ICOT Technical Memc:-randcrm: TM-1183

Thi-1 153

Proceedings of IFGCS 92 WORKSHOP on

Constraint Logic Programming

by
F. Mizoguchi & A, Aiba

July, 1942

o L R (O

Mita Kokusai Bldg. Z1F (03)3456-3191 -5

l C DT 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ke Tokyo 108 Japan

Institute for New Generation Computer Technology

Waorkshop W2 ICOT TM-1183

INTERNATIONAL CONFERENCE ON
FIFTH GENERATION COMPUTER SYSTEMS 1392

WORKSHOP ON
CONSTRAINT LOGIC PROGRAMMING

June 6-7, 1992 Tokyo, Japan

PROCEEDINGS

Institute for New Generation Computer Technology

J—] J—

FGCS’92 WORKSHOP
— W2: Constraint Logic Programming —

June 6 Saturday, 1992 10:00 — 17:15
June 7 Sunday, 1992 10:00 — 17:35
al
Institute for New Generation Computer Technology
Mita-kokusai Bldg. 21F1.
4-28, Mita 1-chome, Minato-ku, Tokyo 108

This workshop is aiming at bringing together researchers working on the
constraint programming, and exchanging information on anything about con-
straints, such as theory, language design, implementation issues, applications,
and others. In these years, constraints have been becoming very important
issues on problem solving not only as a promising way to extend logic pro-
gramming, but also as a new powerful paradigm. This workshop will empha-
size applications of this paradigm as well as theory, and implementations.

WORKSHOP ORGANIZERS:
Fumio Mizoguchi (Tokyo Science University),
Ken McAloon {(CUNY Graduate Center)
Martin Nilsson (Swedish Institute of Conputer Science},
Pascal van Hentenryck (Brown University),
Akira Aiba (Institute for New Generation Computer Technology).

PROGRAM

Saturday, June 6
10:00 = 10:15 Welcome speech
10:15 — 11:00 On Solution Compactness and Models of Clark’s Axioms
Michael J. Maher (IBM - 'I'. J. Watson Research Center)

11:00 — 11:45 An Event Structure Semantics for Concurrent Constraint
Programming

Ugo Montanari, and Francesca Rossi {University of Pisa)
11:45 = 13:15 Lunch
13:15 — 14:00 The CORE approach to Constraint Logic Programming

Thom Frihwirth, Alexander Herold, Volker Kuechenhoff,
Thierry Le Provest, Pierre Lim, Eric Monfroy, and Mark
Wallace (ECRC)

14:00 — 14:45 Parallel Constraint Logic P'rogramming Language GDCC
Satoshi Terasaki (1COT)
14:45 — 15:15 Coffee Break

15:15 — 16:00 A Practical Approach to the Global Analysis of Constraint -
Logic Programs

M. J. Garcia de la Banda, and M. Hermenegildo (Technical
University of Madrid)

16:00 — 16:45 Impose Constraints in a Multi-User, Dynamically Changing
Environment

Qing Ge (KBS Technology Inc.)

18:00 - Party

Sunday, June 7

10:00 — 10:45 Constraint Logic Programming with Priority
Takashi Hattori (RIMS, Kyoto University)
10:45 — 11:30 Anticipatory Pruning Networks in CLP Language

Geun-5Sik Jo (In-Ha University) and Ken McAloon (CUNY
Graduate Center)

11:30 = 12:15 Approximation in the Framework of Generalised Propaga-

tion
Thierry Le Provest (ECRC)
12:15 - 13:30 Lunch

13:30 — 14:15 Constraint Satisfaction and Optimization Using Suflicient
Conditions for Constraint Vielation

Fumihiro Maruyama, Yoriko Minoda, Shuhe Sawada, and
Yuka Takizawa (Fujitsu Laboratories Ltd.)

14:15 — 15:00 Representing Situations in Forward Planning with Boolean
Arrays

Neng-Fa Zhou (Kyushu Institute of Technology)
15:00 = 15:30 Coffee Break
15:30 = 15:50 Short Presentation
15:50 — 16:10 Short Presentation
16:10 — 16:30 Short Presentation

16:30 — 16:50 Short Presentation

On Solution Compactness and Models of Clark’s Axioms

Michael J. Maher
IBM - T.J. Watson Research Center
Yorktown Heights, NY 10508, .S A.
mjm@watson.ibm.com
Fax: +1-914-T84-T455

March 26, 1992

1 Introduction

Seolution compaciness was introduced in [6, 7] as a condition on the parameter of the Constraint
Logic Programming Scheme. Although several constraint domains now used in CLP languages
have been shown Lo be solulion compact, there has not vel been a serious study of the restriclivns
that soflution compactness forces. I'his abstract presents preliminary resulis of a case study,

where we consider only models of a familiar theory; ithe models of Clark’s axioms for unification

[3]. We also discuss some related model-theorelic properties of this theory.

2 Preliminary Definitions

Throughont this paper ¥ will denote a sel of funclion symbols, and, unless sialed otherwise,
L will be the signature of the algebras we discuss. £ denoles a sequence of distinct variables

T1.%%,...,Tn. For lack of space, we assume that many concepts are undersiood, In particular,

the definitions of finite, rational (aka regular} and infinite trees and their associated algebras
are assumed. The algebras are denoted respectively by FT,RT and TT. Similarly, we will not
state Clark’s axioms (denoted by Epr) and the Domain Closure Axiom (DCA). See [9] or [2]

for definitions not in this abstract. An element of a structure which is not in the range of any

f e X iscalled an 1solated element.

A sirictly rafronal lerm is 2 rational tree over ZUX whick is notl a finite tree, where X is a set of
variables. An infinite tree is said to have a rafional skeledon if it can be oblained by substituting
infinite trees for variables in some strictly rational term. Let ART denote the subalgebra of

IT formed by the set of infinite trees which do not have a rational skeleton.
Proposition 1 A'RT is a model of Epp, DCA.

A basic formula bas the form 37 Az, = t;{y). A basic formula is linear il each variable y; appears
al most once in the formula A z; = ;(§F). The classes of linear basic formulas, basic formulas,
formulas built from linear basic formulas, and linear basic formulas and their negations, are
denoted respectively by LOF, BF, LF and NLBF. For classes of formulas £ and £;, we define
L1 C Lz i, for every ¢(%) € Ly, there is ¢(E) € L3 snch that Epg |= () ~ ().

3 Solution Compactness

A constrain! domain (A, L) consists of a structure A and a subset £ of the first-order {formulas
expressible vsing the signature of A (the language of constraints). We assume £ is closed under
variable renaming, conjunction and existential quantification. A constraint domain (A4, L) is

sofution compact [6, 7] if it satisfies the following conditions:

(SC1) For every element a € A, there is a collection of constraints {e,(z)},es with a single free

variable z such that given d € A, ¢,(d) is true in A for every 1 € [iff d = a. (That is, ronghly

- -

speaking, for every @ there is a collection of constraints which can only be satisfied by a.) In

symbols

AEz=a+w ﬂc;{z]

el
(5C3) For every unary constraint c(z} € L, there is a collection of constraints {c;(z)}ier with
free variable = such that, given d € 4, o(d) is true in A il for every ¢ € I, ¢,(d) is false in
A. (Roughly speaking, for every unary constraint ¢ there is a collection of constraints whose
disjunction describes the complement of ¢.) In symbols

A =e(z) =\ afz)

e]

The first condition is comparatively regular, satisfying monotonicily properties on both 4 and £.
However 5C; is considerably less regular, which makes it difficult to give clean characterizations
of solution compactness. For example, while (F7, LBF) is solution compact, (FT, L) appears
net to be when £ is the constraint language generated by L8F and the constraint 3y £ = f(y, y).

This extreme sensitivity to the constraint language is due to 5C5.

In the case of linear constraints we can characterize those models of Err which form solution

compact constraint demains:

Proposition 2 [f A Epp DOCA and LBF C L C LF then
(A, L) is solution compact iff A is isomorphically embedded in NRT.

[f AE Epr and NLCBF C L C LF then
(A, L) 15 solution compact iff A is isomorphically embedded in NRT .

Hlere ART g is the algebra of non-rational trees generated by E from one isolated point. These
resulls imply that, at least for linear constrainis, solution compact constraint domains invalv-

ing models of Epr can be viewed as domains over trees. At this stage of the work it is not

clear whether this property extends to all solution compact constraint domains with non-linear

constraints.

4 Model Completeness

We have a construction of the free product of models of Fpp. This gives the following resnit,

which 15 not surprising when we consider thal the models ol Epp are the locally fee algebras.

Proposition 3 The models of Erp are closed under the taking of free products.

This construction provides a method (o produce an n-generic model for a logic program [10) and
(essentially the same thing) produce an algebra .4 such that all logic programs are canonical in

A1, 8. However saveral other methods are known.

A theory T is madel complete |2, 11] if, for all models 4;, 43 such that 4; is a submodel of
Az and for every formula ¢(2) and sequence & of elements of 4;, A; | (&) if Az E ¢(a).
Using the above construction, careful examination of quantifier elimination procedures [4, 9]

and characterizations of model completeness {2, 11] we can show

Proposition 4 If £ is finite, Epg i1 not model compleie.
If E is finite, Epp, DC' A is model complete.

If ¥ is infinste, EFpr o5 model complete ¢ff T containg only constants.

References

(1] H. Blair & A. Brown, Definite Clause Programs are Canonical (Over a Suitable Domain),

Annals of Mathematics and Artificial Intelligence, to appear.

[2] C.C. Chang & H.J. Keisler, Medel Theory, North-Holland, 1977,

[3] K.L. Clark, Negation as Failure, in Logic and Databases, H. Gallaire and J. Minker (Eds.),
Plenum Press, New York, 293-322, 1978,

[4] H. Comon, Unification et Disunificaiton: Théorie el Applications, Doctoral thesis, LN.P.
de Grenoble, France, 1988,

[3] H. Comon, Disunification: A Survey, in: Computational Logic, J-L. Lassez & G. Plotkin

(Eds.), MIT Press, 1991.

[6] J. Jaffar & J-L. Lassez, Constraint Logic Programming, Technical Report, Department of

Computer Science, Monash University, 1986,

[7] J. Jaffar & J-L. Lassez, Constraint Legic Programming, Proc. Conf. on Principles of Pro-

gramming Languages, 1987, 111-1190.

[8] J. Jaffar & 1. Stuckey, Canonical Logic I'rograms, Journal of Logic Frogramming, 3, 143~
155, 1986.

{9] M.J. Maher, Complete Axiomatizations of the Algebras of Finite, Ralional and Infinite
Tiees, Proc. $rd. Symp. Logic in Compuier Science, Bdinburgh, 348-357, 1988. Full version:
IBM Research Report, T.J. Watson Research Center.

[10] 1.C. Shepherdson, Negation in Logic Programming, in: Foundaltons of Deductive Databases

and Logic Programmang, J. Minker {Ed), Morgan Kaufmann, 19-88, 1988,

[11] A. Robinson, Cemplete Theories, North-Holland, 1956,

An Event Structure Semantics
for
Concwrrent Constraint Programiming”®

Ugo Montanari Francesca [Hossi
Uinversity ol Pisa
Computer Sewence Departiment
Carso Ttalia W
60 Pisa, Taly

{ougorossi fadipisaadianipiil

March 25, 19492

We propose & new semantios for conenrment constraint (o} programs (LA 6]k The ides comes
frome a refinsment and an extension of o partial order semanties proposed in [l 2] where states
of cotputations are represented by araphs. computation steps by graph production applications,
anel where cach computation lis an associated partial order, which is able 1o express he cansal
dt‘|]1"|1t|(‘tl:“lf\r" At thee me i ul snrh tu||||J||Ii.|l'|Ir||. That semantics. Ihruugh rather '|1|]1-rr-=;.:|i||g and
original for the unifore treatment of tokens and agents, as well as the analvsis of a co program from the
true-concnrreney approach. is not entirely satisfactory, for two main reasons. First. the use of graph
grammars and their categorical deseription to model oo computations allows an elegant formalization
of all the basic oo features, but i is nor familiar an all to the logic programming cowmunity. Second.
a partial order is associated 1o cach deterministic computation. but no awigue structnre is associated
te a (possibly nondeterministiod e program, o this paper we trv to eliminate such unsatisfactory
points of the approach o [1] by giving an adeguate solution o both problems,

Graph grammiars are here replaced by general rewrite rules. which are significantly simpler and
mare familiar to the logic progravning envieonment while still maintaining all the properties ol graph
grammars which ace fondamental for te true-concarrency approach, Ty partienlar. one of the most
important features 15 the possibiliny of expressing formally what we call “context objects”. i.e.. ohjects
which are needed fur o computation step 1o take place. but which are not affected by such step. In
fact. such objects allow to madel Laithfully the voncept of asked constraints, which is nevessary il
we want 1o be able lo express the possibilite of having simnltaneons ask operations. Therefore, onr
rewrite rules are contest-dependent. Lo they have a lell hand side, a right hand side, and a contest.
A rule is applicable it both v left hand side and its context are present in the current state of the
computation. and its applivation removes the feft hand side {but not the context) and adds the riglu.
hand side (for & deeper analysis of contextadependent formalisms. and a proposal to extend Petri nets
to treat context objects, see []). The evolution of each of the agents in a ce program. as well as the
declarations of the program and its underlving constraint system, are all expressible by sets of such
rules. In this way each computation step. i.e.. the application of one of such rules. represents either

*Hesearch partially =upported by l-hi:' .‘.HI'I.-’AHH:". Hasiv Research Esprit Working Group n.329% and by Alenia S.p. AL

-0 =

the evoliiion of an agent. or the expansion of a detlaration. or the entailliment of some new token.
lis such view of a computation. we adopt the eventual ierpretation of the tell vperation. where a
conatraint is added to the current store without any consistency check,

I this wanve o set of rules is abtained Trom s co program. Such o set conld already provide an
operational semantics of the given oo program. However, for us it is Lhe starting point for our {truly
comenerent} semantic treatment. The idea is to construct a e of terms from the rules. Fach of such
Leris b5 4 pair. where one element s the "type”™ of the tern (which can be either a token. an agent,
o a rulel, while the other element is the coding o the compatation path {or prool)] which leads 10
the element of such tvpe. Since elements ocenring in different points of a computation are ohtained
throngh different computation paths. it is clear that thew will give vise o difllerent terms. In this way,
ik e Ternn can codncide with an already generaiml term,

By the way terms are constructed, cansal dependenes ol wem £y on teens 75 amonnts simply to
the appearance of £y as a subterm of S Puethesmore ntual exclesion aimong terms, wlich means
that the olements ."r:|;|'r-*3-u;r|]l,ed]"."' sch beroes camtod AfFprar i the saime f;{,1|t||}||l,.'1’r.'|n;], can also he
expressed, Do fact, two temus ace mutually exclosivie i soine of the masimal subterms they share
represent ageals. b fact each agent can evalve in either one way or anot her, but these two ways lead
b altermative connpatations. [e other words, agenes can be seen as consnmable resonrcos. which can
he comsmined by al most one compitation step in cach compntation. On the other hand. lokens are
net-continable resonrees, whick thus can beosed byany nnmber of computation steps in the same
conipaitation. This s reflected by the Tact that teras which either doowot share any soblerm, or whose
mazinal sharod subiterms all represent tokens. aes considered tocbe comenrrent,

i ves the presenee of ali these three pelations {cansal dependenes. nonaal exelusion, and con-
cureciey) among the derins of the constracted set, suel a set s alde, alone, 1o represent oot only
e ot all possthles detornnistie computations na given oo progean Deoiss Cherefore, both sound
ansl commpletes Pethermaore. for each compitation it is abie o provide o suitable partial order which
s ribies Thee caipsal :|FF}{‘:IIT:|["IIL'_1.' |IHT.I{*I'IJ AN e L1r:|r||m!i|r'1u|1 shivpes, f'k[f]rﬂ'n'a?r_ [rhis part.i3| :;:rder
coineides with the one obtained by the semantics in [IJ [rar tlee saqpe comnpetation, thas nmking our
wew propeesal 4 ronservative extension of the ol one.

Phe sengaaties s called an “event stroctore semantios” boecanse the set of terims associated to a
e progrin, restricied Lo Lose lerms representing rale applications. coineides with what is called an
BN STre e e [F} Moreover. the comstenction swhich associates q e 5ot of teries to a given
sel ool reweriie pafes pesesnblos that in [T] tor alsbaine an cecurroaee el Toaoon o Pol e oael . ‘-.“_hm!g], [hero

ERERRTR I NI HI.‘_‘|III|'I-i'.I|||. illlTl"I'i-"II{'t"_

References

(1] Montamart UL Rossi Foo~True Concurreney in Concarrent Constraint Programming”. on Proe.
LESE AT Press. 1991

2 Mot UL Rossi 1 Graph rewniting Tora partial ordering semantics of concnrrent constraint
programoming” . to appear on TUS, special issoe on graph grommars, Conreelle B, editor.

Maontaeari U, Rossi B, Contextual pets” <ulnaitted Tor puldication. 1902

[} Saraswat Vo AL Conewrrent Constraint Programming Languages™. Phoi). Thesis. (‘arnegie-
Melon Uwiversity, [958, Also 1989 ACK Dissertation Award, M1 Pross,

Saraswal V. A Rinard M., ~Cowrurrent Consteding Programoning™. on Prc, POPL ACALL 1990,

Saraswat V. AL Hinard M. Panangaden P, *Semantic Foundalions of Concurrent (onstraint
Programming”. on Proc. POPL ACM. 1991

Winskel .. "Fvent Stroctures”™, on Petri aete: applicalions ol relationships to other models of
concarE ey, Springer-Verlag, LNCS 255,

_-12.

The CORE approach to
Constraint Logic Programming*

An extended abstract

Thom Frihwirth, Alexander Herold, Volker Kuechenhoff, Thierry Le Provost
Pierre Lim, Eric Monfroy, Mark Wallace

FEuropean Computer-Industry Research Centre
Arabellastr. 17, D-8000 Munich 81, Germany
email: alex@ecrc.de

Constraint Logic Programming has been pioneered at ECRC with the development of CHIT
(3, 6. Following on jfrom the former CHIP project the new CORE (COnstraint REasoning)
project at ECRC aims at developing a cleaner more orthogonal constraint programming envi-
ronment where user-defined constraints provide the required extensibility. Constraints can be
defined directly, and their behaviour can be tuned by experiment without undermining program
carrectness.

The work currently pursued covers the whole spectrum of constraint logic programming:
investigating spezialized constraint solvers and the interaction of such constraint solvers in tra-
dition of the CLP framework; providing the possibilities for the user to define and implement
constraint solvers or to strengthen and spezialize already existing constraint solvers; generaliz-
ing the concept of propagation in order to make it applicable to other constraints than finite
domains; improving the search capabilities by incorporating techniques such as simulated an-
nealing into the constraints framework. In following we describe the different activities in more

detail.

¢ Constraint solving in the tradition of CLP is supported in CHIP on two new computa-
tion domains: boolean constraints with a boolean unification algorithm and linear rational
arithmetic with a “symbolic” simplex algorithm. However, some interesting problems in
areas such as financial planning, computational geometry and computer-aided design re-
quire the solution of non-linear constraints. Grobner Bases (2, 1] provide an interesting
approach to their solution. We are currently investigating different strategies and heuris-
tics to speed up their computation and extending the range of applications through the
introduction of polynomial inequalities.

¢ The question of how various decision procedures in a CLP system interact and cooperate
is a very important one for practical reasons. For example in a CLP system with a built-
in mon-linear solver, linear equations should be handled by a spezialized solver, e.g. by
Gaussian elimination. We are investigating how to network several decision procedures

*This work 15 partially funded by the ESPRIT project CHIC, Nr. $2081

— 13 —

with everlapping domains to form a relatively efficient general decision procedure. The
issues addressed are the specification of the possible network topologies, of soundness and

correctness.

e In current constraint logic programming systems constraint selving is hard-wired in a
“black box”. We are studying the use of logic programs to define and implement constraint
solvers. The representation of constraint evaluation in the same formalism as the rest of
the program greatly facilitates the prototyping, extension, specialization and combination
of constraint solvers. In our approach constraint evaluation is specified using multi-headed
guarded clauses called Constraint Simplification Rules (SiRs). SiRs define a determinate
conditional rewrite system that controls how conjunctions of constraints simplify. SiRs
operate on top of a so called host language which allows constraints to be specified by the
definite Horn Clauses provided by this host language. In this way the approach merges the
advantages of constraints (eager simplification) and predicates (lazy choices) by definite
clauses. A prototype system within the SEPIA [5] environment has been built,

e In CHIP propagation is only provided on finite domains [6]. This concept has been gen-
eralized and thus made available for other computation domains, e.g. linear rational
arithmetic. More importantly the degree of propagalion can now be controlled through
the definition of approximations of generalized propagation. The general concept of prop-
agation will be presented at the FGCS conference and more recent results will be reported
in another contribution {4] to this workshop.

e Search is supported in CHIP by the usual Prolog unfolding and by some specialized
predicates for selecting values from domains such as “deleteff” implementing the first fail
principle [6]. However, CHIP ofters no alternative to natve backtracking after a failure.
Methods which. efficiently solve hard problems, such as the travelling salesman problem,
use ways of intelligently improving on current guesses, rather than blind backtracking.
We are investigating ways of incorporating such search techniques into the constraints
framework in order to solve such hard search problems while still satisfying customer-
specific constraints.

This research is embedded into the Eurapean ESPRIT project 5291, "Constraints Handling
in Industry and Commerce” (CHIC). The CHIC project aims at accelerating the exploitation
of Constraint Logic Programming in industrial environments. The Core project has a critical
role in CHIC as the research and integration backbone. Partners in CHIC include all ECRC's
shareholders - Bull, ICL, Siemens; further academic partners Imperial College from London,

CERT from Toulouse and CMSU from Athens; and finally a " user group™ of five industrial asso-
ciates who seek to use constraints programming to help tackle their specific business problems:

AIS Ttaly, Braghenti Italy, OCT Spain, Dassault France, Renault France.
The industrial applications cover the lollowing areas:

e Production management and Scheduling:
Three different applications are developed in this area. The first one is an integrated
production planning and scheduling system in the weaving industry (Braghenti, Italy)
where the specific characteristics are the large quantity and diversity of orders. Long
set-up times of the weaving machines make a careful planning of certain bottle-necks of
the production process necessary.

The second one tackles a scheduling problem in a workshop of Dassault manufacturing
elements {or the production of aircrafts. Contrary to the first application this workshop
produces small quantities of a highly diversified range of primary parts. The main result
expected jfrom the system is reduction and stabilization of the cycle duration (time
needed to produce cne part).

Finally a decision support tool for the short term production planning [or the car manu-
facturing of Renault is being developed.

o VLSI verification environment: :
This work aims at developing the algorithms and interfaces for a VLSI verification envi-
ronment of Siemens. Extending the range of application jfrom combinatorial to sequential
circuits requires a completely new class of algarithms based on existing constraint solvers.
The development of suitable interfaces to standard CAD systems will be essential for a
wide-spread use of such systems.

e Logistics and network management:
In this area two problems are investigated. A treasury management system is being
developed by AlS, Italy to improve shert term liguidity management of an italian bank.
CLP seemns Lo be particularly suited to cope with additional constraints impesed by the
central bank of ltaly.

The second application in this area deals with vehicle-fleet scheduling investigated by
CMSU. The basic problem can be described as follows: For a given fleet of vehicles
construet a schedule of vehicle routes from one depot to a number of delivery poiutls
i such a way that the requirements of all customers must be met, the capacity of the
vehicles may not be violated and the total cost of delivery must be minimized. The fleet
capacity is fixed and the demand for some commodity is known. Various extensions of
this basic problem occur in many real-life situations.

s Trathic Control:
Controlling the assignment of times for the red and green phases of a traffic light de-
pending on the traffic load is a challenging problem which will become more and maore
important. CLP offers the possibility to develop a simulator incorporating a large variety
of constraints.

All these applications show the potential of the CLP technology for industry and are at the
same time a very valuable test bed for the new developments that have been listed above.

References

[1] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. The Constraint Logic Program-
ming Language CAL. In Proceedings on the International Conference on Fifth Generation
Computer Systems (FGCS-88), ICOT, Tokyo, Japan, December 1988.

[2] B. Buchberger. Applications of Gribner Beses in Non-Linear Computational Geometry. In
D. Kapur and J.L. Mundy, editors, Geometric Reasoning, pages 413-446. MIT Press, 1985,

[3] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The Con-
straint Logic Programming Language CHIP. In Proceedings on the International Conference
on Fifth Generation Computer Systems FG(C5-88, Tokyo, Japan, December 1988,

[4] T. Le Provost. Approximation in the Framework of Generalized Propagation. In Workshop
on Constraint Logic Programming at FCGS-92, Tokyo, Japan, June 1992,

[5] M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. Henry de Villeneuve, A. Herold,
P. Kay, B. Perez, E. van Rossum, and J. Schimpf. SEPIA - An Extendible Prolog System.
In Proceedings of the 11th World Computer Congress IFIP'89, San Francisco, August 1989.

[6] P. Van Hentenryck. Consiraint Satisfaction in Logic Programming. Logic Programming
Series. MIT Press, Cambridge, Ma, 1939,

— 15_

Parallel Constraint Logic Programming Language GDCC
(Extended Abstract)

Satoshi Terasaki

Institute for New Generation Computer Technology
4-28. Mita l-chome. Minato-ku. Tokyo 108. Japan

terasaki@icot.or |p

1 Introduction

The constraint logic programming (CLP) paradigm was
proposed by Colmeraure{7]. and Jaffar and Lassez{1]] as
an extension of logic programming. A similar paradigm
{or language) was proposed by the ECRC group [8]. A
sequential CLP language CAL {Contrainde avee Logrgue]
was also developed at ICOT(L).

The CLP paradigm is a powerful programmig
methodology that allows users to specify what (declar-
ative knowledge] without specifving how (procedural
knowledge]. This abstraction allows programs to be more
concise and more expressive. Unfartunately. the general-
ity of constraint programs brings with it a kigher compu-
tational cost. Parallelization is an effective way of making
CLP systems efficient. There are two major levels 1o CLFP
svatem parallelization. One i1s the execution of an infer-
Eriie HIISi.]I‘I‘. ﬂlld mllﬁ-t.]'ﬂ.iﬂl EIJI.\-'E‘FE i]'l FE.I'H.I]F] T]'Ji"‘ D[J'll"'t’
1s the execution of a constraint solver in paraliel.

Several works have been published on extending this
work from the sequential frame to the concurrent frame.
Among them are & proposal of ALP5[14] which intro-
duees constraints into committed-choice language. a re-
port on some preliminary experiments in integrating coun.
straints into the PEPSys parallel logic svstem|12]. and a
framework for & concurrent consiraint {ec) language 1o
integrate constraint programming with concurrent logic
programming languages[17].

The cc programming language paradigm models com-
putation as the interaction of multiple cooperating agents
through the exchange of nformation via querving and
asserting the information into a (consistent) global
database of constraints called the store. Constraints oc-
curring in program text are classified by whether they are
querying or asserting information. into the Ask and Tell
constraints. This paradigm is embedded in a guarded
[conditional) reduction system. where guards contain the
Ask and Tell. Control is achieved by requiring that
the Ask constraints in a guard are true (entailed), and
that the Tell constraints are consistent (satisfiable). with
respect to the current stale of the store. Thus. this

paradigm has a high affinity with KLI,

GDCC[L0. 22), Guarded Definite Clauses with Con-
straints. that satisfies two level parallelism. 15 a paratle]
CLP language that introduces the framework of cc inlo
2 commitled-choice tanguage KL1[23]. and is eurrently
running on the Multi-P5SL a loosely coupled distributed
memory parallel logic machine, GDCC has multiple
solvers to enable a user 1o easily specily a proper solver
for a demain, and a block mechanism that enables meta-
operation to a constraint set. We introduce the language
and a parallel constraint solver for rational polynonials
based on a parallel implementation of the Buchberger
aigorithm[4]. This algorithm is widely used in computer
algebra. and also fits reasonably well inta the CLP scheme
since it is incremental and {almost) satisfaction-complete
as shown in |1, 16]. Hecently. there have been several
attempts made to parallelize the Buchberger algorithm,
with E;rm:ra]l}' -;]lls-etppu'mlil:lg rrﬁu][s”ﬁ.). 2]]. except
for shared-memory machines[24. 6], We parallelize the
Buchberger algorithm on the distributed memory paral-
lel machine.

2 GDCC

GDCC 13 an experimental committed-choice cc language
that includes most of KL1 as a subset, since KL1 built-in
predicates and unifieation can be regarded as the con-
straints of distinguished domain HERBRAND[1T].

GDCC contams Store. a central database Lo save the
canonical forms of constraints. Whenever the 1]
mests an Ask or & Tell constraint. the svstem sends it
to the proper solver. sk constraints are only allowed
passive constraints which can be solved without chang-
ing the content of the Store. While in the Tell part. con-
straints which may change the Store can be written. In
the GDCC program. only Ask constraints can be writ-
ten in guards. This is similar to the KL1 guard in which
active unification is inhibited.

2.1 GDCC Language

Now we define the logical semantics of GDCC as follows.
5 iz & finite set of sorts, including the distinguished sort
HERBRAND. F is a set of function symbols. C is a set of
constraint symbols, P is a set of predicate symbols. and V
is a set of vertebles. A sort is assigned to each variable
and function symbol. A finite sequence of sorts. called
a signature, is assigned to each function. predicate. and
constrainl svimbol. We define the following notations.

s We write v : s if variable v has sort s.

[¢ sy8;...8, — 5 il functor [has signature
Sydy ... 5, and sort s, and

® pisysg.. . 8, if predicate or constraint symbol p has
signature $y8; . .. &q.

We require that terms be well-sorted. according to the
standard inductive definitions. An atemic constraini is
a well-sorted term of the form ety 42, 1,) where ¢ 15
a constraint svmbol, and a consiraind is 2 set of atomic
constraints. Let © be the manyv-sorted vocsbulary F U
CUP. A constraint system is a tuple [E. A V. C) where
&is & class of © structures. We define the following
meta-variables: ¢ ranges over constraiots and gh range
over atoms. We can now define the four relations enfails.
aceepls. rejects. and suspends. Let r, be the variables in
constraints ¢ and o,

Definition 2.1.1 ¢ enfads c.J ¥ s (Ve = g)
Definition 2.1.2 ¢ accepts ¢ = A &= (e A er)

Definition 2.1.3 ¢ rejects o 2 A (Vay)ic = —op)

Note that the property enfaids is strictly stronger than
accepts. and that accepis and rejects are complementary,

Definition 2.1.4 ¢ suspends o
def ¢ accepls op A= ¢ enfails o J.

A GDCC program is comprised of clauses that are de
fined as tuples (head. ask. 1ell, body), where "head™ is a
term having unique variables ac arguments. “body” is a
set of terms, “ask” is said 10 be Ask constraint, and =tell”
is said to be Tell constraint. The ~head” is the head part
of the KLI clause, ~ask” corresponds to the guard part®.
and “tell” and *body” are the bodv part.

A clause (h.a.c. b} is a candidate for goal g in the pres-
ence of slore 3 il 2 g = b enlails . A goal g commits to
candidate clause (k.a . b). by adding ¢ U ¢ to the store
s. and replacing g with b. A goal fails if all the candidate
clanses are rejected. The determination of enfeilment for
multiple clavses and commitment for multiple goals can
be done in parallel.

Tepsk” contains constrainis in the HERBRAND domain. that is,
it includes the normal guards in KL1

2.2 GDCC System

The GDCC svstem consists of the compiler. the shell. the
interface and the constraint solvers. The compiler trans-
fates a GDCC source program inte KL1 code. The shell
translates queries and provides rudimentary debugging
facilities. The debugging facilities comprise the standard
L1 trace and spy functions. together with solver-level
event logging. The shell also provides limited support
for incremental guerving. The interface interacts with a
GDCC program [object code). sends body coustraints
to a solver and checks guard coustraints using resulis
from a solver, The GDOC gystem is shown in Figure 1.

“The components are concurrent processes. Specifically. a

GDCC program and the constraint selvers mayv execute
in parallel. synchronizing only when, and to the extent
necessary, at the program’s guard constraints,

GDCC souree

Figure |: Svstem Construction

2.3 Block

I applving GDCC wo application problems. two prob-
terms arose, These were the handling of multiple contexts
and the svachronization between an inference engine and
solvers.

For instance. when the solution X7 =2 is obtained from
the algebraic solver. it must be solved in more detail using
a function to compute approximated real roots in univari-
ale eguations. In Lthis example, there are twoe constraint
sets. one that includes X = /2, and another that includes
X =-+/2 [nasequential CLP system. these can be han-
dled using a backtrack mechanism. [n committed-choice
language GDCC. however, we cannot use backtracking
to handle multiple contexts. A similar situation occurs
when a meta operation to constraint sets is required. such
as when computing a maximum value with respect to a
given objective function. Thus other mechanism is nec-
essary to deseribe the timing and the target constraints
for executing a meta operation. as a clause sequence in
a program does not relate to the execution sequence in
GDCC,

- la_

Introducing lacal constraint sets, however. independent
of the global constraints can eliminate these problems.
Multiple contexts are realized by considering each local
constraint as one context. An inference engine and solvers
can be svnchronized at the end point of the evaluation of
a local constraint set.

Therefore. we introduced a mechanism. called block. 10
describe the scope of a constraint set. We can solve a
certain goal sequence with respect to a local constraint
set, The block is represented in & program by a buili-in
predicate call. as follows. :

call{ Goals } using Solver-Package for Demain
initial faput-Con giving Cutput-Cen

Constraints in goal sequence (Goals are computed In
a local constraint set. ~using Solver-Package for [o-
main” denotes the use of Solver-Package for Demain
in thiz block. “imitial fupuf-Con” specifies the ini-
tial constraint set. “giving Outpui-Con” indicates that
the result of computing in the block is Ouipet-Con. To
encapsulate failure in a block. the shoen mechanism of
PIMOS[19] is used.

3 Parallel Algebraic Solver

The constraint domain of the algebraic solver is multi-
variate {non-linear) algebraic equations. The Buchberger
algorithm [1] is a method to solve non-linear algebraic
equations which have been widely used in computer alge-
bra over the past few vears. Since this algorithm satisfies
almost eriteria as shown in [1. 16]. this algorithm is uti-
lized a= the constraint solver in GDOCC,

In this section. we outline both the sequential and the
parallel versions of the Buchberger algorithm,

3.1 Grobnoer Basis and Buchberger Al-
gorithm

‘H‘Iit.]'.l 4ia) J.B’HS ﬂ:r S.E‘]'.It"rﬂl.i'}'. We Can assume lha! Et“ I}DII\-
nomial eguations are in the form f=0, Let £ =0 be a
svstem of polynomial equations {fi=0..... fo=0}. The
following close relation between the solutions of £ =10
and the elements of I{£) of the ideal generated by £ is
well known.

Theorem 3.1.1 (Hilbert zero point theorem)
Let | be a polynomial, Every solution of £ =10 is alse
a selulion ﬂf f:l]. i_ﬁ' there eriats o natural number =

such that f* £ I{.E:!-.
Corollary 3.1.1 £ has no solution if 1 € T(E).

Thus, the prablem of solving given polvnomial eqoa-
tions is reduced to that of deciding whether a palvnomial
belongs to the ideal. Buchberger introduced the notion of
Grobner bases, and gave an algorithm to determine the

membership relations of a polynomial and to the ideal,
A rough sketch of the algorithin is as follows (see [4] for
& precise defimition).

Let there be a total ordering amoug monomials and ket
a svstem of polynomial equations E = { be given. An
equation can be considered a rewrite rule which rewrites
the greatest monomial in the equation tothe polynomial
consisting of the remaining monomials. For example. if
the ordering is X > W >V > [, & polynomial equation.
XN W4V =[". can be considered 1o be the rewrite rule.
X = W-=V4+[". A pair of rewrite rules L, — K, and
L; — H;. of which Ly and L; are not mutually prime.
is called a crilical pair, sinee the least commuon multiple
of their lefi-hand sides can be rewritten in two different
wavs. The S-polvnomial of such & pair is defined as:

S-Pul'l.l:I,'_ I_u'l = RJ I(‘I'.I'Il.l[;..l'.l-g_] _ R.‘,IE“LI' .L;'
I, I,

If further rewriting does not succesd in rewriting the 5-
polvnomial of a eritical pair to zero. the pair is said to be
divergent and the S-polvnomial is added to the gvstem of
equations. By repeating this procedure. we can eventu-
allv abtain a confluent rewriting svstem. The confluent
rewriting svstemi thus obtained is called the Grébner basis
of the original system of equations.

Definition 3.1.1 (Grébner basis [4])
The Grobuner basis GIE) i3 a finife sef tha! aafiafies the
Sfellowing properties,

i IE) = IiLE)

fti] Forall [and g. f—g € T(E) il the reduced forms
af botk [and g by GIE} are the same. Especeally,
FeTIE) R [iz veduced fo "07 by G E).

(i) G is reduced if if has ne rules. where one rewrifes
the other.

From Theorem 3.1.1. the reduced G(E) can be re-
garded as being the canomical form of the solution of
E =0. because the reduced Grébner basis with respect
toa given admissible ardering is unique, Moreover. when
E =10 does not have a solution, {1} € (;{ £) is deduced
from Cerollary 3.1.1.

3.2 Satisfiability and Entailment

Based on the above results, we could determine satisfia-
bility by using the Buchberger algorithm to incorporate
the polvnomial inte the Grébner bases as per Corollary
3.1.1. But the method of Definition 3.1.1{5) is incom-
plete in terms of deciding entailment. since the relation
between the solutions and the ideal described in Theo-
rem J.1.1 is incomplete. There are several approaches
that solve the entailment problem: (a) Use the Grobner
basis of the radical of the generated 1deal T, (b) Add pn
to the Grobner basis as a negation of p=10 and use the

Ig

Buchberger algorithm{where o iz a new variable). and [c)
Find n such that p® iz rewritten to 0 by the Grébner basis

of the generated ideal[3]. Unfortunately, these methods

are computationally expensive. while the total efficiency
of the system is greatly affected by the computation time
in dpciding entailment. Therefore. we determine the en-
tailment by rewriting using a Grébner basis from the
viewpoint of efficiency. even though this method is in.
complete. This decision procedure runs on the interface
module parallel with the solver execution. as shown in
Figure 1. Whenever a new rule is generated. the solver
sends the new rule to the intedace module via a com-
munication stream. The interface determines entailment
while storing {intermediate) rules to a self database,

3.3 Parallel Algebraic Solver

There are two main sources of parallelism in the Buch-
berger algorithm, the paralle] rewriting of a set of polv-
nomials, and the parallel testing for subsumption of a
new rule against the other rules. Since the latter is
inexpensive. we should concentrate on parallelizing the
coarse-grained reduction component for the distributed
memory machine. However. since the convergence rate of
the Buchberger algorithm is verv sensitive 1o the order
in which polvnomials are converted into rules. an imple-
mentation must be careful to select “small” polvaomials
early.

Thres different architectures have been implemented:
namely. a pipeline. a distributed. and a master-slave ar-
chitecture [11. 10, 22]. Among them. the master-slave ar-
chitecture is described, since it offers good performance.

The set of polynomials £ iz physically partitioned and
each slave has a different part of them. The initial rule
set of (G{F} is duplicated and assigned to all slaves. New
input polynomials are distributed to the slaves by the
master. Figure 2 shows the architecture,

Rule ca.nd
Jocal mindmam) :

Subsel of E
G(E)

Figure 2: Architecture of the parallel solver

The reduction evele proceeds as follows. Fach slave
rewrites its own polvnomials by the G| E). selects the lo-
cel minimum polynomial from them. and sends its lead-
ing power product 1o the master. The master processor

- 20

awaits reports from all the slaves. and selects the global
minimum power product. The slave that receives the
R AT TIESSAZE CONVETLS the pai}'tmmia] imo a new
rule and sends it to the master. the master sends the
new rule to all the slaves except the owner. If several
candidates are equal power products. all candicdates: are
converted to rules by owner slaves and go tq final selection
by the master.

To achieve load balance during rewriting. each slave
reparts the number of polyoomials it owns. piggvbacked
onto leading power product information. The master
sorts Lhese numbers into im:rra.sing order and decides the
order in which to distribute S*FDI}’!IOIT'EI;.H]E. After ap-
plving the unnecessary S-polvnomial criterion. each slave
generates the S-polynomials it should own corresponding
to the order decided by the master. Subswmption test
and rule updating are done independently by each slave.

Table 1 shows the results of benchmark problems to
show the performance of this parallel algorithm. The
monomial erdering is degree reverse lexicographic. and
low level bignum {multiple precision integer} support on
PIMOS is used for coefficient calculation. The method of
detecting unnecessarv S-polynomials proposed by [9] is
implemented. The problems and their variable ordering
are!

Katsura-4 : hatsura's svstem of 5 equations in 3 vari-
ables. using the ordering [p< Uy < Uz e Uy Uy [see [3]).
Katsura-5 : Katsura's svstem of 6 equations in 6 vari-
ables. using the ordering Iy <y < Iz clzcly <l (see
B3).

Cyclic 5-roots : {"vclic 3 equations in 5 variables using
the ordering X, < X2 < Xa< Xy < Xy (see [2])

Cyclic 5-roots : ("velic § equations in 6 variables using
the ordering Xy < Yo < Xq g Xy Xs < Xy [see [2]).

Speedup appears to become saturated a1 4 or § pro-
cessors except for “cvclic 6-roots”. However, these prob-
iems are too small to obtain a good speedup because it
takes about half a minute for all the processors to be-
come fully eperational as the unnecessary S-polvnomiel
criterion works well,

Table 1: Timing and speedup of the master-slave archi-
Lecture

Number of processors

FProblems 1, 2 4 H 16
Ratsura-4 {eec) B9 7.00 FEE] .34 09.26
1 117 1.63 1.6 .96

hatsuca-5 jee) Bo.ed | ov.8l | JeBd | 3LA% | 368.00
v ise | ozae| 27| 241
Cve.Brocts jsec ok | 2008 | 182V | M6 | 25.20
] 1.31 143 144 1.10
Cwe.brroots (sec) | 143016 | 86362 | 433.73 | J38.25 | 32338

1 1.66 3.30 4.2 442

References

il

[2

[4]

[4

(3]

(8]

(9]

[10]

[12]

AL Aiba. R Sakai. Y. Sate. D, Hawley. and I, Hasegawa.
Copstraint Logic Programming Language CAL. lu /n-
ternational Conference on Fifth Generation Computer
Systems 19488, pages 263-276. 1945,

J. Backelin and R. Froberg, How we proved that there
are exactly 824 evelic Teroots. In 5 M. Want, editor.
Proceedings of IS5AC9], pages 103-111. July 19491

W, Boege. B. Gebaver. and H. hredel. Some examples
for solving svstems of algebraic equations by ealeulat-
ing groebner bases. Symbolie Computation. 3 1):83-98,
1986,

B. Buchberger. Grobaer bases:An Algorithmic Method
in Polyncmial Idea! Theory. Technical report. CAMP-
LINZ. 19&3.

L. Caniglhia. A. Galligo. and J. Heintz. Some new effec-
tivity bounds in computational geometry. In Applied Al-
gebra, Algebraic Algorithms and Ermor.Correcting Codes
- ik International Conference, pages 131-151. Springer-
Verlag, 1988, Lecture Notes in Computer Seience 357,

| E. M. Clarke. D. E. Long. 5. Michavlov. 5. A, Schwab.

J. P. Vidal, and 5. Kimura. Parallel Symbolic Campu-
tation Algorithmes. Technical Report CMU-CS5-80. 182,
Computier Science Department. Carnegie Melion Tniver-
sity., October 1990,

A. Colmeraver. Opening the Prolog Il Universe: A
new generation of Prolog promises some powerful capa-
bilities. BYTE. pages 177-152 August 1987

M. Dinchas, P'. Van Hentenrvek. H. Simonis. A. Aggoun.
T. Graf. and F. Bertheir. The Constraint Logic Pro-
gramming Language CHIP. In International Conference
an Fifth Generation Computer Systems [958, 1988,

K. Gebauer and H. M. M3ler. On an installation of
Buchberger's algorithm. Symbolic Computation. 6:275-
286, 1988,

D. J. Hawiex. The Concurrent Constraint Language
GDCC and Its Parallel Coustraint Solver, Techunical Re
port TM-713. Institute for New (eneration Computer
Technology, 1991,

Do J. Hawlev. A Buchberger Algorithm for Distributed
Memory Multi-Processors. In The first Internationn!
Cenference of the Austrian Center for Poralle! Compuo.
tation. Salzburg, September 1991, Also in Technical Re-
port TR-G77. Institute for New Generation Computer
Technology. 1991.

F. Van Hentenrvck. Parallel Constraine Satisfaction in
Logic Programming: Prelimiary Hesults of CHIF with
PEPSws. In 6tk fnternational Conference on Logic Pro-
gramming. pages 165-180, 1988,

[14]

4]

[15

{16]

{17]

(18]

(18]

[20

1]

[22]

{23}

[24]

1. Jaffar and J-L. Lassez. Counstraint Logic Program-
ming. In {th IEEE Symposium on Logic Programiming.
40

AL) Maber. Logic Semantics for a Class of Committed-
choice Programs. In Proceedings of the Fowrth Inter-
reationgl Conférence on Logic Programming, pages H3K-
AT, Melbourne, May 19857,

. . Pander. Evaluation of "Perlormance Enhanee
ments’ in algebraic manipulation svstems. ln 1. Della
Dora and J. Firch. editors, Compuater Alyeboe and Par-
allelism, pages 31-74. Academic Press, 1940,

k. Sakai and A, Aiba. CAL: A Theoritical Background

of Constraint Logic Programming and ats A pplications.
Symbadie Computation. 8(6):580-603, 1980

V. Saraswatl, Coneurrend Constromd Programining Lan-
guages. PhI) thesis. Carnegie-Mellon Universicy. Com-
puter Science Department, Janoary 1988,

5. Sato and A, Aiba. An Application of CAL 1w
Robotics, Technical Report TM-1032. Institute for New
Generation Computer Technology.

H. Sato 1. Chikavama and T. Mivazaki. Overview
of Parallel Inference Machine Operationg Svetem [Pl
MOS). In faternational Conference on Fifth Generation
Compater Sysfems | 388, pages 230-251, 1988,

F. Senechiand, Implenentation of a parallel aigorithin
o compute a Grobner basis on Boolean polvaomials. in
J. Delia Dora and J. Fitch, editors, Cormpufer dlgebra
and Paralleltsimn, pages 139166, Academic Press. 1990.

K. Siegl. Grobuer Bases Computation in STRAND: A
Case Study for Concurrent Symbelic Computation in
Logic Programming Languages. Master's thesis, CAMP-
LINE. November 590,

5. Terasaki. D, Hawlev, H. Sawada. K. Satoh. 5. Menju.
T. Kawagishi. N, lwavama and A. Aiba. Prailel Con-
straint Logic Programming Language GDOC and its
Parallel Constraint Solvers. In Intemational Conference
on Fifth Generation Compuler Systenes 1993, 1952,

R, Ueda and T, Chikavama. Design of the Kernel Lan-
guage for the Parallel Inference Machine. Computer
Jowrnal, 36 494-500. December 1990,

J. P Vidal. The Computation of Grobner bases
on & shared memory multi-processor. Technical He-
port CMU-C5-90-163. Computer Science Department.
Carnegie Mellon University, August 1990,

A Practical Approach to the Global Analysis of
Constraint Logic Programs

M.J. Garcia de la Banda
M. Hermenegildo

maria,herme@fi.upm.es
Computer Science Department
Technical University of Madrid

This paper presents and illustrates with an example a practical approach to the
dataflow analysis of programs written in constraint logic programming (CLP) languages
using abstract interpretation. It is first argued that, from the framework point of view,
it suffices to propose quite simple extensions of traditional analysis methods which have
already been proved useful and practical and for which efficient fixpoint algorithms have
been developed. This is shown by propesing a simple but quite general extension to
the analysis of CLP programs of Bruynooghe's traditional framework. In this extension
constraints are viewed not as “suspended goals” but rather as new information in the
store, following the traditional view of CLP. Using this approach, a complete, constraint
system independent, abstract analysis is presented for approximating definiteness infor-
raation. The analysis is of quite general applicability since it uses in its implementation
only constraints over the Herbrand domain. Some results from the implementation of
this analysis are also presented.

(The research presented in this paper has been supported in part by ESPRIT project
5246 “PRINCE" and by CICYT project TIC91-0106-CE.)

Impose Constraints in a Multi-User, Dynamically
Changing Environment
(Extended Abstract)

Qing Ge

KBS Technology Inc.
350 Highway 7, suite 402
Richmond Hill, Ontario

L4B 3N2 Canada
E-mail: gefai.toronto.edu

Constraint logic programming has become a powerful tool for problem solving and
information processing. A large scale, real world application implemented by using
constraint logic programming methodology is described in this paper. Several interesting
issues caused by the dynamic nature of the application are discussed.

The Development Workstation (DWS) provides an environment for IBM worldwide
to collect and validate all business type product information throughout the product
development cycle, and to easily extract the subsets of the information acquired for dif-
lerent business practices such as Product Assumptions & Commitments, Pricing, Product
Announcement and so on. DWS, which difiers substantially from the traditional infor-
mation processing systems, 15 part of [BM “re-engineered” process. DW5S will serve as
the single resource for all IBM business-refated product data and there will be thousands
of the users worldwide to input information to and to obtain information from DWS.
Various kinds of product data will start to be entered into DWS at the beginning of
the development cycle. Additional information will continue to be added throughout
the life of the product. The data for one product can be entered by different users from
1IBM Worldwide Development, IBM Worldwide Marketing, development labs, etc., either
concurrently or over a rather long time period. The data are validated at data entry.
Once accepted, the data must be guaranteed to be correct, consistent and legal (e.g.,
for product announcements). The kernel of DWS is a forward chaining inference engine
which does reasoning with constraints. DWS is implemented mainly by Prolog. Only
the I/0 intensive operations are done through C programs.

The product data are not isolated. They related to each other and there are con-
straints that apply on them to restrict their value ranges and formats. It is the relation-
ships and the constraints that make a set of data meaningful for a particular application

domain and that, on the other hand, complicate the issue of keeping the data correct
and consistent. Thus, DWS needs two kinds of knowledge to accomplish its task: knowl-
edge about relationships and knowledge about constraints. The former is provided by an
entity-relationship database and the latter represented in the format of constraint rules.

A rich constraint rule language has been developed to express conditions (with quan-
tifiers) and actions. A large amount of expertise is obtained from the human experts and
provided to DWS as the constraint rules by a knowledge engineering group. The knowl-
edge about constraints is applied every time a piece of information is entered into DWS.
The following issues are cncountered when DWS attempts to impose the constraints
through its inference engine:

First, DWS stores the information acquired on a global repository. Even with privi-
lege checking, it can happen quite frequently that multiple users who have proper access
rights need to change the data reparding to the same product at the same time. Locking
up the repository to cnforce sequential access is nol practical because DWS is the only
resource for many applications and for thousands of the users. Giving each user an equal
time slice is not a satisfactory solution either because one picce of data can be changed
only by one uscr al any time. Even though the users may only need to work on the
different pieces of data, these data are related to each other and constraints need to be
applied against the information provided by the user. Synchronization in this case is
rather complicated and mutual restriction (similar to deadlock) may occur. Therefore,
a semi-distributed paradigm is employed which allows local data input and constraint
unposition first and global data merge including automatic error and conflict checking
later.

Secondly, any data collected by DWS can be modified by the user. This implies that
the restrictions imposed by certain constraint rules may need to be lifted. For example,
the value for data A causes a constraint rule C to be fired and puts a restriction R on
the data B. The value of data A is then changed so that the condition of the rule C
no longer holds. Consequently, restriction R is not applicable any more. However, how
to remove restriction R is a problem. Due to the large number of rules in the system,
it is not a good approach to examine every rule that cannot be fired to check if there
are restrictions that have been imposed by it and that should be removed. In general,
this is a problem of undoing the effects of constraint rules when changes make the rule
conditions no longer satisfied. Instead of doing and undoing action effects, the action
part of a constraint rule is indexed in a special way based on the data te which the
constraint rule puts restrictions when being fired. When the data that contribute to
the condition part of such a rule are changed, the rule, although the condition can be
matched, does not actually fire. Only the data that are in the action part can trigger
such a rule and appropriate restrictions will be applied dynamically. In this way, when
the condition of a rule cannot be satisfied, there is no need to clear the restrictions that
may be imposed by it.

Thirdly, data can be entered into DWS in arbitrary order although the system can

- 24

prompt for all the information in a systematic and smooth manner, It is not always
possible to connect together the information entered at random. As a result, fragments
of data may float in the system. However, in order to find problems as early as possible
and as many as possible, efficient partial constraint imposition needs to be supported.
When DWS receives a piece of information, it attempts to connect it with other existing
information in the system to the maximum extent and imposes the constraints within
this maximum range. When more information or fragments can be connected, more
restrictions are applied incrementally. Such a process is repeated until all information is
connected and no information is missing.

Fourthly, as in any large systems, there are a large number of constraint rules in DWS.
To quickly find applicable constrainls in any siluations is one of the most important
factors that have to be considered for such a real world project. A special indexing
mechanism is used for this purpose, which also takes into account the arbitrary order
data entries. To further improve system performance (since the user uses the system
interactively), a set of heuristic rules are developed based on the availability of the
information required to apply the constraints. Since multiple constraints can be applied
for a given situation, conflict resolution is also necessary. Conflicts arc resolved at two
levels. The constraints chosen are first divided into pre-prioritized categories according
to their actions and then within each category specificity strategy is used.

The information is DWS can be changed constantly by different users. Proper con-
straints have to be applied effectively and efficiently to ensure, all the time, the correct-
ness and consistency. Changing one data usually results in changing a group of related
data. Ripple effect is another interesting issue that DWS handles well, especially in
determining the scope of affection.

The success of DWS encourages us to use the methodology and technology of con-
straint logic programming in other application areas in which constraints are applied to
filter large amounts of information, such as large organizations, law firms and government
offices.

Constraint Logic Programming with Priority
— extended abstract —

Takashi Hattori
RIMS, Kyoto University
hattori@kurims.kyoto-u.ac. jp

March 19, 1992

Constraints are widely investigated recently, but over-constrained sys-
tems can be handled as mere contradictions in most cases. However, when
we would like to describe the notions of default values or preferences by
means of constrainls, it must be necessary to somehow produce useful in-
formation from over-constrained systems because defanlt constraints or pre-
ferred constraints usually lead to a over-constrained system. One of such
attempls is the constraint hierarchy introduced by Borning. It is not, how-
ever, fully satisfiable especially when it is combined with the constraint logic
programming (CLP) scheme since the constraint hierarchy is of a different
nature from the logic programming paradigm. The main aim of this paper is
to define the constraint logic programming with priorily (CLP/P) as a nat-
ural extension of CLP in order to deal with such notions as default values
and preferences in the framework of logic.

Assume that there are three disjoiut sets of predicate symbols Predy,
Predp, Predg. We call them constraint predicates, control predicates, and
priority predicates respectively. The program of CLP/P is a pair (F,Q)
where is a set of logical formulas containing only priority predicates and

F is a set of formulas of the following form:

J‘I':_'H'l:l'“:-"I.]‘!'I'I:l"'-‘]l:(-:11"":'l'-'}r'l.:'I:‘-"‘IF'I. I:m;_“ﬂun:_}m {]'J

in which A, By, -, Bm are positive literals containing control predicates,
y, -+, Cy are logical formulas containing constraint predicates and Dy, ---, Dy
are positive literals containing priority predicates. We call P a conlrol pard,
and ¢ a priority part.

The intuitive meaning of the formula (1)} is almost same as that of CLF
except that, given a model M of the priority part, a constraint Cj is taken
into account only when the associated priorvity literal 1 is true in M. This

is logically represented by the formula:
A= BiA---ABu A[RDivE)A---A(~Dy v Ca) (2)

By varying the model M of the priority part, we can get a set of different
solutions each of which is associated to a certain model of the priority part.

For example, suppose we have three constraints:

l':] . dEﬁ'
C*; b<e
s c<a

and CLP program:
P{ﬁ,b,ﬂl B C1,C2.Ca..

If we give a query :- p(0,b,c), the answer is b = 0 and ¢ = 0. However, if we
give a query :- p(0,1,c), then constraints Cy, Cg, C3 and constraints a = 0,
b = 1 imposed by the guery lead to a contradiction from which no answer

can be obtained. In contrast to that, suppose we have the same constraints

and CLF/F program (F,{}) where

P o= {P{ﬂ1b:c}|;'§'1 :Cl,qz ic}dj‘j:ﬂg}

Q {g1 A (ga — g2)}-

In this time, for the given query - p{0,b,¢), we will get three solutions each

of which is associated to the model of Q as follows:

mode] of @ | solution

1} bz
{q1. 42} bz0Ab<e

{‘i‘l-gi:-*?a} b:l}ﬁc=ﬂ

In the same way, for the query - p(0,1,¢):

model of § | solution
fg:) no limitation

{m.q} ezl
{M1.,92,93} | contradiction

Shown as above, the greater model we select, the more constraints are taken
into consideration. It can also be seen that g3 — g implies that C4 is taken
into account whenever C; does. In other words, a priority predicate which
is true in a smaller model represents higher priority. Note that the empty
priority part involves all combination of constraints while it is expected we
are usually interested in some of them, therefore we should give a priority
part which can effectively reduce the search space. In addition, we can
use variables as arguments of priority predicates in order to give priority

dynamically. For example,

P

It

{pla,b,e.x) = qi(x) : C1,q2(z) = Capqa(z) : C3)

Q {mlz) A (ga(0) — 2(0)) A (g2(1) — ga(1))}

implies that C; takes priority over C for the query :- p(0,1,¢,0) while Cs
takes priority over C'y for the query :- p(0,1,e,1).

Let Bp be the Herbrand base of control predicates, Mg be a set of all
models of a priority part. A mapping a : Mg — (Bp — {t,f})isa
model of CLP /P program (P, Q) if and only if, for any model M € Mg and

any ground instance

A - BI:“'!-HHL:D] :Cl,"‘.Dﬂ:{?n

of a formulain P, a(M)(B) =t (1 <i<m)and M(D;)=t=C; (1<
i < n) implies a{ M){A) = t. We can show that there exists the least model
which coincides with the least fixpoint of & transformation function as shown
in logic programming,.

It is possible to define a refutation procedure for CLP /P by adding an
equivalence class of Mg to each goal where the equivalence class is classified
by truth values of priority predicates occurring in the goal. The reason
why we use an equivalence class of models instead of a model itself is that
Mg may be infinite in general. Since choices of the equivalence classes are
not uniguely determined at cach step of refutation, backtracking is needed
in case the chosen equivalent class lead to a contradiction. We can show
completeness of the refutation procedure for CLP/P.

Evaluation of solutions are the most populay method to handle default
valnes ar preferences. CLI/I* program can be seen as a special kind of
evaluation function whose range is Mg instead of R. From this point of
view, the expected solutions are those associaled Lo maximaz] elemenls of
Mg to the extent that do not lead to contradictions. Since Mg is not totally
ordered, there can be more than one local maximum, which bring about a
well-known problem to search the global maximum. However, finding one
of local maxima is satisfactory lu some cases, For example, suppose that we
would like to design a plan interactively with assistance of a set of design
constraints. It is not convenient that slight changes of input make ontput
to chiange busily, rather we prefer conservative behavior even if it is not
globally optimal. Assume that a series of query is given where each query
is slightly different from the predecessor, then we can quickly find a local
maximum by utilizing a equivalence class of models obtained by refutation

of the preceding query. This can be seen as simulation of hvsteresis.

29 -

Anticipatory Pruning Networks in CLP language

Geun-Sik Jo *and Ken McAloon!

*In-Ha University and Center for Artificial Intelligence Research,Korea
iBrooklyn College and CUNY Graduate Center USA

1 Introduction

In this research, forward checking is implemented through a kind of forward chaining
in Production Systems. The APN propagate constraints inconsistent with the current
environments. The inconsistent constraints can be found by checking the consistency
with the current environments in parallel. We used the Rete style of rule compilation
method to implement the forward checking mechanism. To develop and test the idea, we
worked with 2LP, a CLP system with propositional logic and linear constraints. The APN
1s somewhal analogous to the consistency technique over discrete domain in CHIP {3].
However, the APN provides forward checking mechanism for constraints over continuous
as well as discrete domain for the constraint solver in logic programming environment. In
addition, the APN here preserves the operational semantics of the language.

2 APN algorithm

The APN algorithm computes the consequences of the constraints inconsistent with the
current environment. The APN also explicitly saves the consequences of the inconsistency
in the network. Furthermore, the APN algorithm can undo the processes of computing and
saving the consequences of the inconsistent constraint to meet the backtracking behavior
of logic programming.

2.1 Rule compilation in the 2LP system

The compilation of rules in the 2LP system is analogous lo the compilation done in the
OPS5 system. "I'he condition elements of Lhe rule here have only the name of the class
and do not have any attributes in it if we consider it in the OPS5 context.

The linearization of the network in an eflicient machine executable form is important
for real applications. For the basic human readable forms of linearized network in APN,
the following five different types of nodes are necessary to linearize the APN.

" Research partially supported by NSF and CUNY Grant
"Research partially supported by NSF Grant 1R1-8902511

30

1. (Fork label) ; The label represents the position of a node for another successor.
2. (EQ atom) ; One-input node for testing for equality.

3. (AND Left-memory Right-memory) ; Two input node which has the left mem-
ory and right memory. The left-memory takes input from the previous node
and the right memory takes input from the Merge node.

4. (Join label) ; This node is the same as the goteo instruction in the von Neumann
machine architecture, but affecting only the right-memory of the AND-node.

5. (Update rule-id head) ; Update the counter of head of the rule and the list of
available rules for selections.

2.2 Anticipatory Pruning Networks

There are two functionally diflerent components of computation in APN. One is finding
the constraints inconsistent with the current environment. The other is forward reasoning
with these inconsistent constraints. In testing consistency, an incremental version of
the Simplex algorithm is used. By propagating inconsistency, all deterministic goals are
selected and resolved at once. Moreover, failure can be detected easily if an unsolvable
atom occurs in the goal list.

2.2.1 Consistency checking with the current environments

Let us consider the consistency checking in the 2LP system. Let the active constraints
(AC) be the constraints which are enforced by the logic interpreter. Let us call the set
of all constramnt for the given program the quick constraints (QC). The quick constraints
are also called the quick lisl. Finally, let us call the constraints inconsistent with the
current environment the dead constraints (DC). Whenever the constraint is enforced by
the logic interpreter, the system checks consistency with the current environment. The
environment here is the Simplex table which is formulated by the AC, If the enforced
constraint is consistent, the current environment is updated. Iurthermore, the constraint
is removed from the QC and added to the AC. To find out the inconsistent constraints
with the current environment, the system performs consistency checking with the rest
of the QC. If the enforced constraint is not consistent, 1t is also removed from the QC
and added to the DC. Then the consistency checking in 2LP is to check the consistency
of all the constraints in C with the newly updated cnvironment. Therefore, everytime
the current environment is updated, consistency checking is performed. The consistency
checking here can be done in parallel.

Instead of checking consistency on all the constraints in the @C with the current
environment, we can have the system choose the several different sets of constraints. One
of them 1s to compute the relevant constraints with the goal list which are the constraints
sct that can be derivable from the left most branch of the search space. This is to
detect the early failure in the current direction of search space. This is called Partial
Anticipatory Pruning. If we check the consistency with all constraints in §C, it is called
Full Anticipatory F’rllning. The henchmark results for each technique are demonstrated
in the next section.

3

2.2.2 Inconsistency propagations in APN

Since we are interested in the inconsistent constraint set to prune unnecessary searching,
all the two-input memories are imtially set to be available, which means that every rule
1s available for selection at the beginning. As ithe logic interpreter finds the inconsistent
constraints with the current constraint environment, the system generates the negative
token and the interpreter of APN propagates the negative token down to the APN. As a
result of propagating the negative token, some rules may be ruled out from the knowledge
hase to remove the unnecessary search. The interpreter also can undo what has been
done by propagating the positive tokens to take care of the backtracking behavior of logic
programming style of control mechanism.

The APN interpreter basically performs the following inconsistency propegation-update

cycles.

1. Match The condition elements in the body of rules are matched against the
atoms which refer to the inconsistent constraints with the current environment.

2. Propagating and updating the procedure table The successfully matched atoms
are propagated depending upon the inconsistency found in the condition ele-
ments in the same rule. If the inconsistency is propagated successfully, the
counter associated with the head is decreased by 1 and the index of the rule
associated with the head is removed from the available rule list for that head.
If the backtracking ocecurs, the counter associated with the head is increased
by 1, and the index of the rule is added to the available rule list.

3. Selection The head with the counter changed to 0 or the counter changed to
1 from 0 is selected for the further propagation.

4. go to 1.

The description of implementation in the APN interpreter is provided by the Lisp code
in the Appendix A in {7]. '

3 Measurement on APN

This section presents the effectiveness of AFN in 2LP system. The table 1 provides
benchmark results in solving some puzzles which are traditionally considered as integer
programming problems. T'he table 2 provides the benchmark results for some linear pro-
grammming problems which can have integer or rational variables in the problem domains.

[n this benchmark, the number of node visited which is represented as Node in the
table is counted cumulatively during the tree search process. The number of constraints
checks which is represented as Consiraint in the table is also counted cumulatively, We
counted the number of constraints appearing on the right hand side of rule and added
up cumulatively as the rule is rewritten. The consistency checking in APN is counted
as one constraint check for each node visited. The number of constraint checks here is a
cumulative addition of the number of constraits appearing on the right hand of rule and
the consistency checking. However, we regarded that the deterministic rewriting occurs
as part of APN activity al a given node.

NoAPN Partial APN FullAPN

Node | Constraint | Node | Constraint || Node | Constraint

b.Cyueens 23,359 19,904 || 8,959 13,097 |l 4,916 5,054
SEND+MORE=MOMEY 1,641 1,509 144 243 4 12
| cemaLD+DosALD=RoBERT | 11 317 10,472 | 1,203 1,798 438 730

Table 1: Integer programming problems

' NoAPN PartialAPN | FullAPN
Node | Constraint | Node | Constraint ” Node | Constraint

Six manths blencing provienr | 11,863 17,172 | 3,991 8,770 | 2,632 6,693

Mining problem 33,598 48,563 || 10,736 26,923 | 9,753 24,722

Table 2: Linear programming problems

The NoAPN in this benchmark is the case which the APN is not active. Therefore,
the basic search strategy is the same as the Prolog scarch strategy. In the the FullAPN,
we check the consistency with all the bottom-most leaves which have not been explored
vet. The Partial APN is to check the consistency with the constraints set that can be
derivable from the left most branch of search space.

All the problems described table 1 can be viewed as the integer programming prob-
lems. However, many problems in linear programming are not pure integer programming
problems. Some examples of the mixed linear integer programming problems are drawn
from [9] and evaluated in the table 2 to test the effectiveness of APN in 2LP system.
These two benchmarks in the table 2, Six month blending problem and Mining problem,
are optimization problems. These mixed integer linear programming problems are not
amenable to the consistency technique in CHIP because of the presense of continuous
variables. In a blending problem, it is very reasonable to mix 1 1/2 galions of vegetable
oil with 2 1/3 gallons of non-vegetable oil to maximize the profit. Therefore, the concept
of CSP cannot be applied to this kind of linear programming problem. However, with
APN, it does not matter whether the domain is discrete or continuous, since we can use
Simplex based consistency checking. We are required to use either none or more than 20
tons of an oil. This kind of “or” constraint can be expressed naturally by means of logic
in the 2L F system.

4 Conclusion
The study of APN in 2LP system lead us to make the following conclusions.

1. The APN introduces Forward Checking mechanism for constraints over continuous
and discrete domain. It also provides very deep look ahead for the Simplex-based
constraint solver. This property, Forward Checking mechanisms independent of
domains, is highly desirable in linear programming environments if we consider that
many linear programming problems are mixed integer linear programming.

2. By using the APN, we can exploit the OR-parallelism, i.e., parallelism in consistency
checking, in constraint optimization problems effectively in the 2LP system [3]. As
we have pointed out in the above section, the APN is very useful to solve the
optimization problems. Especially if we want to find an optimization solution which
is a near-failure, the APN can reduce the tree search space drastically as shown in

[7]-

3. The APN, which 15 a domain independent forward checking mechanism, o_f'rens a
possibility of integrating the Simplex-based constraint solver with CSP.

4. The APN can address the partial solution naturally since the APN can be viewed
as the propositional expert system and the current working memories in APN are
the inconsistent constraints found so far with the current environment.

References

[1] Krzysztof R. Apt, Howard A. Blair, Adrian Walker, Towards a theory of declar-
ative knowledge, Foundations of deductive databases and logic programming,
Morgan Kaufmann Publishers, Los Altos, CA, 1988, pp 89-148.

(2} Jim Cox, Ken McAloon and Carol Tretkoff, Computational Complexity and
Constraint Logic Programming Languages, Brooklyn College Computer Science
Technical Report, No.90-4.

[3] M. Dincbas, Pascal Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F.
Berthier, The Constraint Logic Programming Language CHIP, Proceedings of
International Conference on Iifth Generation Computing Systems, 1988.

[4] On the efficient implementation of Production systems, Ph. D. Thesis,
Carnegie-Mellon University, 1979.

[5] Rete A fast algorithm for the many patiern/many object pattern match prob-
lem, Artificial Intelligence 19, Sept. 1982,pp 17-37.

[6] H E Robert M. Haralick and Gordon L. Elliott, Increasing Tree Search Effi-
ciency for Constraint Satisfaction Problems, Artificial Intelligence 14, 19580,pp
263-313.

(7] Anticipatory Pruning Networks and Minimal 2LP, Ph.D. Thesis, CUNY, Feb.
1941,

(8] K. McAloon and C. Tretkoff, 2LF A Logic Programming and Linear Pro-
gramming System, Brooklyn College Computer Science Technical Report No.

1989-21.

(9] Model building in mathematical programming, John Wiley & Sons,New York,
1985.

— 34 —

Approximation in the Framework of
Generalised Propagation

e

(Extended Abstract)

Thierry Le Provost

European Computer-Industry Research Centre
Arabellastr. 17, D-8000 Munich 81, Germany

e-mail: thierry@ecrc.de

1 Introduction

Generalizsed Propagation [3] aims at formalising and generalising constraint propaga-
tion techniques. In this scheme, propagation constraints are always defined declar-
atively, in contrast to so-called reactive programs.

Although Generalised Propagation has already been successfully implemented
and applied to nontrivial search problems, its expressiveness and efficiency were

found insufficient in many cases.
This presentation introduces and metivates an cssential extension to the scheme,

dubbed Approzimate Generalised Propagation, where the introduction of approzi-
mation languages dramatically increases the expressiveness and efficiency of propa-
gation constraints, while fully preserving their declarativeness.

2 Generalised Propagation

2.1 Origin and Motivation

Propagation or consistency techniques were first introduced into the context of logic
programming by the CHIP system [1, 9], which is currently the mainstay of the ES-
PRIT Project CHIC [3]. It provides a rich set of symbolic and arithmetic "built-in"
propagation constraints for efficiently stating and solving complex search problems.

CHIP also allows for some means of defining new propagation constraints, but
these additions have proven either hard to reason about for non-expert programmers

(e.g. demon rules), or conceptually simple but rather inefficient (lookahead declara-
tions). Besides, the constraint propagation mechanism in CHIP appears to be tied
to a particular computation domain (namely, finite-domain variables).

In contrast, the Generalised Propagation mechanism applies to any language in
the CLFP Scheme of Jaffar, Lassez ef al. [4], and allows programmers to designate
any subgoal in a program or query as a (generalised) propagation constraint.

2.2 Informal Description of Generalised Propagation

Semantically, such a designated subgoal, together with its declarative predicate def-
inition in CLP(X), uniquely identifies a closure operator on the partially ordered
set of "basic constraints”, as defined by the computation domain X, In other words,
a subgoal earmarked as a generalised propagation constraint approximates its con-
junction with the current basic constraint store whenever possible, and as precisely
as possible, given the expressive power of the computation domain (i.e., the basic
constraints). The inference mechanism is defined so that the set of logical answers
to the subgoal is respected. This refinement of the basic constraint store usually
allows for very large reductions in the size of the CLP({X) search tree.

The concept of closest approximation of "complex™ (as yet unsolved) subgoals
by "simple” basic constraints happens to be universally applicable, and bears no
special connection with finite domains, as was formerly believed [8]. For instance,
one may apply Generalised Propagation to CLP{HU) (or even to impure Prolog),
thereby performing a novel kind of propagation on struciured terms'. One may also
specialise the concept back to its CHIP source; this produces a powerful notion of
declaratively defined (i.e., program-defined) propagation constraints that deal with
both finite-domain variables and structured terms.

Operationally, generalised propagation subgoals are repeatedly submitted to a
metalogical procedure that enumerates subgoal answers, and generalises over them.
The implementation of generalised propagation ever CLP{X) therefore requires an
operation of constraint generalisation, which can informally be seen as dual to the
customary one of constraint solving. Practical algorithms for implementing gener-
alised propagation only perform an fmplicit enumeration of subgoal answers, thereby
allowing an efficient production of the closest approximation to many subgoals even
when their search-trees are large or even infinite [5] 2.

2.3 Motivating Approximate Constraints

However, a shortcoming of Generalised Propagation as described abaove is its in-
flexibility. Each designated subgoal denotes exactly ome generalised propagation
constraint. Such a constraint is sometimes too expensive to comipute by the implicit
enumeration procedure outhned above, when balanced against the pruning in search
space that it affords.

The resulting overall efficiency might in such cases fail to meet expectations from
the programmer. Indeed, overly strong propagation constraints can sometimes lead
to 2 net loss of efficiency, compared with the original CLP(X) program !

“The restricted size of this abstract confines the use of program examples to the presentation,
?However, Generalised Propagation is uncomputable for nontrivial computation domains,

3 Approximate Generalised Propagation

3.1 How to Approximate Declarative Constraints ?

Some broader notion of approzimation is therefore needed to cope with excessively
strong or expensive generalised propagation constraints. Briefly considering var-
ious allernatives, and motivating our current choice for a certain notion of posi-
approzimation, are the subject matters of this presentation.

As generalised propagation constraints are only defined declaratively (by the re-
lation over X denoted by some predicate definition in C'LP(X)), we are willingly
deprived of any opportunity for explicitly weakening the activity of a constraint.

So-called reactive approaches for cxpressing propagation constraints, such as the
Ask and Tell Scheme [6], or extension of il such as co(FD) [10], feature explicit
synchronisation operators that have been omitted from the Generalised Propagation
Scheme. Our contention is that explicit synchronisation (Ask and commitment
operators} may lead to programs that are hard to write and verify. In particular, such
reactive languages allow for the unwitting definition of indeterministic propagation
constraints, A lesser but severe problem with reactive definitions is the absence of
guarantee that the explicitly defined constraint will "behave well” {i.e., that it will
indeed be a closure operator).

In other words, Generalised Propagation was designed with the objective of
avoiding explicit synchronisation and other traditional reactive operators. Conse-
quently, approximation cannot be achieved by e.g. modifying program guards.

3.2 Declarative Notions of Approximation

The solution we propose here is [aithful to the declarative approach taken by Gen-
eralised Propagation, in thal approximation is performed through approzimation
aperators. They just happen to be sorts of "anti-propagation constraints”. Coneep-
tually, a "most specific” generalised propagation constraint, as defined by a CLP(X)
predicate, is composed with an built-in approximation operator that discards (filters
out) some of the information produced by the "most specific® constraint.

We are now left with the crucial choice of what to apply these approximation
operators to. Space limitations bar us from considering several obvious alternatives,
such as applying approximation in a static way to the CLP(X) program itself,
Connections with abstract interpretation schemes will also be omitted here. Instead,
we shall focus on two possibilities: pre- and post-approzimations.

Pre-approximations are applied to the current store of basic constraints before
the generalised "most specific” propagation constraint. Post-approximations, con-
versely, are applied to the result of applying the generalised propagation constraint
to the constraint store.

3.3 Post-Approximations Seem to Be Better

Provided that certain conditions hold (mainly, that propagation constraints and
approximation operators both be closure operators in a partially ardered structure
of basic constraints), any composition of a "most specific” constraint with an a

posteriori approximation operator "behaves well”. That is, all properties that can
be expected of a Generalised Propagation constraint continue to hold for such a
post-approximated constraint. (This amounts to showing that the resulting post-
approximated constraint is still a closure operator.)

Such nice things cannot be said about pre-approximations, and the latter appear
quite insufficient in terms of defining nseful and classical approximate propagation
constraints.

A decent implementation should not compute first the "most specific” constraing,
and then discard part of the produced information through the post-approximation
operator. A simple lattice-theoretical result allows for the design of implicit enumer-
ation algorithms where the computation of the constraint’s result and its approx-
imation can be soundly interleaved (the approximation is somehow pushed down).
This leads to the sought-after increase in efficiency of approximate propagation con-
straints, compared to their "maost specific” versions.

3.4 Applying Approximate Generalised Propagation

Two interesting cases of seemingly wasteful, but practically efficient, post-approximate
propagation constraints are pure tests {(where the approximation consists in discard-
ing all information but failure) and generalised forward checking constraints (pow-
erful generalisations of CHIP's forward-checking constraints, which sit idle in the
resolvent until they can entirely express themselves as basic constraints from the
computation domain). '

As for putting these ideas about "declaratively approximated generalised prop
agation constraints” into practice, three computation domains spring to mind:

¢ Datalog (no function symbols);
e CLP(HU) (in practice, full Prolog);

¢ CLP(FD) (Prolog with finite-domain variables, which can be viewed as an
extended and declarative "symbolic CHIP").

Approximate Generalised Propagation is currently implemented on all three,
hosted by SEPIA and ElipSys [7, 2], two extensible Prolog systems developed at
ECRC. Dramatic reductions in search space size have been obtained for several
large applications, some of them combining Approximate Generalised Propagation
with regular CHIP constraints [2].

4 Related and Future Work

We are investigating several open questions, mostly about the expressive power
of Approximate Generalised Propagation (e.g., are our definable constraints the
"desirable” ones for problem-solving in practice 7).

A comparisen contrasting the expressive power of our declarative propagation
scheme with "reactive” schemes such as ce(FD) is being attempted, although the
matter will require further discussions between "declarative”™ and "reactive” propa-
gation constraints proponents !

— 345 -

References

[1] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. In Proceed-
ings on the International Conference on Fifth Generation Computer Systems

(FGC5'88), Tokyo, Japan, December 1988.

[2] M. Dorochevshy, L.-L. Li, M. Reeve, K. Shuermann, and A. Véron. ElipSys: Real
Applications Need More Than Parallelism !. Proceedings of the FGCS5'02 Work-
shop on Future Divections of Parallel Programming and Architecture, Tokyo,

Japan, June 1992,

[3] T. Frihwirth, A. Herold, V. Kachenhoff, T. Le Provest, E. Monfroy, and M. Wal-
lace. The CORE Approach to Constraint Logic Programming. In Proceedings of
the FGCS'92 Workshop on Constraint Logic Programming, Tokyo, Japan, June
1992,

4] J. Jaffar, and J.-L. Lassez. Constraint Logic Programming. Proceedings
of the Fourteenth ACM Sympesium on Principles of Programming Languages
(POPL’87), Munich, Germany, January 1987.

(51 T. Le Provost, and M. Wallace. Doumain-Independent Propagation. In Pro-
ceedings of the Mmtemnabtionel Conference on Fifih Generation Computer Systems
(FGC5'92), Tokyo, Japan, June 1992,

[6] V.A. Saraswat. Concurrent Constraint Progranuning Languages. PhD Thesis,
Carnegie-Mellon University, Pa, January 1989,

[7] M. Meier, A. Aggoun, D. Chan, I*. Dufresne, Il. Enders, D. Henry de Villeneuve,
A. Herald, P. Kay, B. Perez, E. van Rossum, and J. Schimpl. SEPIA - An
Extendible Prolog Systemn. In Froceedings of the 11th World Computer Congress
(1{71F°89), San Francisco, Ca, August 1989.

[8] P. Van Hentenryck, and M. Dincbas. Domains in Logic Programming. Pro-
ceedings of the Fifth National Conference on Artificial Intelligence (AAAD'SG),
Philadelphia, Fa, August 1986.

[9] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series, MIT Press, Cambridge, Ma, 1989.

[10] P. Van Hentenryck, and Y. Deville. Operational Semantics of Constraint Logic
Programming over Finite Domains. In Proceedings of the PLILP'81 Conference,

Passan, Germany, August 1991,

Constraint Satisfaction and Optimization
Using Sufficient Conditions for Constraint Vialation

Fumihiro Maruyama, Yoriko Minoda, Shuho Sawada, and Yuka Takizawa

Knowledge Processing Laboratory
Fujitsu Laboratories Ltd.

1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Phone: +81-44-754-2661
Fax: +81-44-754-2664
E-mail: superb@ flab.fujitsu.co.jp

1. Introduction

Many problems in engineering and OR can be formulated as discrete constraint satisfaction or
optimization problems, e.g., LS logic design, cutting-stock, and job-shop scheduling problems.
Our approach to such problems represents constraints with inequalities and equalities.

In the formulation of LSI logic design that follows, variables correspond to functional blocks to
be implemented with cells, or LSI parts. Each variable x; takes an implementation altemative c, j
(7=1,2,3, ...) as its value. The following system of inequalities represents time constraints:

blocks
Taydp(x;)sby (k=1,2, ..., m) (1)

1=1
Attribute d, represents the delay time within the functional block along the kth path, on which a
constraint on maximum total delay is imposed. by represents the limits of maximum delays, ay;is 1
if the kth path passes the ith block; otherwise it is (. The area-optimization problem with time
constraints is to find the values for cach variable, i.e., to choose the implementation alternatives for
each functional block, that satisfy (1) and minimize the objective function (2), where attribute dg
represents the functional block area in terms of the gate count:

blocks
LEdD(xi]. (2)

=1
Figure 1 shows an example of a job-shop scheduling problem with four jobs and three
machines. Each job consists of three operations processed by each machine, whose sequence is
given for each job. Every job can be started at time 0. In the figure, each operation is represented by

a rectangle containing three digits representing, first, the job number, second, the operation

sequence number within the job, and, third, the machine number. Numbers at the left and right
below each rectangle represent operation start and end times. The problemi is to determine start
times for each operation that satisfy the constraints below and make the last end time as early as

possible. We assume that times take only integers.

31
Machine 1 111 221 431
a &8 7 10 24 13 N
Maching 2 | 412 i22 232 332
o 4 5 il 2 EE] 41
Machine 3 213 132 423 323

o 7 [] 24 33

Figure 1: Example of job-shop scheduling problem

We use variables that take as their values start times for each operation. Constraints fall into the
four categories:

(a) Constraints on earliest possible start times

Since each job can be started at ime 0, a constraint in this category is x;,,20.
(b) Constraints on due times

Since operation 133 is the last operation of the first job, a constraint in this category is
X133+;335E, where E is the due time of the job and 1, ;4 is the operating time of the operation.
(c) Constraints on precedance relationships

The constraints in this category come from the sequence of operations in a job. This
example has eight, one of which is x,{1+l;15 %29,
{d) Constraints on mutual exclusiveness

The constraints in this category take the following form,

Xt aixﬂ W xE-!-l Eixu (3)

where o and [§ are two operations to be processed by the same machine.

2. Constraint Satisfaction and Optimization

We use sufficient conditions for constraint violation, which we call nogood justifications (NJs)
to prune the search space. An NJ is either an inequality or a conjunction of inequalities. We present
an algorithm for discrete constraint satisfaction. NJs are generated and stored during execution and

used to prune unexplored subtrees of the search tree. To optimize an objective function, the

algorithm iteratively applies itself to the corresponding constraint satisfaction problem.

2.1 Nogood justification
We define nogood justifications inductively as follows:
Definition: Nogood justification (NJ)
(i) The logical negations of given constraints are NJs, or default NJs.
(ii) If at least one NJ, e.g., E& holds for each value ¢;; of a particular variable x; (j=1, 2, 3, ...),

the logical product of Dj'[jzi, 2, 3, ...) is also an NJ, where DJ,-' is a substitute of Dj with

each occurrence of x; replaced with ¢; i If no value is assigned to a variable in an NJ, i.e., the

NJ refers to an indefinite variable, we regard the NJ as false. End of Definition’

The NJs defined above are sufficient conditions for constraint violation in the sense that if any

NI holds, at least one default NJ will become true no matter what values are assigned to currently
indefinite variables. When pruning an unexplored subtree during execution, this guarantees that no

solution is among the leaves of the subtree.

2.2 Constraint satisfaction algorithm
The following algorithm sarisfies all given constraints using NJs:
Algorithm

Step 0 Assign a value to each variable. Go to Step 1.

Step 1 Check for a satisfied NJ. If one is found, go to Step 2. Otherwise, go to Step 3.

Step 2 Select a variable among those to which values are assigned. Change its value from tﬁe
current one to another. If there is a value that makes all NJs false, go to Step 3.
Otherwise, generate a new NJ by Definition (ii) and go to Step 5 with the variable
changed to indefinite.

Step 3 If any indefinite variables are left, go to Step 4. Otherwise, all constraints have been
satisfied and a solution found, so exit.

Step 4 Select an indefinite variable and assign a value to it. If a value makes all NJs false,
return to Step 3. Otherwise, generate a new NJ by Definition (ii) and go to Step 5
with the variable remaining indefinite.

Step 5 If no variables are in the generated NJ, constraint satisfaction has failed, so exit.
Otherwise, return to Step 2. End of Algorithm

In Step 4, select the variable last made indefinite. The variable in Step 2 is selected one of

' We can pursue a dual argument by considering necessary conditions for constraint satisfaction, which include
given constraints, and their logical sums, instead of NJs and logical products.

._42_

two ways: the fixed order method and the criterion-based selection method.

2.3 Optimization
For optimization problems with an objective function to be minimized or maximized, a new
constraint corresponding to the objective function 15 added to the original constraints, For example,
the following constraint is added corresponding to (2):
hlocks
i=1
The job-shop scheduling problem has counterparts such as x;34+l;33<E.

The above algorithm is then applied to the augmented constraint satisfaction problem. It starts

with an appropriate initial value of by (or E). As long as a solution is obtained, by is updated to

(the value of (2) for the solution just obtained) - €

where € is a sufficiently small number. If (2) takes only integers, £ can be set 1o 1. The algorithm 1s

applied again from Step 1. For the job-shop scheduling problem, E is updated o
{the last end nme for the schedule just obtained) -1.
When constraint satisfaction fails, the last solution obtained is the optimal solution. The
algorithm checks all NJs generated thus far, including those generated before by, (or E) was updated

to the current value.

3. Ewvaluation
Table 1 shows some of the results from a SPARCstation for the two-dimensional cutting-stock
problem [Dincbas 88] with 92 configurarions (values for each variable). Although the time grows

exponentially with the number of lots (problem size), which seems inevitable with such a

combinatorial problem, note that the ratio of the size of the potential search space (92") to the

number of generated NJs increases monotonically from 107 to 10%3. Since, in effect, our approach

searches through the space, this suggests that NJs prune the search space efficienty.

Table 1: Cutting-stock problem results

Lots 4 8 12 6| 20| 24
Total waste (%)| 187 1.85| L.73) 169 | 1.69| 1.69
Time (s} 002| 05| 18| 116| 67.6| 6076
NIs B| 139 | 395 [1,387 4,397| 14,772

__.1_3 R

Figure 2 compares our approach with two others -- integer programming and CHIP, in

execution time. These two approaches take roughly the same amount of time: Our approach can

optimize more than ten times faster.

1000 - R "
’i"
o Va
o o
4
100 | B _,_/
—a
V4 Y,
s /
10 7 et
Time ./
(s) — /
__.f -#- Qur approach
P
/ O Integer programming
01 L wemesn -=- CHIP
ﬂ_ﬂllll"' lllllll L [T T T T T |
4 8 12 16 20 24
Lots

Figure 2: Execution time comparison with other approaches

4, Conclusion

We have proposed an approach to solving discrete constraint satisfaction or optimization
problems, including L.SI logic design, cutting-stock, and job-shop scheduling problems. Our
approach uses sufficient conditions for constraint violation (NJs) to prune the search space. Our
results show that (1) NJs enable us to prune the search space efficiently, (2) the approach can
optimize over ten times faster than other approaches. We are currently evaluanng this approach

using job-shop scheduling problems.

Reference
[Dincbas 88)] Dincbas, M., Simonis, H. and Hentenryck, P. V.: Solving a Cutting-Stock Problem
in Constraint Logic Programming, Proc. of the Fifth International Conference and Symposium

on Logic Programming, pp. 42-58 (1988).

— 44 —

Representing Situations in Forward Planning

with Boolean Arrays

Neng-Fa Zhou
zhou@mse.kyutech.ac.jp
Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology, 680-4 Kawazu, lizuka, Fukuoka, Japan

1 Introduction

Among the methods for planning [2, 5, 7, 9, 10, 11, 12, 13}, forward planning is the
most straightforward one. It reasons forward from the initial situation, deriving new
situations from the old ones until a situation in which the goal is satisfied is generated.
Forward planning is also called progressive ﬁla:ming [3, 7] and bottom-up planning [5).
Compared with backward planning [T, 12], it is much more straightforward because the
partial plan already constructed is accessible for constraint checking and no interaction
between subgoals need to be considered. Compared with non-linear planning (9, 10, 11],
it is simple to check whether a condition is satisfied at a situation [1].

There are two well used schemes, namely implicit scheme and erplicit scheme, for
representing situations in forward planning. The implicit scheme uses the partial plan
already constructed and the initial situation to represent the current situation. It is
easy for this scheme to apply a new operator or undo an old operator. It simply inserts
the operator to or delete the operator from the end of the partial plan. However, it is
difficult to search for an applicable operator at the current situation. In order to test
whether or not a condition is satisfied at the current situation, it has to examine the
partial plan and sometimes the initial situation. This is done by the regression operation
{7, 8] or frame axioms [4, 3, 6].

45

Kowalski has pointed out the problem of using frame axioms [3]. He says that “It can
be argued that this (using frame axioms) is unnatural and potentially inefficient. The
alternative, when using depth-first search and reasoning forward from the initial state,
is to store the current state explicitly.” He suggests the explicit scheme that stores the
current situation explicitly as a data base. It is easy for thig scheme to test whether a
condition is satisfied, because we have only to retrieve the current data base. However,
this scheme does has its drawbacks. We have to update the data base when we apply a
new operator. In addition, we have to restore the data base when backtracking occurs.

We propose a new scheme for representing situations in forward planning which is
more efficient than both the schemes described above. The main idea is to store the
current situation with several Boolean arrays. A Boolean array is a relation whose ele-
ments are associated with states. For each type of conditions, we define a Boolean array
whose elements correspond to the conditions. In order to check whether a condition in
an operator is true, we check whether its corresponding element is true. After applying
an operator, we simply set the corresponding elements of the facts in the add-list of the
operator to be true and set the corresponding elements of the facts in the delete-list
of the operator to be false. When backtracking occurs, we simply restore the Boolean
arrays to the state at a previous situation.

2 Method
A DBoolean array is a relation whose elements are associated with states. The predicate

boolean_array(AS)

defines several Boolean arrays where A is an array element and S is the state associated
to A. Bach array element takes the form of f(E,..., E,) where f denotes the name
of the array and Es are atomic terms. The state of an array element is either true or
false.

The call select(f(Ey,..., En_1,X4)), where all Ejs are atomic terms and X, is 2
variable, selects a true element (E),..., Ep_1, E,) from the array named f and binds
Xo with En. The call set-true(f(Ey,..., E,)) (setfalse(f(Ey,..., E,))) changes the

- 4 f —

state of the element (E,..., En) in the array named f into true (false). The call
true(f(Ey, ..., E,)) (false{f(E,, ..., E,})) succeeds if the element (&),..., E,) in the ar-
ray is frue (false).

We consider how to transform the STRIPS [2] representation of a problem to a
program in an extended Prolog with the Boolean array type [14]. For each type of
conditions, we define a Boolean array whose elements corresponds to the conditions. A
formula in the preconditon of an operator is transformed to a select or a true or a false
call. The select call selects a true element corresponding to the formula, and the true
and false calls test whether the corresponding element of the formula is true or false. A
formula in the add-list is transformed to a set_true call. It sets the corresponding fact
to be true. A formula in the delete-list is transformed to a set_false call. It sets the
corresponding fact to be false.

For example, for the blocks world problems described in [8], we define the following
four Boolean arrays for the four types of conditions : clear(X), ontable(X), holding(X),
and on(X.Y).

boolean_array(clear(X) 5):-

block(X).

(initialstate(clear(X)) +S=true;S—false).
boeolean_array(ontable(X),5):-

block(X),

(initial _state(ontable(X))—S=true;S=false).
boolean_array(holding(X) false):-block(X).
boolean_array(on(X.Y).5)-

block(X),block(Y),

(initial_state{on(X,Y))—5=true,5=false).

These clauses are self-explanatory. For example, the first clause defines a one-dimensional
Boolean array pamed clear which consists of all blocks as its elements. If the fact clear(X)
holds in the initial stale, then the state of X is frue; otherwise, the state is false.
Fach operator in STRIPS representation is transformed into a predicate. For ex-
ample, the try_pickup predicate defined helow searches for an instance of the pickup(X)

operator that are applicable at the current situation and applies it.

try_pickup(pickup(X)):-
select(clear(X)), % precondition
true{ontable{X)),
set_true(holding(X)), % add-list
set_false(clear(X)), % delete-list
set_false(ontable(X)).

3 Discussion

Our scheme of representing the current situation in forward planning with Boolean
arrays is much more natural and efficient than previous ones. Compared with the
implicit representation that uses frame axioms, our scheme can test efficiently whether
& condition is satisfied. It simply selects a corresponding array element of the condition
or tests whether the state of the corresponding array element is true. Compared with
the scheme of storing the current situation as a data base, our scheme can add a new
fact or delete an old fact efficiently. It simply sets the state of the corresponding array
element to be true or false.

Our scheme requires space for storing Boolean arrays and the states of array ele-
ments. However, this will not be a serious problem. Tor a world in which there are {
objects and m kinds of facts, assume that each fact has averagely n arguments, then
the total space required is O(m x [").

References

[1] Chapman, D. : Planning for Conjunctive Goals, Artif. Intell., Vol.32, pp.333-377,
1937,

[2] Fikes,R.E. and Nilsson, N.J. : STRIPS : A New Approach to the Application of
Theorem Proving to Problem Solving, Artif. Intell., Vol.2, pp.189-208, 1971.

.13

3]

(4]

[5]
[6]

[7]

(8l

(9]

[10)

11

[12]

[13]

[14]

Georegelf, M.P.: Planning, Ann. Rev. Comput. Sci., Vol.2, pp.359-400, 1987. Also
appear in Readings in Planning, Allen, J. Hendler, J., and Tate, A, {eds.), Mogan
Kaufmann, 1990,

Green, C.C. : Application of Theorem-Proving to Problem Solving, Proc. of 1J-
CAI'89, pp.219-240, 1969,

Kowalski, R. : Logic for Problem Solving, North Helland, 1979,

MeCarthy, J. and Hayes, P.J. : Some Philosophical Problems from the Standpoint
of Artificial Intelligence, Machine Intelligence 4, pp.463-502, 1969.

MecDermott, D. : Regression Planning, Int. J. of Intelligent Systemns, Vol.6, pp.357-
416, 1881.

Nilsson, N.I. : Principles of Artificial Intelligence, Tioga Publishing Co., 1980,

Sacerdoti, E.D. : A Structure for Plans and Behaviour, Elsevier-North Holland,
1977,

Tate, A. : Generating Project Networks, ITCAI-77, pp.888-893, 1977.

Vere, 5. : Planning, Encyclopedia of Artificial Intelligence, John Wiley & Sons,
pp.T48-T58, 1986,

Warren, D.H.D. : WARPLAN - a System for Generating Plans, DAL, Memo 76,
Univ. of Edinburg, 1974,

Wilkins, D.E. : Practical Planning - Extending the Classical Al Planning Paradigm,
Morgan-Faufinann, 1988,

Zhou, N.F. : An Extended Prolog with Boolean Array Type, submitted to 1992
Joint International Conference and Symposiuin on Logic Programming, 1992,

