ICOT Technical Memorandom: TM-1184

I™-1 184

Proceedings of EGCS "92 WORKSHOP on

Automated Deduction

by
R. Hasegawa & M. Stickel (SRI)

Tuly, 1992

192 1C0T

Mita Kokusai Bldg. 21T (03)3456-3191 -~ 5

" :D | 4-28 Mita |-Chome Telex 1COT 137964

Minato-ku Tokyo 108 fapan

Institute for New Generation Computer Technology

Workshop W3 ICOT TM-1184

FGCS92

INTERNATIONAL CONFERENCE ON
FIFTH GENERATION COMPUTER SYSTEMS 1992

WORKSHOP ON
AUTOMATED DEDUCTION

LOGIC PROGRAMMING AND
PARALLEL COMPUTING APPROACHES

June 6, 1992 Tokyo, Japan

PROCEEDINGS

Institute for New Generation Computer Technology

FGCS 92 WORKSHOP
- W3:Automated Deduction -

9:30 - 17:00, 6 (Saturday) June, 1992

Co-Chair:

Ryuzo HASEGAWA (ICOT)
Mark E. STICKEL(SRI)
at:

Shiba Park Hotel

1-5-10, Shiba-koen, Minato-ku, Tokyo

(TEL:Tokyo-3433-4141)
*** TIME TABLE ***

08:30 - 10:15

“First-order Shannon Graph”
Joachim POSEGGA
University of Karlsruhe

10:15 - 11:00 “A Heterogeneons Parallel Deduction System”
Geoff SUTCLIFFE
Edith Cowan University
11:00 - 11:30 (Coflee Break)

11:30 - 12:15

%A Functional Languaje
for Parallel Automatic Deduction™
Carlos ARAYA
Costa Rican Institute of Technology

12:15 - 13:30

{Lunch)

13:30 - 14:15

“The Improvement of A Parallel Theorem Prover
Based on The Model Generation Method®
Tetzuji KUBOYAMA
Kyushu University

14:15 - 15:00 “Improving Backward Execution in Non-

Deterministic Concurrent Logic Lanpuage™
Salvador ABREU
Universidade Nova de Informa’tica
15:00 - 15:30 (Coffee Break)
15:30 - 16:15 “Tmproving Performance Evaluation
of Parallel Inference System”
Christian SUTTNER
Techoical University of Munich
16:15 - 17:00 Discussion o
18:00 - Joint T"arty at a Chinese Restaurant

Kopri{TEL:Tokyo-3434-T375)

First-order Shannon Graphs

Joachim Posegga
Universitdt Karlsruhe
Lnstitud fur Logik, Romplesitat und Deduktionssystemse
A Fasanengarten 5, 7500 Karlsruhe, FRO
luternet: poseggalira.uka.de

April 3, 1992

Extended Abstract!

1 Introduction

Fxperience in hardware verification has shown thal Shannon graphs (iotroduced by Shan-
won in [Shannon. MEN]. also called Hinary Decision Leagrams} are very snitable as an
underlying datastructure for proving logical properties of formula [Brace of al. 1990,
Bryant, 1956). Up 1o nwow. this method did hardly influence research in antomated the-
orein proving, probably becanse it has not been extended to full first-order logic, so far
We will outline how this can be done and argue that the concept of Shannon graphs is 2
nseful framework for implementing a first-order deduction system.

The idea underlving the proof procedure is to transform a formala into a Shannon
graph, and compile this graph into a program which shows the formule’s inconsistency
when it is executed. The input formula may have arbitrary logical connectives, so no
initial normal form is required. We will sketch how to perform the compilation for Prolog
as a largel language, although any other general-purpose language can be wsed, The
generated program models the search through the graph which can be vnderstood as a
vase analysis over the truth values of the atoms of the input formule. The search process
tries to show that no model for the formulae can exist by exploiting properties of the graph
that are logically equivalent 1o the fact that there is no model. The generated clanses have
oo fogical relation to the formuola that is to be proven (in the sense that they are nol a
logically equivalent variant of the formula).

An experiniental Prolog-implementation of a propositional prover based oun these prin-
ciples can prove pigeou-hole seven (ie “seven pigeons do not fit into sir heles™) in less than
one minute on & Sun 1. This can be considered as good performance, so the extension of
the principle to frst-order logic. which is currently being implemented, seems promising.

2 Basic Definitions

Let £ he the langnage of (propositional /first-order) calculus defined in the usual way. and
L 4y the atomic formmule of £, Assume further. that the language £ does not contain the

YAn extended version of this paper is available from the auther.

atomic truth valwes =17 [frue) and 07 1faferf}. “sh” is a new logical conuective of arity
three. which can be regarded as an abbreviation: si[A4, B.C)y = (1~AnBW{AA)). Thas,
sh(A. B, ('} corresponds to an expression of the form “unless 1 then B else (. The
set of all Shannon Graphs is denoted by SH and defined over atomic formule and the
atomic truth values as Lhe siallest set such that

(1] 1.0 € 8H
(2) if Gu.Gy € SH and & € L 4, then shie, Gy. Gy) 15 in SH.

Since the “sh”-operator. together with the atomic truth values, forms a logical basis.
every [Skolemized) formula can be expressed as a Shannon graph. The transformation of
a formuia into this form is easilv done. An atomic formula A is logically equivalent to
shiA,0,1); if we already have two graphs shy and shg representing the formula A and
B_ we construct sh s g by replacing all 1-leaves of shy with shg. sh y g is constructed
analogously by replacing the 0-leaves of sh 4. We can regard the resulting terms as trees.
or as graphs, depending on how we represent the replacements of leaves. Il a formula F is
recursively couverted by these rules, we will refer to the resolting Shannon graph as the
initial graph for F. The time and space complexity of the above transformation cone is
propartional to the size of the input formula il a graph is built.

In the sequel, we will use letters of the calligraphic alphabet AB.C. ... to derote
Shannon graphs. The formule of SH can be visualized as binary trees whose nodes
are labeled with the atomic formula vecurring in the first arguments of the shterms, and
whose leaves are labeled with 17 or “07 . The grapls shown in Figure [are examples. All
leaves are represented as circles. and all other nodes as squares. The graphs have actually
ouly one 1-leaf and one O-leal, but it is easier to draw them with multiple instances of the
leaves. Edges labeled with == (the negative edges) and “+7 (the positive edges) lead to
the nodes representing the second and the third argument of the corresponding sh-tenns.
In the sequel, we will switch between referring to a “sh”-term and to its corresponding
graph.

For convenience, three projections to access the arguments of a sh-expression are de-

fined:
(shi FoG,Gollar = Foo [shiF.GL G- = Gy and =[=h(F, G G2y We.

Semantically, a sh-term can be regarded as a case-analvsis over the truth values of
atoms oveurring in a formula. Assume there s a sequence of nodes and edges leading to
a leaf of a graph: if the atoms at the nodes can be interpreted with the truth value that
their outgoing edges suggest. then the whole formula will have the truth value the leal is
labeled with. This is the basie jdea heliind paths:

A path P in a Shannon graph ¢ is defined as a sequence of subformula of G and
denoted by an expression of the form [oiGy.. ... eaGy). such that:

I Vo, € {ey. ..., b v € {-.+} 4G, ESH
2 ¥y € ot G = G
A path is said to start at formula Gy (or: node [Gglat). and said to end at formula

1@nly, lor: node [[§,].,]at- Furthermore, a path P is said to be inconsistent if there is a
substitution &, such that for some .G, v,G, € P: [Glare = {G;late. and & # ¢;. As an

() exbension

Figure 1: Proving inconsistency of pla)d—pl f([la))a¥(x) (plei—pl flx)))

example, consider the path [+plal, —p(F{fia))). -0l N3] of Go. which is inconsistent under
the substitution [/ X].

The basic idea to show unsatisfiability of a formuela is the following: build an initial
graph &y for a Skolemized first-order formula ¢. choose a substitution o such that all paths
Lo 1-leaves become inconsistent. If there is no such substitution, extend Gy by substituting
all of its 1-leaves with G). where) i= an instance of Gy with renamed variables. Then
again try to find a substitution. such that all paths to 1-leaves of the new graph are
inconsistent. The process continues recursively uutil eventually for some extension an
appropriate substitulion exists. Thizs will he the case if the initial formula is inconsistent.
Note that one extension of the graph corresponids 1o a conjunction of the original graph
and a copy of it with renamed variables: what Lappens is hasically the coustruction of the
conjunction in the following consequence of the rompactness theorem:

Proposition 2.1 ClyF(X) is unsaiisfiable iff there erists some k € IN and a substitution
. such that the conjunction (F{Xg)a. . AF(Xu)le is unsatisfinble.

(o maps all variables to ground terms. ie, to terms from the Herbrand-universe U of F.
Fach X, is a new variable vector X, y.....X,, distinct from all ki with j < i.} .

Consider Figure 1= pla)A=-pi fi fla)}a¥(e) (ple)—p(f{x])) is to be proven incon-

sistent. (1) is the initial graph. but there is no substitution such that both the paths
to 1-leaves are inconsistent. We then replace each 1-leal by a copy of Gy with “fresh”
variables. giving graph (2). Now. all paths to 1-leaves become inconsistent under the snh-
stitution {a/X, fla)/¥}. Graph (3] is an optimization of (2} that exploits the fact that
each path leading to the extension necessarily includes [+p{a).—p(f{ fla}})].

For implementing the above method, we propose to compile the initial graph into a
set of Horn clauses, Fach node is translated into a Prolog clause having as arguments
the path constructed so far, the current variable binding. and a designator of the current
extension. A clause suceeeds if at each 1-leaf reachable from the corresponding node the
path can be made inconsistent. As we want to avoid asserting new clauses, an extension
is hest done by calling the clause for the top node again. To get a more concrete idea, we
will brieflv discuss a (simplified) clause for the node p{ Y] of graph (1) in Figure 1:

node_3(Binding,Path,Level):- i
levelbinding(Binding,Level , 1,X), {21
(closed_path([-p(X) |Path]) (3]

: node 1(Binding, [-p(X) |Path] ,succ{levelll}), Q4
(clesed.path{[-p(X)|Path]} i3
; node 4(Binding, [+p(X) |Path],Level)). i)

lu line 2, all free variables accurring in the corresponding atom are bound. To avoid
going into technical details, we just assume thal levelbinding binds X accordingly, if
a designator of the level the proress is currently in is passed (Level). The predicate
inconsistent (fline 3 and 5) tries o make Path together with =p{&} wconsisient since
we peach a 1 -leal ar the negative edge; if this fails, line | exvends the graph by calling
the clanse for the top node again, which will sneeesd if all paths to 1-leaves in one of the
next extensions can be made inconsistent, Thus, extensions can easily he modeled withoul
asserting new clauses, because different levels can bind variables differently. The last goal
to solve is to show that all paths to 1-leaves reachable from the positive edge of this node
are inconsistent, as well (line 6).

Note that the compilation process can also be done in advance for a sets of axioms. Such
precompiled theories can then be loaded into a deduction system and used for inference.
Heducing the Shannon graph for a logical theory before compiling B into clanses can even
prune the search space for a proof carried ont later. Reduction is a well-known operalion
on Shannon graphs, which often decreases the size of a graph considerably. Reduction
ran be expensive. hut this seems atfordable in the context of precompiling theories. since
it moves some of the effort for proving theorems to an earlier stage thal 15 usually not
time-critical.

References

[Brace ef al. 1990] k. 5. Brare. R, L. Rudell, & H. E. Bryvant, Efficient implementation
of a BDD package. Proe, 27" ACM/IEEE Design Automation Conf., pp. 40 45, 1990.

[Brvant. 1986] R. Y. Dryvant. Graph-based algarithms for Hoolean function manipalation.
(EEE Transactions on Compulers, U 35677 691, 1956,

[Shannon. 1938] C. E. Shannon. A symbolic analysis of relay and awitehing circuits, AIEE
Transactions, 67:713 - 723, 1935,

A Heterogeneous Parallel Deduction System

Geoff Sutcliffe
Dep't of Computer Science, Edith Cowan University &
Dep't of Computer Science, The University of Western Australia
Perth, Western Australia geoffi@cs.uwa.edu.au

Abstract
This paper describes the architecture, implementation and performance, of a heterogeneous

parallel deduction system (HPDS). The HPDS uses multiple deduction components, each of
which attempts to find a refutation of the same input set, but using different deduction formats.
The components cooperate by dismibuting clauses they generate to other components. The
HPDS has been implemented in Prolog-D-Linda. Prolog-D-Linda provides appropriate data
transfer and synchronisation facilities for implementing parallel deduction systems. The
performance of the HPDS has been investigated.

Parallel Deduction Systiems

A paraliel deduction system is one in which multiple deduction components run in parallel on
separate processors. This is distinet from those deduction systems which run multiple deduction
components alternately, such as the unit preference system [Wos, Carlson &
Robinson G.A., 1964], and those which are only conceptually parallel systems. Parallel
deduction systems can be categorised along three axes,

Homogeneous or Heterogencous? In a homogencous system the multiple deduction
components all use the same deduction format. Homogeneous systems do not change the search
space of the underlying deduction format. Rather they take advantage of added computing
power to distribute the work of searching that space. An example of such a system is ROO
[Lusk, Slaney & McCune, 1991]. In a heterogeneous systerm the multiple deduction
components use different deduction formats. The advantage of heterogeneity is that each
deduction component has a different search space. Further, it is necessary for only one of the
components to use a complete deduction format. This feature permits incomplete formats,
which are fast on average, to be used as part of complete paralle] deduction system. An example
of such a system is GLDIIUR [Suicliffe, 1991]. Between homogeneous and heterogeneous are
the pseudo heterogeneous systems. The components of these systems all use the same
deduction format, but each component has different set-up parameters. Each component will
thus have a similar search space, but will search the space in a different manner. An example of
such a system is Entel's Random Competition system [Ertel, 1991).

Common or Separate input sets? To implement a common input set for multiple deduction
components, some kind of shared memory architecture is necessary, On the other hand, if each
component maintains its own copy of the input set then more common computer architectures
can be used. ROO is an example of a system that uses a common input set, while the Random

A Heterogencous Paralle] Deduction System Page 1

Competition system is one that uses separate input sets. An approximation of a common input
set can be implemented by using separate input sets which are updated in parallel. The
approximation can be implemented provided there is some form of inter-component
communication mechanism. This approach is taken in GLDIUR.

Homogeneous systems require a common input set, for otherwise the components will
duplicate each other's search. In a heterogeneous system it is ok to have separate input sets, as
the components do different things naturally, However, there is an advantage to having a
commeon input set in a heterogeneows system, As each component has a different search space,
the clauses created in each component may not be created in others. By making all clauses
available to all components, 'cross fertilisation' is achieved. Although hard to quantify, this
effect has the potential to significantly affect a parallel system's performance. Further, if the
parallel update approach is used, the distribution of clauses can be controlled so that different
components’ sets are updated differently.

Synchronous or Asynchronous? An asynchronous system has the advantage that
components do not have to wait for each other, and greater use is made of the available
computing power. On the other hand, there may be advantage to be had in making the multiple
components aware of and supportive of each others activities.

This paper intreduces a heterogeneous parallel deduction system (HPDS), employing a chain
format linear deduction component, a UR-deduction component, and a hyper-resolution
component. The HPDS is the logical successor of GLDIUR. The components of the HFDS
each maintain their own copy of the input set. Each input set is updated with clauses created
locally and with clauses created in the other components. The components run asynchronously.

The Parallel Implementation Environment

A prerequisite to the implementation of a parallel deduction system is to decide upon and, if
necessary, develop an appropriate parallel programming environment. The HPDS has been
implemented using Prolog-D-Linda [Sutcliffe & Pinakis 1991)]. Linda is a programming
framework of language-independent operators which may be injected into existing
programming languages, resulting in new parallel programming languages. Linda permits
cooperation between parallel processes by controlling access to a shared data structure called a
wple space. Manipulation of a tuple space is only possible using Linda operators (cut, in and
rd). Parallel execution 1s provided by an operator (eval) which starts new processes.
Generically, Prolog-Linda is the extension of Prolog that supports a wple space and the Linda
operators. Prolog-D-Linda is our implementation of Prolog-Linda. Prolog-D-Linda is built on
top of SICStus Prolog. It runs on a network of SUN SPARC workstations running SUN OS5
4.0.3, connected by Ethemnet.

In Prolog-D-Linda the tuple space is distributed (hence "Prolog-Distributed-Linda"). The tuple

space and associated operations are implemented in server processes. The distribution of tuples
across the servers is determined by a user supplied Prolog program. Linda operations in client

A Heterogeneous Parallel Deduction System Fage 1

processes are translated into requests which are passed to the appropriate server. One server is
designated the eval-server, and is responsible for starting client processes requested in eval
operations. The servers are started by a controller process. After starting the servers, the
conoller works as the standard input and output device for all the servers, and for clients that
are started via an eval request. This feature enables servers and clients, that are not associated

with a terminal, to have user interaction.

The HPDS Architecture

The deduction components of the HPDS are Guided Linear Deduction (GLD) [Sutcliffe, 1992]
{GLD is a chain format linear deduction system), a UR-deduction [Overbeek, MeCharen &
Wos, 1976] component, and a hyper-resolution [Robinson J.A., 1965] component. Each
component maintains its own input set, asynchronously updating it with clauses created in the
other components at a time convenient to itself. All of the components have been implemented
in Prolog. Common features of the components are :

¢ All use the chain format for clauses. They all use the same code for their deduction
operations, processing of clauses created, and manipulation of their inpurt sets. This makes it
easy to distribute the clauses that each creates.

+ Each component creates clauses that can be used by the others. All the components apply
back and forward subsumption to all clanses that they create. The subsumption checks are
applied before the clauses are distributed to the other components. Information indicating
which clauses are subsumed accompanies each clause that is distributed.

* Each component uses a consecutively bounded search as its overall search strategy.
Although the value bounded is different in each component, the same implementation is used
in each component. If a new clause is added to the input set in a search iteration, the the
bound value is increased only minimally at the end of the ireration, Further, another iteration
is always executed if a new clause hag been added to the input ser in the iteration. In the
HPDS these features are affected not only by clauses created locally, but also by clauses
received from the other components.

The GLD Component

GLD is based on Shostak's Graph Construction (GC) procedure [Shostak, 1976), but also
incorporates features from other chain format linear deduction systems. In particular, GLD has
a combined lemma/C-literal mechanism, which improves on the original separate mechanisms in
Loveland's Model Elimination (ME) procedure [Loveland, 1969] and the GC procedure. The
lemmas created by this mechanism are the clauses that are distributed 10 the hyper-resolution
and UR components, GLD uses an extended unit preference strategy in all extension
operations, and thus productively uses the unit clanses which it receives from the UR
component. GLD does not accept clauses created in the hyper-resolution component, as it was
found that the large number of clauses created by hyper-resolution caused an unacceptable
increase in the size of the GLD search space.

A Heterogeneous Parallel Deduction System Page 3

The UR Component

The UR component's strength lies in its ability to solve many Homn problems very quickly. The
UR component is a useful adjunct to the complete GLLD and hyper-resolution components. The
clauses created in the two complete components are used as nuclei in the UR component. This
leads to the UR component reporting refutations for problems that it cannot solve

independently.

The Hyper-resolution Component

The hyper-resolution component of the HPDS implements positive hyper-resolution. Non-
factored hyper-resolvants are distributed to the other components. Like the GLD component,
the hyper-resolution component benefits from using the unit clauses produced by the UR
component. There is some possibility of an overlap between the clauses created in this
component and those created in the GLD and UR components. However, GLD is a back
chaining system, while hyper-resolution is forward chaining. Thus the searches of these two
components are in the opposite direction. Thus each should benefit from the work that the other
does at the other end of the general search space. The overlap with the UR component is dealt
with by the subsumption checks.

The Combination

The completeness of the HPDS is assured by the completeness of GLD and hyper-resolution.
The difference between these components running independently and running in the HPDS, is
the addition of new input clauses created in the other components. Such clauses are subject to
the same subsumption checks as those created locally. By having the consecutively bounded
search run another iteration whenever any new clause is added to the input set, both the GLD

component and the hyper-resolution component remain complete within the HPDS.

The HPDS Implementation

Each deduction component of the HPDS runs as a client process in Prolog-D-Linda. The
deduction components do not communicate with each other directly, but rather via a deduction
controller (also a Prolog-D-Linda client). The deduction controller is responsible for starting the
deduction components, and for controlling the distribution of clauses created in the deduction
components. Communication between the deduction components and the controller is via the
Prolog-D-Linda tuple space. When a deduction component wishes to pass any dara 1o the
controller, it cuts a tuple of the form controller (<source>, <type>, <data>}. The
<source> is the name of the deduction component which produced the tuple. The <type> field
indicates the type of the <data>. There are four possible <type> values : clause, stop, 1o
and statistics. The controller retrieves these tuples from the tuple space using the in
operation. Similarly, the conmoller passes data to the deduction components by placing ruples of
the form <destination> (cont roller, <type>, <data>) into the tuple space.

A Heterogeneous Parallel Deduction System Page 4

When the deduction controller is started, it collects information about each of the deduction
components from the user. This includes the name of component's source code file, the Prolog
query required to start the component, and a flag indicating whether or not the component is
complete. Each deduction component is then started using the eval operation. The task of the
controller is then to continuously retrieve its message tuples from the tuple space and to deal
with the data according to the value of the <type> field.

The deduction components, as well as executing their deductions appropriately, must check the
tuple space at regular intervals for messages from the controller. Again, these messages are
dealt with according to their <type>. The GLD component checks for messages after each
centre clause is deduced. The UR component checks for messages each time a new nucleus is
chosen. The hyper-resolution component checks for messages before each of its deduction
operations. This frequent checking in the hyper-resolution component is necessary as in some
problems a single nucleus may be in use for a long time. If the checking is reduced to only
when a new nucleus is chosen, then the hyper-resolution component does not take sufficient
advantage of the clauses created in the other components.

Within each deduction component, each clause that is created is passed to a clause control
module in the component. The clause control module implements the subsumption checks,
removes subsumed input clauses from the local inpur set, adds the new clause to the local input
set, and transmits both the new clause and subsumed clauses' identifiers to the controller. The
<type> of a new clause message is clause, and the <data> field contains the new clause and
the subsumed clauses’ identifiers. When the controller receives a message of this type it
forwards the new clause and the subsumed clauses' identifiers to other deduction components,
alsoina clause message. The <source> field enables the controller to selectively forward the
<data>, ¢.g. clauses received from the hyper-resolution component are not forwarded to the
GLD component. Upon receipt of ¢1ause messages, the deduction components remove the
subsumed clauses from their input sets, and add in the new clause.

The stop message type is used when a deduction component either finds a refutation, or
completes the search of its search space. If a deduction component finds a refutation it sends a
stop message to the controller, with a <data> value of success. The successful component
then proceeds 1o terminate, The controller forwards the st op message to the other deduction
components. Upon receipt of these messages the deduction components proceed to terminate. If
a deduction component completes the search of its search space without finding a refutation, it
sends a stop message to the controller with a <data> value of failure. If the failing
component has a complete deduction format then it proceeds to terminate, and the controller
forwards the stop message to the other deduction components. If the failing component is
incomplete, then the st op message is ignored by the controller as a refutation could still be
found, The failing component does not terminate is this situation, as it could receive a clause
from another deduction component hence opening up another piece of search space. Therefore
incomplete deduction components, that have completed their search, wait for further messages
from the controller.

A Hewerogeneous Parallel Deduction System Page 5

The io message type allows the deduction components to output data at the controller's
terminal. This is useful for tracking the progress of the HPDS. Whenever the controller receives

an io message, the <data> is printed to its standard output.

When a deduction component proceeds to terminate, it determines the number of deduction
operations it has performed and the amount of CPU time it has used. These figures are sent to
the controller in a stat istics message. After the controller has sent a stop message to each

deduction component, it collects the statistics messages and outputs appropriate Statistics.
The final task of the controller after this is to remove any messages left in the tuple space.

Testing

To evaluate a parallel deduction system, it is important "to state UNAMBIGUOUSLY ... what

one wants to measure” [Suttner, 1992]. For the HPDS, the testing has measured :

* The amount of processing the HPDS performs to find refutations. Processing is measured
in terms of CPU Units, where one CPU Unit is the amount of processing done on one
processor in one unit of tme.

» The amount of time the HPDS uses to find refutations. Time is measured in seconds.

The processing and time usages of the HPDS have been compared with those of five other

deduction systems. They are :

1. The GLD component running independently.

2. The UR component running independently.

3. The hyper-resolution component running independently.

4. A naive version of the HPDS, in which all the components are run time sliced on a single
processor. The only inter-component communication in the naive system is to stop all
components as scon as any one finds a refutation. The processing and time usages of the
naive system are calcolated from from those of the independent components.

5. An 'average system’, whose processing and time usages are the averages of those of the
independent components.

The HPDS and the independent components have been tested on 132 problems. Due to the large
number of problems, a time limit of 500 seconds was imposed on all tests. In 49 of the
problems none of these systems found a refutation within the time limit. The results for the
remaining 83 problems have been analysed. For each of the five systems listed above, the ratios
of its and the HPDS's processing and time usages have been determined for each problem. The
ratio of the processing usages is called the productivity. The ratio of the tmes taken is called the
speed-up, Two speed-up ratios are considered. The first ratio compares the HPDS with the
other system running on a processor whose processing capability combines the three processors
used by the HPDS. The second ratio compares the HPDS with the other system running on one
of the processors used by the HPDS. The first ratio measures speed-up due to strategy shift,
while the second measures speed-up due to parallelism and strategy shift. In all cases a value

A Heterogeneous Parallel Deduction System Page &

greater than 1 indicates that the HPDS is performing better than the other system. The results
are summarised in the following table,

Measure Compared With
GLD UR | Hyper | Naive | Awv.

HPDS & ~2nd 9 23 25 3 3
HPFDS & 2nd 63 49 47 69 69
~HPDS & 2nd 9 7 1 11 11
Av. Prod'y 1.60] 0.96] 7.83 1.131 2.05
Prod'y > 1 15 4 12 12 12
Av. SU(1) 098] 048] 480 0.64 1.24
#S5U(1) > 1 10 3 5 8 9
Av. SU(2) 2.95 1.49) 14.4 1931 371
#5U(2) » 1 26 B 15 39 14

Legend

HPDS & -2nd : The number of problems for which the HPDS found a refutation and the other system did not

HFDS & 2nd ; The number of problems [or which both the HPDS and the other sysiem found a refutation,

~HPDS & 2nd : The number of problems for which the other system found a refutation and the HPDS did not.

Av. Prod'y : The average productivity, measured over the problems for which both the HPDS and the other
system found a refutation,

Prod'y > 1 : The number of problems for which the productivity is greater than 1.

Av. SU(T): The average speed-up, measured over the problems for which both systems found a refutation, with
the other system running on a combined processor,

SU(1) = 1 : The number of problems for which the speed-up(1) is greater than 1.

Av. S3U(2) . The average speed-up, measured over the problems for which both systems found a refutation, with
the other system running on a single processor.

5U(2) = 1 : The number of problems for which the speed-up(2) is greater than 1.

Performance Comparison Table

The HPDS finds refutations for 72 of the 83 problems analysed. The GLD component finds the
refutation in 40 of the 72 problems, the UR component in 28 problems, and the hyper-
resolution component finds only 4 refutations. The unit clauses produced by the UR component
are believed 1o be a major contributing factor to the strong performance of the GLD component
in the HPDS. Conversely, the clauses passed to the UR component in the HPDS enable the UR
component to find the refutation in six problems which it cannot solve independently. This is
clear evidence of fertilisation from the GLD and hyper-resolution components. The
hyper-resolution component appears to contribute the least to the HPDS. The role that the
hyper-resolution component may be playing is to improve the performance of the UR
component by supplying a large number of nuclei. If this is the case, and it is also true that the
UR component's unit clauses are benefiting the GLD component, then the hyper-resolution
component plays an integral role in the HPDS. A version of the HPDS, in which only the GLD
and UR components are used, is being tested to determine the extent to which this is true.

The figures above show that the HPDS is more productive than the other systems. The less than
I average productivity when compared to UR deduction, is offset by the 23 problems for which

A Heterogeneous Parallel Deduction System Page 7

13_

UR deduction does not find a refutation. In terms of speed-up, the HPDS is faster than all the
other systems when they are run on a single processor (speed-up(2)), as should be expected. If
the comparison 'plays fair', and provides the same amount of processing power to both the
HPDS and the other systems (speed-up(1)), then the HPDS is less dominant. In particular, the
naive system performs better. A speed-up(1) value greater than 1 is roughly equivalent to
super-linear speed-up, as it is commonly defined. Thus the HPDS displays super-linear
speed-ups against each of the other systems, for some problems. Again, all the speed-up
figures should be viewed in conjunction with the number of problems for which the other
system does not find a refutanon.

Conclusion

The HPDS is one of a large class of parallel deduction systems whose architecture 15 identified
by the relative independence of the deduction components that run in parallel. The current
version of HPDS is an early development in this class of systems, and there is clearly scope for
further investigation. Many questions concerning appropriate combinatons of components have
yet to be addressed. The Prolog-D-Linda environment makes it possible to quickly and easily
build and evaluate combinations of components. Experiments with different combinations of
components are, to a large extent, unhampered by the difficulty of determining the compatibility
of the individual deduction formats. This is in contrast to the difficulties experienced when
combining multiple refinements of resolution into a single deduction system.

Besides experiments with different deduction component combinations, there is also scope ©
increase the level of cooperation between the component of the HPDS. In the current
configuration the deduction components are in cooperative competition. However, the
cooperation consists of simply distributing clauses without knowledge of whether the clauses
will benefit the recipients. In an improved HPDS, the deduction components would cooperate
reactively and proactively with each other. A deduction component with particular skills could
be requested to try create a particular clause, by another component without those skills. The
deduction components would also be more aware of their own needs, and would carefully filter
clauses created in other components. The current HPDS has only one instance of this type of
filtering, where the GLD component does not accept clauses from the hyper-resolution
component. The performance of the HPDS was significantly worse before this filter was added.
Closer cooperation would also produce more stable results. The performance of the current
HPDS is affected by very small changes in the timing of clause distribution, brought on by
varying processor loads.

Finally, the strong performance of the naive system, relative to the HPDS, suggests that
heterogeneous competitive systems are worth investigating.

A Heterogencous Paralle] Deduction System Page 8

14

References

Ertel W. (1990), Random Competition: A Simple, but Efficient Method for Paralleizing
Inference Systems, 342/27/90 A, Institut fur Informatik, Technische Universitat

Munchen, Munich, Germany.

Loveland D.W. (1969a), A Simplified Format for the Model Elimination Theorem-Proving
Procedure, In Journal of the ACM 16(3), ACM Press, New York, NY, 3490- 363.

Lusk E.L., Slaney J.K., and McCune W.W. (1991), ROOQ, In Kanal L.N., Suttner C. B.
(Ed.), Informal Proceedings of PPAI-91, International Workshop on Parallel Processing
for Artificial Intelligence (Sydney, Australia, 1991), International Joint Conferences on
Artificial Intelligence, Inc., Sydney, Australia, 110-116.

Overbeek R., McCharen J., and Wos L. (1976), Complexity and Related Enhancements for
Automated Thecrem-FProving Programs, In Compurers and Mathemaiics with
Applications 2, Pergamon Press, England, 1-16.

Robinson LA, (1965b), Automatic Deduction with Hyper-resolution, In International Journal
of Compurer Mathemauics 1, Gordon and Breach, London, England, 227-234.

Shostak R.E. (1976), Refutation Graphs, In Artificial Intelligence 7, Elsevier Science,
Amsterdam, The Netherlands, 51-64.

Sutcliffe G. (1991}, A Paralle] Linear and UR-Derivation System, In Kanal L.N., Suttner C.
B. (Ed.), Informal Proceedings of PPAI-91, International Workshop on Parallel
Processing for Ardficial Imielligence (Sydney, Australia, 1991), International Joint
Conferences on Artificial Intelligence, Inc., Sydney, Australia, 211-215.

Sutcliffe G. (1992), The Semantically Guided Linear Deduction System, In Kapur, D. (Ed.}),
Proceedings of the 11th International Conference on Awtomated Deduction (Saratoga
Springs, NY, 1992}, Springer-Verlag, New York, NY,

Sutcliffe G., and Pinakis J. (1991), Prolog-D-Linda : An Embeddin g of Linda in SICStus
Prolog, 91/7, Department of Computer Science, The University of Western Australia,
Perth, Australia,

Suttner C.B. (1992), Personal comrespondence about evaluating parallel deduction systems.

Wos L., Carson D., and Robinson G.A. (1964), The Unit Preference Strategy in Theorem
Proving, In Proceedings of the AFIPS 1964 Fall Joint Computer Conference (San
Francisco, CA, 1964), Spartan Books, Baltimore, MDD, 615-621,

A Heterogeneous Paralle] Deduction System Page &

15 -

A Functional Languaje for Parallel
Automatic Deduction

Carlos Araya
Center for Research on Computation
Costa Rican Institute of Technology
caraya@huracan.cr

1. Introduction

This paper is about a language for programming arbitrary deduction methods suitable for
Theorem Proving and Derivation procedures. The system pursues deduction as a rewriting
strategy under equivalence preservation and it is part of an investigation that looks for answers

to the following questions:

- What are the operations required for deduction?

- How can deductive knowledge be represented?

- What evaluation strategy can animate deduction in computers?
- What is the relation between deduction and computation?

The proposal is a new parallelizable functional programming language — Schemata [Araya90,
Brown90e] — as the embodier of the answers to these questions. Schemata comprises most of

the Lisp language Scheme [Rees86] and inherits from Symeval [Brown86b] the notion that |
deduction is a rewriting process, It has also been influenced by Prolog [Colmerauer$2] and

Snobol [Griswold85].

This paper is organized as follows. The second section enumerates the conceptual basis of the
Schemata Language. The third section provides examples of the language application. Finally,
the relevance of the language for paralle]l programming is succinctly exposed in the fourth
section, the conclusions.

2. Main C} -

The following are the most outstanding characteristics of the Schemata Language:

a) The evaluation of an expression produces multiple solutions. Accordingly, symbols can
have associated zero or more values which can be processed concurrently.

16

b) Schemata considers lambda ahsu'aﬂtiunslas high level objects which rewrite expressions
preserving equivalence in the Lambda Calculi spirit of Church [Church41]. Consequently,
Schemata assumes equivalence between inputs and outputs.

d) By associating to symbols rewriting rules which represent the properties of the symbols,
Schemata permits the axiomatization of arbitrary deduction systems. Therefore, Schemata
is independent of any logic.

¢} The association of the symbol to itself enables the reflection of the normal form of the
symbol. Consequently, the values returned by Schemata are expressions of the same
language and therefore there is no difference between programs and data structures.

f) The application of lambda abstractions is discriminated by pattern matching of the lambda
argument expression against the input arguments. Consequently, Schemata execution is
driven by pattern matching over expressions of the same language. In addition, the
application of a symbol to argument tuples is considered as the application of each one of
the symbol values to each one of the argument tuples using a diagonalization mechanism.

g) Two pattern matching operators are proposed for horizontal and vertical search — ellipses
and schemators. Ellipses are for pattern matching what argument segments are for
application. Schemators [Morse65] are for pattern matching what lambda-abstractions are
for evaluation. The pattern matching of both primitives is highly parallelizable.

h) Schemata is a language with all its backtracking and pattemn matching mechanism based on
streams [Wadler85, Abelson85). Hence, Schemata provides a very flexible, controliable,
and parallelizable search strategy.

i) Streams provide a direct representation for both failure and multiple solutions [Wadlerg5).
Consequently, Schemata possesses nondeterminism features similar to the ones exposed by
[Henderson80]. This characteristic reflects the language natural suitability for parallel

execution.

So far, the more remarkable application of Schemata is a system for Nonmonotonic Reasoning
(NRS) developed by the Brown and Araya [Brown90a). The NRS performs deduction on the
Z Modal Logic [Brown86a, Brown87, Park88) and can solve problems in seven different
theories of nonmonotonicity including Autoepistemic Logic [Moore83, Konolige87],
Nonconstructive Default Logic [Brown89a], Default Logic [Reiter80] and its extensions, the

17

Closed World Assumption [Brown89a], McCarthy's Parallel Circumscription [McCarthy80],
and Levesque's BNO [LevequeB4]. In [Brown90c, Brown90d], Brown and Araya show
some practical applications of this system in the areas of Physics, Diagnosis, and Deontic
Reasoning. Other practical applications of the NRS were done in Situation, Event Calculus
and Assembling [Missiaen89], in Manufacturing {Park89], and in the Frame Planning

[Brown%0b].

The following examples provide more information on the language. An intuitionistic
disjunction is specified in Schemata by associating to the symbol two rules:

(define {iv x y) X)
(define (iv x y) y)

Therefore, the application of iv to a pair of arguments will generate two different independent

computations, one for each argument. For example,

- (iv 12)

2

==

For Nonmonotonic Reasoning, the NRS solves reflective equations of the form K = [k
expressed in Z, where [[k contains occurrences of K under the modal symbol [] and =
represents synonymity in the sense that K =[]k is defined as [J(K < [1k). Therefore, K is the
knowledge base with contents synonymous to [Tk. The derelativization from K of equations of
this form is any solution @, where K does not appear in @, such that @ =[lp, ile. D = [lpisa
tautology. Solutions to these equations are obtained by deriving from K = [Tk a disjunction of
expressions of the form K =g using deduction steps under equivalence preservation.

In Schemata, this concept is generated by case analysis in the following way:

(define (= K ([T1 (7] (112 KY))
(iv (A~ (=K1 TY (i 12 Kp)
{n (=K(I1F) (~ (] (M2 Kphn

This example shows two Schemata pattern matching primitives: schemators or higher-order
matchers indicated by ITi, and constants introduced by quotation. In addition, it is noticed that
the disjunction of solutions is going to generate two different computations. If there is a total
of n different modal occurrences of K in the original expression, the recursive application of the
rule generates a total of 2N different solutions. To finally reselve the cquation into its

_1'5.

solutions, other NRS rules substitute back any solution into the modalized conditions

conjuncted by case analysis and the expression is simplified.

The following example shed some light on the implementation of some commeon concepts on
parallel computation. The first definition associates to the FAIL symbol the empty set of

solutions since the definiens does not have a match.,

(define FAIL (iv))

Using FAIL and the PRIME? predicate in the following example, we screen out the prime
numbers from the collection of natural nombers. The first two definitions declare what the

natural numbers are whereas the last definition filiers for primes.

(define (matural n} n)
{define (natural n) {natural {+ n 1}}}

(define (primes x) (if (prime? x) x FAIL))

=> (primes (natural 2))

-~ ! W M

As it can be observed, the infinite computation being performed for the natural numbers is fed
into the PRIMES procedure which either returns the number or failure depending on whether

each individual number is or is not prime.

4._Conclusions

A concise summary of the current research related to Schemata parallelizable characteristics has
been presented. Using an implementation of intuitionistic disjunction, it has been shown how

to generate the multiple alternative solutions required for nonmonotonic reasoning under the
NRS system.

In addition, this systems demonstrates that functional languages can improve on parallel
architectures if multiple definitions, and possibly a good way of discriminating application, are
integrated into the language. Furthermore, this paper also shows that efficient parallel
functional programming can be easily performed without burdening the user with issues related
to when and how parallel capabilities are suitable. Finally, it can be claimed that this

g

programming style is more natural because it is closer to way in which we have been

PrOgramming COmputers.

So far, Schemata has been implemented in several platforms including Sun, Macintosh, and
Symbolics computers. There is a com mercial version available of the system by AIR, Inc. At

CRC, we are currently working on the first parallel prototype of the system which will
probably run first on transputers, but we are actively analyzing other architectures.

References

Abelson85. Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer
Programs (MIT Press, Cambridge, MA, 1985.)

Araya90. Araya, C. and Brown, F.M, SCHEMATA: A Language for Deduction, Proc.
of the European Conference on Artificial Intelligence - 1990, Stockholm,

Sweden, August (1990.)

BrownB6a. Brown, F. M., A Commonsense Theory of Nonmonotonic Reasoning,
Proceedings of the 8th International Conference on Awomated Deduction,
Oxford, England (July 1986.) Lecture Notes in Computer Science 230
(Springer-Verlag, 1986.)

Brown&ab. Brown, F. M., An Experimental Logic Based on the Fundamental Deduction
Principle, Artificial Intelligence 30 (1986) 117-263.

Brown&7, Brown, F. M., A Modal Logic for the Representation of Knowledge, The
Frame Problem in Al, Proceedings of the 1987 AAAI Workshop (Morgan
Kaufmann, Los Altos, CA 1987) 135-157.

Brown&%a. Brown, F. M., The Modal Quantificational Logic Z, A Monotonic Theory of
Nonmonotonic Reasoning, in Proc. of the First International Workshop on
Human and Machine Cognition, Ed. P. Hayes and K. Ford, University of
West Florida (1989.)

BrownW0a. Brown, F.M. and Araya, C., A Deductive System for Theories of
Nonmonotonic Reasoning, Eighth Army Conference on Applied Mathematics
and Computing, Cornell University, Ithaca, New York (1990.)

Brown90b. Brown, F., Hundal, 5. and Araya, C. Frame Flanner, Procs. Florida Al
Research Symposium, Florida (1990.)

Brown%0c. Brown, F.M. and Araya, C., Applications of Equation Solving in a Cylindric
Algebra, Proceedings of the Third International Symposium on Al, Monterrey,
Mexico (1990)

Brown90d. Brown, F. and Araya, C., Cylindric Algebra Equation Solver, abstract in Procs. 10
International Conference on Automated Deduction, Kaiserslautern, FR. Germany,
Lecture Notes in Artificial Intelligence 449, Springer-Verlag, Germany (1990)

Brown90e. Brown, F. and Araya, C., Schemata, abstract in Procs. 10th International Conferenc
on Automated Deduction, Kaiserslautern, FR. Germany, Lecture Notes in Artificial
Intelligence 449, Springer-Verlag, Germany (1990)

Colmeraver82. Colmerauer, A., Prolog IT- Manuel de Reference et Modele Theorique,

Church41,

GriswoldBs.

Henderson80.

KonoligeR7.

MeCarthy 0.

Missiaensy,

MooreBS.
Morse63,

Parks8.

Park89.

Rees86,

Reiter80.
Wadler8s.

Groupe d'Intelligence Aruficielle, Universite d'Aix-Marseille 11 (1982.)

Church, A_, The Calculi of Lambda-Conversion, Arnals c;f Mathematical
Studies, N. 6 (Princeton University Press, 1941.)

Griswold, R. E., The Control of Searching and Backtracking in String Pattern
Matching, Implementations of PROLOG, ed. J. A. Campbell (Ellis Horwood
Limited 1985.)

Henderson, P., Functional Programming: Application and Implementation
(Prentice-Hall, London, 1980.) :

Konolige, K., On the Relation Between Default Theories and Autoepistemic
Logic”, Proc. of IJCAIS7 (Morgan Kaufmann, 1987))

McCarthy, J , Circumscription -- A Form of Nonmonotonic Reasoning,
Artificial Intelligence 13 (1980).)

Missiaen, Lode, Sitation Calculus and Event Calculus in Modal Logic Z,
Dept. of Computer Science Report CWES, Katholieke Universiteit Leuven,
Leuven, Belgium (1989.)

Moore, R., Semantical Considerations on Nonmonotonic Logic, Artificial
Intelligence 25 (1985.)

Morse, A. P., A Theory af Sets (Academic Press, 1965.)

Pa:lg, S., On Formalizing Commonsense Reasoning Using the Modal Situation
Logic and Reflective Reasoning, PhD. Thesis, Dept. of Computer Science,
University of Texas at Austin (1988.)

Park, §S., Araya, C., Brown, F., and Hundal, §., Automated Nonmonotonic
Reasoning and its Applications in Manufacturing, 4th Inr. Conf. on
CADICAM, Robotics and Factories of the Future, Indian Institute of
Technology, New Delhi {(1989,)

Rees, J. and Clinger, W., eds., Revised Report on the Algorithmic Language
Scheme, MIT Al Memo 848a (1986.)

Reiter,R., "A Logic for Default Reasoning, Artificial Intelligence 13 (1980.)
Wadler, P., How to Replace Failure by a List of Successes, in Functional

Programming Languages and Computer Architecture, ed. J. -P. Jouannaud,
Lecture Notes in Computer Science 210 (Springer-Verlag, 1985.)

The Improvement of A Parallel Theorem Prover Based on
The Model Generation Method

Tetsuji KUBOYAMA, Akira NISHIMOTO,
Rin-ichiro TANIGUCHI and Makoto AMAMIYA

Department of Information Systems, Kyushu University 6-1,
Kasuga-koen, Kasuga-shi, Fukuoka 816 JAPAN

email: kuboyama@is.kyushu-u.ac.jp
abstract

In recent years, attention has come to be paid to the study on automated theorem proving again, and many
automated theorem provers are being proposed. One of them is SATCHMO using Prolog technology, which is
based on the model generation method. This method has the following feature:

+ This method is based on forward reasoning.

« Full unification with occurs check is not necessary.

» The proving processes are viewed as two parts, model generation and check on its satisfiability.

These feature are useful for vs to incorporate various strategies and to implement provers on computers.
In 1COT, the SATCHMO-based prover, MGTF, which uses KL1 technology, has been already built and its
improvement is being carried out. The purpose of this paper is to point out inefficiency in proving processes
of MG'TP and to propose an improvement of MGTP. Redundancies reside in proving processes:

+ A conjunctive matching of the antecedent literals against each element in a model candidate is redundant.

* Redundant OR-branches are generated in the proof tree. For example, the number of the redundant OR-
branches, in the worst case, is equal to the permutation of the clauses for which conjunctive matching

can be applied.

As a first step in removing the redundancies, we pay attention to the redundant OR-branches, Then we
propose the method to avoid this redundancy by the following method. When there are more than one clause
whose antecedents are same, a model candidate may branch into multiple anes in normal MGTP. Whereas in
OR-branch restraint method(ORM), & model candidate is not branch in this case, namely, model extension is
applied to the one model candidate. This method is effective in improving performance in case that the clauses
have same antecedents, There exist, however, some cases in which redundant AND-branches are generated.
However, it 15 possible to eliminate the clauses which cause this redundancy, by pre-processing a given set of
clauses. The processing which is the connection analysis among clauses at the level of predicate letters enable
the redundant literals to eliminate. We implement a MGTP interpreter with ORM{MGTP-ORM) in KLI1,
and compare the performance of MGTP-ORM with the one of a normal MGTDP interpreter{ MGTP-N), We
show several experimental results for various sets of clauses with the MGTP-ORM interpreter. For example,
we use the S-queen problem and then MGTP-ORM is cut down on the number of reduction more than 90with
all-solution mode. On the other hand, in the set of clanses including the literals in the consequents which have
no connection with the ones in the antecedents, MGTP-ORM may be less effective than MGTP-5. However,
applying the pre-process to the set of clauses, then the performance of MGTP-ORM almost results in the same

as the performance of MGTP-N.

22 —

Improving Backward Execution in
Non-Deterministic Concurrent Logic Languages

Salvadoar Abrew Philippe Codognet
Luiz= Moniz Pereira INRIA-Rocquencourt
Departamento de lnformatica BP 105, 78153 Le Chesnav
ITniversidade Nova de Lisboa FRANCE
25825 Maonte de Caparica Philippe.Codognet®inria.fr

PORTUGAL
spa,lmpl@fct.unl.pt

Almtract

We preseat a new mechanizm for improving the execution of non-detecministic concucrent logic
langnages such as the Aasdorea Gomily of languages. The basic idea is, upon failure and hackiracking,
Loy pe-schedule continnation goals in order ta first execute the goal that has falled, In this way. if the
backirack point is pot pertinent 1o the failure. the original failing goal will fail again and this will
mmediately amonnt to lorther decper backiracking. Such a heuristic will hence save nseless dedoe
ton/backiracking work. This method would be very difficult 1o implement in sequential srark- hased
logic systems snch a= Prolog, bet fits well in the execution models of concureen logic langnages. We
hase implemental this schewme by madifving the Andorra hernel Language prototype implementa-
i desvelopad at SIS (0L version 000, snd evalualion result= slow that this backward execo iion
shrategy improves performance froaovariety of benchmarks, giving speedups up to a factor two or

three -

1 Introduction

Since the first researeh o the carly 8075, the liekl of concurrent logic programming has raised a nuiiber of
important issues about Uhe way of excenting logic progeams and how to move away from the teaditional.
simple but rigil. search strategy popularized by Prolog, On the one haud. the depth-first left-to-right
strategy of Prolog, due to its stinphe stack-hased cxecntion nodel, bas lead 1o tremendous advances in
Prolog impleaentation technology which has been decisive for establishing logie progranuning as a mature
declarative paradigni. Such eesulls were exported Lo the area of astomated deduction with theorem
provers such as Stickels PUTTY But on the other hand, one may sometimes prefer a more fexible control
strategy. aud a more adequate search strategy that reduces the overall number of wferences needed to
salve Lhe problein caw miake up for a lower inference speed. This is especially true for thenrem proving
and autowated deduction applications. were the contrel way be as important as the inference speed in
order Lo achieve good performances, e that direction concurrent logic languages such as KLI. Concurrent
Frolog or Parlog are o step forward to cscape from the rigid depth first search strategy. Moreover, souw
unglementations of concurrent languages now achicve raw speeds close to that of traditional Frolog
systen.

The Andorra model was proposed by DOH D Warren [L5] i order to combine Or- and And-parallelism,
and it has now bred a variety of idioms and extensions developed by different. rescarch EFouUps, AMoNE
which Andorra-I [3, 2] and Andorra hernel Language [5, 6). The essential idea is to execute deteriinate
goals first and coneurrently, delaying thus the execution of nen-determinate goals until no determinate
goal can proceed any more. Heunee the Andorra principle can amount to e priori pruning and it can thus
reduce the size of the computation when compared to standard Prolog up to ane order of magnitude [2].

Although much work has been done bo improve the forward execution in deductive systems, as exem-
plified by the Andorra model described above, very few works deal with the improvement of backward

" Uhis work wis dose while ar [NFLA on an extended visit.

execntion. [t is however interesting, vpoen falluee during the fomputation process, to take into arcount
the information of this very failuee to improve the searcly strategy. For mstance, one can consider that
ihe gnal that has cl.lrrtl]t]}’ failed iz |'ikl‘:|}' t fanl ag—din alter h.'-:.rl:lrm‘.king that is. if LI;;_-_I;;.:I[I.W_:;L; point
5 not pertinent. This goal should thus be executed first alter backtracking. as this could immediately
amwunt to further deeper backtracking if the backtrark point is not pectineat. In this way, the whole
recomputation of the part of the proof between the backiracking pomt amd the failing goal is avoided
w.r.t a standard (non-reordering) strategy. ‘Uhe point being that if this goal just failed, it is likely to be
“probiematic” and therefore it may fail again with the next bindings produced as a resull of hacktracking.
v other words. o farled goal s Gkely fo fail again. this can indesd be seen as vet another instance of the

“lirst-lail™ principle apply Lo backward execution.

Such a re-ordering of the continuation goals (goals that remain in the resolvent) upon backtracking, based
only on the inforisation of which is the current failing goal, can thus save much deduclmnfhacktr.i:king
work, This simple idea haz indeed heen frst propesed by Lee Naish Tor some 3,-::3.:5[[2] as an example
of heterogeneous SLL resclution. A related computation rule s presented. and it is argued that it is a
forme of intelligent backiracking. However, such a strategy is nol well suited to the computational model
of Prolog as implenented for example by stack-bhased architeciures such as the famous Warren Abstract
Machine {WAM) because a failing goal s inmmediately discarded, leaving no teace, and it is very hard if
not impossible to relate 1t to its other occurrences, which will be tried anew after the last choice-point’s
gl has generaled another solution. There &5 also no way to manipulate and keep part of the stacks
toe avoid rr"l:ot:‘lpl:lting indepﬁndenh parts aof the |Jrnnf Also remark that Prulus'ﬁ g.pgrﬂ,t.iuna]_ semantics
requires a strict execution order which prevent such re-ordering. One had to wait until the development
af concurrent logic languages to fully rework those ideas. Indeed at the semantic level these languages
have the necessary flexibility and do ool impose a strict ordering, and at the implementation level they
mebele sufficiently versatile data-structures to make reordering (re-scheduling) easy, as, in one way or
an olher. the whole computation tree has to be explicitly reprezened,

We have imnplemented this scheme in the prototype version of the Andorra Bernel Language (AKI 0.0)
developed at SICS {71 As mentioned above, one of the wain mterest of the proposed scheme is its ease
af ipksmemation by siimple modifications of an rxisting nnplementation of a concurrent language. Cne
las anly to bdegrate a re-scheduling of continuation goals upon backtracking. There is no need to madify
ternis of vatiable bindings representations as in an inielligent backiracking scheme, The overhead of our
machinery w.rl, 1he original ARL inplementation s very simall, hnited to 5- 100, We have experimented
with various strategics on a variety of benchiuarks. and we have encouraging results: a average gain of
ST (as measured hy the number of gondeterminate prometions) can be observed, with peak values up
Lo SO0 ‘

2 Andorra Kernel Language

‘The semautics of the Andorra Keenel Langnage (AKL) is given by A set of cewrite rules applicable to
and-or trees designated as configurations. see [3]. We will follow in this paper the AKL terminology for
and-or trees: & subiree whose root @ an or-node will be called & choice-box, and a subtree whoae root is
alt and=node will be called a and-box.

The current (sequential) implementation of AKL [7] uses copying for the choice splitting operation, as
decribed by the semantic rewrite rule. This operation s very different from the run-time organization of,
say, Prolog systetns where choice splitting. ie. non-determimisin is bandled by choice-point creation and
backiracking. In the AKL scheme, there are no choice-points. the concept being replaced by the multiple
clanses of the nondeterminate goal being present in otherwise similar and-box contexts, contained in s
common choice-box. This leads us to define the notion of copied or re-incident node as follows.

A re-mncedent node 7 is another instance of a choice-box or and-continuation for a goal ' that eccurs in
another branch, at the same depth in the and-or tree. In ather words, given configuration (1),

choice(- .- and(5, . choice|. -}, 52}, -) {1}
after applying the choice-splitting rule we obtain configuraticn {2).
choice(- - - and(5|, choice(- -}, 53). and(5]. choice(- -}, 53),--) (2)

S1 and 55 are re-mncident nodes of respectively S; and 54, as they share the same potential solutions.
represented by an identical set of applicable clauses,

3 And-Or tree transformations based on failure

Ohir backward execution method will thus be formalized as an and-or teee transformatian exeeuted upon
failure. [ntuitively, the aind-or tree transformations can be viewed as a heuristic to speed up the search
space scauning process by providing a means by which separate or-branches of the proof tree influence
ane another: one branch's early failure may be used to “draw attention” to the part of the tree that
capsed fuilore. so that it will he selected earlier than it normally would in ather instances present in other
parts of the tree,

We experimented with different strategies for reordering the and-or tree, that can be presented under
several arthogonal aspects. as deseribed below.

|. Under what circumstances to reorder?
These are condilicons that wmay have to be fulfilled in order for the modifications ta the shape of
the anad-or teee to take place. Different conditions are enomerabed and way have Lo be satisfiod
inclependently of cach other.

{a) When the faiding node s an instance of the last clavse for the purent goal
Thes rnrrﬂspnmlrs Loy recrder nlll.}: i case of tlﬂ'p]tarl:f.rarking_

(b When the recincident nodes have the same grandparent choiec-bor' as the foiing node.
The effect of this s to lurther narrow the scope of the reordering operation.

Y. What parts of the tree to reorder?

(a] Kewrder only the reeinerden! vodes

(hy feaeder all the nodes fnoa path from eack re-mmeedent node lo Fhe lowesd connpon apcesior,
L=y this criterion will make more extensive changes to the and-or tree, as i calls atienbion
not oy boow specific node’s other instances. but also to the romputation that gave rise o its
Failoree.

30 Whore to reorder to?
M s o faduee oecnrs and a given subset of the conditions specified in | are fulfilled, the current
andl or tree (the AR configuration) should be rewritten. “Uhe transformation will only affect the
re-inciddent nodes of the failing literal. which will be nwved The possibilities we have considerad
are:

(a) O iteresting location to meove a re-ineident node Lo, assuming it failed becanse of the hinding
ol a variable N, s cight after s producer. This is the optimal place toonwwe it to, however
il wonhd require some form of variable binding dependency analysis. which pots this outside
the wnnmliate scope of this work.

(b} “Bring To Front”. This method takes all the recineident nodes and brings them to the front
of their sibling choice-boxes {or and-continuations). It can be very efficient for some rather
poorly-writlen progeams. but it casily leads to bad results because of its “randomizing™ effect,
as we verified experimentally. This is also the simplest method to implement efficiently,

(e} “fncremental” Instead of hringing the re incident nodes to the front it moves them to the left
by one place. The intuition behind this method is that it will incrementally approxinme the
place where it should go o as defined by (3a), until it passes over it. alter which calls to the
goal will suspend, waiting for the producer goal to effeet its binding. This method should he
more “progressive” than method (3b), and will hopefully provide a hetter approximation of a
oo line gain in performance,

4 Statistics

We have implemented the method. with varives reordering strategies, in the AKL 0.0 prototype im-
plementation developped at SICS [7] This implementation 15 not as efficient as state-of-the-art Prolog

"The grandprrent choive-hox ks the parent choice-box of the containing and-box, fe. the closest enclosing duoice-bos.

- 25

compilers such as Sicstus Prolog, being 3 to |1 tines slower. We believe however that the results reporied
here can be extrapolated 1o a more cfficienr inplementation as the method is gueite independent of the
inference engine. For this purpose. we give as wieasyrement of a reordering strategy’s petformance the
mumber of choice splits (ie. nondeterminate promotions) performed. as this is probably the most expen-
sive operation in AKL. It corresponds to choice-point creation in normal Prolog. This numbers are Lhos
independent of the underlyving inference engine raw speed. The results for mesurements in cpu time and
in overall number of inferences are similar to Lhose o nwnher of choice split, and are not included lor

this reason,

The overhead introduced by the need to maintain the structures necessary for the reordering method
resulls ina slowdown o the order of 3 to 100 over the un-madified ARKL implementation. depending on

the prograrms.

Table | depicis the relative performance of the variows wethods we described previously, the labels on
the columns stand for:

s bt Rring to front. Bearder when: {1a). What: {2a). Where to: [3h).

= btf/gp. Bring to front. same g’:amlparrﬂ:r. Heorder when: (1a) and (Ib), What: (Za). Where to: {3b),
bt/ /t. Bring to front, tree. Reorder when: {la). What- (2b). Where to: {3h)

sbo. Step by one. Reorder when: [la). What: (da). Where to: {3c].

sbo/gp. Step hy one, same grandparent. Reorder when: (La) and (1h). What: (2a). Where to: (3c).

sbo/t. Step by one, tree, Reorder when: [la). What: (2h). Where 1o [3e].

Table | displays the performance of these methods relative to the un-modified ARL strategy, as a ratio
where numbers greater than | represent a speedup (e, a lower number of cholce split operations),

Method
Benchmark Wl bilfgp bt shao shofgp sho/fL
circuit I8 148 138 100 100 100
bagol-circuit 291 280 2481 LW 28 132
color- Li-good 11,50 LA (056 (W26 el 027
color L bail it (LT VAV B [Lyl 046
example-g 295 27% L2THh L5 275 AT
CTypt 1.00 Ly L Lk 1.0H) 1AW
knights-5 097 fog 087 0487 L 0ur
queens-§ 2.0 3% 200 [L.0a 1.00 104
ham 1.5 Lo 0585 100 oo .00
hlocks i L.20 La7 .00 197
DY CEon Loo Lo Lo Log Loo
hagof-sali-mseard | 186G log 2ul 120 1oo 1.33
zebra .82 25 282 184 Lap L8

Table L ratios of Number of Choice Splits (unimodified fmodified AKL)

bagof-circuit generates all solutions to a digital circuil fault diagnosis problem from [11], zebra s a
version of the “houses” problem, coypt iz adapiad from [IT]. money is the “send+more=maoney” crypt-
arithretic puzzle, example-g is the example previously discussed, bagof-salt-mustard is the “salt-
and-mustard” puzzle, color-13-good and color-13-bad are the traditional map-coloring puzzle from
(1] with both a favorable and a bad goal ordering. ham and bagof-ham consist in finding a Hamiltonian
path through a graph, and blecks is a simple planning problem in the blacks-werld.

The overall best nwthod seems to be the bEL family, the fastest ones being bt and bE2/t, as they obtain

an average 6U% gain in performance on these benchmarks, with peak speedups up to a factor three, Some
remarks concerning the strategies on this data:

1. The metheds that reorder the entire sub-tree leading to the re-sincident nodes (names ending in
ft) perform almost identically to those that only reorder the re-incident nodes. This may be
attributable to the fact that the and-or trees represented by the AKL configurations encountered
during these benchmarks are not very deep.

— B -

2. The “meromental” method (sbe) ts more stable than the “bring to front” [bef) one. In practice
this means that the gains are not as high, however, there are not as many pathological cases.

3. The “same grandparent” restricting heurnistic (h, naimes ending in /gp) seenis to restrict the gains
a little bit, however and most interestingly it prevents some of the truly pathological behaviour of
the strategy it's being used with.

4. The blecks benchmark with the btf and bt£/t heunistics took too long to complete so the figures
are not in the table.

5 Conclusion and further work

We have shown that it s feasible to apply simple search-space pruning heuristics to improve the non-
determunistic behaviour in the Andorra-hased concuerent logie Language. U'he experimental results are
encouraging and the methods we have described are susceptible of being iplemented efficiently and with
few modifications to the original engine.

Henee we helieve that @ priort pruning, such as the one provided by the Andorea prineiple, should be
cothined with a pLﬁlEIiDri pr'un'mg, based on failure information, w achieve the best pesults,

These results can be immediately applied to antomated deduction applications, which are both in demand
for non-deternyinism and for control of the search space, a3 proposed by nondeterministic concurrent logic
languages. This is an example of the synergy between research on parallel mplementations (concurrent
logic languages) rescarch on deduction svstems (reardering method hased on failure}.

References

(1] M. Broynooghe and L. M. Pereira. Deduction revigion by inwelligent. backtracking. In LA, Campbell, editor,
ineprleneenbectanns uf Prodoy Fllise Horwoml, 14984,

(2] Witar Santos Costa, David H. [0 Warren, and Rong Yang. The Andorra] engine: A parallel implementation
ol the basic andorra model. In Furukawa (4], pages #25-844.

[4] Vitor Santos Costa, David H. [Warren, and Rong Yang. The Andorra-| preprocessor: Supperting lull

Frolog an the hasic anderrs model. In Furokawa [4], pages 445450,

Koicln Farukawa, editor. Proceedings of the Eighth [nternational Conference on Logic Programming, Cam-

hridge. Massachusctizs London, England, 14991, M[T Press,

(3] Seil Haridi and Sverker Janson. Kernel Andorra Prolog and its Computation Model. In Warren and Szeredi

[16]. pages BL-46,

Sverker lanson and Seif Haridi. Programming paradigms of the Andorra kernel language. In Saraswat amd

Vieda [13), pages 167-186,)

[T] Sverker lanson and Johan Montelius. DHi-Ell of ascqu*:n'riﬂ prototype i plementation of the andorra kernel
language. Technical repory, SICS, September 1991, (draft).

[8] Robert A. Kowalski and Kenneth A. Bowen, editars, Proceedings of the Fifth International Conference and

Syrnposium on Logwe Programming, Cambridge, Massachnsetis London. England, 1988, MIT Press.

Jean-Louis Lassez, editor. Proceedings of the Fourth Internations! Conference on Logic Pro gramming, MIT

Uress Series in Logic Programming. Cambridge, Massachusetts London, England, 1987, "M [T Press”.

[t0] Giorgio Levi and Maurizio Martelh, editors. Proceedings of the Sirth International Conference omn Logic

Frogeamemang, Cambridge, Massachusetts London, England, 1989, MIT Press.

[4

ot

[®

ot

(9

—

[t1] 5. Merishita. M. Numao, and 5. Hirose. Symbolical construction of teuth value domain for logic program.
ln Lasses [‘J] pages 534 -333.
[12] Lee Maish, Heterogeneous SLD resolution. The Sourns! of Logic Programming, 1{4):297- 303, Decemhber 1954,

[13] Vijav Saraswar and Kazunori Ueda, editors, Logic Progremming Proceedings of the 1927 International Sym-
posiwm, London, England, 1991, Massachusetis [nstitute of Technology,

[14] Ehud Shapiro, editor. FProceedings of the Thivd International Conference on Logic Programming, Lecture
Notes in Computer Science. Springer-Verlag, 1986

[15] D. H. D. Warren, The andorra principle. Internal report, Gigalips Group, 1988,

[16] Dawid H. . Warren and Peter Szeredi. editars, Proceedings of the Seventh International Conference on Logic
Frogrommeng, Cambrndge, Massachusetts London. England, 1980, MI'T Press.

[17] B. Yang. Solving simple substitution ciphers in Andorra-1. In Levi and Martelli [10], pages 113-128,

27

Improving Performance Evaluation
of Parallel Inference Systems!

Christian B. Suttner

Forschungsgruppe Intellektik
Technische Universitat Minchen
Aungustenstr. 46 Rgb, D-8000 Minchen 2

Frmail: suttnerfinformatik.tw-muenchen.de

EXTENDED ABSTRACT

In Short:

The relevant aspects for performance evaluation are described and the deficiencies of
commanly used performance metrics are exposed. Thereby, the problemacy of a typical
application of commaon performance metrics for the evaluation of parallel inference sys-
tems is shown This issue is exemplified by discussing the popular “relative speedup”
metric. Finally, some other metrics are presented which allow adequate evaluations.

1 Introduction

Automated deduction is a computationally intensive field. The enormous search
spaces usually encountered for inference systems and the desire to solve larger prob-
lemns require the use of parallel machines to increase the available computational
power as compared to sequential compnters.

In the last few vears, a number of parallel inference systems have been de-
veloped: For example, automated theorem provers such as PARTHEO ([SL90]),
ROO ([LMS92]), and MGTP ([FH91]), logic programming systems such as MUSE
([AKS90]), and special purpose reasoning systems such as HELIC-T ([NSO*92]).
Since more and more parallel machines as well as techniques to execnte deductive
processes in parallel emerge, a meaninglul and accurate evaluation of the weaknesses
and strengths of a particular parallel system are of significant importance.

2 Summary
An evaluation methodology is being developed which helps the user to take into

account all relevant aspects necessary to derive a meaningful evaluation. There are
basically three issues which need to be regarded:

"This work was supported by the Deutsche Forschungsgemeinschaft within the Sonder-
forschungsbereich 342, Teilprojeki A5 (Parallelization of Inference Systems).

- 28

l. the purpose of evaluation (“why is evaluated?”)
2. the workload ratio (“does the workload depend on the number of processors?™)
3. the purpose of paralielism (“what is parallelism used for?™)

It is of crucial importance to realize that for each of these issues different answers exist,
and that each affects the way evaluations should be performed!

The first issuc influences the coneeptual selection of metrics which can be used
to derive meaningful statements, while the second issue determines which particu-
lar definitions must be used. As an example, consider the commonly used relative
speedup metric S,.(n), which is delined as the time for the parallel system to solve
the problem using one processor divided by the time it requires using n processors.
It 15 well known ([Hoc83], [SG91]) that this metric should not be used for system
comparisons or [or establishing the genera! quality of a parallelization (this regards
issue one). Despite this, relative speedup & widely used, partly based on the as-
sumption that it is an adequate metric to assess the degree of parallelism inherent to
the algorithm at hand. Hewever, for typical parallel inference systems strategy-shift®
elfects oceur, ie. the amount of work (measured in elementary® operations of the
systemn such as Jogical inferences) done in order to solve the problem varies with the
number of processors used (issne two). This phenomenon for example is responsi-
ble for the superlinear speedups® often reported for parallel inference systems (e.g.
(BICET], (BCLM]). We show that if both Lhe warkload and the average inference rate
per processor are dependent® on the number of processors, relative speedup does not
even allow to clearly assess the degree of parallelism inherent to the algorithm. Since
both conditions are satisfied for most parallel inference systems, relative speedup on
its own is rarely adeqnate and needs to be combined with other metrics 1o become
meaningful.

Finally, the third issue determines the definition of optimal performance. This
also influences the selection of metrics and furthermore has impartant consequences
on the definition of scalability, because it changes the way Amdahl’s law shonld he
interpreted ([Gus88], [ZhoR9]).

These issues and their interactions are currently being summarized to form a
hasic evaluation methodology which gives puidelines for how to approach metric

Typically, o given inference system defines a particular search space for a given problem. The
term strotegy-shift is uscd to denote any change of Lhe order in which noades of the search space
are explored. Tn parallel inference systems, such a change usually eccurs and is dependent on the
number of processors.

*Flementary operations are assumed to require uniform time.,

45uperljnear speedup 15 a matter of dispute whenever a slratepy-shifl based reduction of work
ocrurs. This 15 because it might be Pﬁﬁsiblt {and lcaﬁnnable} to employ a sunilar stralegy for
a sequential system. In that ease. it can be argued that the parallel system obtains supetlinear
speedup only because a superior search strategy is compared with an inferior oue, and speedup is
not sobely contributable to the use of multiple processors.

"For cxample, the latter is the case if the performance of the parallel system degrades as more
processors are added. Commeon sources for degradation are load imbalance and comrmumication
overhead.

— 2y —

selection and application, independent of specific metrics ([Sut92]).

Furthermore, performance metrics proposed in the literature for parallel sys-
tems analysis are inspected and their appropriateness for inference systems is in-
vestigated. For example, as a single measure for inherent parallelism, generalized
speedup (equal to speed of the parallel system using n processors divided by its
speed using one processor; see [SGY1] also) is an improvemnent over relative speedup
since it additionally takes into account workload changes and therefore separates
strategy-shift effects from work distribution cffects.

In order to improve the usefulness of evaluations, two new metrics are proposed.
As an example, productivity F{n)} is introduced, which is defined as the time re-
guired by Lhe parallel system to find a solution nsing one processor divided by the
accumulated processing time wsing up to n processors. It improves on the standard
definition of efficiency (i.e. speedup divided by the number of processors) in that it
more adequately assesses processor utilization. In particular, other than traditional
efficiency, it allows to rate two algorithms with equal speedup behaviour differently
as long as their processor utilization differs,

Finally, the consequences of the issues discnssed above are applied to derive
an appropriate definition of scalability. Thus it 15 clarified how to use adequate
performance metrics in a series of experiments in order to obtain reliable evidence
regarding the performance behaviour of the parallel algorithm for increasing numbers
ol processors.

References

[AK90] K.A.M. Ali and R. Karlsson. The MUSE Or-parallel Prolog Model and
its Performance. In Procecedings of the 1990 North American Conference
on Logic Programming. M1 Press, 1990

[BCLM] S. Bosc, EXM. Clarke, D.E. Long, and 5. Michaylov. Parthenon: A Par-
allel Theorem Prover for Non-Horn Clauses. To appear in: Journal of
Automated Heasonimg.

[BK&7] R.M. Butler and N.T. Karonis. Exploitation of Parallelism in Prototypi-
cal Deduction Problems. In Proceedings of the 9ih International Confer-
ence on Avlomaled Deduction {CADE), pages 333-343. LNAIL, Springer-
Verlag, 1987,

{FH91] H. Fujita and I llasegawa. A Model Generation Theorem Prover in KL1
Using a Ramified-Stack Algorithm. In Proceedings of the Eight Inter-
national Conference on Logic Programming, pages 535-548, MIT Press,
1991.

[Gus88] J.L. Gustafson. Reevaluating Amdahl's Law. Communications of the
ACM, 31(5), 1988.

— 30 -

{Hoc&3]

[LMS92]

[NSO+92]

(5G9

(SLY0]

[SutdZ]

[Zho89]

R.W. Hockney. Characterizing Computers and Optimizing the FACR(1)
Poisson-Solver on Parallel Unicomputers. [EEE Transactions on Com-
pulers, C-32{10), 1983.

E.L. Tusk, W. McCune, and J.K. Slaney. ROO - A Parallel Theorem
Prover. In Informal Proceedings of FPAL-81. Technical Report SFB
342/1/92 A {TUM-19201), Technische Universitit Miinchen, 1992,

K. Nitta, K. Sakane, Y. Ohtake, 5. Maeda, M. Ono, and H. Ohsaki. A Le-
gal Reasoning System on the Parallel Inference Machine. In Informal Fro-
ceedings of PPAI-91. Technical Report SFH 342/1/92 A (TUM-19201),
Technische Universitat Minchen, 1992

X.o-H, Sun oand J L. Gustafson, Toward a Better Parallel Performance
Metric. Parallel Computing 17, pages 1093 - 1109, 1991.

J. Schumann and K. Letz. PARTHEO: A High-Performance Parallel
Lhearem Prover. In Proceedings of the 10th International Conference on
Automated Deduction (CADE), pages 40-36. LNAT 449, Springer- Verlag,
19490

C.B. Suttner. On Experimental Performance Evaluation of Parallel Sys-
temns. In Preparation, 1992,

K. Zhou. Bridging the Gap between Amdahl’s Law and Sandia Labora-
tory’s Result. Communications of the ACM, 32(8):1014 - 1015, 1989

Extended Abstract:
The Proposal of a New Method of Generalisation
within Automated Deduction *

S. Baker, A. Ireland and A. Smaill
Department of Artificial Intelligence
Edinburgh University
Tel: 051-650-2725
E-mail: siant@uk.ac.ed. aisb

1 Introduction

CGeneralisation is a proof step which allowe the postulation of a new theorem as a substitute for the current
goal, from which the latter follows easily. It is a powerful tool with a variety of réles, such as enabling
proofs, defining new concepts, turning proofs for a specific example into ones valid or a range of examples
and producing clearer proofs. Although generalisation is an important problem in theorem-proving, it has
by no means been sclved. It is important and still being investigated for reasons which have to do with cut
elimination and the lack of heuristics for providing cut formulae respectively. A cut elimination theorem for
a system states that every proof in that system may be replaced by one which does not involve use of the
cut rule’, Uniform proof search methods can be used for logical systems, in sequent calculus form, where
the cut rule is not used. In general, cut elimination holds for arithmetical systems with the w-rule, but
not for systems with ordinary induction. Hence in the latter, there is the problem of generalisation, since
arbitrary formulae can be cut in. This makes automatic theorem-proving very difficult, especially as there is
ne easy or fail-safe method of generating the required cut formula, An important technique for investigating
derivability in formal systems of arithmetic has been to embed such systems into semi-formal systems with
the w-rule. This paper presents a new approach to the problems of generalisation by means of “guiding
proofs” in the stronger system, which sometimes succeeds in producing proofs in the original system when
other methods fail. This method is suitable for automation and results in the suggestion of an appropriate
cut formula.

2 The Constructive {-Rule

In order to describe the generalisation method proposed, it is first necessary to provide a description of the
‘stronger’ system mentioned above. A suitable rule other than induction which might be added to Peanc's

*The research reporied in this paper was supported by an SERC studentship to the first author and by ESPRIT BRA 3245
) [Schwichienberg 77), for example.

A New Methed of Generalisation within Automated Deduction

axioms to form a system formalising arithmetic is the w-rule:

FROM : A(0),A(1)...A(n)...
CONCLUDE : WxA(x)

where 1 is a formal numeral, which for natural number n consists in the n-fold iteration-of the successor
function applied to zero, and A is formulated within the language of arithmetic.? However, this is not a good
candidate for implementation since there are an infinite number of premisses. We would wish to restrict the
w-rule so that the infinite proofs considered possess some important properties of finite proofs. Hence, a
more suitable option is the constructive w-rule. The w-rule is said to be constructive if there 13 a recursive
function f such that for every n, f(n) is a Godel number of P(n), where P(n) is defined for every natural
number n and is a proof of A{n) [Takeuti 87]. This is equivalent {o the requirement that there is a uniform,
computable procedure describing P(n) [Yoccoz 89], which is the basis taken for implementation (as opposed
to the Godel numbering approach). The sequent calculus enriched with the constructive w-rule (let us call it
PA..) has cut elimination, and is complete [Shoenfield 59]. Moreover, since the w-rule implies the induction
rule, PA,, 4+ IND i3 a conservative extension of PA,,. There are many versions of a restricted w-rule; this
one has been chosen because it iz suitable for automation. MNote that in particular this differs from the
form of the w-rule (involving the notion of provability) considered by Rosser [Rosser 37) and subsequently
Feferman [Feferman 62].

Cne use of the constructive w-rule is to enable automated proof of formulae, such as ¥x (x+x)+x = x4+{x+x),
which cannot be proved in the normal axdomatisation of arithmetic without recourse to the cut rule (notably,
induction does not carry through}. As mentioned above, in these cases the correct proof could be extremely
difficult to find automatically. However, it is possible to prove this equation using the w-rule by generating
procfs of (0+0)+0=0+(0+0),(14 1)+ 1=1+(1+1),... and working out the general pattern of these
proofs,

For the implementation we need to provide (for the nth case) a description for the general proof in a
constructive way (in this case a recursive way), which captures the notion that each P(n) is being proved in
a uniform way (from parameter n), We will extend our original system for anithmetic by enriching the syntax
with names for the syntax of the original theory and representations of proofs in the original theory. Let us
consider the automation of the example mentioned in the preceding paragraph. We will presume that, within
the particular formalisation of arithmetic chosen, one is given the axioms of addition s{x) +y = s{x+y) (1)
and 0 + y =y (2). The general proof, P(n), will be as follows:

FProof

(s™(0) + s™{(0)) + 57(0) = s™(0) + (s™(C) + s"(0))
USE (1) n TIMES ON RIGHT {s™(0)s™(8)) + s™(0) = s™(0 + (s*(0) + s™(0)))
USE (1) n TIMES ON LEFT 5"(0 4 ™(0)) + s™(0) = s™(0 + (s™(0) + s™(0)))

USE (2) TWICE $3™(0) + s™(0) = s™(s™(0) + s™(0))
USE (1) n TIMES ON LEFT s™(s™(0) + s"(0)) = s(s™(0) + 5™(0))
L S S S

A 1

b A
EQUALITY

By s™(0) we mean the term formed by applying the successor function n times to 0. The next stages use
the axioms as rewrite rules, with the aim of reducing both sides of the equation to the same formula, The
recursive function for which we are looking is described by the sequence of rule applications, parametrised

*Note that for the Godel formula G(x) we have that, for each natural number n, PA - G{n) but it is not true that PA F ¥xG{x):
thus this system is stronger than PA (where the latter represents Peano's axioms plus induction).

33

A New Method of Generalisation within Automated Deduction

over n. In practice, the first few proofs will be special cases, and it is rather the correspondence between
the proofs of P(979), say, and P(100), which we hope to capture. The processes of generation of a (recursive)
general proof from individual proof instances, and the (metalevel) checking that this is indeed the correct

procf have been automated (see [Baker 90]).

3 Generalisation

Note that there is a class of proofs, including (x 4+ x) + x = x + (x + x), which are provable in PA only using
the cut rule but which are provable in PA,,, [Baker 50]. We consider whether the proofin PA,, suggests a
preoofin PA, ie. in particular, what the CUT FORMULA would be in a proof in Peano Arithmetic? That

is, what would the A be below?

AF(x+x)+x=x+4(x+x) I—ACHT
Fx+x)+x=x+(x+x)

Ordinary induction does not work on * (primarily because the second, third and sixth terms in the step case
may not be broken down by the rewrsite rules corresponding to (1) and (2) above, and hence fertilisation
cannot occur). That is why we have to use the cut rule. We would wish A to be a more general version of
+, 80 that we could prove A - », but on the other hand to be suitable to give an inductive proof, so that
we could prove k A by induction. Hence we would be tackling the problem of generalisation by using an
alternative (sironger) representation of arithmetic as a guide.

One answer would be to see what remains unaltered in the nth case proof, and then write out the original
formula, but with the corresponding term re-named. So, for the example on page 2, we would wish to rewrite
the variable corresponding to A as y. In this case, this would give

As(x+u)tu=x+(u+y)

A could then be proved by induction on x. Note that what is meant by ‘unaltered’ is defined by what is
unaffected by the rewrite rules. This procedure is amenable to automation (all that is required is detection of
the unaltered terms), and so the cut formula may be produced automatically. Note also that it has not besn
proved that the cut formula would definitely work, but rather postulated that if there were a cut formula
which did work, then it would be of the form where induction was not carried out on these ‘unaltered’
terms. This method of generalisation will allow the proof of some theorems which pese a problem for other
methods, such as x # 0 — p(x) + s(s(x)) = s(x) + x [Baker 90].

This method should be compared with current generalisation methods. Of these, perhaps the most famous
if that implemented by Boyer and Moore in their theorem-prover NQTHM [Boyer & Moore 88]. The main
heunistic for generalisation is that identical terms occurring on both the left and right side of the equation
are picked for rewriting as a new variable (with certain restrictions). This may be a guick method if it
happens to work, but may also entail the proofs of many lemmas, which might need to be stored in advance
in anticipation of such an event in order to be more efficient. The problems inherent in Boyer and Moore's
approach have led Raymond Aubin to develop their work [Aubin 75]. Aubin’s method is to “guess” a
generalisation by generalising occurrences in the definitional argument position, and then to work through
a number of individual cases to see if the guess seems to work. If it does work, he will look for a proof. If

A New Method of Generalisation within Automated Deduction

Yex+s(x) = s(x+x) (1)
Vx(x+x)+x = x+(x+x) (2)
Yex+s(x) = s(x)+x (3)
Yxx(x+x) = xx+xx (4)
Vx(Z+x)+x = 2+(x+x) (5)
VeVy(x+ty)+x = x+4(y+x) (6)

Vx #0—p(x)+s(s(x)) = s(x)+=x (7)
Veeven(x+x) = true (8)
Pl{le>1)<>1l = lax>{l<>1) (8)

vl len(rev(l)) = len(l) (10)

¥l rotate(len(l),1} = L (11)
Virev2(lL,nil) = rev(l) (12)

[

Note that induction is blocked for the above ezpressions, but they may all be proved by
the method proposed (namely by using the constructive w-rule) and a correct cut formula
produced as appropriate.

Table 1: Some Examples of Theoremes Proved

it does not, then he will "guess” a different generalisation. However, Aubin's sclution does not werk in all
cases. In particular, if a constructor such as a successor function appears in an original goal, together with
individual variables, Aubin's method may result in over-generalisation or indeed no solution at all. The
proposed guiding method provides a uniform approach and does not have to check extra criteria, nor work
through individual examples. There is less likelihood of overgeneralisation to a non-theorem.

A selection of the theorems proved by this method is listed in Table 1. Note that examples (1)~(7) involve
generalisation apart, or else generalisation of common subexpressions. In these cases the method works
fairly straightforwardly. Although the examples listed in the table are of a similar simple form, this method
may also be applbied to complicated examples containing nested quantifiers, etc., for the w-rule applies to
arbitrary sequents. Example (6) provides an instance of nested use of the w-rule, which carries through
directly. For example (7), the cut formula of even(2.x) may be extracted from the form of the general proof,
which i¢ an improvement over other methods. However, in some cases where an w-proof may be provided,
it is not clear what the cut formula might be.

The approach alse applies more generally to other data-types. Not only is it the case that certain new
structural patterns may be seen in the general procf which may guide generalisation, but also that the general
representation of an arbitrary object of that type {eg. s"(0) for natural numbers, %, i %3 31 ... %m 22 nil for
lists, etc.) enables the structure of that particular data-type to be exploited, in the sense that rewrite rules
may be used which would not otherwise be applicable. In the natural number examples given above, the

~ 35

A Mew Method of Generalisation within Automated Deduction

general proof is linear in the sense that the proof of P(s(n})) reduces to that of P(n). However, in many
examples invelving Lsts, this is not so, and a new method for providing a cut formula iz needed. The result iz
an approach which subsumes the previous suggestion: namely, if R(s(n)) reduces to R'(n) in the general proof,
to inspect the base case R"-“(0), and then replace common subexpressions in this with common variables. In
this way, correct cut formulae are suggested for examples (8)=(11) {where <> denotes list concatenation).
In particular, the generalisation of (9) is given as Wa V1 len(rev(l) <> a) = len(rev(a) <> 1), which is a
better result (since it only requires one induction) than that more commonly suggested by other methods
of ¥a ¥l len{rev(l) <> a) = len(a <> 1) (requiring two inductions). Definitions of the predicates involved

may be found in [Hesketh 91].

4 Conclusions

A new methad for generalisation has besn proposed which is robust enough to capture in many cases what
the alternative methods can do (in some cases with less work), plus it works on examples on which they
fail. Implementation of this method is currently being carried sut within the framework of an interactive
theorem-prover with Prolog as the tactic language, in which the object-level logic is replaced by classical
and constructive theories of anthmetic. This approach works for theonies other than arithmetic and logics
other than a sequent version of the predicate calculus, and may rather be regarded as suggesting a general
framework. So long as a procedure for constructing a proof for each individual of a sort is specified, universal
staternents about objects of the sort could be proved. Thus it appears that the approach described in
this paper may be an aid to automated deduction, and provides a mechanism for guiding proofs in more
conventional systems.

References

{Aubin 75) R. Aubin. Some generalization heuristics in proofs by induction. In G. Huet and G. Kahn,
editors, Acfes du Collogue Construction: Améloration et vérification de Programmes.
Institut de recherche d'informatique et d'automatique, 1975,

[Baker 90] 5. Baker. Notes on the constructive omega rule and a new method of generalisation. Discussion
Paper 102, Dept. of Artificial Intelligence, Edinburgh, 1990.

[Boyer & Moore 88] R.S. Boyer and 1.5. Moore. A Computational Logic Handbook. Academic Press, Boston, 1588,

[Feferman 62] Sclomon Feferman. Transfinite recursive progressions of axiomatic theories. Journal of Sym-
bolic Logic, 27:258-316, 1962,

[Hesketh 91] J.T. Hesketh. Using Middle-Out Reasoning to Guide Inductive Theorem Proving. Unpub-
lished PhD thesis, University of Edinburgh, 1991,

[Rosser 37) BE. Rosser, Godel-theorems for non-constructive logics, volume 2. JSL, 1937,

[Schwichtenberg 77] H. Schwichtenberg. Proof theory: Some applications of cut-elimination. In Barwise, editor,
Handbook of Mathematical Logic, pages 86T-896. North-Holland, 1977.

[Shoenfield 59] J.R. Shoenfield. On a restricted w-rule, Bull. Acad. S5c. Polon. Sci., Ser. des sc. math.,
astr. et phys., T:405-7, 1959,

[Takeuti 87] G. Takeuti. Preef theory, North-Holland, 2 edition, 1987,

[Yoccoz 89) S. Yoccor. Constructive aspects of the omega-rule: Application to proof systems in computer

science and algerithmic logic. Lecture Notes tn Computer Setence, 3T9:553-565, 1989,

