a) 10 M b consistent, then asajop o) oy 2 o, can be derived by applving Consteain 2
Aoy,

(b} I AL = meonsistent, then fsa{o, o), o) # oy, can be derived by (i) steps in Stateient.
S, e (i) ntenmediate steps i Statement b and Clonstramt 5 with or withont
Const padnl 2 o the Jasi sleps,

i) (a) I M is consistent and disj(o),04) € €'ni 1)) = 1), they disjlog. o) can be derived by
Lhe following relations: (13 disjlg;, 920 (2) isalg. o) € Cnl 8 (deductive CONMBEPIEE
nsitg only dsa relalions); (3) fsalge.o0) © C'nil)

P 10 s ineonsishent and dislo oe) € Ol D) = 10t disjla o) vcan lvee ddorivad
v thie following relations: (1) disilg,. god (2 dsafgy o} € il (3} isalge. o) €
nl

Pl IF L om 0 Tussloe) ane desgloeg . og] & O Wl idis jlo, o)

Uhe anpheation of Statement 3 s that the set of inheritaner constramis i connpract suel
it i any eelation oo oy) belongs vo ©' {80 Phen el oe b s a0 commeguenere of it sabesel of
1 Statewnemts [h=i} are conteerined with |lhi||3‘ a subeset of the inhberitanes cons=teagnts oo derive
relations of partieular elass of relations, Ve dse or disfom Cag) ol any A

b alilition. Statenent G says that for any consistent network model every class e the
meslel st not contain any digjointuess relation foe any twe ol it ohjects. Suchoa restriebion,

browaewe . dfoas st :1.|'||ri:.' Hia n|1i4'rl~= of dlifferent classes. s prropeeriy can Fae el vk lier wilh
the following stateownt to ensure that the origieal designe et ol The Fliastlication o algeels
will nest e vialated i the fater pdification of the network wwlel Lot onse delie thal any

abject e elass with ne deseendant as a leal object, then the statement s

T bl beal olgeets of € fass(o) are degointed frone adb Teals obgecia of @ rssian), theaw sl
ohjects in € frwafo)) ave digjointed o Wwse i C faasiog).

6 HRevision Rules

Ko isionn rules e Boare conecrned with varons ormes o rivisom of b el g Trse sk
A |||||.|.t||..-c o the =l of |s1‘-(||:u"rli4':-i 1 ohperts, Lo ;_J,|-||1-|'.=il-i1m aninl reresval ol slegeers, Wi
pccilivabime ol sensntic Tieks, aned so forth Ao apadale transaetion s csecuted only when a
recinst is issied anl ils preveguisite 15 satisfied: otherwise it s abortoad

A representative exanple abont the revision o algeet progeetics s perovided e Phepe ane
Chiree kineds of aperations for apdating properties of an obpeet P aelditne of 0 new jargoerly
the pensoval of & propeety. and the revision of an existing el Sddeven ancd reval ol
propeerbes are primitive opetabions. The revisme ol a property bean obgeet s conpositon ol
rerpewal il addition operations, e boorevise an exisbing property polfso) o an olgect s
i vwndel e ol property wnst frst be rennoved amd omew preoperty ol aillferem walue i Len

addded, Pl vl for property addivion is stabed s follows

Liule 3 Prope ely addition
sevprid s avbel peaps iyl (o) pl b o)) Aoadd propoesndilion e (al pil=)
ceefed _prrangee o f gl veirares (e} gl B ae b

Uhis rude oy b road s 10 3 peguest for adding a propeety piis,op al an objeet o lias Teen
asserten] and the condition or prersgquisite of adding that. property ds salisliod . thew e can infir
enilil _pevarpe et gl evame (o), plds, o))"

The prevesuisite wdd geeopoeand o name (o). plts, o) b s broe onlyowlhen (o) cligeel o sl
{hb g s i) tloes ot al rﬁtd}' ¥ st 1Lll1jl.|l.ll" properly comcalim 1, (o) e ot buer prrepaerly ol o s the
sanne label {ungue determinahle condition); and {0 wo other object o with fsifog ob 2 0 nf i1
suell that Proplo)) = Proploh U plis. o) (redundancy checking]. Tooadedition, s o U pewvision
piiles sdefined i 6 also requirs the nse of Statemwnts [1-T]),

7 Concluding Remarks

In this abstract, | have discussed key features of a new, formal scheme for semantic network reps-
resentation. The underlying concept of this scheme is the threedevel structunng of knowledge.,
The concepts of object-orientation aud logical inference are also blended. coberently, nt this
network schetne. The three-level structure of knowledge offers a rational and systematic means
Lo define nodes (objects) and links (relations) of network models. This, subseguently, cuables Lhe
syslan lh'si.g,ll!“r of a network model ta depive farmal Prupfrt.il‘.‘i ol the meslel as well as (o hetler

32

|:I'f'|iii'1 i1.:¢ hq'hﬂ'ﬁ'lrrr uf IIIJ::-FIIIHlilalj |”I'”'"HN'."3- T |"""”‘"|""| -‘"f'll'l'lill'l' hPi-h |"-1.|| iIII|J|I‘|1II“IIT-l"I.| IHI
RIS T8 I-lililllll.'l.'ll"l.|w|' I1']|r-ﬂ.-.'|'r||.:||.in|| BV T

References

(] AVLSS Center, Sipth-gear concwal progosal fo the NSEF Vol, 2 Progects. Fulbilications, and
Biosketches, Lebigh Universing, Hethlehen, PAL 1952, Section 7

00 Bigelow and B Pargetier, Segonce and e ssely, Cainbhrdge Universily Preas. e
& H !
bridge, 14H)

GG Frege (Lrnnsdated by 00 L Austinh Phe foundations of wreithi e : A logra v altbemadieal
ey onba e coaeg pboof e o secoml it s fard, Blackwell, [059.

[Vo Sowa. e . Proveaplos af semantee e fniks - copluraliens v e oopecsenfation of
kncarledge. Morgan Kaafoam, San Aateo, CAL (1],

(3] DS Tonretzsky. The mathematers of frhe vitanee sgsde mes. Morgan Kaufimnn, Falo A,
AL LAl

(L0 T A Wong, A frome ok for the deseriploon and i cogu af coopevalies Koowledge-hused
sipad e s, Thoctoral diservation, CSER Departoent . Baeligh U niversaw, PAL 110

EXPANSION AND SUCCESSION IN THE
MERM MENTAL REPRESENTATIONS MODEL

Alfredo M. Maeda Jun-ichi Aoe

Dept. of Information Science and Intelligent Systems
University of Tokushima
2-1 Minami Josanjima Cho. Tokushima-Shi 770, JAPAN

F-mail. maeda@ j-ace.is.tokushima-u.ac.jp

Abstract

Among the diverse knowledge representation formalisms, those
with cognitive scienrific bases have proven to have high
expressive power. Such formalisms try to represent aspects of the
world as cognized by humans. Within the human cognitive
capabilities, the psychological phenomena of succession and
expansion have been barely addressed in knowledge
representation systems. Expansion helps explain why humans
access small, limited pieces of knowledge at a time. Succession
refers to the order of occurrences of events. An analysis of these
two phenomena and their specification within a representational
formalism, called MERM, is presented in this paper. MERM allows
the representation of mental models as cognized by humans. The
representation of the expansion and succession phenomena are
useful in diverse applications, such as natural language
understanding, tutoring systems, and perceptual robotics.

1. Introduction.

The degree of perception/action human beings have with the external
world depends mainly on the capability of the mind-brain to process
information. Perhaps the most important of the information processing
capabilities of the mind-brain is the capability of knowledge [Lara 1987].
In this concern three important philosophical bases should be taken into
account [Lara 1990].

1) The belief in the existence of an external reality, which exists

independently of the fact of being or not perceived.
2} Direct access to the reality perceived through the senses.

3) A theoretical reality to describe the physical reality where aspects of
the world such as matter, energy, elc. appear.

— B4 —

From the philosophical standpoint, to know how external reality is
represented within the mind-brain is not the core issue [Poncairé 1984],
The important issue is the agreement of individuals on one same physical
object when making reference to it, independently of the way the object is
represented within their brains. In other words, the same mental models
of aspects of the world exist within the mind-brains of human beings.

The inert structures operated by means of cognitive processes are called
representations, or declarative knowledge |Stillings 1987]. The actions to be
taken in order to achieve a goal are referred to as processes, or procedural
knowledge. Although the theory that declarative knowledge [Anderson 1976,
1983; Anderson and Bower 1973] is a network of propositions that allows the
representation of specific facts, account is not taken of the general knowledge
that allows a system to understand such facts in the first place. For example,
to represent an apple pie, the storage of an atom or relation apple pie is
insufficient. The creation of a mental model that actually corresponds to an
apple pie is mandatory. Mental models are constructions of aspects of the
world which have a relation-structure similar to the aspects they represent
[Rogers et al. 1992). Since mental models can he manipulated, inferences over
them are possible.

2. Related Research.

As our insights on human cognition increase, the development of better
representational formalisms also increases. Previous well-known knowledge
representation theories—such as Conceptual Dependencies [Schank 1972,
1975; Schank and Abelson 1977], Frames [Minsky 1975], Semantic Memory
[Quillian 1966, 1968|, and Cognitive Representation Theory [Wilensky 1987]—
have helped account for some psychological phenomena, such as recalling and
explanation.

These theories, with exception of Conceptual Dependencies, share the
capability to generate hierarchic taxonomies with inheritance, Conceptual
Dependency structures are language-independent. Apparently the majority
of commonalties of these theories lie in their inconveniences, Ambiguities in
the definitions of the theories and difficulties in the representation of
quantification and definiteness [Brachman 1979: Maeda 1992a,b; McCarthy
and Hayes 1969: Wilensky 1987]. However important, little attention has
been paid to the psychological phenomena of expansion and succession.

Expansion refers to the way humans take into account aspects associated to
a certain circumstance only when those aspects need to be considered.
MERM's expansion label is a procedural attachment method that resembles
demons [Charniak 1974; Minsky 1975]. Succession refers to the order in
which things are to be considered or done. A description of these phenomena
and their representation in MERM (MEntal Representations Model) is given in
this paper.

— 85

Approaches to solve different problems concerning temporal relations
have been developed. Some notable work on reasoning about temporal logic
is, for example, time maps [Dean & MacDermott 1987], interval algebra [Allen
1983], and point algebra [Vilain & Kautz 1986] among others. Succession in
MERM is independent of time. It is the order of events, and not the moment
in time when events take place, what is of importance in MERM's succession

label.

2. Brief Description of MERM
MERM (MEntal Representations Model) is a theoretical model for the
representation of aspects of the world in machines. It is the result of
research in Cognitive Psychology, AI, Computational Linguistics, and
Philosophy. MERM helps account for some psychological phenomena,
Mental models represented in MERM do not consist of encyclopedic
knowledge or formal definitions, and are independent of linguistic
syntactic constructions. Linguistic and non-linguistic aspects of the world
are representable. The structure of MERM is similar to that of semantic
networks and cognitive representation theory. The substantial difference
liecs in the different repertory, and semantics, of primitives that conform
the model.

MERM consists of one sct of primitive aspects and one set of primitive
relations (see Fig. 1). These sets of primitives arc combined to conform
representations of aspects of the world.

2.1 The MERM Aspect Primitives.

An aspect represents an individual, identifiable entity of the world. Dog,
toy, run, and anger are examples of aspects. It can be very specific or
rather general, depending on the level of fine-grain desired by knowledge
base designers. Tt is possible to specify, for example, a car as an aspect, or
decompose it into more detailed aspects such as engine, tire, door, etc..
The meaning of an aspect of the world and the inferences about it are
implicit in the representations.

Five different primitive aspects have been defined in MERM, as shown
in Figure 1. Objects such as mouse and book are real ohjects. Numbers in
general are abstracts. Prometheus and tweety are examples of fictional
objects. Swim and eat are actions. Hungry and sick are considered as
physical state/conditions. Sad and happy are represented as mental
state/conditions. No restriction exist in the associativity of the different
aspects in order to form representations.

The five aspect primitives provide a fine-grained classification of
aspects. This is useful in the study of psychological phenomena and other
cognitive processes because it allows the representation of human

86 —

cognition on computers more accurately. However, the diversity of aspects
results rather cumbersome for designers when building pracrical
applications. In fact, the current trend in the development of knowledge

ASPECT PRIMITIVES

O Real Object O Physical State/condition

O Abstract/fictional Object A Mental State/condition

Action (or event)

RELATION PRIMITIVES

p
Oo0———0 Conjunct where:
p p=1{D,1,C,N,E, Sn}
D—<2 Disjunct o= {=, #)
t={C}
o
O<——>0 Double O « an aspect.

fuzzy relation

2}@3’3 Multiple
fuzzy relation

3 T
1
1- N4
o *o

LABELS
D +« dominate N[DIBlIBu] + number/famount
I« instantiate where: De g « default value

C a
- constraint Ble 3I_ « lower boundary

«— expansion Bue 3I_ « upper boundary

Sr « succession
3 « set of Integer numbers

= ¢« equality

. . — ¢ anonymous variable
« inequality

#

Figure 1. Definition of MERM, the MEntal Representations Model

— &7

representation systems is not generalization but specialization. This trend
has been used in a number of systems, such as the CLASSIC system
[Brachman et al. 1992].

In MERM the usage of the five primitive aspects is not mandatory. For
practical purposes it is possible to reduce the set of primitive aspects to
only two, namely objects and events. The process is rather simplistic.
Both real and fictional/abstract objects can be reduced to only one simple
representation of objects and represented as, to say, hexagons. Similarly,
physical and mental state/conditions can be considered as events (or
actions) and represented within rectangles. This simplification avoids
confusion in the decision of which primitive aspect to use in the
representation of a given aspect of reality. Thus, the painstaking process
of creation of knowledge bases 1s reduced significantly.

2.2, The MEEM Relation Primitives.

Aspects are correlated by means of relations. A relation consists of a link
connecting aspects. The resulting network provides a mental model of a
concept. Following is a description of these relation primitives.

CONJUNCT RELATION. The most commonly used relation is the conjunct
relation (C), which links by means of a simple arrow two aspects whose
relation is specified with a p labell'. A mental model for the concepts
running, jogging, walking, and hiking is represented in Figure 2. All the
conjunct relations emanating from an aspect must be considered,
accordingly with their respective labels, to obtain the meaning the concept
being represented. For example, the four 'C' relations attached to the
action running have to be analyzed to understand what 1is being
represented about rtunning..

DISJIUNCT RELATION. A disjunct relation implies that a given aspect is
p-related to only one of the group of aspects addressed. The disjunct
relation between running and both competition and necessity is
represented with a "branched” relation in Figure 2. This relation states
that the assertion of onc of the related states is enough to validate running.

DOUBLE RELATION. The representation of unidirectional relations,
where one aspect affects the other participant aspect in the relation is
possible by means of the conjunct and disjunct relations. However, there
are cases where relations that affect the two participant aspects are
necessary. Such relationship is represented in MERM by means of the
double relation. The type of double relation is established by a o label.
Figure <<>> in section <<>> contains a double relation with an equality label
on it.

1 gf. secccion four.

88

cxcorcise

compelilion

pleasure

Figure 2. MERM representation of running, jogging
hiking and walking.

SIMPLE FUZZY RELATION, Cases exist when the specification of a fuzzy
concept 1s necessary to describe concepts or events. The simple fuzzy
relation is used when, for example, imprecise quantifiers need to be
attached to an aspect. Simple fuzzy relations are represented within
pentagons, and are called simple because only input links are attached to
it. This means that simple fuzzy relations are not affected by the
environment, For practical purposes, tables or membership functions such
as those defined by Zadeh [1879, 1983, 1989], or those shown in [Kandel
1991] can be used to define fuzzy labels.

MULTIPLE FUZZY RELATION. Definiteness in the relation between
several aspects within a representation may exist. When a statement such
as "Hunning is faster than walking" is being interpreted, the precise
difference in speed between running and walking cannot be stated since
fast is a word with a vague meaning. Multiple fuzzy relations are
represented within pentagons—as in the case of simple fuzzy relations. The
differcnce lies in that multiple fuzzy relations also have inputs.

A multiple fuzzy relation can consist of a non-linguistic function such as,
for cxample, a function of three variables—f(x,y,z),—where each variable
corresponds to a link associated to the fuzzy relation. A table or a

membership function might be used to define the kind of fuzzy relation
[Bouchon-Meunier 1992; Kosko 1992; Hall & Kandel 1992].

4. THE RELATION LABELS
Eight relation labels have been defined in MERM to provide relations with
a specific meaning. These labels are defined as p, ¢ and t labels in Figure 1.
Their description is given below.

DOMINATE LABEL. The correspondent to is-a links in semantic
networks. It is represented with the character D. Dominate establishes
hierarchies with inheritance of properties between aspects.. In Figure 2,
land is dominated by geographic-space, indicating the hierarchical
dependence of land. All the properties of geographic-space are inherited
by land.

THE INSTANTIATE LABEL. Denoted with the character /, indicates that
the relation between aspects of a representation and aspects of a particular
situation are instantiated. For example, in Figure 2, person is instantiated
to human, indicating that the former is a particular instance of the later.

CONSTRAINT LABEL. It is used to representations restriction or
condition between aspects. Represented with the character C, The
constraint label indicates that ccrtain aspect a needs, in order to be valid,
another aspect B p-related to it. That is, the validity of the aspect a
depends on the validity of the aspect f (see Figure 2).

EQUALITY AND INEQUALITY. The equalitry between two aspects is
established by means of the equal label, represented with the symbol "="
This label is applicable only to double relations. The inequality between
two aspects is obtained by means of the imeguality relation, represented
with the symbol "#". These two labels are semantic opposites. For
example, some children consider the relationship between spoon, fork and
knife to be as depicted in Figure 3.

Gpoope—=—>(knife

Figure 3. Relation between spoon, fork and knife,

NUMBER/AMOUNT. Objects of the world are often described in term or
their components. Such componcnts arc essential in the representation of
the objects themselves. Ior example a common answer to the question

au

"what is an elephant?" is: an elephant is a big, brown animal with four legs,
big ecars, and a long nose. Note that since not all animals have four legs,
the number of legs is provided explicitly. This is not the case for ears or
nose because it is well-known that animals have, in general, two ears and
one nose. The same criteria is used to compare objects in the world, such as
how to differentiate between a tricycle, a bicycle, a carriage, and a car..
These components of objects are essential in the representation of the
objects themselves.

The specification of number and amount of aspects in MERM is obtained
by means of the numberiamount label (see Figure 1). Variations in the
default quantity are controlled by the boundary values. An anonymous
variable means that any value is valid. It can be placed in any and as
many arguments as necessary. A simplified representation of carriage and
automaobile is shown in Figure 4. The number of wheels in a carriage is
four. Note that since the three parameters in the label have the same
value, no variations in the amount of wheels is allowed. For the case of
automobiles, four wheels are the typical casc. However, automobiles with
three or more wheels are considered as valid in the representation. A
more important difference is the presence of an engine in automobiles and
the absence of it in carriage. In general, number/famount labels allow the
representation of quantities with closed or open boundaries.

transportation

[wheel

N[4l414] NI4131_]

Figure 4. An example of the usage of the number/amount label

5. EXPANSION

Recalling is a psychological phenomenon that has been taken into account
by a number of researchers in the development of theories of cognition
based on language. Schank [1972, 1975; and Abelson 1977] provided, by
means of his Conceptual Dependency theory, an explanation of the reason
why people remember discourse contents instead of literal sentences.
Quillian [1966, 1968] explained recalling by showing how complex
concepts, compared with simple concepts, take more time to be recalled. A
similar problem, known as partitioning, was analyzed by Hendrix [1975].
who proposes a partitioning of semantic networks into units called spaces.

0] —

Hendrix's partitioning concept is used for different purposes such as
quantification and the consideration of hypothetical situations. Another
psychological phenomenon closely related with recalling is a phenomenon
that I call expansion.

To discuss expansion, consider the following situation. Yoshi is getting
ready to attend a wedding in the early afternoon. Once on his way to the
wedding, Yoshi starts getting so hungry that he decides to stop at a
restaurant and have some early lunch. That way he'll avoid either been
fainting or having his stomach making strange sounds, which would
disturb the wedding ceremony. When thinking about eating, Yoshi has in
mind only the idea of ingesting food in order to satiate his hunger—of
course eating includes both food and beverage. Some Kentucky Fried
Chicken and Pepsi seem to be a good choice. But then, from Yoshi's mind
pops out that fried chicken is eaten with the hands. That implies a high
risk to make a mess and put some oil spots on his tuxedo, not to mention
other inconveniences that result from eating such food. Yoshi finally
decides to eat some fast food at a Chinese restaurant. He is good at using
chopsticks so he won't make a mess and will make it on time for the
wedding.

In what way did the deeision process take place? Yoshi has in his mind
a conception of what eating is and implies. However, not all the aspects
linked to eating are accessed and used every time people think about
cating. A base cluster of aspects concerning eat are always present when
people think about eating. But there are also other aspects which are
accessed only if a particular situation requires it. That is the reason why
Yoshi did not think about hands and chopsticks until it was necessary to do
so. Representations of aspects of reality exist within the human mind.
When a mental representation is being acccssed by a person, only the
portion of the representation that is significant for the current situation is
taken into account. The remaining portions of the representation are
accessed only when needed

Expansion can be informally defined as “the eventual consideration of
non-primordial portions of an aspect of reality.”" The eventual in the
definition means that expansion takes place in an as-necessary basis.
Expansion is represented in MERM by means of the expansion label (E) and
can be used in p-relations.

At a testaurant, when we ask for steak we do not think beforehand that
knife and fork are needed or if we have them on the table. This is simply
because we assume they will be there by the time the food is served.
However, if once being ready to start eating we realize that, to say, the
fork is missing, then we make conscious of it and request one. Under a
similar basis, a representation of the concept eat can be like the one shown
in Figure 5. With that representation, a computer can explain that eating

consists of the ingestion of food carried out by a person by means of the
mouth. However, a representation for eating should also consider tools for
eating as well as drinks as part of the eating event. Since these are not
primordial parts of the concept they can be considered as extensions. In
that case the representation would be like the one depicted in Figure 6.
That way, to perform inferences about how different kinds of food are to
be eaten—e.g., Mexican or Chinese food,— it becomes important to consider
the tools to be used. It is then when expansion takes place. Once the
aspect for tools has been activated, its corresponding representation in the
context is attached to the concept of eating.

Similarly, beverages are brought into account during an eating action
only if they are not at hand. This is again because the idea that eating
implies drinking too is taken for granted. But if this scheme does not
succeed then the representation is expanded to the inclusion of drinking as
an action that takes place together with eating (see Figure 6).

Machines with representations implemented in MERM can access the
different portions that conform those represcntations in a way similar to
that of human beings. This is a characteristic of MERM that allows
machines to emulate human-like behavior in the issues of recalling and

expansion.
part-of-body @
\

ingest <agcn|>

\o 7

eat

Figure 5. Simple representation of eat.

L
I

mouth person

. C [i
@(— ingest

D \) C
drink

Figure 6. Expansion labels attached to the concept of eating.

6. SUCCESSION

Actions in a real situation have an execution order. Representational
models that do not include succession of events in actions cannot represent
the manner in which an action takes place in a space-time continuum
[Maeda 1992]. The consequence 1s poor inferencing capability when
dealing with actions.

MERM has three different was to deal with the problem of time.

1) The representation of fixed dates and time by usage of p relations. A
representation for the sentence "Yoshi will go to Hawaii tomorrow™ can

be as depicted in Figure 7.
i hawaii |
k,
yoshi
C < loca

agent

Figure 7. Representation of "Yoshi will go to Hawaii tomorrow”

_9,‘

2) The representation of non-specific, or indefinite, time in a given
situation by means of fuzzy relations. In Figure 8, a representation for
the sentence "Patty visited Stacy a few days ago” is depicted. Note that
few is a fuzzy quantifier. Its definition can be specified by using a
membership function.

stacy
4 .
[patty] Il{3 @ S @
f{: < _patient >

A

C™ visit T

Iigure 8. “Pauty visited Stacy a few days ago.”
3) The representation of the order in which an event or a series of events
take place are represented by means of a special label called succession
label. The succession label is the main discussion in this section.

A succession label is represented with an Sn. label—see Figure 1,—where
8 is the succession identifier and n is the sequential order, or succession, of
the event. Different portions of an event may take place simultaneously,
hence Sn.'s with the same wvalue are permitted. The usefulness of
succession lies in that it allows the representation of complex procedures
step by step. The hole process of an assembly plant can be represented at
different levels of detail.

Consider the concept of eat shown in Figure 6 above. Succession labels
are necessary to describe the different stages of the action of eating. A
simple example of the action eating, with succession labels included, is
depicted in Figure 9. According to that represcntation, the initial state of
the action eat consists of having food available and a hungry person—the
agent of the action—who starts the eating process. Note that even if there
is food available, the action does not take place if the agent is not hungry.
The process of eating finishes when either the agent is satisfied or when
there is no more food available. Obviously, the food the agent had
available at the beginning of the process must be the same as that which
hc/she finished afterwards. This condition is specified in the
representation by means of equality labels. If the succession of events is
not specified, a machine may then think it is perfectly normal to finish
eating before actually starting to eat. A representation with succession
relations specified whenever necessary helps a machine behave more
naturally and perform accurate inferences about situations,

=~

95 -

part-of-body

D

mouth

ingest

drink
C

beverage

be available
hungry/ ¢

Figure 9. Succession labels represent the order
in which an event takes place.

extra
action

7. APPLICATIONS

Expansion and succession—MERM, in general—help give account for
psychological phenomena and serve as a tool for the test of cognitive
theories. They are applicable in virtually any area of Al. In tutoring
systems, expansion and succession provide more human-like behavior in

machines, independently of their role (tutor, student, etc.). The
representation of these phenomena allows a precise description of
sequences of actions necessary in learning or tutoring.

In natural language understanding systems and human-machine
intelligent interfaces, a more precise representation of linguistic and non-
linguistic aspects of reality can be obtained. This allows machines to
perform accurate inferences over aspects of the world—real or artificial.

In perceptual robotics, the consideration of new or diverse situations
can be attained to provide robots with more accurate inferencing
capabilities and adaptability to new situations. The sequence of actions to
be performed by a robot can be implicit within the representation of the
object to be assembled or in the representation of the assemblage process.

&5

6. CONCLUSIONS

Cognitive scientific bases ought to be considered in the development of
representational theories. This is necessary in order obtain sound
representations that agree with human cognition. The representation of
human cognitive capabilities helps us in the understanding of the human
mind-brain as well as in the development of machines with higher degree
of intelligence.

Representations in MERM correspond to a description of the way
individuals conceive aspects of the world. Thus representations are
tailored according to different mental models. This allows MERM based
systems to behave in a way relatively close to human behavior.

Expansion is very important in the emulation of human cognition and
the explanation of some psychological phenomena, such as recalling and
remembering. Humans access knowledge in a way analog to expansion.
Succession has been considered in previous representational theories.
However, we think our representation is more natural due to it has no
direct relation with time. Instead, succession considers only the order in
which things take place in the world. Both phenomena can be applied in
virtually any area or Artificial Intelligence because of their generality.

REFERENCES

Allen, J. F. 1983. Maintaining Knowledge About Temporal Intervals. Comm.
ACM 26(11):832-843.

Anderson, John R., and Gordon H. Bower. 1973 Human Associative
Memory. Winston & Sons, Washington.

Anderson, John R. 1976. Language, Memory, and Thought. Erlbaum, NJ.

Anderson, John R, 1983. The Architecture of Cognition. Harvard U. Press.
Cambridge MA.,

Brachman, Ronald J. 1979, On the Epistemological Status of Semantic
Networks. In Associative Networks: Representation and Use of
Knowledge by Computers (Nicholas V. Findler, Ed.). Academic Press,
Orlando Florida

Charniak, E. 1974, Toward a Model of Children's Story Comprehension. Ph,
D. Thesis, AI-TR-266. Artificial Intelligence Laboratory, MIT. Cambridge,
Mass.

Dean, T. L., and D. V. McDermott. 1987. Temporal Database Management.
Artificial Intelligence 32:1-55.

Hendrix, Gary G. 1975. Expanding the Utility of Semantic Networks
Through Partitioning. Proc. Fourth IJCAL pp.115-121. Tblisi, Georgia,
USSR,

Lara, Rolando. 1987. Cibernética del Cerebro. CECSA. Mexico.

Lara, Nydia. 1990. La Dindmica de la Estruciura de la Percepcion Como

Herramienta Cognoscitiva Comin de la Filosofia de la Ciencia. Master's
dissertation thesis. Instituto de Investigaciones Biomédicas,

Universidad Nacional Auténoma de México, México.

Maeda, Alfredo M. 1992a. A Model of Mental Representations for
Implementation on Automata. M. E. Dissertation Thesis. Dept. of
Information Science and Intelligent Systems, University of Tokushima,
Japan.

Maeda, Alfredo M. 1992b. Mental Models Representation. Proc. Int.
Computer Science Conf., ICSC'92. Hong Kong.

McCarthy, I., and P. J. Hayes. 1969. Some Philosophical Problems From the
Standpoint of Artificial Intelligence. Machine Intelligence, 4:463-502
{Meltzer, and Mitchie, eds.). Edinburgh Univ. Press.

Minsky, Marvin. 1975. A Framework for Representing Knowledge., The
Psychology of Computer Vision. (P. H. Winston, ed.), McGraw-Hill, 211-
277.

Poncairé, Henry. 1984, Filosofia de la Ciencia, (2nd. ed.). CONACYT.
México. (original reference not available).

Quillian, M. Ross. 1966. Semantic Memory. Report AFCRL-66-189. Bolt
Beranek & Newman, Cambridge MA.

Quillian, M. Ross. 1968. Semantic Memory. In Semantic Information
Processing. (Minsky, Marvin. Ed.). MIT Press, Cambridge,
Massachusetts, :

Rogers, Yvonne, Andrew Rutherford, and Peter A. Bibby. 1992. Models in
The Mind: Theory, Perspective & Application. Academic Press.

Schank, Roger. 1972. Concepiual Dependency: A Theory of Natural
Language Understanding. Cognitive Psychology, 3:552-631.

Schank, Roger. 1975. Conceptual Information Processing. North Holland.

Schank, R., and R. Abelson. 1977. Scripts, Plans, Goals, and Undrstanding:
An Inquiry inte Human Knowledge Structures. Lawrence Erlbraum
Associates.

Stillings, Neil A. 1987. Cognitive Psychology: The Architecture of Mind. In
Cognitive Science: An Introduction. (Stillings, Neil A., Mark H. Feinstein,
Jay L. Garfield, Edwina L. Rissland, David A. Rosenbaum, Steven A.
Weisler, and Lynne Baker-Ward). MIT Press, Cambridge MA.

Vilain, M., and H. Kautz. 1986. Constraint Propagation Algorithms for
Temporal Rcasoning. Proc. AAAI-86:377-382. philadelphia, PA.

98 —

Wilensky, Robert. 1987. Seme Problems and Proposals for Knowledge
Representation. Report No.UCB/CSD 87/351. Computer Science Division,
Univ. of California, Berkeley.

Kandel, Abraham (Ed.). 1991. Fuzzy Expert Systems. CRC Press. USA.

Zadeh, Lotfi A. 1979. A Theory of Approximate Reasoning. Machine
Intelligence 9. pp.149-194, (1.E. Hayes, D. Michie, and L.I. Kulich,

Eds.). Wiley, New York.

Zadeh, Lotfi A. 1983, A Computational Approach to Fuzzy Quantifiers in
Natural Languages. Comp & Maths with Appls, 9(1):149-184,

Pergamon Press, Great Britain,

Zadeh, Lotfi A. 1989. Knowledge Representation in Fuzzy Knowledge.

IEEE Transactions on Knowledge and Data Engineering, (1)1:89-100.

Conceptual Mapping and Bidirectional Machine
Translation

Koichi Takeda

Tukyo Research Laboratory, IBM Research
5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan
Phone: 81-3-288-8263, 81-3-265-4370{FAX)
takeda®itrl vnet.ibm.com

KEnowledge-based machine translation KBMT) has emerged as a promising approach for multi-
domain, multi-lingual translation since, in particular, it facilitates inheritance-based specifi-
cation of concepts and object-oriented design of a parser, a paraphraser, and a generator. In
this paper, we describe theoretical and practical aspects of KBMT. which appear to define

the essentials for future NLP systems.
Topic Area: Machine Translation, Conceptual Bepresentation

Keywords: Bidirectional machine translation, conceptual mapping, conceptual transfer

1. Introduction

Multi-domain /multi-lingual machine translation | M*T. for short) has been one of the most significant
goals of NLP research and development, and there will be even more demands for such technologies es-
pecially in European and Pacific Rim countries. Knowledge-based machine translation (KBMT)[* 12 2]
appears to be a promising approach for M?T since it provides us Al-based methodologies for organizing
a set of concepts (.., primitives for conceptual representation of meaning) along with an inheritance hi-
erarchy and for designing object-oriented procedurcs for parsing, paraphrasing, and generating sentences.
Idiosyncratic nature of translation, both lexical and structural, can be incorporated into the definition of
each concept and its associated methaods,

There are, however, & couple of steps to go further to make KBMT systems more than just a toy
program. That is, KBMT should also provide us with a set of well-defined mappings between syntactic
and conceptual representations. The former includes full of linguistic phenomens such as coordinated
structures and long distance dependencies, and the latter serves as interlingua which integrates meaning
representations of all language-dependent expressions, Another problem is a formulation of “transfer”
between a pair of languages such as English and Japanese. Tt is often the case that a conceptual repre-
sentations of 2 sentence and its translation are not identical since a rich set of concepts reflects subtle
differences that characterize how we express information in source and target languages. If we try to
desipgn a sel of coneepts so that a sentence and its translation should always map to the same conceptual
representation, which is so-called puot translation, we will have too many paraphrases (sentences with
the same conceptual representation) which should be differentiated, or some information in a sentence,
which contributes to choosing correct translation, will be missing from the conceptnal representation
of the sentence. Therefore, the notion of “transfer” has to be introduced to define {semi-jequivalence
relationships among conceptual representations that are pharaphrasable,

In this paper, we describe a framework of conceptual representation and its mapping to/from syntactic
structures, which turne out to be guite effective for translating sentences in computer manuals. The
framework has also been emploved in a prototype English-Japanese MT system called Shalt2 0] We

—100—

show that the framework is bidirectional in the sense that there are two algorithms that build syntactic
structures from a conceptual representation, and conceptual representations from a syntactic structure,
respectively. We also introduce an algorithm that performs conceptual transfer, a method for paraphrasing

mnceptual structures,

2. Concepts and Inheritance

A concept is a primitive to represent specific meaning in the real world. It has a unique name and
zero or more slots for holding its modifiers to represent complex meaning. Some slots are used to define
is-a and part-of relationships amoug concepts. Concepts correspond to the notion of classes of the ohject
oricuted knowledge bases {e.g., Cattell ') or categories of the CYC project "), For example, one of the
concepts expressed by the verb “insert” and the noun “insertion” would be defined as follows. !

{defconcept *insert
{iz-a (value =actien))
(:agent (sem shuman *system)}
{:theme (sem =phyzical-ohject))
{:goal (sem #location #physical-sbject)))

This is the definition of the concept *insert with an is-a link to a concepi *action, and three slots - :agent,
stheme, and ;goal. 'Lhe {value ...} facet shows an actual filler of the slot, while the [sem ...} facet shows
the selectional restrictions on the slot. |1 An instance of a concept it a specific representation of meaning
of & word ur a phrase in a sentence.’’T A conventional definition of a plain ontology, however, turns
vul Lo be insufficient for establishing a framework for conceptual mapping. Erclusive inheritance, meta
concepis, and secondary roncepts, described below, are thus introduced to the set of concept definitions,
and the extended set of concept definitions is called NLCS (Natural Language Class System) "%,

2.1 Exclusive Inheritance

A concept inherits vach shol definition from its ancestors [superordinate concepts), i.e., the transitive
closure of the fillers of the is-a slot, unless the slot is redefined. Although a concept can have more than
one immediate ancestor, we restrict its inheritance to be exclusive rather than peneral multiple inheritance
which has been employed in many object-oriented systems. The exclusive inheritance allows a concept
to inkerit slot definitions from only one of its immediate ancestor. The idea behind exelusive inheritance
is to realice certain identity of verbal and nominal word senses without mixing the slot definitions of
both. For example, most verbs have nominal counterparts in a natural language, such as “insert” and
“insertion,” and such a pair usually shares slot definitions {:agent, :theme, and poul) and selectional
restrictions, except that “insert” inherits tense, aspect, and wodality from its “verbal” ancestor but not
cardinality, ordinal, and definiteness {that is, the quality of being indefinite or definite) from its “nominal™
ancestor, althongh these features are inherited by “insertion.” Tt Besid es, exclusive inheritance prevents
an instance from having exponentially many inheritance paths at a time, which is a serious problem with

multiple inheritance. The following concept definitions

(defconcept *physical-action

TWe use frames [®: 13] for concept definitions and their implementation Az KBMT-86 did (],

Hin kBMT systems, & concepl might not be just a part of static “ontological” knowledge, We can also define methads,
or associated procedures, for each coneept. Showing definitions or corresponding words of a concept, for example, could he
cerlainly defined as weaful methads, but the issue of desiguing methods in general s beyond the scope of this paper,

T We wse & hyphen and a number following a concept name (*insert-1, *diskette 1, ..} when it ls necessary to show

instances explicitly. We often identify concepl nwnes and instance names, and cimply say “*X" ingtead of *an instance of
a concept *X" when it 15 not confusing.
41 0ne may claim that “verbal” and “nominal® distinction of concepts are syntactically biwsed definition and that there
really should be one *arction sub-hierarchy for both verbs and their nominal counterparts. We abserved, however, that the
expression “an insertion of a diskette” can be identified with “inserting a diskette,” but the expreasion “the insertion of a
diskette” should not be. The exclusive inheritance easily settlos this kind of problem. Interestingly, “adjective (adverbial)®
and “nominal” inheritances alsu (eg., “Uick™ and “thickness") neod to be axelusive. The sbove chservation also holds for
Japanese.

—101—

{is-a (value *predicate)))
{defconcept *mental-object
{is-a (value *object})]
(defconcept *action
(is-a (value »physical-action *mental-object}))
allow every instance of descendants (subordinate concepts) of *yetion tonherit slot definitions from either
*physical-action or *mental-object.

2.2 Meta Concepts
There are three meta concepts in NLCS - *var, *set, and *fun - to represent concepts that are not

included in the normal entological hierarchy.
The first, *var, is a variable that ranges over a set of NLCS concepts, which are constants. Pronouns

and question words in natural languages usually carry this kind of incomplete concept. A schematic
definition of *var is
{defconcept #*var

{domain)

{range)

{referent))
where domain specifies an initial set of concepts that an individual instance of *var ranges over, range
sperifies a set of (possibly complex) instances that satisfy inter/intra-sentential constraints on *yar, and
referent specifies an instance that *var actually refers to in the context. Neither selectional restrictions
on the above slot fillers nor the is-a slot can be predefined for *var.

The second, *set, is a set constructor that can represent a coordinated structure in natural languages.

A schematic definition of *var is

(defconcept =set
(type)
(member})

whose slot definitions are obvious,

The third, *fun. is a function from NLCS instances to NLCS instances, It captures the meaning of
a so-called semifunctional word. For cxample, in some usages, the verh “take” does not really indicate
any specific action until it gets an argument such as “a walk,” “a rest,” “a look.” It is therefore well
characterized as a function. A schematic definition of *fun is

(defeoncept *fun

(domain)

{range}

{argument))
where domain and range are the same as these of *var, and argument specifies an argument to *fun.
We will discuss instances of these meta concepts in detail after we introduce conceptual mapping rules.

2.3 Secondary Concepts
Since we allow only exclusive inheritance, NLCS certainly lacks the ability to organize ontological
hierarchy from various viewpoints, unlike ordinary multiple inheritance. Secondary concepts are therefore
introduced to compensate for this inability. A secondary concept only defines a collection of other
concepts. For example,
(defvconcept *option
{def {*math-coprocessor
shard-disk »scoftwarel}))

—102-

{defvconcept =movable-thing

(def (include :proprety *movable)))
show two types of secondary concept, *option and *movable-thing. The *option iz a collection of the
concepts *math-coprocessor, *hard-disk, and *software. The *movable-thing is a concept that includes
any instance with one of the :property fillers being *movable. The secondary concepts differ from primary
concepls {concepts defined in the ontological hierarchy) in the sense that they have neither is-a ancestors
nor inheritance paths. Each member of the secondary concept determines them dynamically.

Note that the maintainability of an ontological hierarchy drastically declines if we allow concepts such
as *option to be primary rather than secondary, as *option would have many is-a links from anything that
could e an ﬂj?hﬂﬂ.* The second type of secondary concept helps incorporate so-called semantic features
into the NLCS. Existing machine-readable dictionaries (for example, LDOCE ') often Lave entries with
semantic features such as HUMAN, LIQUID, and VEHICLE that may not fit into a given ontological
concept hierarchy. Secondary concept definitions make it possible to integrate such entries into the NLCS.

3. Conceptual Mapping Rules

Conceptual mupping rules define lexical and structural correspondences between syntactic and cop-
ceptual representations.’ T A lesical mapping rule has the form

(emap *=insert <=l=> insert ({CAT v} (SUBCAT trans))
(role =sem (*phyaical-action})
(:agent =syn (SUBJ))
(:theme =syn (OBJ))
{:goal =syn (FPADJUNCT ((PREP into) (CAT m))})}

where a transitive verb “insert” 1 maps to or from an instance of *insert. The role slot shows that
*physical-action is specified as an exclisive ancestor of this instance. The structural mapping (=syn)
between three slots (:agent, ‘theme, and :goul) and grammatical roles (SUBJ, OBJ, and PPADJUNCT)
are also defined in this rule. The tagent filler, for example, should be an instance that is mapped from
a syntactic SUDJ of the verh “insert.” The :goal filler must be a prepositional phrase consisting of a
noun with the preposition “into.” The fragments of syntactic feature structures following a lexical word
or a grammatical function in a mapping rule specify the minimwm structures that must subsume Eatul‘e
structures of candidate syntactic constituents, These structural mappings are specific to this instance. A
sample grammatical rule that triggers this mapping rule would be:
V — insert

(VCAT) = v

{V SUBCAT} = trans

{V FORM) = finite

{(V SUBJ AGR NTM) = pl, _
where the first two equations are minimally required. Certain syntactic feature values such as srmgular
and imperafive are not lexical entrics, but they are relevant to conceptual representation. A variant of

lexical mapping rule, for cxample,
(emap =sinmgular <=f=> singular)

is used to define mapping between feature values and instances of concepts 1111
The structural mapping rule

! There should be a lexical mapping from the word “option™ itzelf to the secondary convepl “option. In this rase, the
lowest eamman parent of all “def” filless of *option will be the is-a filler of the “option instance,
HBy syntactic structuses we mean featune structures of unification grammars such as LFG 15, PaTR-11 017, and HpsG 15
or dependency structures f&, 1], Throughout the paper, we use PATR-I1 notation to deseribe grammar rules,
tit “Emap” stands for mapping rules for English.
Tfﬂ.ﬂ.gmmtnl. features sg and pl should not be confused with the quality of & noun belng singular or plural. The agreeinent
features do not contribute to the conveplual representations.

— 103

(emap *physical-action <=a=>
(:mood =syn (MOOD))
{:time =syn (TENSE)))

specifies that the slots :mood and :time map to or from the grammatical roles MOOD and TENSE,
respectively. Unlike the structural mapping in a lexical mapping rule, these slot mappings can be inherited
by any instance of & subclass of *physical-action. The *insert instance defined above, for example, can
inherit these :mood and :time mappings.

Thus, assuming that lexical mapping rules are similarly provided for nouns {diskette and drive) and
feature values (imperative, present, and so on), we will obtain a complex instance of *insert

(#insert-1
{:mood (*imperative-1))
(:time (*present-1))
{:themes (wdiskette-1 (:definiteness (#indefinite-1))
{:number (#singular-117))
(:goal (=drive-1 (:definiteness (*definite-1))
{:number (wsingular-2))}))

for the sentence “Insert the diskette mto the deive.™

3.1 Examples of Conceptual Mapping

We are now ready to introduce some of interesting examples which illustrate the importance of gadgets
defined in the previous section. Although we procedurally deseribe the mapping below, it is indeed possible
to give a declarative definition of the conceptual mapping.

3.1.1 Coordinated Structures

Coordinated structures are so commonly used in documents that we found as much as 27% of all the
sentences in a PC manual included some forms of a coordinated structure. Syntactic accounts for coor-
dinated structures have been proposed by Kaplan and Maxwell 18] using a notion of a set of f-structures!
that was bricfly mentioned by Kaplan and Bresnan 5. Since they defined an f-structure for a coordinated
structure to be & set of copstituent f-structures except for that of a conjunction, it was not possible to
represent, for exmaple, that a coordinated noun phrase has (person 3) (number pl} features as a whole.
Therefore, we define a feature structure of a coordinated structure to be a pair (f, {fi,..., fu}}, where
f is a feature structure that is peculiar to the coordinated strmeture, including a feature structure of a
conjunction, and f,..., fi are feature structures of coordinated constituents, We denote firat(F) = f
and rest{F) = {fy,.... fu} for a complex feature structure F = (f, {fi,..., fi}). For any simple feature
structure F, first(F} = rest(F) = F. For example,

NI' = NPy CONJ NP
(NP CONI} =s {CONJ}
(NP NUM) =» pl
(NP} 3 (NPy)
(NP} 3 (NP2)
generates the feature structure

(({CONJ ({SIGN and) (CAT coni))) (NUM pl}}, {f1, f2})

for NP when NPy, = f;, NPy = fo, and CONJ = ({SIGN and)} (CAT conj}). The equation, (NP NUM}
=s pl, defines a complex feature structure F for NP such that NUM of first(I") unifies with pLH

tRounds '8 formulated the logical properties of set-valued feature structures,

Ty be precise, equations have to be extended in order to specify unification of a complex feature structure and &
simple/complex feature structure. Takeda defined o new equation =s for LFG in addition to = and 3 tqultiomr"]. where
Fy =s Fz unifies first(F;) with Fy, end F; = F3 unifles reat[Fy) with Fa, in order to use the same grammar rules for both
sitnple and complex syntactic structures as much as possible.

—104—

An instance of a *set is created for each complex feature structure. The structural mapping rule for
*aet is
{emap =gset <=g=>

(type =ayn first(# CONJ))

(member =syn rest(#)})
where # denotes a complex feature structure to be mapped. Likewise, we can build instances of *set for
phrases “either A or B." “A, B, then C.” A as well as B.” cte.

Note the difference between coordinated structures and prepositional phrases (adjuncts) although the
latter is formulated in terms of complex feature structures in Kaplan and Bresnan ™ as follows,

VP = ¥ NP NP FP*
(1R 3] (10BIR 3] €T ADJUNCTS)

However, the camplex feature structures in ADJUNCTS! should not be ma pped to o *set instance

because a presumable instance
(*set-1 (member (value *tuesday-1 =tokyo-1)))

for two adjacent PP's “on Tuesday in Tokyo” clearly screws up the :location and :date roles. For this
reason, we have another kind of equation > for non-set-forming constituents.!T That is,
VP, = VP, PP
{(VB,} = (VP;)
(VP; PPADJUNCT) > (PF)
where each PP fills a specific tole of the head VP
3.1.2 Pronouns, WH-Words, and Gaps

The pronoun “one” in the sentence “Flip down the red one.” will be mapped to the instance

(#var-1
(domain (value *physical-object-1})
(ranga (value #lever-1))
(referent (value spower-switch-1)))

where selectional restriction of the verh “flip down™ on its :stheme slot is *lever, and the pronoun actually
refers to a power switch that appeared in the context. The mapping rule for this pronouns is

(emap *var <=1=» one ((CAT pro))

(domain =sem (*physical-object})

{:definiteness =syn (DET}}

{:property =syn (APMOD)))
which maps the pronoun to the instance *var-1 during the parsing process, The feature value “deflnite”
and the adjective “red” are similarly mapped to the instances *definite-1 and *red-1, respectively, to
be modifiers of *var-1. Since ®var-1 is a variable, the slot mappings (:definiteness =syn (DET)) for the
determiner “the” and [:property =syn (APMOD)) for the adjective phrase “red" are applied to each
domain filler, and we get
{*physical-object-2

(:definiteness (value =definite-1)}

(:property (value *rad=1))}
which hbecomes the range filler of *var-1. When this *var-1 becomes the itheme filler of an instance of “flip
down”, where (:theme {sem *lever)) and *lever is-a *physical-object, the selectional constrainl narrows

down the possible referent of *var-1 from *physical-ohject-2 to

tpr* s a regular expression to dencte any nuber of adjuncte PP in the right hand side of the rule.
HThis equation i calbad wn “append” operation in KBEMT-83, and is inappropriately used for both adjuncts and coord:-
nated struclures,

—105—

(=lever-1

{:definiteness (value sdefinite-1)}

{:property (value *red-1})}

Finally, contextual constraints {or anaphora resolver) determines the referent filler of *var-1.

Mote that *var-1 is so informative that it allows a generator to produce at least three different syntactic
representatious. The first, “the red one,” is just the inverse of the above conceptual mapping. That is, an
instance of *var with (domain {value *physical-object}) maps to “one,” and the :property and :definiteness
modifiers of the range filler map to “the red.” The second, “the red lever," is recovered from the range
filler alane. The third, “the red power switch™ is recovered from the referent filler and the ;property and
:definiteness modifiers of the range filler. The second and third ones are paraphrases of the first one.

Mapping rules for *var can be defined for WH-words and gaps. The WH-word *why” can be mapped

to *var by

(emap *var <=1=> why ({CAT wh))
{domain =sem (*reason}))}
A gap in a relative clause can be mapped to ¥var by
{emap #var <=1=> Qgap)
where & referent filler is immediately ohtained from the antecedent noun of the relative clause.! It is not
possible, however, to get paraphrases from these instances of *var.
Other interesting usages of *var include the handling of unknown words, An unknown word triggers

the lexical mapping rule

{emap #*var <=1=> Qunknown

{string =syn (stringl)}

(domain =sem {+object)}
which means the unknown word could be any object with the striug slot filled with the character string
of the word. If we have to assume that the unknown word is a verb, an adjective, ete., we can define
similar lexical mapping rules. Inheritance of slot mappings from potential domain fillers such as *object,
*physical-action, or *attribute would help us build conceptual representations including the instances of

such unknown words.
3.1.3 Semifnectional Words
Instances of *fun are used to represent incomplete word senses of semifunctional words “take,” “do,”

“make.” etc. An example of conceptual mapping rule for “take” is

{emap *fun <=1=> take ((CAT v} (SUBCAT trana})
(domain =sem ((*bring obj)/*person (s*photograph obj}/*picture ...}}}

where an actual specification is a huge list of
{instance returned from the function, grammatical function of the argnment) / semantic re-
strictions on the argument

pairs. We will have the *fun instance

{=fun-1
{domain (value ({*bring obj)/*perason (+*photograph objl)/+picture ...)))
(range (value (®spize-1 *digest-1)))
(argument (value (#aspirin-1 (:number (value *singular-1))))))

tan empiy sign of a gap is encoded as Sgap.

_l.DE.

for the phrase “Take aspirin,” where *seize-1 and *digest-1 include *aspirin-1 possibly as :theme filler

provided that (*seize-1 obj)/*small-object and (*digest obj)/*food are listed in the domain slot. 1
Some of auxiliary verbs in Japanese and the English verbs “seem™ and “be” can be mapped to

*fun to reduce bi-clansal analysis of these verbs with a VP complement into an instance of VP with a

“presumption” feature. That is, the phrase “X seems to know Y.” will be mapped to

(#know-1
(:presumption (value #*true-1))
(:moed (wvalue =declarative-1)}
(:time (valus *presenlL-1})
(:agent {(value *X=1)}
(:theme (value *Y-1)})

using the conceptnal mapping rule

(emap *fun <=1=> seem ((CAT v) (SUBCAT intrans) (comp-type VPBAR))
{domain =gem {/*actiom))
{.presumption =sem (*true)))
where /*action maps any instance of *action to itself,
d.1.4 Integers, Character Strings, and Derivative words
Tutegers amd character strings can be arbitrarily large and long. Therefore, two generic lexical mapping,
rules are defined for these lexical entities, Any integer X is mapped to an instance of *integer with the
:value slot filled with the inteper X. Similarly. any character string “Y" embedded in a sentence is mapped
to an instance of *string with the string slot filled with “Y."
Generic mapping rules are also necessary to define consistent mapping rules among derivative wards.
An intuitive example is & verl and its infinitive and present participle forms as illustrated below.

(epap *ingert <=1=> inmert ((CAT v) (SUBCAT trans) (FORM infinite})
(role =aem (#physical-action))
{:agent =ayn (FPADJUNCT ({PREP for) (CAT n) (FREMOD +)))
(:theme =gyn (0BJ)}
{:goal =syn (PPADJUNCT ((PREP into) (CAT n}))}))

(emap *insert <=1=> inserting ((CAT v} (SUBCAT trans) {FORM prtpart))
(role =ser (*physical-action})
(:agent =syn (PREMOD ({CAT (*or n pro))} (FORM genitive)))
{:theme =syn (0BJ})
{:goal =syn (PPADJUNCT ((PREF inte) (CAT n)))}}

By peneralizing this regularity, we can define generic mapping rules for derivative words.

4. Conceptual Paraphrasing Rules

An adjective modifying 2 noun in English might be s conjugable verb in translation, and their dif-
ferences result in added/missing information in their conceptual structures. This fact implies that we
have to provide a set of conceptual paraphrasing reles to describe a set of equivalent and semi-cquivalent
eonceptual representations., Practically, these rules should be sensitive to the target language, but not
to the source language, since the definition of equivalence among conceptual representations depends on
the cultural and pragmatic background of the language in which a translation has to be expressed. An
example of a pa.ra.pllmsing riile is

M The *small-object is a typical secondary class for defining inanimate movable ahjerte sxcept for wehickes, et Any
VP _ E
grammatical function or adjupct, excluding the one which is mapped to the argument slot of the *fun (e.g.. obil, is
examined againgt each domain filler of the *Tun instanes for determining conceptual slot to be mapped.

—107—

(equiv (wequal (:agent (=X (:number (=V)})}
{:theme (+Y/#person
(:definiteness (#indefinite))
{:number (=W)J)}))
(*Z/eaction (:agent (*X (:number (*W))}J))
(such-that (humanization *Z =Y)
(sibling =V *H)})
where *X, *Y, ..., are variables that denote fillers of value facets, *Y [*person specifies ¥Y to be an
instance of any descendant of *person. *equal is roughly the verh “bhe,” humanization is a relation that
holds for pairs such as (*singer, *sing) and (*swimmer, *swim), and sibling holds for two instances of the
same concept. Intuitively. this rule specifies an equivalence relationship between sentences such as “Tom
is a good singer” and “Tom sings well,” as the following bindings hold:
(*equal-1
{:mood (value =declarative-1))
(:time (value =present-1})
(:agent (value *tom-1 (:number (value =aingular-1}}))
{:theme (value *ainger—1 (:property (valus =good-1)})
{:definiteness (value *indefinite-1})

{:number (value *singular-2J1}})

(*aing=-1
{:mood (value *declarative-1))}
{:time (value #present-1)}
(:apent {value =tom-1 (:number (value =singular=131)]
{:property (value #good-1}))

where =X

=Y
All the instances that have no binding in o rule wost remain unchanged as the same slot fillers (e
*declarative and *present), while some fillers that have bindings in a rule may be missing from a coun-
terpart instance (e.g., *indefinite and *W above). Note that *good has lexical mappings to the adjective
“gond” and the adverh “well.”

stom-1, *Y = =ginger-1, *I = =aing-1,
*gingular-1, and *¥W = =singular-2.

5. Generatror-Driven Conceptual Transfer

Given a conceptual representation C, which is mapped from a sentence in souree languages, we have
to map C to another conceptual representation ©F that has a well-defined mapping to a feature strocture
of a target language using a set of conceptual paraphrasing rules. This mapping from C to C' is called
conceptual transfer. If the given conceptual representation already has a well-defined mapping to a
featitre structure, the conceptual transfer is just an identity mapping. It is important that conceptual
trapsfer should be related with the mapping to a feature structure, because there are generally many
members in a set of (semi- jequivalent conceptual structures. The existence of well-defined mapping not
only gnarantees that the generator can produce a sentence in the target language, but also effectively
eliminates unsuccessful paraphrasing.

In addirion to the paraphrasing rules mentioned ecarlicr, the following general rules are included in the
conceptual transfer.| The puraphrusing rules are composed to make a complex mapping.

Projection: Map an instance with a filled slot # to an instance of the same concept with the unfilled

slot 5. Projection corresponds o deletion of a slot 5.

*'I.hwc are u:mi-w{uiwll:nL rules. Equivalenl rules have higher privcity when the rules are lo be applied.

108

e CGeneralization: Map an instance of a concept *X to an instance of one of the ancestors of *X.
» Specialization: Map an instance of a concept *X to an instance of one of the descendants of ¥X.
A projection rule is frequently used when we trauslate English nouns inte Japanese ones, as in the

following example:

diskette (#diskette (:num (*ag))]

diskettes (#diskette {:num (+pl))]

a diskette {(#diskette (:num (*sg)}
{:def (*indef}))

the diskettes (sdiskette (:num (wpl))
(:def (=def)})

FTAArelr (=sdiskette)
Here. the four English noun phrases above are usually translated by the same Japanese noun phase’ (the
fifth one), which does not carry any information on :num and :def, We provide a paraphrasing rule for
tramslation in the opposite direction such that for any instance of the *object can obtain appropriate :num
and :def fillers. The parser, however, is responsible for determining these fillers in most cases. In general,
the designer of semi-equivalent rules for trauslation in one direction has to provide a way of inferring
missing information for translation in the opposite direction. Generalization and specialization rules are
complementary and can be paired to become equivalent rules when a specialization rule for any instance
of a class ris unambiguons, That is, without losing auy fillers, one can always choose an instance of a
suhclass y to which £ can be uniquely mapped. A generalization from each y to z pravides the opposite
CIETOITITTN

An algonthm for conceptual transfer is a top-down, recursive procedure. Tet us view a conceptual
structurc as a tree and its fillers as subtrees.|t The algorithm then works as follows:

1. If a root has no lexical mapping, find a paraphrasing rule to map the root to some other instance,
Use generalization or specialization when there is no appropriate paraphrasing rule,

2. Find a feature structure for cach subtree. If there is no feature structure for some subtree, map the
subtree to another instance. If this fails, map the root to some other instance. Start from step 1.

J. Compose the feature structures for the subtrees to make an entive feature structure. If this fails,

map the root te some other instanee. Start from step 1.

Cluce the feature structures for the subtrees have been computed, it is not necessnry to re-compute them,
even when the root is mapped to another instance, as long as the filler is unchanged. By scheduling the
equivalent and semi-equivalent rules appropriately, the algorithm can be made to terminate in order to
produce a feature structure, although we may have to sacrifice some of the origiual semantic content.

6. Bidirectional Machine Translation
We briefly summarize the theoretical properties of NLCS framework.

» Lexical mapping rules are bidirectinal. Any feature structure F that maps to an instance I using
the rule R is subsumed by the feature structure F* specified in R. Wedekind showed that F* suffices
to generate F as long as conceptually relevant features are unchanged 2] Thys property also holds
for mapping rules of complex feature structures and meta classes. However, the mapping is not
necessarily one-to-one, and abuse of *fun mapping rules, for example, could easily result in extreme
ambiguitics in mapping from & conceptual representation to feature structures.| Tt

tone excaption is that deictic noun plirases are translated when we use the Japaness counterpart “F90" for the deberminer
Hihe",
fta general graph structure can bu converted o o tree by duplicating each node which has more than one parent,
Ht=x (:thema *Y]] can be mapped to “make ¥7, “do Y7, “take Y7 if (*X cbj)/*Y is in domain filless of *fun mapping
rules for “make”, “do™, and “take".

—109—

References

¢ Structural mapping rules are bidirectional (provable by mathematical induction on the numher of
mapping rules.} Thus, any composition of lexical and structural mapping rules is bidirectional.

Fquivalent paraphrasing rules are trivially hidirectional.

Semi-equivalent paraphrasing rules are bidirectional if there exists an inverse rule R' for any R such
that B maps [to I" if " maps I' to | for any instances [and T

Y. Conclusion

As discussed in van Noord ! and Dymetman [2'_. bidirectionality holds for unification grammars and
lossless transfer rules based on logical forms as semantic represeptation. Our results confirmed the sim-
tlar result for object-oriented concept definitions and mapping schemes that can handle broad range of
syntactic structures, Furthermore, recent activities on KBMT approach explore the areas such as auto-
matic knowledge acquisition 'l and efficient interlingua translation '® which have been considered major
bottlenecks of building practical KBMT svstems. With our mapping scheme described in this paper,
bidirectional KBMT svstems can be developed for a broad-coverage, practical application domains.

Although a logic-based approach is important for understanding the meaning of sentences, and logical
framework with inference mechanism can do more powerful paraphrasing than our “conceptual transfer”
approach, our approach s often better suited for machine translation since translating “what is expressed™
15 usually preferred to translating “what is implied”. The former is what “conceptual” paraphrasing is
primarily designed for. Conceptual representations can also be a convenient tool to derive logical formulae
since the mapping between conceptual representations and logical formulae can Le described withouot

worrying about syntactic details,

B. Acknowledgments

I would like to thank Shilio Oging for her discussions on Japanese syntactic theories that inspired me
to refine the wleas of conceptual mapping and eonceptual transfer.

References

1) B G. G, Caztell. “Introduetion” in special section for Next-Generation Database Systems, Communications
of the ACM, 34(10):31-33, Oct. 1991,]

2) M. Dymetman. “Inherently Reversible Grammars, Logic Programming and Computability”. In Prec. of
ACL Workshop on Reversible Grammar in Natural Language Processing, pages 20-30, Berkeley, Califoruia,
June 1981

3} K. Goodwan and 8. Nirenburg, editors. “The KBMT Project: A Case Study in Knowledge-Based Machine
Tranaletion”. Morgan Kaufmann Poblishers, San Mateo, California, 1991,

4) A. G. Hauptmann. “From Syntax to Menning in Natural Language Processing™. In Proc. of the AAATI'91,
pages 125-1301 1901,

5) K. Kaplan and I. Drespan. “Lexical-Functivaal Graanmar: A Farmal System for Generalized Grammatical
Representation”. In J. Bresnan, editor, “*Menial Representation of Grammatical Relafions”, pages 173-281.
MIT Press, Cambridge, Mass,, 1982,

G) K M. Kaplan and J. T, Maxwell [1I. “Constituent Coordination in Lexical- Functional Grammar”. Tn Proe.
af the 126k International Conference on Computaiionel Linguistics, pages 303-305, Aug. 1988,

7} D B. Lenat, R, V. Guba, K. Pittman, D, Pratt, and M. Shepherd. “CYC: Toward Programs with Common
Semse”. Commumications of the ACM, 33(2):30 49, Aug, 1000

8y H. Maruvama, “Structural Disambipuation with Constraint Propagation™. In Proe. of the 28th Annual
Meeting of ACL, volume 3, pages 31-38, June 15860,

2] M. Minsky. “A Framework for Representing Kuowledge”, In P. Winston, editor, The Paychology of Computer
Viston, pages 211-277, McGraw-Hill, 1975,

10y T. Mitammea, E. H. Nyherg, 3rd, and J. G. Carbonell. “An Efficient Interlingua Translation System for
Multi-lingunal Document Production™. In Proe. of the Machine Translation Swomit I, July 1991,

11} K. Nagao. “Dependency Avalyrer: A Knowledge-Based Approach to Stroctural Disnmbiguation”™. In Prec
of the 158tk International Conferemce on Compulational Linguiatics, pages 4B84—488, Ang, 186,

12} 5, Nirenburg, J. Carbonell, M. Tomita, and K. Goodman, editors. “Machine Translation: A Knowledge- Based
Approach”. Morgnn Kaufmann Publishers, San Mateo, California, 1991,

—110—

References

13} E. H. Nyberg. “d User's Guide fo the FrameRil Knowledge Representation System ™, July 1987, Preliminary
Draft,

14) Procter P. Longman Dictionary of Contemporary English, Longman Group Limited, Harlow and London,
England, 1978

15) C. Pollard and L. A, Sag. “An Informaetion-Based Syniar and Semantica, Vol I Fandamentals”. CSLI Lecture
Notes, Number 13, 1287,

16) W. C. Rounds. “Set Valnes for Unification-Based Grammar Formalisms and Logic Programming”, Techmnieal
Repore 124, CSLI, 1988

17) 5. M. Shicber. *4n Mmtroduction te Unificafion. Hased Approaches to Grammaear”. CSLI Lecture Notes,
Number 4, Stanford, CA | 1086,

18} K. Takeda. “Designing Natural Language Objects”. Iu Prvc. of 2nd Muternational Symposinm on Database
Systema for Advanced Applications, pages 444-448, Tukyo, Jagsm, April 1991

19} K. Takeda. “Unification Grammars for Processing Coordinated Structures”, Unpublished manuscript, 1992

1) K. Takeda, N. Uramoto, T. Masukaws, and T. Tsotsumi. “Shalt? - A Symmetric Machine Translation Systew
with Coneeptual Transfer”. Technical Report RT0068, Tokyo Research Laboratory, IBM Research (to appear
m COLING™3), Nov. 1991,

21) G. van Noord. “Reversible Unification Based Machine Translation™. In Pree. of the I8tk International
Conference on Computationel Linguistics, volume 2, pages 200 304, Helsinki, Aug. 1990,

22) J. Wedekind. “Generation as Structere Driven Denvation”. Tn Prac of the 18th Internafional Conference
on Compulations! Liguesfics, pages T32-T37, August 1988

—111—

Bottom-up Parallel Parser by Model Generation
Theorem Prover
Extended Abstract

Masayuki I'njita
Frank O'Carroll
Koichi Furukawa
Institute for New Generation Computer Technology

October 20, 1092

Abhstract
This extended abstract shows topdown control in a bottem-up system
produced by the magic set transformation las a very clear correspondence
e c.ptimi.zati.l}n of a holtom-np parser, The wedl known chart parser can
be obtained frem the DOG grammar by a very formal transformation
method. A bettom-up thearem prover MOTP developed at 1C0T be
comes a parallel chart parser becauss of this transfarmation,

1 Parallel Bottom-up Theorem Prover
MGTP

A model generation theorem prover (MG TP) implemented in KL1 searches
for proofs of specification expressed as logical formulas and it Tuns on
a parallel machine:Multi-PS]. MGTP is a hyper-resolution based bot-
tom up (infers from premises to goal) prover. Thanks to KL1 program-
ming technology MGTT is simple bul works very efficiently if problems
are range-restricled. The inference mechanism of MGTP is similar to
SATCOHMO[MBSE] in principle.

The MGTT* prover adopts model generation as a basic proof procedure.
We assume that a theorem to be proven is negated and transformed to
a set of clauses, then we try to refute the clanse sel as in the resolution
method, A clanse s represented in an implicational form:

Ap Az, oo Ae = Oy 50k

where A,(1 €4 < n) and {1 < j < m) are atoms; the antecedent
is a conjunction of Ay, Az, ..., dn; the consequent iz a disjunction of
OO, O

—112—

There are the fullowing two rules in the madel generation method.

s Model extension rule: If there is a clause, A — ', and a enhstitution
o such that Ae is satisfied in a model M and Co is not satisfied in
M, then extend the model M by adding O into the model M.

s Model rejection rule: [f there is a negative clanse whose antecedent
Ar is gatisfied in a model M, then reject the model M.

The task of muwdel generation is to 1y to construct a model for a given
sed of clanses starting with a null set as a model candidate. If the clause
seb is satisfiable, 2 model should be found. The method can also be used
to prove that the clause sel is unsatisfiable, by exploring every possible
model candidate to sex that ne model exists for the clanse set.

The model generation method does not need full wnification during
conjunctive matching of the antecedent Blerals against madel clements if
the range-restrictedness' condition is imposed on problem elausss, When
range-restrictedness is satisfied, it is sufficient to consider one-way unifica-
tinn, or matching, instead of full unification with ccours check because a
moulel candidate constructed by the model generation rales should contain
anly grownd atoms, This property is favors a prover implemented in KL1
since matching is easily realized with head unification and the variables
in the given clauses can be represented as K11 variables. Experimental
results show that the MGTE prover is efficieat in solving range-restricted
nen=-Horn problems. Tor details of technigques Tor implementing MGTT,
refer ta [HFT90], [FII90].

2 Magic Set Transformation

Bottum-up reasoning systems do not care whether the produced resclvent
is relevant Lo the refutation or not. The magic set transformation of Horn-
progriams 15 a deductive database technique to introduce top-down contral
e a botlom-up generator of consequences. A naive bottom vp theorem
prover will have a goal oriented control with this method, If we let £,
and (} be atomic literals and n, a natural number and £{.) be a meta
predicate that means . is a geal, then a rough sketch of the magic set
transformation rule is as follows:

P[,---1Fn -+ Q
=%
Gl — GlR)
G@nn — G(F)
. [l]
GNP P =

PTo ensure range-restrictedness, a dom /1 predicate is added to the antecedents of problem
clauses and extrs clawses for the predicate are alded Lo the original set of claness, if necessary.
This transformation does not change the satisfiability of the original set of clauses,

—113 -

2 = mp, up
np — a, n
np — prp, n
vp — v, a4
vp — v, av
a — [failimg]
prp — [foiling]
a — |hard)
av — [hard]
n — [studenis]
— [lonked)

Figure 1: Natural Language Parsing Example Problem

The transformed clanses may not be range restricted even if the ini-
tial clause set is so, hecause sach goal within the metapredicate & may
generate a goal with new variables. This is a serious problem far a bottom-
up prover which employs range restrictedness for achieving good perfor-
mance. This problem is bypassed by introducing new predicate symbols
called ‘adornment’[Beerisd] if the problem domain has no function sym-
baols, which is uswally assumed in the database problem domain.

3 Magic Set Application to Language
Parser

Applying the magic-set transformation to context-free grammar rules trans-
lated into range restricted Horn-clauses can produce a bottom-up left-to-
right parser with top-down contrul. This is very similar to the well-known
chart parser.

By nsing a tiny example, we will show and discuss:

(1) how to represent the parsing problem as a problem in MG'LP,
(%) a chart parser produced by the magic set transformation of (1},
(3] warious levels of parallelization on 2 PTM machine.

3.1 Definite Clause Representation of Context Free
Grammar

We nee a tiny example in fig. 1 te show how Lo represent parsing problems.
The example sentence is “failing students looked hard.”

=114

‘The parsing problem is more constrained than a useal theorem prov-
ing preblem in that enly adjacent subtrees can form higher level parse
trees. 5o that MGTT only constructs correct parses, this information
must somehow be added into the model. After adding start and end loca-
tions to the parse tree, the constrained clauses appear in fig.2, The rule
for this is very simple.

3.2 Applying the Magic Set Transformation

Since all clavses in the previous example are all Horn clauses, we can use
the magic set method appropeiate to Horn clauses, and the adornment
technique[Been8t]to keep the clauses range-restricted, giving the MGTP
clauses in fig 1.

This parser {1} predicts non-terminal symbols from the top down, (2)
proceeds left to right, and (3} re-uses prevously construcled subirees in
basica]]_f the same manner as a charl parser,

In this example, since there are four different possible parse trees,
MGTE has now way Lo find all of them, since s5(_) i3 a query. However,
if we change Lhe control st rategy to generate all pessible model elements,
then we can find sl pazses But all the possible parse trees are generated
wilhin o single model, so it is difficult to decide when to terminate the
search,

3.3 Parallelizing Alternative Productions

In the example, np and vp each have two alternatlive productions:

WP = 3, N

np - prp, n
and

vn o= ¥, oa

v — W, aw

The search fur vach alternative can be executed in parallel by splitting
the model with a disjunctive representation (fig4).
This method of parallelization has two advantages:

(i) Since at most one tree appears in cach model, refutation can be weed
to control termination. Tt provides us with favorable conditions for
avoiding useless model generation.

(i) The search is split into independent scarches of the alternatives,
needing no further intercommunication, & great advantage in paral-
letization,

Un the other hand, redundancy is introduced, for if such alternative
productions have constituents in commen, the satme constibuenta will be
constructed in each mede], duplicating work.

% goal
n(0,4,_) ===» false.

% a ==» np,vp
np(5,I,8F) ,vp(I,E,VF) ——=> a(5,E.s(NP,VP)),

¥ np ==> a,n

a3, 1,A) ,n(L,E,N} ===> np(5,E,nplA,N}}.

4 mp -=> prp,n
prp(S,I.PAP) ,n(I ,E.N) ~—-> np{5,E,np(PRP N).

ovp 2 v,a
w(8, 1. ¥, a(l E &) -3 vplS,E.vplV,AD) .

%owp == v, av
vi8, T,V},av(T B AV} ===> vp(5,E,vp(V AV}},

% a --» [failing]
fﬂiling(ﬁ,F,F} === a8 ,E,alF}).

dprp --» [failingl
failing(5.E.F) ——» prp(5.E.paplFll.

%L a ==> [hard]
hard{3,E,H} ===» al3,E,alH)).

Y%av ==» [hard]
hard(8,E,H) ——> av(S,E,av(H)).

4 n ==> [atudenta]
studentals E, 5t} ---» n(5.E ni5t)).

% v —=» [leoked]
looked(3,E, Ly ===> v{8,E,v(L}).

¥ input sentence to be parsed

% [failing students Looked hard]
true === failing(0,1,failing).
Lrue =-=> studenta(l,2, students).
true ===> looked(?,3,looked).
true -——> hard(3,4 hard).

Figure 2: The example as MGTP clauses

—116 -

% goal
true ---> gai0,4).
e{0,4,_) ===» falae

% e ==» np,vp

galS, B} ==-> gnp(58).

Ea(5,E) mp(E,I,) ---> gvpl(I).

ge(8,B),np{8,1,08) ,vp(I.E,02) ---> a(5,E,s(01,00)),

%onp --* a.n

gupiS) ===> ga(s).

gnpl(s),als,I,) --=» gn(I).
gnp(5),al8,1,01),n(T,E,02) ---> np(S,E,np{01,02)).

% np ==» prp.n

gnp(8)} =-=> gprp(s).

gnpl8), prpdS,1,_) ——-> gn(I).

gnpl(S),prpl5,1,01) ,n{1,E,02) -==> np(S,B,np{01,02}).

Rovp > v,a

BvpiS) —--> gv(3).

gvplS),wiS,L,_} =-=> ga(T).
EvpiS), wis, [,01%,a (L F .02} --=-> vp(S E,vpi(01,02)},

Y ovp ==r v,av

gvplsl —==> gvi(8).

gep(S),w(8,I,_) -—> gav(l},
gvp{2),v(8,T,01},av(1,E,02) -——=> wp(8,F,vp(01,02)),

% a --» [failing]: prp --» [failing]
ga (), failing(5,E) -—-> a(S,E,a(failing)).
Eprpi5) . failing(5,E) ==-» prp(3,E,prp{failing)).

% a ==» [hard]; av --» [hard]
gai{s) ,hard(8,E} -—=> n(%,E,alhard}).
gav(5), hard(8,E) -==» av(5,E,av(hard)).

& n =<> [atudentsa]
gnis) atudents(5,E) —-3» n(5,E, nistudenta)) .

% v --» [locked]
gvi8) locked(5,E} --=> v(8,E,v{lackad)),

Figure &: Top down parser produced by applying the magic sct transformation
(modified part of fig. 2)

—117=

% & ——> np,vp

g=(5,E} —> gnpl(8) ;Enpﬂfﬂ} .

ge(5,E) ,np(8,1,) ===> gupl{I};gvp2(I).

gs(5,E) ,np(3,1,01),vpll,E,02) -==> 8(53,E,={01,02)).

% np —-*amn

gnpi(8) ===» ga{3}.

gopl(S),a(8,1,) -==> gn(l),

gnpl(8) ,al5,1,01),n(1,E,02) -——> np(S,E.npl01,023}.

% np --* prp.n

gnpd(3) —-* gprpis).

E‘l:lp?(ﬁj,Pl‘P{S.l._} T Eﬂ(l}.

gap2(8) ,prp(s,1,00) n(I,E, 02} ---» np(5,E,np(01,02}}.

% wpl ==> v,a

grpl(8) ===3 pw(8).

gvpl(8) ,wig, I,) === galll.
gvpi(s),vi5,1,01),a(I,E,02) ~-=> vp(5,E,vp(01,02}).

%owp2 - v,aw

gvp2(5) —--» gw(5).

Evp2iS),wis,I,_} -=->» gav(l).
gvp2(8),vw(5,1,01},av(I,E,02) ---> vpi5.E,vp(01,02)}.

Figure 4: Madel splitting using alternative rules from the top-down parser (mod-
ified part of fig. 3)

—11B—

In this example, since we divide the model corresponding to the two
np alternatives, then the search for the two vp subtrees is duplicated. It
is rather difficult to estimate the degree of redundancy since it depends
on the particular grammar and input text.

References

[Besrigd] Beeri, €., Ramakrshnan, B, On ithe Power of Magic, revised
version of PODSET(pp260-283), 1959,

[FH90] Fujita, II. and Ilasegawa, IL., Implementing A Parallel Theorem
Prover in KELL, i Proc, of K51 Programming Workshop 796, ppa40-
149, 1990 {in Japanese).

[HFF%] Hasepawa, R., Fujita, H. and Fujita, M., A Parallel Theorem
Frover in KLl and Itz Application te Program Sysnthesis, ftaly-
Japan-Swedenn Workshop, [COT TH-588, 1990,

(MBas] Manthey, R., and Dy, ., SATCHMO: a theorem prover imple-
mented in Prolog, in Proc. of CADE 88, Arvgonne, Rlinoss, 1958,

[OMEY] CGhkwmura, A, and Malsumoto, Y. Parallel Programming with

Layered Streams, Proc. of 4th Symposium on Logic Programming,
pe 343-350. San Francisca, 1987

—114%—

Automatic Generation of Semantic Code Trees

R.Sugimura, K.Fujita, M.Ishikawa,
M.Kawagoe, 5.Aoyama, T.Cornish

June 2, 19932

Abatract

A basic methed for generating 2 SEmantic Code Tree (abbreviated to
SECT) is proposed. The method presented here has two procedores, In
the first procedure, predicates like werbs or adverbs in natural language
are collected from example sentences, and pairs of the predicates and their
arguments in subject case are chosen from the examples. In the second
procedure, the chosen pairs are transformed inte SECT. Three kinda of
algorithm for the transformation from the chosen pairs into SECT play an
important role in the method. The algorithms alwaye terminate, They
enable ue to get the SECT of desirable featares. In SECT, a group of
words are represented wsing a generated non-terminal tree node. SECT
is suitable for checking agreement between a predicate and its argument.
Some other fundamental features are also described

1 Introduction

We propose a basie method to generate a semantic code tree for natural lan-
guage analysis. In natural language analysis, constraints on semantic agresment
between a predicate and its argument (such as a verb and its complements)
are usually implemented previously in the analysis part to reduce many of the
ambiguities gensrated from the analysis of a sentence. The total number of
sernantic constraints amounts te the combinatorial number of a predicate and
its arguments. Therefore we useally condense the constraints into the form of
a thesaurus,

The thesaurus [3][4][5] condenses words using a tree. Words or concepts are
mapped onto nodes of a tree, and relations between words are represented by
hinks. The typical relation is IS-A. The IS-A relation is comparatively easy to he
understood by researchers, so this relation between worda is most widely used
as the basic framework of a thesanrs[7]. In the I5-A relation, a properly of a
word is inherited by its descendant words in a tree. Therefore, this feature is
userd to condense word meanings, and the tree can be used for natural language

understanding [9] [8).

—120—

In spite of the popularity of the IS-A relation, pairs of words in an I5-A
relation are constructed by inspiration. It is therefore very hard to make a clear
definition of what is an I5-A relation, and what is not [5). This situation results
in that there are a variety of thesauri. Mareover, it is very hard to maintain a
thesaurus data structure.

In this paper, we will present a new method which enables us to get an
objective thesaurus which eliminates fuzzy inspiration.

Io this method, we suppose that relations between words can be obtained
through actual usage of words, so that we will pot presuppose semantic features,

At the first stage, the predicate and its complements are collected. Then,
they are represented in the form of a set of trees which have no nonterminal node
except the root node. The tree = rewrilten inlo a new tree with non-terminal
nodes. In this paper, 3 kinds of rewriting algorithm will be presented.

The first algorithm aims principally at the reduction of the number of links
of the tree. The second algorithm applies its rewriting rule from the lead nodes
to the root note. The third algonthm applies its rewriting rule from the root
node to the leaf nodes.

Nen-terminal nodes which are generated from rewriting will get a unigue
pame, and be used in natural language analysis, [§)

SECT is built up using concrete examples, therefore there is no exeeptional
node. The resultant structure is similar to some thesauri. The noen-terminal
nodes of SECT are characterized by the predicates which define them.

2 Ovwverall Structure of a Semantic Code Tree

(Generally speaking, sentence analysis is usually carried out by checking Lhe
appropriateness of an argument in a predicate,

For example, let us consider the Japanese sentences “machine sk f ek &
B ik SbE " (A machine cannot match a lively bird) and "2t
HEE R LARICHE S LAk v " (Tzerot cannot mateh a bird with fresh
wings).

In sentence analysis of the examples, it will be checked whether the noun
“machine” (machine) can be the subject of the adjective “[resh flively” (4 & &
® L7%). In an analvsis program, knowledge like 1) that the subject of “fresh™
should be a living thing, and 2) that a bird is a living thing, ace previoushy
implemented using the "“is.a” relation. A machine cannet be a liviog Lhing, so
that a “machine” (machine) can only modify & verb “can not match (& 5 b
2R

In the sentence analysis of the second sentence, the noun “44" (wing) is a
living thing, and a [iving thing can be the subject of the adjective “th F L & L.
fe" {fresh), therefore “2H" (wing) beecomes the subject of “g & 4 & L %" (fresh).

Let us define the I5-A relation to be reflexive and transitive.

—121—

is.a(A, B) — dsa(A C)Aisa(C,B) (1)
is.a(A, A} (2)

Semantic restrictions on arguments of a predicate can be defined as follows.

YA(PREDg(atom;) A is.a(atomy, A} — PRED:(A)) (3)

For example, if aiom; is appropriate to PRED;, A will be appropriate for
PRED:.

3 Generation of Semantic Codes Tree

3.1 Structure of Semantic Codes Tree

BRoughly speaking, the structure of the semantic code tree can be recognized as
a vector as follows.

<< laughfl, move/1, dermnand — oitenlionf) >>

Therefore, the semantic code tree constructs a lattice.

< a/0b/0,...2/0 5

e —
< afl,b/0,..,5/0 = < af0h/0,.. . 2/1
< af0b/1,..2/1 % < a/1b/1y...2/0 >
'-..___‘___. e

< a/lbfl,..z/l »

In the following sections, we will present a top-down generation algorithm,
and bottom-up algorithm.

—122—

3.2 Desirable Features of SECT

SECT satisfies the following condition. That means, if A is appropriate for a
predicale, the transitive closure of A, derived from the 15_A relation, will be
appropriate for the predicate.

VIP{X)Adsa(A,X) — P(A) 14)
is.a(A, B) — isa(A,C)Aisa(C, B) (5)

3.3 Collection of a predicate-argument pair

AL first, we should collect a predicate-argument pair from the example sentences.
v(}) is & predicate, and 4() is its argument.

is_a{v{demand-attention),t{child}}. is_al(v(demand-attention),t{puppy)).
is_alvi{demand-attention) ,t(baby)}. is_alw{eat),t(child)).

is_ai{vi{eat) t{puppy)). is_af{v(eat),t(baby}}.

is_afvieat),t{adult)), is_a(vi{eat) , t{tiger)).

ia_a(vieat) t(microbe)). is_alv(mewe),t(child)).

is_alvimove) , t{puppy)). is_alv{move) ,t{baby)).
is_a(vimova) ,t{adult})}. is_alvimeve) ,t{tiger)),
is_a(vimove) ,t{micrebel). is_alv{mowve),t(machine)}.
is_a{vi{move) ,t{car}). is_a{v(move) ,t{train}}.

is_a{vlexiat),t(child)}. ia_alv{exist),t(puppy)).
is_al{vi{exist),t(baby)). ie_aiviexzist),t(adult)),
is_a(viexist),titigar)).

ig_a(viexist),timicrobal).

is_alviexiat) t{machine)). is_aCv(exist),t{cac)).
is_alwiexist) titrain}). ie_alv{breakdoen),t{machine)).
is_a{vi{breakdown},t{car)). is_a(v(breakdown),t(train)).

is_a(v{laugh),t{child)). ie_a(v(laugh),t{puppy))."
ie_al(w{laugh),t{baby)). iem_alv{laugh),t(adult)).
is_a(w({laugh},t(tigecl), ia_a(w{berne) . t(child}}.

is_alv(borne) ,t{puppy}). is_alv(borne) , t{baby)).
is_alv(borne),t(tiger)).

4.4 Example

From the relations above, we will get a new relation as follows. n() is a new
node generated.

is_a(v{exist) m(i8)). is_a(v(move),n(16)).
therefore, n{16) exists and moves
lower node: n(T),n(15)
is_alv(eat) n{16)).
tharefare n{iE)} I eat

~123—

lower node: n{13),t{microbe)
is_a(v(laugh),n{133}.
therefore n{12} laugh

lower node: n{12),t{adult)
is_a(v(borne),n(122).
tharsforas n{12) borne

lowar node ni{E),t(tiger)
is_a(v(demand-attention),n(6)).
therefore n(E) demand-attention

lower node t(child),t(puppy).t(baby)
is_a(v(breakdown),n(5)).
therefore nf7) breakdown

lower node t{machine),t{car),t(train}

From the results mentioned above, relations including only of) and t{) as
their arguments are selected as illustrated on the following page.

Each node X in SECT is characterized by V in a relation “is_a{v(V), X)".
For example, n{12) and its deseendant nodes can be the SUBJECT of Tbornel
(be born), and these nodes are in one of the subclasses of n(13), which can
MMaugh) {laugh). Moreover, things which can [laugh) (laugh), are in one of
the subclasses of n(15), which can leat) {eat) and [movel (move).

As mentioned above, this categorization is automatically given hy direct
relations of predicates and their arguments, and each node has no so-called
semantic ambiguity.

We now show the rewriting procedure to get these result,

34.1 OBJIECT
The object of rewriting is a set of predicates formed with

Object = {X|X = is.u(A, B)) (6)

The character is_a{v(X),¢(Y)). cannot be rewritten by rewriting, where v()
is a predicate and t(Y) is its argument. In short, 1{Y), which can be reached
from v{X) using (7) and (8), cannot be changed by rewriling.

is.a(A, A) (7)
isa(A, B) — ds.a{A,C) nisa(C, B). (8}

3.4.2 Randomn Method

We show liere the random rewriting method. This methed has no specific di-
rection (top-down, bottom-up), and is a procedure to reduce the number of the
links.

—124—

n{16)

nf15)
n{l13)
n(12)
/ n(7)
ﬂn[m\

child puppy baby tiger adult microbemachine ecar train

Figure 1: Generated sermantic codes

—125—

3.4.3 Algorithm

1. Find two nodes (Ponodesl) sharing more than 2 nodes as their children
node. If you can't, exit.

2. Make one node as a child of P.nodesl and as a parent of Conodesl. And,
delete links from Ponodes] to Conodesl.

3. If there is 2 node with one child and more than one parent node, rewrite
this node and its child node to one new node.

4. If there is a node with more than one child and one parent node, rewrite
this node and its parent node to one new node.

b, goto 1

with 1-2, rewriting is done as follows:

node node node node
L / S
N '19'{&
- B \Il , .
node node node nade node node

with J-4, rewnting s done as follows:

node-Y
node-X node-XY
node node pode node node node

This random algorithm can be regarded as a rewriting procedure to rewrite
scts with their denotations to commen subsets,

In short, proc. 1 finds out two sets sharing a common part, and proe. 2
expresses this common part as cne set. With prec. J and 4, redundant sets

generated from different sets are eliminated.
Once commeon subsets have been made, bigger common subsets cannot be

generated, even if some common subsets can be a bigger one.
This is a reason why the algorithm docs NOT have completencss. This is
described later.

—126—

3.4.4 Completeness of the rewriting rule 1

We shall consider whether the rewriting rule mentioned above can terminate
and satisfy the convergence of sets.

We can think of the rewriting rule as the problem of how to rewrite tree
structures which have the same leaves while satisfying the restrictions (7) and
(8). However, in arder to simplify the discussion, now we think of the rewriting
object and the rewriting procedure as the operations of sets mentiened above.

One node and the leaves of the tree below it are considered to be a set given
its extension. Leaves are an extension of a set and nodes are a set thernselves.

‘The first object W of rewriting is shown below. Vi(1 < i < n) is a predicate
and {;; is an argument of the predicate.

W = {Vllv‘hl’rﬂa-"wvﬂ] [g]
V[—_ {fi,,. ..,Ejm} {10)

: (11}
Vo = {tnas-.-,lnp} (12)

Also, the restrictions which rewriting rules should satisfy are considered
below.

isalA, D) — A=8. (13)
isa(d, B) — A3CnAisa(C B). (14)
The restrictions (T) and (8) correspond to (13) and (14) respectively. The
“IS_A" is defined below,
isa(A,B) = A43B.
The symbol = represents rewriting. Rewriting is an operation in which the

sl representation below is obtained from the set representation above. V;, Vi
are rewritten to VY, 1} and then V} is created.

N, = {E,.. Elan>1l (15)
=% (16)

Vo= {Vin(v) vl (17)

Vi = {¥n(v)s Vi) (18)

Wi = ¥Winly; (18)

—127-

If the set A is only an element of the set I, elements of the set A are changed
into elements of the sel B and Lthen the set A is deleted. This condition s useful
not bo create an infinite number of representations whick satisfy the restriction

14).
(!I'hr. operation which gets the common subset of two sets given their exten-
sions terminates within a finite number of executions. This procedure s the one
for petting the common subset of finite sets with finite elements by applying
inductive procedures. Therefore, termination is guaranteed.

However, the convergence of the tree structures obtained by this procedure
is not guaranteed. Oue counter example will be sufficient to show this. For
example, we shall think about rewriting a structure as below.

Va = {2,4,6,12,10,20,30,60} (20)
Va = {3,6,9,12,15,30,45,60} (21)
Vs = {5,10,15,20,25,30,45,60} (22}

Although we can get three results from this rewriting, we shall show only
bwo results as below,

The first result If we start the procedure getting the common set (26) of V3
and ¥y, we get the result below,

Ve = {2,4,V5, Vas} (23]
Vo o= {38 Va, Vas) (24)
V = {5,25,Vas, Vas, Vaas} (28)
Vas = {6,12 Vaas} {28)
Vas = {10,20} (27
Vis = {15,45) {28)
Vias = {an,60}) {29}

The second result If we start the procedure getting the common set (34) of

Va and V5, we get the result below,

Veo= {24, Vi, Vis] (30)
Vi = {3,9,Va, Vis, Vass) (31)
Vo= {525 Vi, Vis) (32)
Ves = |G, 12} (33)
Vis = 10,20, Vs } {34)

—128—

Vas = {I5,45} {35)
Vs = {30,60) {36)

The confluence of tree structures is not guaranteed as mentioned above. “This
15 caused by the fact that a new node is not created in this algorithm in the
case that a node which defines the part already exists, even if a node which has
the same characteristics exists.

However, the relation of v() and t{) chtained by the “IS_A* operation of the
results is not changed. .

There are cases where, even if inore than one nodes have common elements
like (27)(28) above, they are not defined as one node. Using the reasoning rules
below, we can check whether any two nodes should be one node.

pareni(A, Parent) — isal Parent, A)
parent(A, Parent) « is.a(X, A) A parent(X, Parent)

If a node “Parent” can be found for nodel and node? using the above pred-
icate “parent”, the pairs of nodes nodey nodes can be treated as those which
indicate one concept.

parent(node,, Parent) A parent(nodes, Parent)

3.4.5 Computational complexity of rewriting rule 1

At auy time 1, it is necessary to cheek whether & set has a common: set with
a subset 5(i) which was generated before the time i. The number of sub-scts
that is generated at a point subsequent to 1 is S(i). As a result, the maximum
number of sub-set is S(¢+1) = 5(i) x 2+ 1. The solution of the ahove formula is
S(n) = 2" — 1, because 5(1) is 1. This result means that the number of sub-sets
at a fiual time point n is 2**n - 1. If a is the computational cownplexity for every
check, the total computational complexity for rewriting rule 1 is 377 | a(2® —
1) = a(2°% -~ 2 —n). It is unusual for all sub-sets to have a common set
with other sub-sets. Iu practice, considering this [act, a heuristic method to
decrease the computational complexity is needed. The minimum computational
complexity for rewriting rule 1 is n®, when there is no common sel.

3.5 Rewriting by the bottom-up method

We present here the algorithm for generating a semantic code tree from the
bottom upwards far above madel.

129—

3.5.1 Algorithm

This algorithm includes two procedures. In the first step, the pair isa(A,B), is
transformed to the following vector whose root is B.

child, puppy, baby

tiger

adult

microbe

machine, car, train

demand — attention], bornefl, eatf1,
laugh/1, move (1, breakdown [0, exiaif1
demand — attention D, bornefl, eat/1,
faugh/l, move /1, breakdown /0, ezist1
demand — attention /0, borne /0, eatf1,
laugh/1, move/], breakdown (0, exiatf1
demand — attentron [0, borne /0, catf1,
laugh (0, move (1, breakdown [0, existf]
demand — atlention /0, borne /0, eal/0,
lough/0, move[1, breakdown], ezistf]

Secondly, the relation between these vectors is transformed in the following

procedure,

1. Check the inclusive relation between any two vecltors Vi and V). If one
vector is a real sub-set of another, the vector that i a sub-aet 8 linked
to the other vector. If ihe two vectors Vi and Vi, have no common set,
do no operation. I the two vectors have a comimon sel, do the [ollowing
procedure: Search for the same vector as the above common set. If the
satne vectors are found, these vectors are linked to the vectors Vi and V).
If the same vector is not found, soler the common set as a new vector and
link it to the vectors Vi and Vj.

2. If there is al Jeasl one new vector, set this vector to the object for trans-
formation and return 1. If there & no new vector, stop the procedure,

For example, the result of transformation applied to the ahove example.

child, puppy, baby

=
tiger

==
adult

=2

dernand — allentson/1, borne/1, cat /1,
laugh/1, movefl, br eakdown /0, exist/]

demand — attention /0, borne/1, eatf1,
lawgh /), move (1 breakdoun (0, exiatf1
(37)
demand — atiention, borne /0, eal 1,
laugh(1, move {1, breakdown /0, exist/1
(38)

130—

(37)

(38)

(39)

mierobe demand — attention 0, borne /0, eat/1, {40)
i loughf0, movef1, breakdoun f0, exist/1
=> (39)

machine, car, frain 1 demand = attention /0, borne /0, eat/0, (41)
langh/0, move/1, breakdown /1, exist/1l
=>
newveclor 1 demand — attention [0, borne /0, eat /0, {42)

i loughf0, movefl, breakdown /1, exist/L
=> [£1),[40)

Note that in order to implement the procedure characteristic of this alge-
rithm that reduces the number of links, we only have to generate a new vector
when there is more than one element in the intersection of two vectors (that is,
verbs).

3.5.2 Completeness of the bottom-up method

Unlike rewriting rule 1, this procedure is complete. This is because all the
relationships among the subsets are caleulated.

3.5.3 Computational complexity of bottom-up method

The computational complexity for the bollom-up method is the same as for
rewriting rule 1. However, hecause the elements to be caleulated can be handled
as & vector, the constant terms in an equation can be reduced.

3.6 Rewriting by top-down method

We present here the algorithm for generating semantic code trees from top to
bottom for the above model.

3.6.1 Algorithm

The procedure consists of two sub procedures. First, all the sets of is a(A B)
relations are converted into these vectors for example:

demand — aitention = child/1, puppy/1, baby/1,
tiger /0, adull /0, microbe /0,
i machine/0, cal /0, trainfl
borme = chudd/1, puppy/1, baby/1,
m tigerf1, adult /0, microbefu,

—131—

z machine/0, ear {0, train 0
langh = chald/1, puppy/1,baby/1,
tigerf1,adult/1, microbe/0,
¢ machine/0, carf0, tram /0
eal # cheldf1, puppy/1, baby/1,
o fegerf], adult /1, microbe/1,
machine U, cor [0, train 0
meve, exisl = childf1, puppy/1, baby/],
= higerfl,adeltf1, microbefl,
= machimef1, carfl, train/1
breakdown = childf0, puppy [0, baby [0,
tager f0, adult /0, microbe/0,
machineg/1, car/], trainfl

Next, the relationships among these vectors are caleulated with the proce-
:]ur{-! I}E‘IU'H'.

L. With any vectoers Vi, V7 selected, the inclusion relation is investigated. If
one 15 a proper subset of another, a link is sat up from the vector which is
a larger set to the proper subset, If there are no interseclions, do nothing.
If there s an inlersection, see whether there are any vectors the same
as that intersection. If there are, the pointers are linked to that vector
from each of the vectors containing the intersection. If there are no such
vectors, the intersection is registered as a new vector and the pointers are
linked to the intersection from each vector.

2. If there 18 at least one newhr reginterﬂﬂ vector, this i added as the vectors
to be rewritten and the procedure returns to 1. I not, the algorithm
terminstes,

For example, the following are the results when rewriting procedure 1 is
applied.

demand — affention & child/1, puppy /L, baby/l, (43)
: tiger /0, adult /0, microbe /0,
machyne (0, car /0, traim /0

borne 1 chaldf1, puppy/1, baby /1, (44)

frger (1, adulif0, microbe /0,
mackine [0, car (0, train (0

—132

== (43)
lawgh = child(]l, puppy/1, baby/1, {45)
i tiger (1, adult/1, microbe (0,
i machine/U, cor (D, trainf0
= [(44)
eal u chald/1, puppy/1, baby/1, {46}
tiger/1, adult/1, microbe/1,
i machine/, car 0, train /0
= (45)
move, exist » childf1, puppy/1, baby /1, {47}
tiger/1l, adultfl, microbe/1,
i machinef] car/1, trainfl
== [46)(48)
breakdown = chid/0, puppy/0, baby /0, (48)
tiger 0, adultf0, microbe /0,
machinef1, carf1, irain/]

Note that iu vrder to implement the procedure characteristic of this algo-
tithm that reduces the number of links, we only have to generate a new vector
when there s more than one element in the intersection of two vectors (thal is,
nouns).

3.6.2 Completeness of the top-down method

Unlike rewriting rule 1, this procedure is complete. This is because all the
relationships among the subsets are calculated.

d.6.3 Computational Complexity of the top-down method

Computational complexity is the same as that of the rewriting rule 1. But the
vectorizalion of the elements to be calculated realizes the reduction of constant
terms.

4 Experiment

We carried out an experiment to construel a medium size thesaurus with this
algorithm. The most frequently used 3000 pairs were selected in advance, as
the terms which can be predicates and their arguments . These pairs were the
sources for rewriting.

—133—

Table 1: Rewriting time

[Algorithm | Time | Implementation language ||
F Handam BD howrs /3000 pairs Prolog

| Top Down | 30 hours / 3000 pairs | Prolog,C
| Bottom Up | 30 hours / 2000 pairs | Prolog,C

Prolog was used for the calculation of vectors in the top-down and bottom-
up fashion, and C was used for the calculation of the dependency among vectors.
The depth of the semantic code systern which was obiained with this rewriting
algorithm was 18, The following is a part of the results.

nf 13w # &-svint) v v E.axiat);
15 -3 {'h-.ki.nd..:li:
{11 1w{ 3 BA E-sxchanga),
nf 1032 v{ER & -Lall);
tf# =25 #ab.there)d-n{3m);
n{!! 11w € el 6-l|p¢d};
nf 2072 v &b £ -bate);
a[155w 5 A D-daject];
nf B (2 8 W3 & .ocrape up);
tf B UL Aenal ()5 0] A34);n(365);n {3007 (BY £ recapture);
n(24)5. v[(H LonHF Sourge),
Wl AT 5 .majoricy 6w T ecune),
nf 26} vl 2 EF-apill)
tRE L5 Edesuccesaor) o[l 0 B & B-chenge),
36N BT Eoquit),
t{shl L& 575 - minosity)8:
nf AR v B -cure v & B &-boreow), o[T8 &-weaken],
tE.ﬁM AT S -majority Joov{) B L & change),
t{E AE-nun)®:
n(38)7 (337,
n{ 378 (B & it}
nf %)% n A58) ni a7,
(MW 2o T4 navy J10:n(361);
n{E4) 10w B -wenken);
b kR =emeny J11:
M3 B &% LA-parents)1] :n[ﬂ?ﬂj;n{ﬂﬂ?];
n{ 13319 n(A66);n(392);
l-%!ﬁ BF 5 0T -peller)10:n{348);
A 13811 v (B & -l v (B & - lower | v {0 0 B detach),
0{132)1 1w LB F-present);
n{ 118} 2'n(a66],
t{BLS L -[ather)13:ar child}15:

5 Characteristics of SECT

Below, we consider the charactenistics of SECT and, especially, in relation to
learning.

5.1 The capacity of the tree structure

Using the random method for rewriting, the number of ordered-pairs that ex-
press the tree will be less than before rewriting. When two parent-nodes share

—134—

two child-nodes, the number is equal to that before rewriting.

If we assume that a man makes a new concept from the usage of a word
when he is learning a language, we can say that this method is an embodiment
of human action. In other words, if we assume that a man learns every word
usage and after hie has learned an amount of various usages, he arranges these
usages to form some groups of words, this random method, that reduces words
only by the relation of the kind of predicates to their arguments, may simulate
human ackion.

5.2 Specification of the tree structure

In SECT, the more predicates and their arguments that are provided, the more
comnplex the tree siructure that includes the word becomes. This characteristic
may involve the use of learning.

6 conclusion

We have deseribed a method for an automatic semantic code generaling system.
We have constructed s semantic code systemn based on this methed. Though
we are gomng Lo use the code svstem obtained in this method for natural lan-
guage analysiey, we must adopl a method for node reduction that resembles this
method in order to use this code system as the scmantic code system for natural
language analysis. Moreover, we need to consider specifically which pairs should
be selected amongst a large quantily of pairs of predicates and their arguments.

We would also like to consider this method from the point of view of cognitive
science in addition to the approach shove,

References

[1] Barwisc,J. and Perry,J., Situations and attitudes, MIT Press, Cambridge
1983

[2] J. Barwise, Recent Developments in Situation Semantics. In M. Nagao, ed-
itor, Language and Artificial Infelligence, pages 387-399, Aumsterdam, 1987.
North-Talland.

[3] Bunrui-Gei-Hyou {in Japanese) The National Language Hesearch Institute
[1] Susumu OHNOQ, Masato HAMANISHI, Ruigo-shin-jiten (in Japanese} 1981
[6] Makoto NAGAO Gengo-Kougsku (in Japanese) Sho-ko-do pp.147-173,1983

[6] Seiichi NAKAGAWA, Mikio YAMAMOTO, Kazuaki WAKAHARA, An In-
ductive Learning System of Syntactic and Semantic Analysis Rules of Nat-
ural Language Processing Trans. JEICA, vol.30,No.l, pp.72-80,1989

—135—

[7] Japan Electronic Dictionary Research Institute, Ltd. EDR Densi-ka jisho
{in Japanese) TR-016,EDR, 1889

[8] Takenobu TOKUNAGA, Makoto ITWAYAMA, Tadashi KAMIWAKI,
Hogumi TANAKA LangLAD: A Natural Language Analysis System, Trans.
JEICA, vol.28,No.7, pp.703-711,1988

[8] Talenobu TOKUNAGA, Manabu OKUMURA, Hozumi TANAKA, Intro-
ducing Views to the Conceplual Hierarchy Trans. JEICA, vol.28 No.T,

pp-870-975, 1689

—136—

Dyvnamies and Flexible Inference

MASIDA, Ioiti

[nstitute for New Generation Computer Technolosy (1007

Alstraet

Dyunamecal logre (not dyaamic logie) is a system of logic whiome et ies is resarded as o
sort ol sy nannies. T he declarative semanties s defned b lormulating the degree of vielation
v terins of pedoafaal curegy. A control sehenw for infiernee aleo erwerges thereol through
coergy anininmzabion principhe whicl does not cominit us b wieih paeci albse cotupatation frr
consisteney malntenanee, among others. This inborn mitegration of declaralive semantics
al inlerenee control guarnntees that inferences are sensifive 1o st i relevance: Lhal s,
focontext, The proposed control sehenw engenders varions aspert s of ngaage processing,
toe liding sy niacnie parsing, setantic aml praguatie anterpretalion, sealenee gemeralion. sl
=dn o, wl huut any ;n|,lllf'i[|i' [I-l'l:'.lf'l'ltlllh':\' f-,rr r||r ills [ENT1I |.;h-.k_-._

1 Introduction

Information processing in language wse i gquite partial at each coutest. People refer 1o only
asmall part of possibly velevant information. awd Carry ot just o tiny subsel of the possible
mferences pertaining to that partial information. 1 his prictindity of iuformation gives rise to
very diverse contexts and arvcordingly diverse patterns of information flow. That is. the range of
indormation processing s irastivally change from one situation 1o another, in order for the
wlormation exploited in total to encompass as moch of 1he protentially velevant information as
pronssi bales.

S0 the traditional sequential architectnre for natural langnage processing (typically, a se
guence o syntactic analvsis, semantic analysis. pragiatic analysis. extralinguistic inference.
generation planning. and surface generation) is unprosnising. as widely recognized, bocanse
inposes Lo slrong static restriction on the way inforimation lows, [n facl, symtactic analysis
does not totally precede semantie or pragmatic comprehension. Generation planning and sur-
face genoration are much more intertwined than this architecture presmes. as pointed out by
Danlos [2]. among others,

A prowising approach to capture the diversity of information flow with a tractable vomplex-
ity of the nformation processing system is to design the system in terins of constraint: that is,
without stipulating any domain /1ask-dependent information flow. ‘I'he resulting flow of infor-
mation will be complex and non-modular, but the underlying architecture itsel! might still be
modular, with modules snch as syntactic constraint, sewantic constrainl, pragmatic constraint,
and extralinguistic constraint,

Iu the present paper we consider dynamical logic {not dynamic logic) as a formalism of
consiraint. In this logic. the declarative semantics is defined by measuring the degree of vialation
of the constraint in terms of real-valued potential energy. From the linguistic point of view, this
enables us 1o capture the grammaticality or ac ceplability of sentences and discourses in a graded
manuner. From a computational point of view, this provides a very robust syvstem of constraint

"The author is currenily at Natural Language Section, Flectrotechnical Laboratury. 1-1-4 Umezono, Tukuba,
Ibaraki 305 JAPAN.

—137—

which pn;u'ﬁr.u"_l.‘ poever becomes '.-|||.~.nlul4.-l_l.' mropststent, S0 we are pol comnitbed b g_lnhal
consistency maintenance, which is intractable woa powerful svstem. such as lirst-order logic,
that is necessary in order 1o account for language wse,

Farthermore, the graded notion of violation ax potential energy provides some control scheme
for inferences ou the basis of energy minimization principle. So the dynamics provides both
declarative semantics and inference contral at the same time. Such an inhorn integration of
semantics and inference could guarantee svstematie reflection of semantic relevance in inferences.
An inference method based on o dyvoannes will be shown o derive computational mel hods
tailored so far in natural language processing., such as marker passing [1, 5], weighted abduction
[+, ®]. and semantic head-driven generation 7).

2 Constraint Network

Neonstraint is a set of elewses, A elavse s basically a disjunction of fiteeals, A diteradis an atouie
constrint preceded by a sign. Au atomic constraint is an aforic formula sach az p(X.Y,2)" or
an egualily such as X=Y. Signs are 7 awd -7 For any atomie formula e, leral 4o staods for
just o, and -a stands for —e. Names beginning with capital letters represent variables. and the
other names predicates. A clavse b= wreitten as o sequence of the ineluded lterals followed by g
pericel, The order among lierals 35 ool signilicant, So (V) and (2 represent the some clanse,
which means (3) ina rough, erisp approgimation,

ity -p(UY) +q(Z) -U=FfX) -X=7
(2) +4(2) -p(f(2).Y)
(YN Y [V vl Ngv £ LX)
There is only one clause, called the fop elouso, containing literal +true. The top clanse
vorresponds to the query in Prolog.® That i<, top clause (1) represents top-level by pot hesis (3).
(4} +true -p{X) +q{X.Y}).
(5 3 Y {pX) A ~gl XV)}
The compmtation is 1o taillor the best hypothesis to explain the top-level one. The top clause
may change as computation proceeds. in particular when interactions with the world take place,
A constraint is regarde] as a notwork, For instancee, the [ollowing constraini may be graph-
irally shown as in Figure 1.
(i) +true -p(A) -a(B).
(i) +p(X) -r(%,¥) -p(Y).
(iii} +r(X.Y) -q(X).
In such a graphical representation, a clanse is 8 closed domain containing the atomic constraints
constituting that clause, Atomic constraints without such indication are referred to as negative

literals in clauses. An argument of an atomic formula is shown either as a *s’ or as an identifier.
Equalities between argnmenis are links, Fqualities in clanses are called intraclousal equalitics,

and those outside of clauses are called cofraclousal cqualitics.

'A binding is also regarded as an atomic formula. For example, XK=f{Y) 15 an atomic formula with binary
predicate =1,

*Theoretically, Prolog uses false instead of true here, The reason why we ase true will be understood on the
basir of exclusion energy to be discussed later.

—138—

Figure 13 Constraint Network.

It iz fmportant to wote that the constraint network contains no objects cormesponding 1o
literals apart from atomic formulas. Positive and negative literals are just two types of mani-
lestations of atoonic Tormulas. So foa any atomie formuba e in the constraint, Brerals fer el -n
both exist even if one of thew appears in no clanse. Also, o way appear in two different cliuses
An F'I.'.'u!ih-ra]h,

We will write o o o 1o mean that atomic formulas o and 4 oare onifiable. We considor
that two literats are wnifiable o0 ey consist of the satme sien and uniliable alomie formmias.
We regard cach part of constraint network as a set of instances, and o o 4 as meaning Hhat
Fio) mo 0 Ay & @ b possible, s an interpretation funetion which s sels ol Tnsbanees 1o
sels of objects (state of affairs, in the case of atomic Tormulas) in the world, So anifiabiliey is
wot transitive. We assume two atomie formulas are wnifiable iF and ool if 1 heir correspotidinge
arguments are directly comnected through an extraclausal equalitv, and that every extraclansal
eqnality connects two corresponding arguments of two unifiable atomic formulas, For each zoro
ary predivate. the constraint network contains only one atomic formula with it. Also. for eacl
constant term. there is onlv one hinding 1o .

We assume that initially all the atomie formulas with the same predicate are noifable with
each other. Suat the beginning the extraclausal equalities constitute a complete graph for every
argument place of every predicate.” Such a configuration changes as svinholic cor o
proceeds 1o the way discussed later,

3 Dynamics

Now we introduce a dynamics (o deline the declarative semantics of the constraint net work
described above. Bach atomic constraint o has an acfivation valu ro.owhich is a real number
such that 0 < ., < 1 and may be regarded as the truth value {or sulsjertive probability of the
truth) of . The activation values of literals are defined so that x,, =+, and 5_, = (1 — s,
for any atomic constraint o. The potential energy I of the entire constraint network is a funetion
of the activation values, and represents the degree of violation of the constraint, [° gives rise to
a field of forre 10 change the state of the system so as to decrease 1.

Suppose there are n distinet atomic constraints in the given constraint, and hence n activation
values, ry through »,. Then the current state of the system is regarded as a point (G) in the
n-dimensional Euclidean space, and the global potential energy [/ defines a field of force (7).t

*There can hence be (N7) extraclausal equalities, for N different atomic formulas sharing the same predicate.
So an efficient encoding schema would be necessary to avoid that space complexity.
"For any matrix A, 'A is the transposition of A. Incidentally, another formulation of dyvnamics might include

—138—

(6i) F=| : (7) F= —gradl =
T hrm

I canses spreading activation: when F # 0. a change of r; s0 as to reduce [influences the
neighboring parts of the constraint network, which causes further clanges of activation values
there, and thus state transition propagates across the network, In the long run. the assignment
of the activation values will settle upon a stable equilibrivm with £ = 0. The resulting state
gives a minial value of % That is. the resnltant 7 satisfies the constraint best in some
nergh bortoml .

The dectarative semantics of the entire constraint is decomposed nto several aspects. s
the sum of the local energies each representing one such aspect, so that I eaptures the global
declarative semantics. The types of energy are disjuiction eucigy, e elusion ¢ ierig. comngple lon
euergy. assimilation energy, transifivity energy, binding cocrgy. and normalization coergy.

The disjunction ¢ nergy of a clause captures the disjunction of the literals: at least one literal
showled b true v a elanse. Consider the following clanse.

(%) -p +q.

The disjunetive meaning of this clanse is that either -p or 4+q shoold be troe, The below
disjunetion energy represents the degree of violation ol this meaning.

(93 Drp (1 — 1q)

15 a positive constant associated with clause (5). Note that {9) is swall fF either ip or {1- .r-q}
i smalls keep fnomind that the activation valwes are between 0 and 1 Do dyvaanie terms, g is
excited by p to the extent that p s excited, and p s inhibited by g fo the extent that g s
inhibited.

Fredusion cncrgy represents the mutual exciusion of the lerals inoa clanse, by which we
mean that at mwost one Jiteral should be true. 5o in (8). for exaple. ondy one of -p amd +q may
be trwe, This supports abductive inferences. to assume p when given q. s assume -g when
givin -p. The exclusion energy of (8) is the lollowing foruula.

(10} Efl =xp)ig

E is a voustant associaled with clause (8). Il q meaus that vou are in Japan. lor instance, E
is larger when p means that von are in Tokvo than when it means that von are i Iinabari. a
small city in the istand of Sikoku. Incidentally, it is due to exclusion energy thal top clanse (4)
means (3

Heneeforth we do not spell ont energy functions any more, because mathematical details are
not very important here. The definitions of the energies are fouod o Appeoadis.

In the ordinary practice, two atomic formulas with the same predicate are equivalent if they
share the same arguments for the corresponding argument places. The assindation enegy be-
tween two unifiable atomic formulas captures this in a relaxed fashiow: 1wo unifiable atomie
formulas should have similar truth values 10 the extent that all the extraclavsal egualities be-
tween them are excited. So for instance p(X.Y) and p(U.V) tend to have similar activation values
when the extraclausal equality between X and U and that between Y and V are both strongly
excited,

additional Keld of force, so that F = f— gradi/.
“Wien Fois not entirely atbributed wo 7, spreading activation is aol directly loked with minimalization of 17,

—140-—

The assimilation energy between o and 3 has a constant factor (s, + S4.). S.4 05 & non-
negative constant catled the subsumption cocflicicnt of o as 1o 9. We sav o sabsumes 3 to mean
[) 200040 When oo d, s, = 1 i a subsumes 4, and otherwise s, 5 = s, for a small positive
constant sy S0 0 and 5 strongly inflwence each other when they are in subsumption relation.
Whon oo 4 s lalse, s, = 0.

The three types of energy introduced so far account for marker passing [1. 3] as an emergent
property of the dynamics. Consider the following discourse for example,

(1L Taro got a hook, He paid one thousand ven,

Figire 2 shows the network ivolved in the abductive inference 1o assume that Taro hought

pay(P1)
G1 P1
! instance instance[
get pay
subc@ Arnem
buy

Fignre 20 Marker Passing for (11},

thi book. Tu the deft is the marker-passing network encoded® by the constraint network in the
right. A wode in marker passing network corresponds to an argument or a predicate in our
conatraint. A directed edge from an argament node wo g predicate node ropresents that the
argnment satisfies the predicate. and a link beiween 1wo predicate wiles represent a clanse
referring o the two predicates. The directions of the edges are irrelevant 1o the direction of
tarker passing. get(G1) and pay(P1) are created upon reading/hearing { 11). where G1 and P1
stanel for the event of Taro's getting a book and that of his paving money. respectively, Inomarker
prassing, the abductive inference of Taro's buving the book will b snggested by a collision of
mathers passed down from GY and P1 along the path hetweon them.

b our framework, if the activation value of get(G1) is large. then it excites get(E) due to
asilinifation energy. get(E) excites buy(E) due 1o exclusion energy, buy(E) excites buy{B) due
tor assimilation energy. and buy(B) excites pay(P) due to disjunction energy. get(E) is similarly
eacited indirectly by pay(P1). So get(E). buy(E), buy(B) and pay(P) are excited stronger than
when there were no such path. As will be discussed in the next section. the abductive inference
o tnstantiate the two clanses on the path are expected 1o cause stronger excitation of get(G1)
ani pay(P1). and hence is strongly preferred.

OF course how much a path contributes to such analog inferences depends on the dynamical
properties of the path. For instance, the path in Figure 2 would not give rise to the above marker-
passing-like inference if the exclusion energies of the two clauses have much smaller effects.’
Strength of analog inference also depends on the length of the path. Obviously, inference more
readily go through shorter paths.

Now let us get back on track and discuss other types of encrgy. A transitive eycle is a cyrle
ol equahities A = #pby -+ by where either i 1ymodk OT dimaar is intraclausal for every 1%

"Chainiak [1] employs a similar encoding scheme.

TWhat Charniak [1] calls isa-plateau can be understood along the same line.

*We may lake into account only such cycles, since two unifiable atuaic formulas always have their ATguments
directly summected with each other through extraclausal equalities.

— 141~

Transitivity of equality as 1o A is regarded as excluding the cases where just one equality in
Ais false. We postulate the fransificity energy of A to capture this, Since detection of evcles
is a verv costly computation, we will have 1o consider some approximate method for eflicien
processing of transttivity energy instead of guaranteeing perfect detection ol transitive ryvehes,
We do ot go further into suel bnplementation details,

Transitivity energy accounts lor some standard inferences. Let us consider the following

disconrae,
{127 Tom bought a telescope, He saw a girl with it,

We assume that feoane i in the second sentence are anaphoric with Tos and the feleseope.
respectively, in the first sentence, There is an attachment ambiguity in the second sentence.
about whether the prepositional plicase with i modilies saw or a girl. Let us assume that the
structure of the constraint generated by processing this discourse looks like Pigure 30 Earh

a telescope 7
o)

Tom_'.-"_"

Figure b Semantic Association Concerning { 12)

region i a dashed closed curve represents a cluster of clauses. These clanses have been created
by svwbolic inforence as doscribed in the next section. (a) is a set of clanses including the top
clause. (L) and (¢) represent the two aliernative readings of the second sentence of (12), each
derived by abductive inference=. The buy(e#) in {a) is a part of the hypothesis obtained by
interpreting the first sentence, s first argument stands for Tom and the second the telescope,
so that the whole thing means that Tom buyvs the telescope at some time, Thus, reading (b
means that Tom has the telescope when he sees the girl. and (o) that the girl has it when Tom
gees her, Clause (d) is an inferenee rule o the effect that if A buyvs B then A comes to have B.Y
Due to this inference rule. the buy(s,e) in (a) can imply the have(e o) in (b) but not that in (r).
so (1) i3 more plansible than (o).

This difference between {h) and (¢} is captured by transitivity energy. Note that there are
two transitive cveles both goig through the buy(se)s in {a) and {(d}). So these two atomic
formulas tend to strongly excite each other due to assimilation encrgy, provided that every
relevant equality is excited. These two cycles also both go through the have(ee)s in (b} and
id), making them tend to strongly excite each other, too. On the other hand, there is only one
transitive cycle which goes through both the have{es) in {c) and (d). Henre the associative

*We ignore the temporal relation between the taking and the having here

—142—

inference based on the buy(e,e) in (a) through (d) supports the have(s.e) in (b) more strongly
than it supports the have(s,e) in ().

Belore going to symbaolic inference, let us introduee one more type of energy. A comple lion
Fuergy of a literal captures a somewhat extended notion of completion: To complete literal {not
predicate) £ means that £ should be inferred either deduetively or abdu('tiv{'ljfm o1l the hasis
other than the one on which £ was first postulated. lu more concrete terms, the com pletion
energy of £ s sniall so that £ may get easily excited, only when there exists a strongly excited
literal 5 subsumed by £ thenee s = 1.1 For examplee, (X)) 15 completed and somehow
postulated {say. based on clause +p(X) -g(X).. abductivelv). then it should be inferred from
another reason. sucl as by subswning another litopal 4 g{Y) inferred on the basis of & clause
such as +q(Y) -r(Y). deductively or -q(Y) +5(Y). abductively. Completion energy implements
assurnability cost [1], as discossed wore in the next section.

4 Symbolic Inference

Here we consider just one type of svmbolie operation called subswnption. I is a sort of program
transtormation to create & new subsumption refation. A subsumption operalion CONCerns a pair
of unifiable wtomic formalas, N subsumption operation from atomic formnia o to 4 s regarded as
an application of the rule @ tons where & is a clanse containing 4. As expoeted. & and honee 4
are instantiated to @ and 1 wespoctivel, amd oo and 3 are connected more tigltly than o apad 3
wged 1o b b the usoal terminology of resolution theoremn proving, subsumption corres ponds 1o
resolution iCecanmd # appear as lerals with apposite signs: ot herwise i corresponds bo fctoring.
Pbike in the ordipary resolution and factoring, however, in subsumption o just suhsimes .8
rather than unifving with y. Note that o can subsume another atomic formmla = in addition 1o
foeven il and 5 are not wnifiable, This enables OR-parallel inference concer ning .

A subsumption from o 1o is shown in Figure 1. 9 is divided into 8 and 3", 3 is the

y
n e
Fignre 1 Subsumption Operation From Atomic Formula o 1o 9.

maximum subset of A subsiwned by o, We assume 3% = 3= 4, s0 that 3 i) = 0. Neither
oo o (1 Qs hewce unifiable with 3", as indicated in the figure. IMit is somehow known that o
subsumes 4 from the heginuing. then no copy {division) need 10 happen. When the division
of 4 actually takes place, then it causes a duplication of the clause &, atomir formula £in it
accordingly dividing into £ and £°."* Uulike in the division of 4. £ and £ are unifiable bath

"In this respect, only deduction is considered in the standard vompletion

"ln the tentative definition in Appendix, the completion energy comtains {1 — 3.,1,) a8 a factor.

YU o and o belonged to the same clause, then i also divided into o' and o”. Let o aml ' belnng to
une clanse and hence o and 4" belong to another, then of and @ subsume each other and o and 3" are noi
wnifialile.

—143—

with each other and with all the atomic formulas unifiable with £, because there is no reason 1o
beliewe J{EYOIIE") = W ere,

We ot further details of combinatorial aspects of svinbolic inference, due o the space
limmitation, and go ou o the dypamical aspect, Subsumption generates new atomic constraints
andl thus redefines 170 5,0 05 et 1o |, becanse o sobhsumes 4’0 sper and seoe wre both set
to s, hecause we are not sure about the subsumption relation between £ and €Y. The other
coelficients are simply inderited along with the copy of the part of the coustraint network.

Sinee subsmmption is & local operation. it may take place in parallel at many different places,
Now we consider how tocontrol such computation based on the dyvaamies ina distriboted fashion:
theet is. without recourse to any centralized control.

A the preference seore for a subsumption, we conld yse the expected contribotion of that
_\.ljl'l;~.|||1|ls|i-:||| bor pecloetiom of & |w||.1-1.]1.1 function Mo P is defiped 1o b Bt the 4-:|||i|'|hrium of
sproading activation doe to I that s proximate froon the carcent state of the network, # i
dn nergys | |,11'I.1||.I.'Jr|_1 it it of 17} which meeasures the He-ﬁrm- of unsatisfaction of the H}|}-|r"L'i"|
hapothesis, 5o 8 i regarded as a function of the parameters of 70 00 coulid be the disjonetion
epergy of clanse $troe which indirectly excites the iterals i the top-level by pothesis {that is,
inhibiis the lHierals other than +tree in the top clanse).

As dlisenssed above, wosubsomption from atomie formula o o £ divides § fato 47 and 47,
setting s o to Lo S0 the expected infuence of this subsumption to reduction of 7' could be

el izt ed by _T{I:' By emploviag generalized backpropagation [61, this value can be efficiently
cotprited Foar all the sulswoeption coetlicients, The space complexity of That conpetation is lin-
ear witle eegard o the siee of the comsteaint wetwork, eod its parellel o complexity practicably
comstant,

Weighted abduetion [1 8] emerges Trom our Tramework, Inoweighted abduetion, jusi as in
thee current Drarpewonkome gl tempts to tailor @ best |l"|'|.11l"||li"\li'- to explain the observed fact, A
hlli I..ll:l'h{":‘ﬂlh- I= & 1'(J||II||.]H.'.|H."| ‘llr |_|.|+'|H|.:\- Il":ll:'h Ii.!“‘H] i[l al i[_'l. I.H”h!'-';i.:" [i"lh'\.lF\]H'J.l EL flhﬁl[l]']al_}i_Jll_'o'
cost, which b= a cost of assnmiog the Dreral, A Jn'purhw.-.i.-. i= botter when the total }1hﬁlIII!HIJiJi1:|.'
coat ds o staller. Aasamabality cost may be redaced by unifving the Derals, For instanee, i the
Cureenl hl\'I.lllrJIl"'\-ll"- RN ETE p{.ﬁ:] anl p{B:l one of which bas a Iiilgd' cost then this cost will be
rechiesdd B wnilving theme Assumability cost s inberited throngh abduetion. Por example, a
cost ol p(A) in the curreat vpothesis is iuberited down to g(A) awd f{A) when p(A) is resolved
by clause +p(X) -q(X) -r(X)..

."l;rwr-1|r|1.1|.li|il_x RIS |.|r|.'\i.|:'rli|:'r' |'r|,F|I|,|]'!"1 |i_'. L'IJ1t|[rll~1iLIJ| CITES e ionser 1l CHETEY i Ly U
etfert that the Hreral in t|||1‘.~.Tin|| mnst [yes i.rrfﬁr:rm[nl||1-l"'.'."i.-.f,~ 1h,|]1 rhr- Wk]T Wors “rh‘! |J¢,ml|1|.;-:h,=d,
or i will e inhibited, Soan faherent coast s encoded by the constant factor of the completion
energy, This gives rse 1o a high preference seore of subswmption from e atomic formula o in
question, beeamse (oo comes o subsume another atowic formula 3 then probably the completion

cuergy of o ds redaced doe o s o= b whicle will be fndicated by oa large value of —_.,':'P Ao

tnherited cost s captured along the same line. For example. when +p{A)} with a large cost
subsumes +p(R) in clause +p(K) -g(X) -r(X).. the completion energy of +p(A) may probably
be still Targe, but it will decrease iF q(X) and o(X) get more excited. So the preference score
of subsumptions from g{X) and r(X) tend to be large, corresponding to the inherited cost in
wegghted abduction.

Our framework s more Rexible and dynamie than weighted abduction. That is. we allow in-
ferences concerning a hypothesis to influence the state of other hypotheses, whereas in weighted
abduction assumability costs change only due to wnification involving the atomic formulas car-
rving those costs, So our method is more appropriate to account lor phenomena such as belief
revision.

Now let us go back to the examples concerning Fignre 2 and Figure 3in the previons section.
In the former. the subsumption from get(G1) to get(E)} is particularly promising for increasing

—144

the activation of get(G1) and hence redueing P, because get{E) is strongly excited due o the
path from pay(P1). lHere we assume that literals invalved in semantic interpretation of an
utterance are at least weakly completed in general. So get(G1) is somewhat completed. and
bence will get more excited by sabsumption. Similar disenssion holds for the subsumption from
pay(P1) to pay(P) and also for the one hetween buy(E) and buy(B). Consequently, the abductive
inference along the path is highly preferred. In Figure 3. the inference based on clause (d) is
more readily applied to the interpretation (b than 1o (¢}, beeanse the former contributes more
tor Ll peddoetion of £
Now let us consider sentence generation for a littde more complex example. We assmine the

initial state of computation is given by a constraint including the foliowing clawses, among much
tecre oot hers,

(A] +true -s(RUN WO W1) -run{RUN)" -agt(RUN kim)*

(1) +s(SEM. X Z) -np(SBISEM.X.Y) -vp(SEM SBISEM Y 7}

() +np(kim,X,Y) -X=['kim"|Y].

(D) +wp(RAGT XY) -X=["runs'| Y] -run{R) -agt(R.AGT).

A S attached 1o an atomic constraint represents a cost alias a large completion energy) so thal
the atomic consiraint is a goal. The two goals in () togetler amonnt 1o s maeToseopic Foal o

assert that Kim runs, S0 the expected sentenee 1o e penerated i Wi rans,
Figure 5 graphically represents the above closes, Al the transitnve eveles going througl

Figure 5: Sentence Generation

the goals are depicted by thick curves. Out of the extraclansal equalities, only those involved in
transitive cycles are shown.

— 45—

Note that the four clauses are nearly all that pertain to trapsitive cveles going throngh the
goals, So due to the joint effect of markee-passing=like inferences aronnd these eveles, almost
only these clauses are very likely wo be involved in the inferences about Lo take place, Due to the
shortest transitive cvele and the cost, the most probable inference o lire hiere is probably the
subsumiption from run{RUN)® fn (A} to run(R) in (D). This subsuwmption will strengthen the effect
of the transitivity energy of the transitive eveles including the extraclansal equalitv hetween the
two atomic formulas, which raises the preferences of further subsuwmptions along these cveles, We
skip further details of this generation process. but the expected subsumplions are fired perhaps
in parallel approzimately in e ovder dependent on s more global computational context.

Sentence generation i our framework integrates the two stages, planning {what to sayv)
and surface pencration (how tosav). aalike the traditional models of sentence gensration which
separate the two stages and oither sealize them or terleave them with each other. For
stance, il our system has geneeated Taro gol o book and He pad Wowsand gen, 10 05 not
probably motivated any more to say that he bonght the book, Thus, the systen is not generally
fully decided on what 1o sav when it starts saving anvthing. AMso, the decision on what 1o say
and that on how wosay are oot distngaished atall in the design of the system.

To account for efficient parsing. we need 10 Tormulate how o handle bindings. Hasida [
shows that chart parsing cmerges lrom general heuri=tics 1o control subsnmptions 1o deal with
bindings. These hewristios conld be formmlated o ternes of the dysamies disenssed above,

5 Concluding Remarks

We have discussed a framework of constraint lor designing a cognitive svatem. To capture the
partiality and the corresponding situatedness of coguition, the consteaint is situated in o fiekt
of force derived Trom potential enerey representing the degree of violation, This field of Goree
gives rise 1o analog inferenve as spreading activation. and also controls svmbolic compitation 1o
transform the constraint. Nov only wearly logical inforences and aluluerive inferences hut also
associative imnlerences emerge out of such a dynamies,

A distingnished feature of our framework s that the control sehome for inferenee is de-
rived from a dynamics which also provides the dedarative semantics. In comparison, the other
frameworks such as marker passing stipulate the inference control apart Tfrom the declarative se-
mantics. The mborn integration of decarative semantics and inference controb as inoonr et Lol
will not only provide a cear perspective of the design, bul also guarantes smergent refection of
semantic relevance in information processing. In this conneetion, our method is integrated also
in another sense that it controls analog and symbolic inferences based on the same dynamics.
This is a strong advantage over the methods such a- Waltz and Pollack™s [10] which separate
the two mference schemes,

The current framework should be extended with respect 1o several points. First. some
partial processing method is necessary for dealing with transitive cyeles. although at any rate a
massively parallel computational system is essential to implement our theory, Second, delelion
should be incorporated in addition to subsumption, in order 1o prevent the constraint network
from unlimited growth. Probably deletion is regarded as a reverse of subsumption. and hence
the control of deletion may be formulated along the same line as that of subsumption, Third,
the control method should take into account consistency checking as well. Consistency checking
pertaining to binding is discussed in (3], In order 1o handle consistency maintenance in general,
we will have to give preferences not only to subsumptions which seem to decrease 12 but also 1o
those which seem to increase ' S0 perhaps |E%| is a better preference seore of subsumption

than — ,.,’:':ﬂ Finally. learning is vitally necessary for both the parameters of the energy functions

and the symbolic structure of the constraint. Just as in the control of symbolic inference, the

146 —

parameter learning could be guided by —"#‘-I for each parameter s of ¢ o learn. This anoonts
to a generalization of Suttner and Ertel’s [49) method.

Let ws finish up by a lew words about an implication for linguistic studies, Linguistic
rompetence is regarded as corresponding to the declarative semantics, and linguistic performanee
corresponding to the control of inferences. So our framework unifies linguistic competence and
performance. in the sense that both follows from the same dvnamics, I this were too much to sav,
al least the competence/performance distinction is an artifact depending on what kind of logic
we eniploy to describe natural language. The clear distinction of competence and performanece
has been motivated by the traditional symholic logic lacking inference control excopt for elosure
operation {exhaustive inference],

Appendix

i the general furm. the disjunction energy and the exclusion energy of clanse @ are {137 2l
{1 respectively.

(13) [Hl:l = rede) {11} Fy E P ey,
£ L#n

L

£aml iy range over the literals in @ re s o constant such that 0 < re < L0 o the digial
approximation. { L3} means Lhat at least one literal should be true, whereas (110 moans that at
most one literal may be vroes For (5}, (9) and (10), r., = ry, = I

Suppuse oo for two atomic formulas o and 4. Then the assimilation energy of the pair of
o and F s defined as Tollows,

1 1
i1 = A (00 + S a7 o A=) I
[15) A St + Sag) 2H-r, 5! |‘|

Ao s a positive constant associated with predicate 7 shared by o and 3. 8 ranges over the
extraclansal equalities connecting the corresponding argnments of o and o,
The transitivity energy (g of transitive cvele A = dgby < - by is defined as below.

(16) [y = { =T ee - #) (e < B or at most one)

() (otherwise)

;i the activation valie of &, and # is a constant such that 0 < @ < 1. { is a positive
constant Note that the transitivity energy is large when just one equality in A has a small
activation value.

The completion cnergy of a literal £ is defined as follows.

(17} Cere [T — sgpzn)
Eon
(¢ is & positive constant, The subsamption coeflicients concerning literals are defined so that
Siha s = Sepai — &, for every pair of atomic formulas o and 4. In the digital approximation,
the positive (negative) completion energy means that some # unifiable with £ should be true in
order for £ to be true '™
The normalization energy of atomic constraint « is defined to be the following.

{18) T{r,logz,+ (1 —z,)log (1 -2,))

"I the ordinary completion as in Prolog, the atomic formula part of £ must appear as a negative literal in a
clanse and that of p as a positive literal in a clamse.

— 147~

T i & positive constant called the lomperafare. x, = 1+Fx|1[]- 7 Al eqquilibria of foree follows
o

frasme {18}, where P stands Tor the total foree to o due to the canses other than normalization

encrgy. So Lhis energy normalizes the activation value so that &<, < 1

References

4

(7]

%]

]

[10]

F. Charniak. A neal theory of marker passing. In Proceedings of A AAT 86, pages G381 GRS,
1 i

. Danlos. Coneeptual and linguistic decision in generation. In Proceedings of COLING 84,
pages SO0 S04, 1954

. Masida, Common henristies Tor parsing. generation. and whatever .. In Proceedings of Hi
Workshop on Reversible Gravomar in Natural Language Processing, pages 81 90 Berkeley,
PO hieldd im roppection with 2 h Annual f'ulmﬁting of the Association foe (I{llrliﬂllilf.-ll}llﬁl

Linguistics.

I Hobbs, M. Stickel, D, Appelt, and 1. Martin. Interpretation as abiduction. Techuical
Sote 1000 SR lnternational, 19490,

P Norvig, Marker passing as o oweak pwethod for text inferencing. Cogritive Seines
LS8 G20, 148,

Fooo Pinedi, Generalization of backpropagation to recurrent and higher order neural nes
wiolks. I Anderson L2, editor, Newral Tnformation Processing Sysfoms, pages GO2 611,
11N,

S.AML Shieber. G van Noord. and RO, Moore, A semantic-head-driven generation algo-
rithm for unification-based lormalisms. In Procecdings of the 27th Aunnal Meiting of 1
NAssaciation for Computational Linguisties, pages 7-157, 1980,

17 Stickel, M Rationale and methods for abductive reasoning in natural-language inter-
p]'rla!iun. In K. Stuier, aditor, Fjlfxfﬁﬁ:iyﬁ. Noatwial Lﬁngnngr i f,nlq.l'r'. Tnabe vovad foapicd
Sedenlific Sypmposiuny, pumber 459 in Lecture Notes in Artificial Lotelligence, pages 2343

252, Springer Verlag, 1949,

B. Suttper, O and W. Ertel. Automatic acguisition of search guiding houristics, In Froceed-
wngs of the 10 Tuternational Conference om Automated Deduetion (CADE), pages 470 454,
| LK),

1. Waltr and 1. Pollack. Massively parallel parsing: A strongly interaciive model of natural
language interpretation. Cagnifive Seienee, 3251 7.1, 1985,

— 148

