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A Theory of Predicate Invention

Kiyoshi Akama
Department of Information Engincering
Faculty of Enginecring, Hokkaido University
kita-ku, Sapporo, 060 Japan

Predicate invention is a key procedure of inductive learning. But it does not have enough theoretical
basis and its applicability is restricted to a few data structures and a few knowledge representation
systems. In this paper we propose a theory of predicate inveation, which has the following significant

features.

¢ There are two methods of predicate fnvention. One is Common Structure Procedure (C5P)
and the other is Common Component Procedure {CCOP). The intra-construction operator by

Muggleton and Buntine corresponds to TSP, but not to CCP.

# Predicate invention in this paper is separated from hypothesis generation, and is more accurately
formalized by thcorems of cquivalent traunsformation of programs.

+ Simple hypothesis formation associated with predicate invention can give plausible hypotheses
which may be generated by the truncation and absorption operators.

» The theory inn this paper is based an GLP theory, therefore it gives a unified theory of predi-

cate invention for diverse knowledge representalion systems and data structures, especially logic
programs with terms (pure Proleg), logic programs with strings and constraint logic programs.

1 Introduction

Predicate invention is a key procedure of inductive
learning. In this paper we propose a theory of predi-
cate invention. There are two major problems in the
existing methodaologies of predicate invention.

Cne problem is that they do uot give enough the-
oretical basis to predicate invention. In the paper
of Muggleton and Buntine (12, predicate invention
is based on the principle of inverse resolution. [n-
verse resolution is basically a framework for hypothe-
sis generation. Mredicate invention is associnted with
a siugle operator of intra-construction. Other oper-
ators such as absorption are not related to predicate
invention. In the process of creating these aperators,
inverse resolution depends on what is called simplify-
ing asswinptions.

But they seem to play more roles than the true
meaning of the word and their roles are not so clear,
which makes it more difficult to understand fully what
predicate invention s,

Different view of predicate invention has been
adopted in the research of inductive learning systems
of LS/0 [1], LS/1 [2] and LS/2 {3]. In all these sys-
tems, predicate invention is also one of the most im-
pertant procedures Lo improve their knowledge, More
accurately, in these systems, predicate invention plays
a more fundamental role in structuralizing the knowl-
edge than CIGOL, New predicates are invented in
L5/i (i=0,1,2) in terms of cquivalent transformation
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Figure 1: Old framework

ol knowledge, Hypothesis rules which may be ob-
tained by using the truncation or absorption opera-
tor in CIGOL can be generated in LS/i (i=0,1,2) by
adding simple hypotheses to the results of predicate
invention.

The theory of predicate invention in this paper
is a formalization of the methodology used in LS/
{i=0,1,2). It has the following characteristics.



e There are two methods of predicate invention.
One is Common Structure Procedure (CSP) and
the ether is Commen Component Irocedure
(CCP). The intra-construction operator by Mug-
gleton and Duntine corresponds to CSP, but not
to CCP.

# Predicate invention in this paper is separated
from hypothesis generation, and is more ac-
curately formalized by theorcms of equivalent
transformation of programs.

« Simple bypothesis formation associated with
predicate invention can give plausible hypothesis
tules which may be generated by the truncation
and absorplion operators.
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Figure 2: New framework

The other problem [or the existing methodelogies
of predicate invention is the lack of wide applicabil-
ity of the theory. Decause there has been no theory
which can eflectively unify many knowledge represen-
tation systems and data structures, the research on
learning has had to preduce many slightly different
theories each of which deals with one kind of knowl-
edge representation system or data structure. Thers
is a similar problem in the case of inductive learning
and predicate invention [1, 13, 2, 11, 12, 10). This
problem is overcome in this paper by the theory of
generalized logic programs (GLP theory) [4, 5], be-
cause

* GLP theory is general emough to unify di-
verse knowledge represeutation systems and data
structures, including logic programs with terms
{pure Prolog), logic programs with strings (in-
cluding context free grammers) and constraint
logic programs [8].

¢ GLI' theory is not too abstract to effectively ex-
plain important common structures of inductive
learning algorithms. Dased on the comnmon the-
ory we can construct specialized thearies and ef-
fective algorithms by using specific knowledge of
each data structure and knowledge representa-
tion system.

In this paper we first give in section 2 an illustra-
tive example of the application of the theory in this
paper. MNext we review GLP theory. We introduce
the definition of specialization systems in section 3
and give some examples of specialization systems n
section 4. We summerize the declarative semantics of
generalized logic programs on specialization systems
in section 5. We introduce basic specialization sys-
toms and show theorems for infercnce rules i section
6. We omit the procedural semantics of generalized
logic programs on specialization systems because it is
not necessary for the discussion in this paper.

We give a theory of predicate invention in section
T. The theory is applied to the domain of terms in
section 8 and to the domain of strings in section 9.
Section 10 is the conclusion.

All the proofs ! are omitted here. We use nota.
tions from [4, 5|. Especially, powerset{X) denotes
the powerset of a set X, map(X,Y) denotes the sot
of all mappings rom o set X to o sct 1. map{X) is
equivalent to map{ X, X). partial_map(X, 1) denotes
the set of all partial mappings from asct X to aset 17
poartial map{ X} is defined to be partinlanap( X, X).
Composition of partial mappings are denoted by o,
that is, for two partial mappings [ and g

ID§={{I1-‘]II:$11|'}E 7. (v, z) € f}

2 An Illustrative Example

2.1 Rule Generation by Absorption
Operator

The following example was used to illustrate the ab-
sorption operator in [12].

Input:
member(A, [A[B]). (1)
member (A, [B,A1C]). (2)
Dutput:

member(A, [BIC]) :- member(4,C). (3)

We will explain the eutline of our theory by using this
example,

2.2 Formalization Using Generalized
Logic Programs

In our theory the atom ? member(A,[AIB]) is
mathematically represented by the pair {member,

! For detailed discussion and proofs, see [G, 4, 5|.
?Ammlc formulas are called su|11.r\l:r atoma jin Lhos paper,



(A, [AIB])}). The first fact (1) in the input is rep-
resented in our theory by

(member, (A, [41B])) —
Therefore, we consider that the input of our problem
is a program P, = PU{C{",C4'}, where C{* and C§
are the following clauses

C# = (member, (A, [AI1B]))

Cd = (member, (&, [B,AIC]D) —
and P is the rest of the program which is not men-
tioned explicitly in the above example,

Similarly the output clause (3) abtained by the

absorption operator is represented by a clause CF,

C% = (member, (A, [BIC])) ~— (member, (4,C)).
We deal with the gencration of the rule {3) in two
steps 2.

1. The program Py is equivalently transformed to a
program .

2. The program P, becomes a program F; by adding
hypotliesis clauses.

From the program P, we can deduce O, thatis, P, =
CZ,

2.3 Eqguivalent Transformation

Our first subgoal is to find & new program Py which
is equivalent 1o the input program Py and includes
invented predicates. Une such program is shown bel-
low,

P, = PU{CE.CE}U{CP, CP)
wlere

Cf = (member, (X,Y)) — (v098, (X,Y))

Cf = (member, (2, (BIW])) « (v099, (Z,W))

CP = (voos, (A,[AIC])) —

Cy = (vo9s, (4, [A1C])) —
w098 &and v099 are newly invented predicates which
are not used in F,. Note that two predicates are in-
vented at the same time, while the absorption oper-
ator invents no predicate and the intra-construction
operator invents only one predicate,

Next we show that P, and Fy are equivalent from

a declarative point of view. For any program F. we
denote the declarative meaning * of a program P, by
REP(F,). In this case, we find

REP({P,) = REP(P.)UREP({CPHYVREP{CF})

Let I be the set of all predicates used in the program
Iy and let G, be the set of all pairs of ground terms,
then,

mexber & A

v098 ¢ R

v099 ¢ It _

REP(CPY)N(R X G,) =0

REP{CINN(AxG)=1

REP(F)N(RxG)=REP(R)N(RxG)

¥ The intra-construction operator las only one step.

1Strictly they are f-equivalent, which will be defined saon.

*The declarative meaning of a program P is defined in sec-
tion 5.2,

“equivalent.

When (4} holds, we say that Fy and /4 are H-
In this sense F, is equivalently trans-
formed to By, invenling two predicates.

2.4 Hypothesis Formation

Mext we demonstrate that the predicate fnvention
described above leads us naturally to the output
clause {3} which is obtained by the absorption oper-
ator. First we introduce the :l':tllluwiug Lwao |:|'\‘an]11:5;5
clauses. .
Cff = (v098, (X,Y)) «~ (v039, (X,¥))

Cil = (v099, (X,Y)) « (v098, (X,Y))
Adding these lypotheses is natural ® because both
v098 and w099 represent the same relation at this
point 7, that is,

{g [(vose,g) € REP({C]])}

= {g | (v099,5) € REP({CP}) ).
Similarly we can also add a hypothesis clause

CH = (v098, (X,Y)) ~ (member, (X,Y))
which is the inverse clause of CF. It iz clear that from
CF, Cff and CY we can deduce the following clause.

C% = (member, (A,[BIC])) ~ (member, (A,C)).
which is equivalent to the result (3} whiclh is obtained
by tlie absorption operator,

2.5 Flexibility of the Output

The absorption operator returns a clause (3} which
is equivalent to CF, but when the elause (3) turns
out to be inappropriate it is difficult to modily the
clause to get & new iinproved clause.

The framework in this paper returns a program

Fe=FPU -[C'F,Cf", cP.CP L. CR, G""}

from which we can deduce &%, We can modily P. by
changing some of the hypothesis clauses in P, with-
out retracting CF, C'?'C', E'P and CF which include in-
vented predicates.

In thiz sense our framework is more fAexible than
the inverse resolution in CIGOL.

3 Specialization Systems

GLP theory is important for the theory in this pa-
per because it enables us to develop & unified theory
of predicate invention in later scctions. Here we re
view specialization systems on which GLP theory is
canstructed. See [5] for details,

3.1 Specialization Systems

By gencralizing the structure of terms, grond terms
and substitutions, we get & more abstract structure

*We need not add hypot heses il we invent only one predicate
insiead of two. Dul hypolliesis change ia less flexible than the
case of bwo predicates.

TWhen we get other information shout the unknown pred-
icate menbar later, two predicates may turn out to be a dilfer-
ent relation. In this case we should change the hy potheses C-'H
and CH. This is not possible for the case of inventing only one
prnﬂir_:u.ll instead of two.

E_



called specialization systems.

Definition 1 A specialization syslem is a 4-tuple
I' =< A,G,5,p > that satisfies the following con-

ditians,

(1} p: 8 — partial_map(A)

(2) Vsy,82 € 5,35 € 82 puls) = prlsg) o pu(sy)
(3) 3seS,Vae A: u(s){a)=a

(40 ADC

Elements of .4 are called objects or atoms. © is called
the interpretation domain of I Elements of & are
called specializations, The specializations that satisfy
{3) are called identily specinlizations, and any oue of
them ¥ is denoted by €. A specialization 5 € S is said
to be applicable to ¢ € A iff there exists b € A such
that {a,b) € u(s).

Figure 3: A Specialization System

From the definition, p is a subset of & x
partial_map(A). As each element in partial_map(.A)
is a subset of Ax A, pis a subset of § % powerset{ 4 x
A). We often regard g as a subset of 5 % A4 % A, be
cavse p C 5 X powersel[ A x A)and v C S x4 x 4
determine each other uniquely by the following equa-
tinns,

B = {{‘: M)| M= {{d,b:l i {s,a,b) € "}]’
v={(s,a,b) | (4, M) € p,{a,b) € M}

When there is no danger of confusion, we regard
clements in & as partial mappings over 4, and use
the following notational convention. Each element in
& which is identified as a partial mapping an A is

}There may be mote than one identity specializations.

denoted by a Greek letter such as 8, and the appli-

“cation of such a partial mapping is represented by

postfix notation. For example, 5 € S, u(s){a) and
plsn) o p{spy) e o ps) are denoted respectively
by # € S,af and 8y o f3 0.+ 0 8,. The compasition
operator ¢ is often amited.

In the following discussion we fix a specialization
system I' =< A, G, 5,0 >,

Definition 2 A mapping rep : A — powerset(J) is
defined by repla) = {glog=al e G, 0 € 5}

4 Examples of Specialization
Systems

We give three basic specialization systems and two
specialization construction schemata. We also intro-
duce two specializations systems which will be used
in later sections.

4.1 Domain of Symbols

Damain of symbols form a simple specialization sys-
tem, where symbols ave constants in the sense that
there is no s]:ecia.ﬂz.at.iun excepl thie id.mll.ity spui:ia.l-
ization ¢ which does not change symbeols,

Proposition 1 Let [l be any set and pgp be a map-
ping from {e} to map(R) such that ¥r € H :
pr(e(r) =r. Then < R, R, {e},pn > is a special-
ization systenn.

The specialization system which is constructed from
an arbitrary set i by proposition 1 is denoted by I'g.

4.2 Domain of Terms

Let V', K and F' be mutually disjoint scts. Each cle-
ment of V, K and F is called vespectively, a varialle,
a conslant and a fenction. Each function in F is as-
soclated with a positive integer called arily. Terms
and subsfifufions are defined as wsual. The sat of all
terms over V, K and F is denoted by Term{V, I, F).
The set of all terms over K and F is denoted by
Term(®, i, F). The set of all substitutions over V', K
and F is denoted by Subst,(V, K, F) *. Application
of a substitution & € Subst,(V, K, F) to terms defines
a mapping My over Term(V, K, F). The mapping,
sy = Subst (V, K, F) — map(Term(V, K, F)) is also
defined to give such a mapping My for each substitu-
tion &,

The following proposition shows that terms and
substitutions form a specialization system.

Proposition 2 Let .4; be Term(V,K,F), & be
Term(®, K, F) and 5; be Subst,(V, K, F). Then the
d-tuple < Ay, G, &, 4y > is a specialization system.

The specialization system which is constructed in
proposition 2 is denoted by I'; in this paper.

*The subseript ¢ means terms.



4.3 Domain of Strings

Let ¥, I{ be mutually disjoint sets. Each element of
V and K is called respectively, a variable and a con-
stant. Strings and substitutions are defined as usual.
The set of all strings over V and K is denoted by
String(V U K). The set of all strings over I’ is de-
noted by String(J0). The set of all substitutions over
V and K is denoted by Subst,(V, i) 1% Application
of a substitution § € Subst,(V, ) to strings defines
a mapping Ma over String(l” U K). The mapping,
e : Subst,(V, K) = map(String(V U K}) is also de-
fined to give such a mapping Mj for each substitution

El
The following proposition shows that strings and

substitutions form a specialization systen.

Proposition 3 Let A, be String(V U K}, &, be
String(K') and 8, be Subst,{V, K'). Then the 4-tuple
< Ay, Gyy Sy iy > 15 & specializalion system.

The specialization system which is constructed in
propasition 3 is denoted by T, in this paper.

4.4 Specialization
Schemata

We can construct new specialization systems from
mare basic ones.

Proposition 4 Let Ty =< 4,,0,,5;,4 > and
'y =< Aj, @3, 52, 43 > bespecialization systems. Let
also 4= A1 x A3, G =0, x 0, 85 =8 x5 and
p: S = partial map(A) be defined by '
= {({s1,82), (ar,02), (b1, b2})
| (51,81, 81) € 1y (52,82, b2) € pz ).
Then I'=< A, §,.5, i > is a specialization system.

The specialization system which is constructed {rom
Ty and T3 by proposition 4 is denoted by Ty x Ty,

Definition 3 Let X be any set. Tuple({X) is defined
to be the sct of all tuples of clements in X, that is,
Tuple(X} = X"+ X' + X274

For example, when X = {a,b},
Tuple(X) = {{),(a), (b}, (a, 2), (a, ), (8,5),...}.

Proposition 5 Let I' =< A, G,5,u > be a special-
1zation system. Then

< Tuple(A), Tuple{G), &, v >
is a specialization system, where » S5 =
partial_map(Tuple{ 4)) is defined by 12

=g Upy Ueps e

g = '{Esp{alpﬂiu_--vfﬂ'riL(b]lbﬂt-“l'bl'i}]

|¥Wie {1,2,...,n}:(s,a:,b) € p}

18 The subscript = represents strings.

1 Uging one to one correspondence mentioned in section J
we regard u, py and g respectively as a subsel of 8 x A4 % A,
&y o Ay x4 and 8 x Ay % g,

1 Using ene tv one correspondence mentioned in section 3
we i oand v respectively as a subsel of 5 x A x A and
& x Tuple{ A) x Tuple(.A).

Construction

Tle specialization system which is constructed from

‘T by proposition § is denoted by Tuple(T).

4.5 Specialization Systems used in Ex-
amples

Let [t be a set of symbols such as member, arch, tr,
v189, w002, v-root, v561, v248 and so on. We use
elements of It as predicates. Using basic specializa-
tions (Cr, Ty and [,) and specialization construction
schemata (I} x ['y and Tuple(T')) introduced above,
we can construct two specialization systems, I'y
Tuple(Te) and Ty x Tuple(T,).

[ g% Tuple(Ty) is a specialization system which can
be used te represent atoms in Prolog. For example a
Prolog atom member(X,[2 3 4]} is mathematically
dealt with ' in this paper as (menber, (X,[2,3,41))
which is an element in T'px Tuple(T',), where [2,3,4]
i an abbreviation of cons (2, cons{3,cona (4 ,nil}})
which consists of cona € F, nil € K and numbers in
K.

I'g = Tuple(T,) is a specialization system which is
used to represent atoms with string arguments. For
example

tr{[little girl],[CHIISANA SHOUJO])
is an atom with string arguments " | which means
that [CHIISANA SHOUJO] is a Japanese translation of
[little girl]. In the following theoretical discus-
sions in this paper, this atom is dealt with as

{tr, ([little girll,[CHIISANA SHOUJO]))
which is an element in I'p x Tuple(l',), where
[little girl] and [CHIISANA SHOUJO] are con-
stautb strings,

5 Declarative Semantics of
Logic Programs on Special-
ization Systems

In this section we give the outline of declarative se-
mantics of logic programs on specialization systems.
Due to space limitations, we omit most of the defiui-
tions. See [4].

5.1 Logic Programs on Specialization
Systems

Using lagical connectives (-, A and V) and quantifiers
(v and 3}, we can define formulas on an arbitrary sct.
Classilying formulas into subelasses, we ean intraduce
closed formulas, clauses, program clauses on the given
set. Espeecially, the set of all program clauses on an
arbitrary set X is denoted by PC(X), that is,

PC(X)={H « Bi,...,Ba | H,By,...,Bn € X }

3ymbel atems which begin with capital letter represent
variahles in the case of tarms.

Hilitele girl] is not a list of words but a sequence af
words., Such struclures are called strings from the (heoretical
viewpaint.

J— I{:'_



Let I' =< A, 0,5 p > be a specialization sys-
ten. Fntmu]as, closed fﬂrmulas, clauses and Program
clauses en A are alse called, respectively, formulas,
closed formulas, clauses and prograun clauses on I

Definition 4 A logie program en a specialization sys-
tem < A, 0,8, 4 > is a (possibly infinite} set of pro-
gram clauses on A,

A logic program on a specialization system is often
called & generalized logic program (GLI) in order to
stress the distinction between ordinary logic programs
and generalized ones.

5.2 Declarative Semantics of Logic
Programs on Specialization Sys-
tems

In order to discuss semantics of closed formulas
on specialization systems, we define interpretations,
which determine the truth or falsity of all closed for-
mulas. Models and logical consequences are also de-
fined in terms of interpretations.

Let Program(I'} be the set of all logic pro-
grams on a specialization system [, and let AEFP :
Program(I') — powerset(Q) be a mapping which de-
termines, for each element PP in Program(T), any
ene '3 of

1. the minimal model Mp of P,
2, the least fixpoint of Ip ' |, and
L Epfw,

Then < Program(l),G, REP > is a representa-
tion system in the sense that a program F represents
REFP(FP) which is a subset of §. REP(P) is also
called the meaning of the program P.

6 DBasic Specialization Systems

6.1

In usual logic, the inference rule of resolution 1% is
always sound, Dut it is not always sound in the case
of generalised logie programs. We have already pro-
posed a sufficient condition for the safe application of
the resolution rule:

Basic Specialization Systems

Theorem 1 Let T be a safe specialization system. If
') and Oy be homogeneous elanses on I and

CL = {H'—Ah.,.,z‘i;....,ﬁlg]

Cy= (K« B,,...,B,)

f € 5 be applicable to H, Ay,..., 4i,..., Aq

¢ € & be applicable to K, By,..., B,.

¥ They wre equal.

""Kp & mappowerset(G)) is the knowledge-increasing
transformation of P, which is defined as the sum of Te [one-
stepeinference tranaformation) and Iy (the identily mapping).,

Ve 1w = lus{ K@) | n > 0},

¥ 5ee 6.2,

11

=fe

(HE — A438,..., 4,18,
Bio,..., By, A f,. .., AgF)

then 5 is also a homogencous clavse on I' and

{C1.Ce} = Gy

To improve the readability, we do net define liere
safe specialization systerns and homogeneous clauses
in the theorem 1. Instead of explaining rather compli-
cated definitions for theorem 1, we introduce a smalf
class of specialization systems and show a less general
but more easily understandable theorem.

Ab
Cy

r

Definition 5 A specialization system <

A, C, 8 i > iz basie iff

(1) Ya € A,¥8 € 5: 48 is upplicable te a.
() VgeQ,ViesS:gh=g

(3} Voe 4,3 eSS :afeC

Specialization systems for logic programs with
terms and logic programs with strings are basic be-
cause all specializations are applicable to all atoms,
their interpretation domains are sets of ground atens,
ground atoms arve not changed by specializations and
all atoms can be grounded by some specializations.

Specialization systems for logic programs with
terms and strings are formally dealt with, respee-
tively, by Cr = Tuple(T ) and Ty x Tuple(T,).

Inference Hules for Basic Special-
ization Systems

6.2

We give inference rules for basic specialization sys-
teins.

Theorem 2 Let T be a hasic specialization systemn
and assume that
Cy=(H e A A Ay)
Ca=(A; ~ By,...,B,)
Co=(H+A4,..., 41,
Bll'--rﬂﬂlAi-l-lb-“!-"‘-g:l
are clauses on I, Then, {C,,C:} | Cy.

Theorem 3 Let I' be a basic specialization system
and assume that

Ci=(H+B,,....B,)

Cy ={H8 — ByF,... 0.8
are clauses on I'. Then, ¢ | Cy.

These theorems lead us to the following familier
rule of resolution.

Resolution: Let T' be a basic specialization system.
Let C; and Oy Le clauses on I' and
C| = {H'— AT,”..,A;.,....AQ.}
Gy = (K = DBy,...,B,)
Let (f,¢) be a unifier of A; and I, that is,
A = Ko, and
C:] ={Hﬂ — 1‘11#1.”.,.-4;-13, ,
Hlﬂ'.. . H,-.ﬂ'., A,‘;.|9.. - 1.’4‘&}
Then {Cy,Ca} = .



7 Theory of Predicate Inven-
tion

We give a theory of predicate invention based on GLP

theory.

7.1 Basic Definitions

We assume that a specialization system T
A, 8,8, p > is given.

=

Definition 6 # € & is applicable to W C A iff § is
applicable to all elements in W. & € 5 is applicable to
a clause O iff # is applicable to all atoms in &, When
C is a clause J — By,..., D, and ¢ is applicable to
C, CF is defined as H6 ~— 5, 8,..., B,°f.

Definition 7 A specialization p € § is a renaming
specializetion {or simply a renaming) iff there is an
identity specialization € such that I+ € 5: pr = &

Definition 8 Let X,z € 4 and CF, 0% & PC(A)
Then, (X : z) & (C¥ : C%)iff
[vr e S:[(X7 € rep(z),C'r € PC(G))
(3 S:Cp=C¥r)

For example (X :5) & (£f{X,Y¥) —: £(5,2) — ).

Definition 9 Let P be a program on T, Head(P) is
the set of all heads of clauses in P, Boriy[P} is the
set of all atoms in bodies of clauses in P. Atom({P)
ig the set of all atoms in clauses in P,

Definition 10 Let D C ¢. REP(P; D) is defined
as REP(P) N D.

We also assume that two specialization sysieins
Iy =< Az Gz, 8z > and Iy =< A6y Sppy =
are given.

Definition 11 Let C* = H®* — Bf,..., D be a
clause on I'; and CV = HY «~— BY ..., 8% be a
clause on [y, ©F x C¥ is defined as (H*, HY) —
(BF, BY),...,(B%, DY), which is a clause on I'y x ')

7.2 Two procedures for Predicate In-
vention

Let B be a set of predicates and I'y; be a special-
ization system < R, R, { ¢}, pn > which was defined
in proposition 1. Also let T' =< A,8,5,¢ >. From
proposition 4 we get a specialization system gy x T
As there is one-to-one correspondence between {¢} %8
and &, {(¢,#) € {e} % & is often referred to by # in 8.
In the following we deal with programs on Iy x I

Definition 12 Let R € R. A progrmun P is on R iff
all atoms in F are elements in [T x4,

Definition 13 REP(P | Rt) is defined as REP(P;
Rxg). A program P and a program Pp are Ji-
equivalent if REP(P, | R) = REP(P, | R).

7.2.1 Common Structure Procedure

We give a procedure for predicate invention, called
Common Structure Frocedure (CSFP). The intra-
construction operator for predicate invention corre
sponds to CSP,

Procedure 1 Given a program I on Il which con-

sists of o program F on R and clauses
Cl=(C"xCf) (el

where [ is a non-empty finite set. First find chLw,

w; (i €I, 8; (i €I} and p; (i € I} such that
Clipi=C? (i€l
gi (F € I are renamings
(W w) & (C*: CF)
Wé, =w, (il

Then select # snch that # € R — B and let
CC=(Crer)x(Cte=W)
CP=(r)x(w =) (i€l

Then change the program
Pa=Pu{Ci|ieTl}

(iel)

to
By =PU{Clu{CP |iel).

Theorem 4 DBy the procedure 1 the given program
Py iz R-equivalently transfovined into By, that is,
REP(F, | R) = NEF(F, | IN).

BIVER CLEL... On
find Ce=W and wi,w,...,Wa

p1,2}.

Figure 4: Problem for C5P

7.2.2 Common Component Procedure

We introduce amother procedure, called Common
Component Procedure (CCP).

Procedure 2 Given a program P, on Il which con-

sists of & program P on It and clauses
CA=(CIxCP) Gel)

where [ is a non-empty finite set. First find C?

(iel Wy ({el)w8 (1el)audp (1 € 1)




egivennclausesci(i= 1, ...,n)

Ci CeW Wi
D = P —
n ‘@;?-E:': ':.:: ; _Eg-_ : 1

_1"4‘_

“"‘”ﬂ’x.

p\.q It

Figure 5: Common Structure Procedure

such that
Clopi=CF (iel
pi (1 € I) are renamings
(Wi w) & (C}:CP)
Wigi=w (iel)
Then select r; (i € [)such that , e R- R (i € I
and r; (¢ € I) are different from each other. Let
CP=(ri ) x (we) (i€l
CF =(CT+=r) = (C} &= Wy)
Then change the program
=PU{Ct i€ )

(iel)

(iel)

to
B=PuU{CF|liel}u{CF|ieI]).

Theorem 5 Dy the procedure 2 the given program
Fy is f-equivalently transformed into Py, that is,
REP(P, | R} = REP(P, | R).

7.3 Two Problems for Predicate In-
ventlon

In the procedures 1 and 2 we find two important prob-
lems.

Problem for CSP Given CF (i € I), where [ is
a non-empty finite set. Find C® W, w; (i € I),
#; (i € I) and p; (i € J) such that
Clipi=CF (iel)
pi (# € I} are renamings
(W : w) b (C* : CF)
We=w; (iel)

(iel)

In the Common Strueture Procedure (CSP), the
common part (C*) of given clauses (CF for ¢ € I)
forms the main structure and the different parts {w;
for i € I) are found to be new objects.

Biven €1,01,...,Ca

find Cre=W, Cre=Wy,, . Coe=Woand w

Coe=W,

CCP

Figure 6: Prablem for CCP
Problem for CCP Given clauses CF (i g I},
where I is a nen-empty finite set. Find C?

(e W,ielwe&(iecI)andp; (i €l)
such that
Clopi=C? (i€l
pi ({ € I) are renamings
(Wi : w) b (C! : CF)
Witi=w (iel)

In the Common Component Procedure (CCP), the
common part (w) is extracted as a component and
different parts (C?  for i € I) are found to be new
contexts. CCP is the “dual” procedure to CSP for
inventing predicates.

(i€ T}

8 Examples for the Domain of
Terms

Here we use examples in the paper [12] of 5. Muggle-
ton and W. Buntine.

8.1 Intra-construction

The following example was used to illustrate the
intra-construction eperator. v189 is an invented pred-
icate,

Input:
arch{[],beam, []).
arch([block] ,bean, [(block]).
archi[brick],beam, [brick]).
arch{[block,brick] ,beam, (block, brick]l).

Qutput:
arch{A,beam,4)
vi8s([]).
vi89([block]).
v189{ [brick]}.
v1B8([block,brick]).

i~ v189(A).



™ giveg nclausesci(i=1,..,n)
Ci Cie= Wi w

Lmmmon
Component

Figure 7: Common Component Procedure

We will explain this example by using the theory in
this paper. Assume that we are given a program [
= PU{C}, Cf, 08, C1Y, where

C“' = {arch, ([],bean, (1))~
(arch, ([block],beam,[black])) «—

':9. (arch, (({brick],beam,[brick]}) —

C} = (arch, ([block,brick],

beam, [block,brick])) —

Let It be the set of all predicates in Fy, then arch
€ H. We assume v18% € R = [. From C{},C4,C4
and Cf! we know

C" = arch —
CF = ([],beam,[1) —
Ly = ([block] ,beam, [block]) ~

Cf = ([brick] ,beam, [brickl) +

CP = ([block,brick] ,beas, [block,brick])
As one of the least general generalizations of

115-;,0, and CF is (A, beam, 4} +—, we can select

C W, wn e wy oy, 81,02, 89, 04,01, 2, p3 and py as
fallnws

C* = (A,bean,4) ~

W= (a)

wy = ([1)

wy = {[block]}

wy = {[brick]}

wy = ([block,brick]}
6, = {A/[1}

#2 = {A/[blockl)

f3 = {&/[brick]}

fg = { A/ [block,brick]}
p=A{}

p2={}

1 =1}

P = ‘[}

We can select r = w189, then the new program By is
ru{ccyu{ck,cpP,cf cPy},
where
C€ = (arch, (A,beam, 4)) —

(w189, (&)

C-‘,g (vigs, ([1)) ~
Cy (vigg, ([bleckll}) —
G = (v189, ([brick]}) —
H = (viBg, ([block,brick]}) —
It is clear that Py is R-equivalent to Fy. The trans-
formation from P, to P, corresponds to what is done
by the intra-construction operator.

8.2 Truncation

The following example was used to illustrate the trun-
cation operator.

Input:

member {blue, [bluel}.

menber (eye, [eye,nose, throat]).
Output:

member (A, [AIE]).

We will explain this example by using the theory in
this paper. Assume that we are given a program
E, = PU{C{,C4'Y, where Cf* and Cf! are the fol-
lowing facts.

C'ft = {member, (blue,[bluell)} —

4§ = (member, {eye,[eye,nose,threat]}) ~
Let f be Lhe set of all predicates in Py, then member
€ R. We assume v002 € R — R. From C{' and CJ
we kuaw

C" = member «—

Cf = (blue, [blue]) ~—

¥ = (eye,[eye,nose,throat]) «—

Ag one of the least general peneralizations of CF and
CF is (AL[AIB]) —, we can select
= (A, TAIBI) ~

W =(4,B)

wy = (blue, [])

wy = (eye, [nose, throat])

# = {A/blue,B/ (1}

#3 = {Afeye,B/[nose,throat] }

= ‘[}

pr={}

We can sclect v = w002, then the new program
Py=PU{CC}u{CP, CP}, where
C€ = (member, (A,[AIB])) —
CP = (vo02, (blue,(])) —
= (v002, (eye,[nose,throat])) —
It is clear that F; is fi-equivalent to Fy. Furthermore,
when we add a hypothesis clause

Cl = (voo2, (X,Y)) — (van, (X,Y))
where vou is one of the built-in predicates 19 yyhich
can be represented by infinite * clauses of the form:

Co' = (vou, (X1X2,. .. %;) ) —

It is dea.r that from C¢, C¥ and Cs" we can deduce
the following clause

CT = (member, (A, [AIB]D) +
which is equivalent to the result obtained by the trun-
cation aperator,

{vooz, (4.B))

1% A the built-in predicates are assumed to be included in
P,

MNote that infinite number of clauses can be included in &
program in GLE theory.

14 -



given c,H
find Ce=W
&
Wo=Hg Iy
Ce=W .7 .
- - ;
plA,2):-q(A,1). 7 q(B,B).
" -
-
-
Bm[A/1] a={B/l]
- -
Absorption .
p{1,2).
c=Uh

Figure 8: Problem for Absorption

8.3 Absorption

We will explain the following example by using the
theary in this paper.

Input:
lass(A, a(A)).
lesa(B, s(a(B))).
Output :

less(X, 8(Y)) :- less(X, YJ.

One of the clauses which the absorption eperator gen-
erates is shown above. Assume that we arc given &
program Py = PU{C#, C{'}, where ' and C} are
the following clauses,

C{t = (less, (A,s(A))}

Cf = (less, (B,s(s(B)))) —
Let 7 be the seb of all predicates in Py, then less
€ Jl We assume v098 and v099 are included in 2= .
From C{* and C§' we know

Cl = leas +

CF = less —

CF = (A,s(A)) —

C3 = (B,a(a(B))) ~—
we can select C?,,CE, W1,|"i"';,1u,311|?-;+m and py as
follows.

'C'i= (XY —
C, = (Z,8(W)}) i
Wy =1(x,1

Wy = (Z,W)
w= (h,s(A))

fy = {X/K,Y/sCA))

b2 = {Z/k,W/s(h)}

n=1{}

Pz = {A/B}
We can select ry = v098 and r, = v099. From these
we get a new program B = PU{CF, CFlu{CP,CP},

15

CF = {less, (X,Y)) — (v098, (X,Y)}
Cf = (less, (Z,3(W))) « (v099, (Z,W))
{;i = (w098, (A,8(A))) ~

Oy = (voog, (4,8(A))) -
F, and Py are fl-equivalent. It is easy to obtain the
following two hypothesis clauses.

cll = (voss, (X,Y)) — (v099, (X,Y))

Cil = (v099, (X,1)) — (v088, (X,7))
When we further add to P, U {C{}, CJ{} a hypothesis
clause .

CH = (v038, (X,¥}) — (less, (X,Y))
which is the inverse clause of CF. It is clear that from
C§, Cff and C¥ we can deduce the following clause.

o = {(leas, (X,5(Y}}) + (leas, (X,Y})
which is equivalent to the result obtained by the ab-
surption operator, While the absorption operator re
turns a clause which is equivalent to CT, the pro-
cedure in this paper returns a set of clauses P, =
{CF,CF,CP,CP,CE.Cl,CM} which can deduce
CT. We can modify P, by changing some of the
hypothesis clauses in P, without retracting invented
predicates. But the result of absorption is more dif-
ficult to modify. In this sense our framework is more

flexible than CIGOL.

9 Examples for the Domain of
Strings

Here we use examples of translation learning [2] by the
domain independent inductive learning system LS/1.

9.1 Using Common Structure Proce-
dure
Assume that we are given a program P, = P U

{CF,C4}, where Cff and Cff are the following facts,
C{t = (v-root, ([T am a little girll,
[WATASHI HA CHIISANA SHOUJO DAJ)}) ~—
Cf = (v=root, ([I am a beyl,
[WATASHI KA SHOUNEN DAJ) )=
Let [t be the set of all predicates in P,. Then v-root
€ . We assune v561 € R — 1. From Cf* and C3!
we know
£ = v-root
O = ([I am a little girl],
[WATASHI HA CHIISANA SHOUJO DA)) w
€3 = (I a= a boy],
[WATASHI HA SHOUNEN DA]) —
we can select C° W,wy,wg, 8;, 82, and py as fol-

lows 21,

CP = ([T an a $1], [WATASHI HA $2 DA)) —
W= ([%12, [$2])
w) = ([1ittle girl], [CHIISANA SHOUJO])
wy = {[boy], [SHOUNEN] }
f = {$1/[1ittle girll,

$2/[CHIISANA SHOUJO]}

n this case, symbol atoms which begin with dallar rapre-
sent variables,




f, = {$1/[boy], $2/[SHOUNEN]}
m = {}
=1}

We can select r = v561. Then the new program is
B, =PU{CC}U{CP,CP}, where
0f = (w=root, ([I am a $1],
[WATASHI HA 32 Dal))
~ (v561, ([31],0%21))
CP = (v881, ([little girl],
[CHIISANA SHOUJO]))
= (v561, {([boyl,[SHOUNEN])) —
It is clear that F, is R-equivalent to F.

9.2 Using Commaon Component Pro-
cedure

Assume that we are given a program I, = P U
{C{, C4'), where Cf* and Cj are the following facts.
Cf* = (v248, ([WATASHI NO RINGOI,
[my applel}) —
§ = (v248, ([RINGD], [an apple]}) —
Let R be the sct of all predicates in P U {C, C).
Then v248 € A We assuine v188, v19% € T — R,
From C{* and O we know C and CJ.
C} = ([WATASHI NO RINGO],[my applel) «—
CF = ([RINGC], [an apple]} «—
We can sclect clauses, atoms and specializations as
follows,
c* = ([WATASHI NO $481], [my $482)) ~
= ([$483],[an $484]) +~
Hﬁ = ([$481], [$482))
= ([$483], [3484])
= ([RINGO], [applel) -
= {$481/[RINGOD] ,$482/ [applel }
= { $483/[RINGOD],$484/ [applel }
=1}
={}
We can select ry = v198 and rp = v199, Fram these
we get w new program Py = PU{CF, CFu{CP, CP},
where
CF = (v248, ([WATASHI NO $481],[my $482]))
— {v198, ([$481],[$482]))
C;‘F = {v248 ([$483], [an $484]))
— (v199, ([$483],[%484]))
= (v198, ([RINGO], [applel)) =—
G, = (v199, ([RINGO], [apple])) —
It is clear that I is transformed to Py R-cquivalently.
It is easy to add the following hypothesis clauses Lo
Fs.
Cl = (vi9g, ([31],[5Y1))
— (v199, (HK] (sv1))
ol = (uiga ([sx1, [H]}]
« (vi98, ([$X1,[3YD))
C' = (v198, ([$481], [$482]))
+= (v248, ([WATASHI NO 3481, [my $4821))
Cff = (v199, ([$483], [$484]))
+ (v248, ([$483], [an $484]))
Then Py becomnes P,
P.-=PU{C'F,CF,C P, ¢li,.clf.c cf'}

From P, we can deduce the following clauscs

CH = (v248, ([WATASHI NO $X], [my $Y]))
— (v248, ([$x],[an 3¥])})
C4 = {v248, ([$1],[an 3Y1)})
« (w248, ([WATASHI NO $X],[my $Y1))
which wiglit be obtained by an absorption operator
for the string domain.

10 Conclusion

Predicate invention is the key procedure of inductive
learning. The theory of predicate invention proposed
in this paper has the [ollowing significant features.

¢ There are two methods of predicate invention.
Ope 15 Common Structure Procedure {GSP],
where the common part of given clauses forms
the main structure and the different parts are
found to be new objects. The other is Com-
o Coinponent Procedure (CCP), where the
common part s extracted as a component and
different parts are found to be new contexts.
CCP is the “dual” procedure of CSP for invent-
ing predicates, Muggleton and Buntine proposed
ouly one operatar (the intra-construction opera-
tor) for predicate invention, wihich corresponds

to CST

s Predicate invention in this paper is separated
from hypothesis generation. When a new pred-
icate is made, the semantic meaning ?? of the
given progra is not altered but it may later be
effectively nsed in farming hypotheses.

¢ Dy adding a simple hypothesis formation proce-
dure, we can generate hypothesis clauses, which
increases the semantic meaning of the given pro-
grams., Simple hypothesis formation associated
with predicate invention can give plausible hy-
potheses which may be generated by the trunca-

tion and abserption operators.

CS5P + 5HF = truncation

CCI 4 SHT = absorption
where SHF means Simple Hypothesis Formation.

* The theory in this paper can be applied to homo-
geneous generalized logic programs on sale spe-
cialization systems. Logic programs with terms
{Prolog) and logic programs with strings are
safe specialization systems and all clauses on
these specialization systems are homogencous,
Constraint logic programs form safe specializa-
tion systems and all clauses used in constraint
logic prograus are homogeneous. By construct-
ing appropriate safe specialization systowus, many
knowledge representations ean be regarded as ho-
mogeneois generalized logic programs on them.
Therefore the theory in this paper can be ap-
plied to diverse knowledge representations and
data structures,

2Gemantic meaning of & program P is REP[ F).

.Iﬁ_
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A theoretical framework for predicate
mvention

Stephen Muggleton
The Turing Institute,
36 North Hanover Strect,
Glasgow G1 2AD,
UK.

April 24, 1992

Abstract

A number of authors within the Inductive Logic Programming literature
have investigated the problem of introducing novel terms into the learner’s
vocabulary. This process is known as predicate invention. There is a growing
need for a theoretical framework for predicale invention. We describe a
first attempt at such a framework in an attempt to answer when predicate
invention is necessary and from which universe these predicates are chosen.
The framework uses the notion of a lattice of predicate utility. Some results
of an initial implementation are given.



1

Plotkin [19] was the first to show that f-subsumption and implication belween
clauses are not equivalent. The difference between the two is important since alinost
all inductive algorithms which generalise first-order clauses invert #-subsumption
rather than implication. This inevitably leads to a form of incompleteness in these
algorithms. In this paper methods of constructing the inverse implicants of clauses
are explored. In section 7 it is shown how methods developed in earlier sections can
be extended to the problem of inverting implication in the presence of background
knowledge. First the difference between Plotkin’s #-subsumption and implication

Inverting Implication

Stephen Muggleton
The Turing Institute,
36 North Hanover Street,
Glasgow G1 2AD,
UK.

April 27, 1992

Abstract

All generalisations within logic involve inverting implication. Yet, ever
since Plotkin's werk in the early 1970's methods of generalising first-order
clauses Lave involved inverting the clausal subsumption relationship. How-
ever, even Plotkin realised that this approach was incomplete. Since in-
version of subsumption is central to many Inductive Logic Programming
approaches, this form of incompleteness has been propagated to techniques
such as Inverse Hesolution and Relative Least General Generalisation. A
more complete approach to inverting implication has been attempted with
some success recently by Lapointe and Matwin, In the present paper the au-
thor derives general solutions to this problem from first principles. It is shown
that clausal subsumption is only incomplete for self-recursive clanses. Avoid-
ing this incompleteness involves algorithms which find “nth roots” of clauses.
Completeness and correctness results are proved for a non-deterministic algo-
rithms which constructs nth roots of clauses. It is shown how this algorithm
can be used to invert implication in the presence of background knowledge.
In conclusion the relationship between these results and Hoare's logical defi-
nition of programming from specifications is discussed.

Introduction



between clauses will be reviewed. The reader is referred to Appendix A for the
usual definitions in Logic Programming and Inductive Logic Programming (ILP).

Clause ' f-subsumes clause ) whenever there exists a substitution # such that
C# C D. Clause C implies clause £}, or €' - [, whenever every model of ( is a
model of D). Whenever clause ' #-subsumes clause D it also implies D. However
the converse does not hald. For instance Plotkin shows that with clauses

C = p(f(X)) ~ p(X)
D = p(fif{X))) —p(X)

' implies ), since 1} is simply (' self-resolved. However ' does not #-subsume D.
In discussing this problem Niblett [18] proves various general results. For instance
he shows that implication between Horn clauses is decidable and also that there is
not always a unigue least generalisation under implication of an arbitrary pair of
clauses. For instance, the clause [ above and the clause E = p(f{f{f(X)))) ~
p(X') have both (' and the clause p(f( X)) + p(Y) as least generalisations.

Gottlob [8] also proves a number of properties concerning impliction between
clanses. Notably let &%, ('~ be the positive and negative literals of C and D*, D~
be the same for D). Now if " — D then C'* #-subsumes D% and €~ #-subsunes
D-.

2 Sub-unification

The problem of inverting implication is discussed in a recent paper by Lapointe
and Matwin {11]. They note that inverse resolution [15, 14, 22, 24] is incapable of
reversing SLD derivations in which the hypothesised clause is used more than once.
In fact Plotkin [19] showed that the same problem appears in the use of relative
least general generalisation of clauses. Lapointe and Matwin go on to describe
sub-unification, a process of matching sub-terms. They demonstrate that sub-
unification is able to construct recursive clauses from fewer examples than would
be required by ILP systems such as Golem [16] and FOLL [20]. For instance, given
the atoms append([], X, X) and append([a,b, V], [1,2],{a,b.Y,1,2]) sub-unification
can be used Lo construct the recursive clause

append([U]V], W, [X|Y]) «~ append(V, W, Y)

Unlike the approach taken originally with inverse resolution [15], Lapointe and
Matwin do not derive sub-unification from resolution. Instead sub-unification is
based on a definition of most gencral sub-unifiers. Although the operations de-
scribed by Lapointe and Matwin are shown to work on a number of examples it is
not clear how general the mechanism is.

In this paper a gencral approach to inverting implication is developed. The
approach laken involves a new form of inverting resolution which is derived from
first principles.



3 Implication and resolution

In this section the relationship between resolution and implication between clauses
is investigated. Below a definition equivalent to Robinson's [21] resolution closure
is given. The function £ below contains only the lincar derivations of Robinson's
function R (see Appendix A.3). However, the closure is equivalent up to renaming
of variables given that linear derivation (as opposed to input derivation) is known
to be complete.

Definition 1 (Reseclution closure) Let T be a set of clauses. The function L is
recursively defined as

El{l"] = T
LYT) = {C:CyeL"YT),CyeT,C is the resolvent of Cy and Cq)}
the resolution closure £L*(T) is LHT)U LY T)U ...

Lee [12] first proved the subsumption theorem, a reproof of which can be found
in Bain and Muggleton [1]. The theorem can be stated as follows.

Theorem 2 (Subsumption theorem) Let T’ be a set of clauses and C be a non-
tautological clause. T |= C if and only if there exists D in L°(T') and substitution
# such that DO C C.

In order to apply this to the case of implication between clauses Theorem 2 can he
applied to the special case in which T' is a single clause.

Corollary 3 (Implication between clauses using resolution) Lef U be un
arbitrary clause and D be a non-tautelogical clavse. C = D, or C — D, if and
only if there exists a clause E in L*({C}) and substitution § such that E6 C D.
Proof. Follows directly as a special case of theorem 2.

Restating corollary 3, ¢’ — D whenever one of the following conditions holds
1. D is a tautology.
2. (' f-subsumes D.
3. E f-subsumes D) where E is constructed by repeatedly sell-resolving C.

The first two conditions are somewhat trivial. The third condition demonstrates
the significance of self-recursive clauses in this problem. It is clearly no coincidence
that Plotkin’s example {Section 1) and the clauses investigated by Lapointe and
Matwin (Section 2) are self-recursive.



Figure 1: Squaring a clause

4 Nth powers and nth roots of clauses

The set of clauses constructed by self-recursing C, £*({C}), is partitioned into
levels by the function £. By viewing resolution as a product operation Muggleton
and Buntine [15) (see *-" operator in A.3) stated the problem of finding the inverse
resolvent of a pair of clauses as that of finding the set of quotients of two clanses.
Following the same analogy the set C* = L*({C}) might be called the squares of
the clause €' and €% = L3({C'}) the cubes of C. The following definition capturcs
this idea.

Definition 4 (nth powers of a clause) Let C' and D be clauses. Forn > 1,
LD is an nth power of C' if and only if D is an alphabetic variant of a clause in
L({C}).

Taking the analogy a bit further one might also talk about the nth roots of a clause.

Definition 5 (nth roots of a clause) Let C' and D be clauses. D is an nth root
of O if and only if C iz an nth power of D.

Corollary 3 can now be restated in terms of nth rools of a clause.

Corollary 6 (Implication between clauses in terms of nth roots) Let ' be
an arbitrary clause and [) be a non-tautological clause. € — D if and only if for
some positive integer n, € is an nth root of a clause £ which 0-subsumes D.

It is fairly straightforward to enumerate the set of clauses which f-subsume a given
clause. Therefore the problem of finding the set of clauses which imply a given
clause C reduces to that of enumerating the set of nth roots of clauses which 8-
subsume . The special case of clauses which immediately #-subsume € occurs
with n = 1.

5 Constructing the square roots of a clause

Before attempting the harder problemn of constructing arbitrary nth roots of clauses
let us consider the simpler problem of constructing the square roots of a clause.
Figure 1 shows the self resolution of the clause €' to give D, where D € C%



Assume that this resolution involves the complementary pair (18,,78,) where [ is
a positive literal in €' and {' is a negative literal in ' and #,6, is the most general

unifier (mgu) of [ and I'. From the definition of a complementary pair {Appendix

A.l)
g, =1,

where the domains of 8, and #; are subsets of vars(l) and vars(l') respectively.

Clause © can be written as
l—UNE (1)

where H is a conjunction of literals. If ' 15 a definite clause and ! 15 an atom then
B will be a conjunction of atoms. D, any self-resolvent of (', has the general form

“jg — FE] M BE;I] i) Hﬂ? (2]

The problem now is how to censtruct ¢ (clause 1) from D (clause 2). To do so
I, I" and B need to be reconstructed. A simple non-deterministic and incomplete
first-cut approach to this problem would seem to be as follows,

Algorithm 1 (a simple, flawed square root algorithm)
1. Choose from D a pair of literals {IH,,?’_E;} with the same predicate symbol.

2. Partition the clause D — {I0,, P60y} into two equal cardinality conjuncts B,
and BO; which are both instances of a conjunct B.

3. Construct 8; and 6, by matching B to B#, and B,.
{. Invert the substitution 8, on I'0, and 0; on 16, to get I' and | respectively.

3. Returnl ' n H

The following example, which uses Prolog-like notation, demonstrates Algorithm 1
at work.

Example T (Trace of Algorithm 1)
Let clause O be
It(F,G) ~ suce(F, H), t(H,G)

and [ be
(1, J) — suce(l, I{), suce( K, L), l§(L,.J)

The steps in Algorithm 1 are followed below to reconsiruet C' from D.
1. Let 16y = It{1,J) and I'0; = It(L,J).

2, Let By = suce(I, K) and B, = suce(K, L), which are both instances of
B = suce[ M, N).

$. 6, = {M/K,N/L} and 6, = {M/I,N/K}.



4 0=0(M,J) and I' = [t(N,J).
3. Return [t(M,.J) — W{N,J), suce(M, N)
which is an alphabetic variant of C.

Algorithm 1 has a number of shortcomings. Firstly, it is non-deterministic. This
could be overcome by constructing all possible solutions and returning those which
self-resolve to give alphabetic variants of C. Secondly, Example 7 demonstrates that
the substitutions #; and #; constructed in step 3 of Algorithm 1 can be incomplete.
In Example 7 neither #; nor #; contain a substitution for the variable J. Plotkin's
clauses in Section 1 provide an extreme example of the incomplete construction of 8,
and #,. In Plotkin's example B is empty and therefore step 3 will fail to extract 8
and f3. Thirdly, the inversion of the substitutions in step 4 is not straightforward.
If the use of inverse substitutions described in {15] (defined also in Appendix A.2)
is [ollowed then there can be a multiplicity of possible inverse substitutions of a
particular substitution & applied to a given literal I. Many of these problems can
be avoided by first flattening the clause D, constructing its square roots and then
unflattening the results.

5.1 Flattening clauses

Rouveirol and Puget [23, 22] describe operations called flattening and unflatten-
ing to simplify inverse resolution. This form of operation is well-known within
the literature of integrating logic programming and functional programming (sce
for instance [7, 4]). Rouveirol and Puget's flattening operation transforms clauses
with function symbols inte clauses in a function-free form. Unflattening a clause
transforms it back to its original form. The approach taken in Lhis paper to flat-
tening clauses differs [rom Rouveirol and Puget in that only equality literals are
introduced rather than introducing new predicates. For the purposes of finding
the square roots of a clause, flattened clauses will be used with a particular goal
i mind. The goal is to ensure that the mgu involved in self-resolving a clause is
a special kind of substitution known as a reneming. Since renamings are casy to
invert they help solving some of the problems with Algorithm 1.

5.2 Renaming

Lloyd [13] defines a renaming substitution, or a renaming for short, as follows (see
Appendix A.l for the definition of vars(F)).

Definition 8 (Renamings) Let F be a well-formed formula and § = {u, /vy, ..,
Un/Un} be a substitution. 8 is a renaming of F if and only if uy, .., u, ure all distinet
variables, vy, .., v, are all distincl variables and (vars(F)={uy, ., us }JN{ve, . v} =

0.

Renamings are easy to invert because they are one-to-one mappings. The jnverse
of a renaming is defined as follows.



Definition 9 (Inverse renaming) Let 8 = {uy/v1, .., un/vs} be @ renaming of
the formula F. 67, the inverse of 8 for F, is the substitution {vy/uy, .., v./u,}.

The following theorems about renamings can now be shown.

Lemma 10 (Renaming composed with its inverse is identity function) Let
# be a renaming of the well-formed formula F'. F86™ = F.
Proof. Fach vartablc u in the domain of 8 is mapped to o distinet variable v by 6.

v is then mapped back fo u using #7.

Lemma 11 (Composition of renamings is a renaming) Let # be a renaming
of the formula I and v be a renaming of I'0. The substitution o7 is a renaming of
£,

Proof. Let u be mapped to v in 0. If v is in the domain of v and v 15 mapped lo
w in T then u s mapped umiquely to w in or. Otherwise u s mapped uniguely to
vnoT.

5.3 Flattening using equalities

As stated earlier the goal 1s to use flattening to ensure that the mgu involved in self-
resolving a clause ' is a renaming of €', This can be done by flattening the clause
s0 that the only lerms in the two recursing literals are sets of distinct variables.

Example 12 (Flattening, squaring and unflattening a clause)
Let elause U be
member(G, [H|I1) « member(G, I)

7 is flaltened to to
member(G,J) « member(G, 1), J = [H]]]

in which the only terms in the two recursing literals are sets of distinet variables.
Self-resolve C invelves resolving it with Co where o is a renaming of all the variables
in . Thus Co might be

member(G', J') — member(G", 1), J' = [H'|I']

The head of C can be resolved away with the member atom in the body of Co. The
mgu involved 15 the renaming & = {G'/G, I'/J} of C and the resolvent is

member(G,J') — member(G, 1), J' = [{'|J], J = [H|I]
Unflatiening this clause gqives
member(G,[H', H|I]) — member(G,I)

whieh is the square of the clause €.

Flattening and unflattening of clauses need now to be formally defined. First the
function unflat is defined as follows.



Definition 13 (Unflattening) Let ' be the clause DV E where D contains no
equality liferals and £ 1s the conjunclion 51 = fyAsy = g A A5, = t,. unflat(C) =
Dejeqg. e, where ¢ is the mgu of 5, and &, for 1 <1< n.

Unflattening is equivalent to resolving away all equality literals in the body of a
clause using the single axiom equality theory

X=X
The set of flattened clauses is defined as follows.

Definition 14 (Flattening) Let C and D be clauses. D € flat(C) if and only if
C is an alphabetic variant of un flat(D).

5.4 Canonical flattening

Next a canonical flattening will be defined to capture the method of flattening
applied in Example 12.

Definition 15 (Canonical flattening) Let C and D = FVE be clauses in which
F contains no equality literals and £ is a conjunction of aloms. D is a canonical
flattening of C, or D € cf(C), if and only if D € [lat(C) and every literal in F
has the form p(vy,..,v.) or plvy, .., v,) in which vy, .., 1, are distinct variables and
every atom in E has the formz =y orz = fy1,..,4m).

Since it is intended to use canonical flattening to improve Algorithin 1 it is necessary
to show the following.

Theorem 16 (Mgu of squaring a canonical flattening is a renaming) Let
C' be a clause and D be a canonical flattening of C. If D is self-resolved to give E
then the mgu involved in the resolution is @ renaming of D).

Proof. Let D =1« I' A B, let Do be I} standardised apart using the renaming o
of D and let (I,Ta) be the pair of literals involved in the resolution of I and De.
Letting I = p{uy, .., uy) and l'a = p{vy,..,v,) the mgu involved in the resolution is
& = {vi/ur,..,vnf1n}. The variables uy,..,u, and vy,..,v, are all distinet since both
D and Do are canonical flattenings of C' (sce Definition 13). The sets {uy, .., un)
and {,..,v,} are disjoint and none of the variables {v1, .., vy} appear in [} since D
and Da have been standardised apart. Therefore, by Definition 8, 0 is a renaming
of D.

Next it is necessary to be assured that flattening a pair of clauses, resolving them
and then unflattening the resolvent gives the same result as resolving the original
clauses.

Lemma 17 (Unflattening distributes over resolution) Let (; and C; be
clauses and Dy and Dy be flattenings of Cy and Cy respectively. The clause F
is the resolvent of 1y and Dy enly if un flat(F) is the resolvent of Cy and Ca.

Proof. Let Dy =1 e By AEy and Dy = Iy — I' A By A E; where B, and B, are
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flatten flatten

Figure 2: Flattening and squaring is equivalent (o squaring and flattening

the set of all equality atoms in Dy and Dy, Let C) = unflat(Dy) = (Il — By)e, and
Cy = unflat(Dy) = (I = I' A Ba)ey where ¢ and ¢; are the substitutions produced
by resolving away E, and E; respectively. Let € = ¢yeq. Let Dy and Dy resolve on
the pair of literals (1,T) to give I'. Then unflat(F) is equivalent to

un flat(ly = By A By A Ey A By A (I=1)) (3)

since unflat will unify and remove | and I'. In the same way resolving Oy and (3
using the pawr of literals {le, U'e) is equivalent to

unflat((l; — By A By A (I = 1'))e) (4)

Formula { can be derived from formula § by resolving away Ey A Ey. This completes
the proof.

As a corollary flatiening, squaring and unflattening a clause must be equivalent to
squaring the original clause.

Corollary 18 (Flattening, squaring and unflattening) Let C' be a clause and
D be a flattening of C. The clause F is a square of D only if unflat(F) is u square
of C.

Proof. Let the renamings ¢ and t be used to standurdise apart C and D) respec-
tively. The corollary is now simply a restatement of Lemma 17 with €y = C,
Co=Co, Dy =D and D)y = Dr.

This corollary applies to squaring a clause whereas the intention is to canonically
flalten a clause, extract its square root and unflatten the result. Figure 2 iilustrates

the following theorem.

Theorem 19 (Canonical flattening and squaring) Let € be a clause and D be
a canonical flatiening of C'. The clause F' is a square of D only if F' is a canonical
fattening of a square of C.

[
|
|



Proof. Given Corollary 18 it is only necessary to show that squaring a canonical
flattening produces a canonical flutfening. Let D = [ « VA B A E where I s
conjunction of all equality atoms. Let ¢ standardises Do apart from D. Let D and
Da resolve with complementary pair (18,,Tafy) to give F' =

lo8y — I'0y A (B A E)oy A (B A E)ab,

According to Lemma 11, since o is a renaming of I} and 8; is a renaming of Do
their composition oy is o venaming of [). Every subcomponent of F' is a renaming
of a canonical flattening. Therefore I' 15 a canonical flatiening.

5.5 An improved square root algorithm

Theorem 19 suggests the following nondeterministic algorithm for extracting the
square roots of a clause.

Algorithm 2 (Square root algorithm)
1. Canonically flatien the input clause G te give clause IV
2. Choose from I' a pair of literals (163, I'8) with the same predicate symbol.

3. Parittion the clause F — {:H-J,E} inle fwo equal cardinelily conjuncts B#,
and By from which B is conslrucled by laking the leas! genevalisalion of
corresponding pairs of literals which are alphabetic varients.

4. Construct the renamings 8y and 82 of 17 by matching B to B, and Bf,.
G, Apply 67 to I8, and 8 to 18; to get I' and | respectively (ser Lemma 10).
6. Return O = un flat(l — ' A B) if (7 is the square of C.

This can now be applied to Plotkin’s example from Section 1.

Example 20 (1race of Algorithm 2)
Let clause G be p( f(f{X))) «— p(X]).
The steps in Algorithm 2 are followed below.

1. Fisp(Y) — p(X), Y = f(2), Z = f(X).
2. Let 18, = p(Y) and I'; = p(X).
3. Let Bo, be (Y = f(Z)). Bb, be (Z = f(X)) and B be (U = f(V)).

{. 6y is the renaming {U/Z, V/X} of D and 8y is the renaming {UJY,V/Z} of
D,

56 is {Z)U X[V, 60 is {Y)U,Z/VY}, | = 10,05 = p(U) and I' = I6,6] = p(V').

6. Return C = unflat{p(l) «— p(V'), U = f(V)) which s p{f(V)} « p(V). G
iz the square of C.



The following theorem shows that Algorithm 2 is complete and correct in a non-
deterministic sense.

Theorem 21 (Completeness and correctness of Algorithm 2) Let C be a
clause and G be a square of C'. When Algorithm 2 is presented with & there s a
scl of choices made in steps 1, £ and 3 which will construct an alphabetic variant
of C.

Proof. Algorsthm 2 is correct since step 6 guarantees that any solution returned
will be a square root of O, Therefore it s necessary to show it is complete in the
sense that an alphabetic variant of every square root of G can be constructed given
appropriate choices for the non-deterministic steps I, 2 and 3. This is guaranteed
by Theorem 19 since there is a canomical flatiening F' of ' which has the form

lafly — 'O A (B AE) A (BAE)e,

fD=1—UNBANE and C =(l — " B)e {see proof of Theorem 19).

3.6 Problems with Algorithm 2

Despite Theorem 21, applying Algorithm 2 is not without problems. The problems
are to do with generating flattened clauses in step 1. Consider again the canonically
flaltened clause D =

l—~VABAE

and its square ' =
{8y — FIE] A B& A BEL A EE] A K,

Certain terms and literals will not appear in un flat(F) under the following condi-
tions.

e Literals m and ' appear in B A E for which mf; = m'6;. Only one instance
will therefore appear in F.

¢ The equality v = t appears in E8; A Ef; and v does not appear in any other
literal in D). The terin ¢ will therefore not appear in un flat(F).

* The equalities v = 5 and v = ¢ appear in £6, A Ef; aud 5 # {. Only the term
formed by unifying s and t appears in un flat(F),

Restrictions could be devised for the clausal language to which Algorithm 2 can be
straightforwardly applied. However this approach will not be followed up in this
paper.
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Original variables | u; [ v | .. | uy | vn
f, Iy | Wy | | Fy | Wy
f Wy U | . | We | Un

Figure 3: Initialisation of substitution table

5.7 Tabulated substitutions

Steps 3 and 4 of Algorithm 2 cannot be wholly separated. From a programming
point of view it makes sense to build up the substitutions #, and #; at the same
time as matching literals in step 3. Ouly literals which lead to #, and 8; being
renamings should be matched. A simple way to do this is to build up a three row
table of variables. The first row represents variables in the flattened version of
€. The second and third rows represent the unique mappings of these variables
in 03 and ;. When initialising this table it is possible to take advantage of a
constraint related to the unification of the recursing literals [ and . Suppose that
['=pluy,..,u,) and I" = p{vy,..,1,). These must unify to give a literal plwy, .., wy,)
where I0; = p(xy, .., x,) and I'f) = p(y1,..,yn). This constraint can be represented
in the initialised substitution table shown in Figure 3.

The following example demonstrates the use of such a substitution table in
Algorithm 2 for the predicate split which breaks a lisl into two approximately
equal lengthed sublists.

Example 22 (Use of substitution table)
Let G be split([H, 1|0}, [H|K),[[|L]) + split(J,K,L). The steps in Algorithm 2
are followed below.

1. F is split(M,N,0) e split(J, K, L), M = [H|P}, P = [I|J}, N = [H|K],0 =
[71L].

2. Lel 18, = split(M, N, 0) and 0, = split(J, K, L).

3. The substitution table 15 inifialised to

(rriginal variables || R[S T\ |V
'ng |I M . _wl N Jwy | O try
1, ) Jl uny J wy | K | ws | L

Let Bby be (M = [H|F], N = [H|K]), B, be (P = [I|J],0 = [I|L]) and B
be (Q = [W|R], S = [W|V]). The final substitution table is

Original variables | Q |R|{S [ T{ V[ W
by | MIPIN[O|K| U
b1 [P {J]O|K|L|I




Bh-l ﬂ'h
F

Figure 4: Self-resolving a clause n times

(Note that that the consiraini described in Figure 3 led to the merging of
columns of original variables T and U).

4. 8y is the remaming {P/Q,J/R,O/S,K/T, L{V,I/W} and
tpis the renaming {M/Q,P/R,N/S,O/T K/V, H/W}.

5. 8] is the renaming {Q/P, R/J, S]O, T/K,V/L W/},
0315 the renaming {Q/M, R/P,5/N,T/O,V/K, W/ H},
I = 10,05 = split(Q, S, T) and
V= 10,07 = split(R, T, V).

6. Return C = un flat(split(Q. 5,T) — split(R, T, V), Q = [W|R], § = [W|V])
which is split([W|R|, [WIV],T) — split(R, T, V). G is the square of C.

6 Constructing the nth roots of a clause

In this section the construction of nth roots of clauses is investigated. Assume that
D} is a canonical flattening of the clause ’ . Figure 4 shows D resolved n times
against itself to give the clause F', where F' € D". Suppose that this self-resolution
always involves instances of the literals | and T from D. This is a simplifying
assumption since ) need not always self-resolve using instances of the same pair of

Iiterals. If clause I is
T—UI'nE

then clause F is

15 +— 8,85, 03,0/ BO05. . 8q0 1A
BEEE‘EH‘;..EQ:H_]J'\L
Y
Byn 20301 A
BEE‘H



Note that ' contains n instances of B. One of these instances has the same substi-
tution as the instance of I (82,). Another instance ol & has the same substitution
as the instance of I (6;63..84,_1). In the above it was assumed that self-resolution
always involved instances of the literals ! and T from D. Somewhat surprisingly,
the phenomenon of corresponding substitutions occurs for all clauses in D",

Theorem 23 Let D be a clause, n be an integer greafer than 1 and F be a clause
in D", F has the form I V 5 V By vV Bya V.. V B, where | and I' are atoms
in L with the same predicate symbol and B = D — {1, T'}.

Proof. The proof is by mathematical induction on k. The base case, n = 2, is
true since if D self-recurses with complementery pair (16,08;) then F is 1, —
I'th v By v Bl;. Assume the theorem is true for all integers from 2 to k and prove
it follows for k+ 1. Let F in DF be Iy VIV By V By V..V By and D be
Iv Iy B. Assume F' and D resolve with complementary pair {Iy e, U'3) and mgu
o where the domains of o and [ are subsets of vars(ly,) and vars(l'} respectively.
The resolvent of F' and D) in D¥*' is I3V l'ypa V ByaV Bypa V..V Bya V B3,
This clause fulfills the condition and completes the proof.

By extending the arguments of the previous section it can be shown that F must
be a canonical flattening of a clause ¢ which is an nth power of (.

Theorem 24 (Canonical flattening and nth powers) Let (" be a clause and
L} be a canonical flattening of C. The clause F is an nth power of [) only if I is
a canonical flattening of an nth powsr of C'.

Proof. The proof is by mathematical induction on k. The base case, n = 1. is
trie stnce ) is a canonical flattening of C. Assume it is true for all n up to k and
prove for k 4 1. F in D**' is constructed by resolving D with F' in D*. From the
inductive hypothesis and Lemnma 17, F 15 e flatlening of a clause in D¥Y, Since the
mgu 0 invelved in constructing F' is simply a composition of renamings i follows
from Lemma 11 thot § is a renaming. The set difference belween F oand F' is a
renaming of a subset of D and thus F is a canonical flattening of a clause in DF¥L,
T'his completes the proof.

This allows a slight variant of Algorithm 2 to be used for constructing the nth roots
of a given clause. In the following we assume that n is given and that F contains
the literals I8 and Fa.

Algorithm 3 (nth root algorithm)
1. Canonically flatten the input clause (5 to give clause F.
2. Choose from I a pair of literals (I8, 'c) with the same predicate symbol.

3. Choose two equal cardinality conjuncts of literals Ba and B from clause
H = (F = {I8,a}) each of which have an nth of the cardinality of H from
which B ts constructed by taking the least generalisation of corresponding pairs
of literals which are alphabetic variants.



4. Construct renamings a and [ by matching B to Ba and B§.

. Apply o to la and 37 to I'3 to gel | and U vespectively.

Ty

6. Return C = unflat(l « ' A B) if G is the square of C.

The following example demonstrates Algorithm 3 on Plotkin's example from Section
1 with n = 4.

Example 25 (Trace of Algorithm 3)

Let clause G be p(f(F(S(F(X)))) « p(X).
The steps in Algorithm 5 are followed below.

L Fisp(H) « plX), H = [(I), I = f(J), ] = f(K), K = f(X).

Let la = p(H) and I'§ = p(X).

Let Ba be (H = f(I)), BA be (K = [(X)) and B be (L = f(M)).

« is the renaming {L/H, M[I} and (3 is the renaming {L/K, M/X}.

a' is the renaming {H/L,I/M}, 87 is the venaming {K/L,X/M}, | =
lae” = p(L) and I' = I'353" = p(M).

6. Return C' = unflat(p(L) « p(M), L = f(M)) which is p(f(M)) — p(M).
G is the fourth power of .

The following theorem shows the completencss and correctness of Algorithm 3.

te

e R

e

Theorem 26 (Completeness and correctness of Algorithm 3) Let C be a
clause and G be an nth power of C. When Algorithm 3 is presented with G there is
a set of choices made in steps 1, 2 and § which will construct an alphabetic variant
af C.

Proof. Algorithm 2 15 correct since step 6 guarantees that any solution returned
will be a square root of C'. Therefore it is necessary to show its completeness. This
18 quaranteed by Theorems 27 and 24.

6.1 Problems with Algorithm 3

The primary problem with applying Algorithm 3 is deciding the value of n for any
given clause. One clue here comes from the form of the canonically flattened clause
shown in Section 6. Since clause H = (F — {la,I'd}) contains n instances of B,
the number of vccurrences of every predicate and function symbol in H must be a
multiple of n. From this fact there should be a small finite number of candidate
values for n for any given clause. However, it should be noted that literals and
lterms can be lost in the three ways listed in Section 5.6.

Note also that Corollary 3 says that in order to construct clause € which implies
clause [, it is necessary to first construct a clause E which subsumes D. But how
should £ be chosen? One way is to drop literals from a canonical flattening of D
until appropriate numbers of occurrences of predicate and function symbeols remain
in £. Then take the nth root to give C.
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7 Implication and background knowledge

In the normal setting of Inductive Logic Programming [14] generalisation is car-
ried out in the presence of background knowledge. In this section the solution to
inverting implication between clauses is extended to the case in which background
knowledge is present.

Assume a background clausal theory T and a clause (or example} C which is
not entailed by 7. Assume that there is a single clause [J such that

ThD E C

This problem can be transformed to one involving implication between single-c]auses
as follows.

TAD E C
D E (I'-0C)
D= (T'—C)

E D= (TAC)
= Do {iALA.)

In the last line (T A ') is replaced with a conjunction of all ground literals which
can be derived from (T A C). This can be viewed as replacing the formula with a
maodel of the formula. Since (3 Al; A...) is a conjunction of literals, the last line
above represents implication between two clauses. The clause ({; VI V...) can be
constructed to be of finite lengih if T is generative (see [16]) and elements of the
model are only constructed to a finite depth of resolution. This clause can then be
used to construct I using the methods described in previous sections.

& Conclusion

In this paper the general problem of inverting implication is discussed. This prob-
lern is at the heart of research into Inductive Logic Programming and Machine
Learning in general since all fonins of generalisation involve inverling implication.
The methods and algorithms described in this paper are derived from a first princi-
ples approach to the problem and extend previous approaches such as those using
inverse resolution [15, 14, 22, 24] and relative least general generalisation (19, 2, 16].

Although a first attempt has been made at this problem in a previous paper by
Lapointe and Matwin [11] the author believes the approach taken in this paper to
be more general and comprehensive. Various remaining problems with the square
root and nth root algorithms are described in Sections 5.6 and Section 6.1. The
problems of time complexity of these algorithms is not discussed here. Also no
implementation of the approach described in this paper has been made.

As Lapointe and Matwin noted, the advantages of extending the generalisation
techniques beyond those of inverse resolution [14] lie in the fact that fewer examples
are required to learn recursive clauses, Recursive clauses have not been vital for the



success of several real world applications of Inductive Logic Programming [17, 10,
6, 3]. However, they are of central interest within problems involving construction
of arbitrary programs. Traditionally this area has invelved deductive techniques
within the area known as formal methods. According to a recent paper by Hoare

(9]

Given specification 5, the task is to find a program P which satisfies it,
in the sense that every possible observation of every possible behaviour
of the program P will be among the behaviours described (and therefore
permitted by) the specification of 5. In logic, this can be assured with
mathematical certainty by a proof of the simple implication

FF =S

MNote that this problem is encompassed by the discussion in this paper. However,
the requirements for Inductive Logic Programming are slightly weaker than those
described by Hoare, since if the specification S 1s an incomplete set of examples
then not all behaviours of F are defined. However, there is nothing in the present
discussion to stop one making use of arbitrary (non-ground) formulae instead of
examples. Such formulae could comprise a specification in the sense that “every
possible observation of every possible behaviour of the program P will be among
the behaviours described”. The background knowledge referred to in Inductive
Logic Programming maps to the the set of abstract data types and data opera-
tions used in formal methods approaches. Nate also that using the approach in
this paper P —+ § should be ensured by construction and is similar in that way
to the approach of transformational pragramming introduced first by Burstall and
Darlington [3].
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Appendix

A Definitions from logic

A.1 Formulae in first order predicate calculus

A variable is represented by an upper case letter followed by a string of lower case
letters and digits. A function symbol is a lower case letter followed by a string of
lower case letters and digits. A predicale symbol is a lower case letter followed by
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a string of lower case letter and digits. The negation of F is F'. A variable is a
term, and a function symbol immediately followed by a bracketed n-tuple of terms
is a term. Thus f(g(X),h) is a term when f, g and & are function symbols and X
is a variable. A predicate symbol immediately followed by a bracketted n-tuple of
terms is called an atomic formula, or atom. Both [ and [ are literals whenever [ is
an atomic formula. In this case { is called a positive literal and | is called a negative
literal. The literals { and ! are said to be each others complements and form, in
either order, a complementary pair. A finite set (possibly empty) of literals is called
a clause. The empty clause is represented by O. A clause represents the disjunction
of its literals. Thus the clause {l;, [, .45, lig1,--.} can be equivalently represented
as (v v v Ea v or byl — Gyl A Horn clause is a clause which
contains at most one positive literal. A definite clause is a clause which contains
exactly one positive literal. The positive literal in a definite clause is called the head
ol the clause while the negative literals are collectively called the body of the clause.
A set of clauses is called a clausal theory. The empty clausal theory is represented
by B A clausal theory represents the conjunction of its clauses. Thus the clausal
theory {Cy,C3, ...} can be equivalently represented as () ACz A ...). A set of Horn
clauses is called a logic program. Apart from representing the empty clanse and
the empty theory, the symbols O and ® represent the logical constants False and
True respectively. Any clause, such as { « [, which is equivalent to ® s said to
be a tautelogy. Literals, clauses and clausal theories are all well-formed-formulae
(wff’s). Let E be a wif or term. vars(E) denotes the set of variables in E. E is
said to be ground if and anly if vars( E) = (.

A.2 Models and substitutions

A set of ground literals which does nol conlain a complementary pair is called an
interpretation. Let M be an interpretation, C be a clause and C be the set of all
ground clauses obtained by replacing the variables in ' by ground terms. M is a
model of ' if and only if each elausze in C contains at least one literal found in M.
M 15 a model for clausal theory T if and only if M is a model for each clause in
T. Let Iy and I'; be two wil's. £ semantically entails Fy, or /1 = [ if and only
if every model of J) is a model of Fy. F) is said to syntactically entail Fy using
I, or FibiFy, if and only if F; can be derived from Fy using the set of deductive
inference rules I. The set of inference rules [ is said to be deductively sound and
complete if and only if F1+ /% whenever F} = Fo. In this case the subscript can be
dropped and one can merely write £ - F5. Let F and I, be two wif's. Fy is said
to be more general than F; if and only if #) F F;. A wif F' is satisfiable if there is
a model for F' and unsatisfiable otherwise. F' is unsatisfiable if and only if F = O.
The deduction theorem states that Fy A F; = Fy if and only if Fy &= F; — Fs.

Let 8 = {vi/t1,...va/tn}. ¥ is said to be a substitution when each v; is a
variable and each {, is a term, and for no distinct 7 and j is v; the same as v;.
The set {vy,..,v,} is called the domain of 0, or dom(f), and {t1,..,¢,} the range
of 8, or rng(#). Lower case Greek letlers are used lo depote substitutions. Let
FE be a well-formed formula or & term and # = {v,/t;,..,vs/{s} be a substitution.



The instantiation of E by @, written E#, is formed by replacing every occurrence
of v; in E by t;. Let F' be a well-formed formula and ¢ = {u, /vy, .., us/v,} be a
substitution. @ is a renaming of F' if and only if uy, .., u, are all distinct variables,
U1y .., Un are all distinct variables and (vars(F)—{u;, .., un})N{v1..., v} = 0. Every
sub-term within a given term or literal | can be uniquely referenced by its place
within [. Places within terms or literals are denoted by n-tuples of natural numbers
and defined recursively as follows. The term at place (i) within f(fo,..,1m) is t:.
The term at place (to,..,4,) within f(to,..,tx) is the term at place (iy,..,i.) in ¢;,.
Let t be a lerm found at place p in literal [, where [ is a literal within clause (.
The place of { in C is denoted by the pair (I,p). Let E be a clause or a term
and & = {v1/t1,...vs/ls} be a substitution. The corresponding inverse substitution
71 15 { {0, {Pigs oo Promy P01 (B {Pety s Prma b1/ va ). An inverse substitution is
applied by replacing all £; at places p; 1, .., pim, within E by v;. Clearly £60-! = F.
Note that an inverse substitution is not strictly a substitution but rather a rewrite.
Let € and D be clauses. Tt is said that C' #-subsumes D if and only if there exists
a substitution # such that C8 C I

A.3 Resolution

Let Iy and F; be two wif’s and 0 be a renaming of Fy. F\0 and F} are said to be
standardised apart whenever there is no variable which occurs in both 30 and Py
I 8 is used to standardise apart formula F and F@ then F and F@ are said to be
alphabetic variants. ‘'I'he substitulion @ is said to be the unifier of the atoms ! and
I" whenever 16 = I'0. u is the most general unifier (mgu) of [ and ¥ if and only
if for all unifiers v of I and /' there exists a substitution & such that (Ip)§ = Iv.
((C = {I})U(D={T"}))8 is said to be the resolvent of the clauses ¢’ and I whenever
C and D are standardised apart, [ € C, T € D, 0 is the mgu of { and I. That
is to say that (8,T0) is a complementary pair. The resolvent of clauses C and D
is denoted (C' - D) when the complementary pair of literals is unspecified. The ‘-’
operator is commutative, non-associative and non-distributive.

Let T' be a clausal theory. Robinson [21] defined the function R*(T) recursively
as follows. R%(T) = T. R™T) is the union of ™! and the set of all resolvents
constructed from pairs of clauses in R"~'(1'). Robinson showed that T is unsat-
isfiable if and only if there is some n for which R*T) contains the empty clause

(O).
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1 INTRODUCT I ON

So far machine learning has been developed without taking
a great deal of account of what is known as confirmation theory.
In this paper | want first to argue that confirmation theory is
in fact needed for machine learning. | will then go on to give
a survey of various approaches te confirmation theory, and will
try to show how they can be related to machine learning.

In very abstract and schematic terms, the aim of machine
learning is to write programs which will derive generalisations,
or rules, or hypotheses, or theories from data. Typically a
program is fed with some initial or training data, and obtains
a hypothesis which agrees with this data. The hypothesis is then
tested out against some further data. Let us suppose that the
hypothesis (H say) accords with this further data. We then have
a situation in which H successfully explains a body of data (E
say) comprising both the training and the test data. Before we
can use H in practice, however, we need to form an estimate of
how well H is confirmed (or corroboratad) by E. only if the
confirmation is high, would we be justified in using H in some
practical application. We thus need to form an estimate of the
degree of confirmation of H by E, which is written C(H,E). Now
confirmation theory is quite simply the investigation of the
function C(H,E), and we can therefore see why confirmation theory
is needed in machine learning.

Confirmation theory has been studied by philosophers of
science and by statisticians, whe naturally deal with the case
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in which H is a statistical hypothesis. Unfortunately the
subject has proved difficult, and rather intractable. There is
in fact no generally agreed way of defining the-confirmation
function C(H,E). MNonetheless some progress has been made. A
number of different approaches have been suggested and developed,
and | will try in this paper to explain some of these and show
how they might be applied to machine learning. One initial point
iz worth making at this stage, | have so far given the
confirmation function in the form C(H,E), but, in reality, the
evidence E 1s always taken in conjunction with some assumed
background knowledge (B =savy). We should, therefore, strictiy
speaking, write C(H, E&B) rather than C(H,E)}. For simplicity |
will usually follow the standard convention of not writing B
explicitly; but the presence of B should not be forgotten, and
sometimes we shall have to take conscicus acceocunt of B.

Bavesianism is one of the leading approaches to confirmation
theory. it involves two assumptions. The first is that the
confirmation function obeys the ordinary axioms of probhability.
This is written C(H,E} = Pr(H|E), which can be read as stating
that confirmation is a probability function. The sacond is that
changes in confirmation can be calculated using Bayes' Theorem.
This process is known as Bayvesian conditionalisation. HNow the
equation C(H,E} = Pr(H|E) may at first sight seem trivially
true, since in ordinary language we tend to use expressions like
E confirms H, and E renders H probable more or less
interchangeably. It is important to realize, however, that this
ordinary language argument is very far from establishing
Bayesianism. The claim that the function C(H,E) should satisfy
a very specific set of axioms (the probability axioms) is a

substantial claim, and one which might not be true. In fact
there are non-Bavesian approaches to confirmation &heory
developed by Popper and others in which the confirmation

function C(H,E) does not satisfy the axioms of probability.

My own preference is for non-Bayesian confirmation theory.
I have criticized Bayesianism in detail in my [1988], and will
present one of the main arguments against Bayesianism at the
beginning of section 3. This will lead to a development based
on the Turing-Good Weight of Evidence Function. Then in section
4 1 will describe the SES measure of confirmation which is non-
Bayesian in character. This is developed using Popper's measure
of the severity of a test, but differs from Popper’'s awn
confirmatien function. It is introduced here for the first time.

These general considerations about confirmation theory will
however become rather abstract and unsatisfactory unless they
are related to a specific method for machine learning. For this
purpose | have s=selected the approach to machine Jlearning
introduced by Stephen Muggleten in his [1988], and at present
being developed by Stephen Muggleton and his colleagues at the
Turing institute in @lasgow, UK'. This approach has roots in the

formal theory of algeoerithmic complexity, Naturally the
particular ideas developed should be applicable in other
approaches to machine learning. It should be added, however,



that my investigaticn does lend support te the Turing Institute's
new approach to machine learning. As we shall see, this approach
depends crucially on the notion of k-bit compressign, and, as |
will show particularly in sections 3 and 4, this concept agrees
very well with concepts from confirmation theory (e.g. the
Turing-Good weight of evidence function) which were developed in
contexts quite different from machine learning. Theoretical
convergence of this kind is a hopeful sign of being on the right

track.

Let us begin by looking at those features of Muggleton's
system which we shall need to use. Suppose that we have a set
of peositive instances E', and a machine learning system which

induces theories (which may be thought of as programs) from these
instances. The system has induced a theory P which successfully
explains the positive instances, soc that P b E*. The guestion
now arises as to whether P dis trustworthy, or whether dts
apparent success js just due te chance. To tackle this problem
Muggleton supposes that we can define a reference Turing Machine
T. {[1988], p. 126):

r

‘.. which, given an encoded version of P as input generates an
encoded version of E' as output.

Thus
T.(1(P)) = O(E")

where [(P) is an input tape encoding of P, O(E') is an output
tape enceding of E* and I(P) is k bits shorter that O(E*). ... We
will use X, toc denote the statement that there exists such a k-
bit compressed explanation I(P) of O(E*)."

So, given that P provides a k-bit compressed explanation of the
positive instances, we have to consider what support or

confirmation this gives to P. Il will attempt to tackle this
problem by considering in turn some standard approaches to
confirmation theory. For completeness | will begin with

classical statistics, although, as will become apparent, this is
purely falsificaticnist and does not introduce a confirmation
function.



2 CLASSICAL STATISTICS

On this approach we set up a null hypethesis, and see if it
is refuted by the evidence. Muggleton suggests {([1988], p. 128)
that 'we might take the null hypothesis to be that the examples
E' were produced by tossing a coin.’ Muggleton denotes this null
hypothesis by ¥ , and shows that, from an earlier result in his
paper, we have

Pr(X, I‘Fh £ 2k - (1)

in the standard approach of classical statistics we try to
refute the null hypothesis by setting up a rejection class whose
size (probability) is suitably small (usually less than 5%). The
null hypothesis is then regarded as falsified if the observed
result lies in this rejection class, and confirmed ctherwise.

In the present instance the rejection class should obviously
be of the form

Xo U Xy U ... U X, - (2)
so that we regard the null hypothesis as falsified if r € k ¢ n
i.e. if the compression is sufficiently high. HNow
Pr{X, U X.,, U ... UX)) < 27 4+ 277" &+ _ 4+ 20
= 2°r*l _ pon - (3

For large n, this is approximately equal to 2°r*'. Sa, if r-1 =
5 i.e. r = 6, Pr{Rejection Class) ¢ 3%. Hence if we regard the
null hypothesis as falsified when compression k > 6, we will be
wrong in less than 3% of cases.

It should be noted, however, that 97% is not used in
classical statistics as a measure of confirmation. One of the
main peints of this section is to stress that this would be an
erronecus interpretation. In fact classical statistics has a
purely falsificationist approach. Hypotheses are set up, and
tested to see whether they are refuted or falsified at some lavel
of significance, but no attempt is made to estimate the degree
of confirmation of a hypothesis which passes a number of tests.
To obtain a measure of degree of confirmation, we need to look
at some of the other approaches.



3 WEIGHT OF EVIDENCE FUNCTIOHNS

We will begin this section by describing a well=known
general difficulty with Bayesianism. Suppose that a particular
individual (Mr A say) assigns a prebability Pr(x) to X. This
surely implies that, if asked to bet on whether X is true, Mr A
will be prepared to do sco at the rate p = Pr(X). Now consider
the case in which X is a universal hypothesis, say "All Ravens
are Black’. |If Mr A& bets that H is true, he might lose since a
nen-Black Raven might be discovered, but he could never win
because it can never be definitely established that a universal
hypothesis is true., However many Black Ravens we have observed,
it always remains possible that a non-Black Raven will appear in
the future, showina that the universal generalisation is falze.
It follows that the only reasonable rate at which Mr A can bet
on H is 0 - a rate which is really equivalent to Mr A's refusing
to bet. If Mr A bets at any rate p > 0 on H being true, he might
lose, but cannot win. This argument seems to establish that

PriH)} = 0 for any universal hypothesis H. But rnow consider

Baves' Theorem

Pr(HIE) = Pr(EIH) Pr(H) - (4)

Pr(E)
If Pr(H) = 0, it follows that Pr(HIE) = 0. 5o it seems that on
the Bayesian position, C(H,E) = 0 for any universal hypothesis
H and any evidence E. This 1is obviocusly completely counter-
intuitive.

There have been some suggestions for resolving this problem
(see Giliies [1988), pp. 192-9, and Cussens [1991]), Chs.? and
3, pp. 20-49). Moreover in many machine learning situations we
are dealing with hypotheses of finite extent rather than
universal hypotheses. Yet even if Pr(H) can be taken as non-
zero, it is often not clear what 1its value should be.
Bayesianism needs prier probabilities, but prior probabilities
are characteristically difficult to evaluate in a way which is
not arbitrary. This suggests that it is worth exploring non-
Bayesian approaches to confirmation theory which aveid the use
of prior probabilities altogether. These are best approached by
a consideration of weight of evidence functions.

Te introduce the concept of weight of evidence, we must
begin by writing in the background evidence B explicitly.
C(H,E&B) stands for the total confirmation given to H by both E
and B. Weight of evidence W(H,E,B) is a 3-place function?, and
represents the contribution made to the total confirmation by the
individual item of evidence E against a background B. Weight of
evidence functions can be either additive or multiplicative. For
the additive case, we have

C(H,E&B) = W(H,E,B) + C(H,B) - ({5)
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This shows that if the prier confirmation can be neglected, we
can use W(H,E,B) as our confirmation function. In general,
however, this will lead to a non-Bayesian confirmation functien.

For the multiplicative case
C(H,E&B) = W(H,E,B) C(H,B) - (8)

Bayes' Thecrem {4) with the background knowledge made fully
explicit takes the form

Pr(H]E&B) = Pr(E|H&B) Pr(HIB) - (7)

Er(E|B)

Comparing the twe eguations (6) and (7), we see that the Bayesian
weight of evidence function (BW say) is multiplicative, and given
by

BW(H,E,B) = Pr{E|H&B) - (8)
PriEIB)

How 1f we want to cormvert this multiplicative function to an
additive one, we can do so simply by taking logs. iIf we do
so,and revert to the convention of net writing in the background
knowledge explicitly, we obtain the fellowing additive weight of
evidence function

W(H,E) = log Pr(EIH) - log Pr(E) - (9)

This is in fact the Turing-Good Weight of Evidence Function for
the case in which Pr(H) = 0. This function was introduced by
Turing and Good in their cryptanalytic work during the Second
World War, and developed by Good after the War. For historieal
details and discussions see Gillies [1990], Good [1879], [1883]
Ch. 15, p. 159 and [1985], and Hodges [1983].

Applying the Turing-Good Weight of Evidence Functien to
Muggleton's machine learning situation, we get

W(P,E') = log Pr(E*IP) - leg Pr(E") - (10)

Since E* is gensrated by the program P, we have Pr(E'|P) = 1, and
so log Pr(E"|P) = 0. The evaluation of log Pr(E*) is , however,

a little more difficult, since it involves another principle of
confirmation theory (the principle of explanatory surplus) which
we must next describe,

A particular case of the principle of explanatory surplus
arises in the following situation (cf. Gillies [1989] pp. 377-

9). Suppose we have n facts f,, ..., f_ , and these are
explained using s theoretical assumptions Tis ovesTy. The
principle of explanatory surplus states that Tys .. ,T, are

supperted not by all the facts which they explain, but only by
that fraction of the facts which can be considered an explanatory
surplus. The simplest and most straightforward way of estimating
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the size of the explanatory surplus is to subtract the number of
theoretical assumptions used from the number of facts explained,

giving the value n-s.

The principle of explanatory surplus was developed to
explicate the role of confirmation in the history of science, and
in Gillies [1989] it is applied to the case of Newton's theory,
taken as comprising the 3 laws of motion , and the law of
gravity. In historical cases of this sort, the division of the
theory into s theoretical assumptions, and of the evidence into
rn facts presents problems, and inevitably invelves some
arbitrariness. The situation is better in artificial
intelligence, where the use of formalised languages usually
creates a mnatural division inte discrete assumptions or facts,

Returning now to Muggleton's machine learning, it is natural
to measure bhoth the numher of theoretical assumptions in the
program P, and the number of facts in the evidence E* by the
number of bits in their respective codings. |f there are n bits
in E*, then, since we have k-bit compression, there are n-k bits
in P. Thus applying the principle of explanatory surplus, we
regard only n - {(n-k) = k bits of the avidence as actually
supperting P, it is reasocnable to assign these k bits of
evidence the prior probability 2°%, and sc taking logs to the

base 2, the value of the Turing-Geood Weight of Evidence Function
in the Muggleton machine learning case turns cut to be

w(F,E') = k - (1)

This result is both striking and encouraging. The Turing-Good
Weight of Evidence Function and the Principle of Explanatory
Surplus were developed in contexts complietely different from that
of machine learning. Yet when they are applied to Muggleton's
machine learning approach, it turns out that the weight of
evidence is equal to k, the key parameter in the approach. This
theoretical convergence can, we think, be taken as indicating
that Muggleten's approach may be on the right lines.

We must next point cut that sc far we have considered only
the special case in which the cbserved evidence E* is all derived
from the program P. |t may however be worth considering the more
general case in which the program generates some, but net all of
the observed evidence E*. Let us suppose that E* = E(1) & E(2),

where E{1) jis successfully generated by the program P, but where
the program generates something different frem E(2), Let us
suppose further that E'') is r bits long in its cading, and E(?)

is s bits long in its coding, where r + s = n. In this situation
Pr(E*IP) = D, so that log Pr(E*{P) = - ©© . The Turing-Good
Weight of Evidence Function thus becomes always negatively
infinite. This correspoends te the fact that the hypothesis

represented by P has been refuted by the negative evidence E(2),

There may, however, be a practical situation in which our pregram
P generates most of the observed evidence E', but fails in some
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cases. Strictly speaking we should simply regard P as refuted,
but we may in practice want to regard the cases of failure simply
as exceptions or noisa, and P as stil) quite well confirmed. The
Turing-Good Weight of Evidence Function cannot represent
confirmation in this sense. In the next section, therefore, we
will present another measure of confirmation = the S5ES measure -
which has been developed from Popper's measure of the severity
of a test, and which gives intuitively satisfactory results in

the case just described.

4. THE SES MEASURE OF CONFIRMATION

Popper's fundamental approach to the theory of corroboration
is contained in what could be called the principle of severe
testing. Popper formulates this principle as follows ([1334],
p. 267):

' ... it is not so much the number of corroborating instances
which determines the degree of corroboration as the severity of

the various tests to which the hypothesis in question can be, and

has been, subjected.’

But how do we measure the severity of a test? Suppose the test
is of a hypothesis H, and yields evidence E. Then Popper
considers a guantity Q defined by

@ = Pr(E|H&B) - Pr{(E|B) - (12)

Let us first consider the case in which @ is positive. @
is large if Pr(E|H&B) is large, i.e. if E is highly probable
given H&B, and if Pr(EIB) is small, i.e. if E 1is highly
improbable given B but not H. In other words Q@ is large if E is
improbable without H, but probable with H. If E satisfies these
conditions, then it is reasonable to say that the corresponding
test is severe, and @ may be taken as a measure of the severity

of the test,

Let us next consider the case in which @ is negative. (It
turns out to be convenient to deal with the positive and negative
cases separately.) IG] is now large if Pr(E|B) is large, and
Pr{E|H&B) 1is small. In other words |Q| is large if E is very
probable given the background knowledge alone, but becomes very
improbable if H is added to the background evidence. |In these
circumstances it is reasonable to take la] as measuring the
extent to which E undermines the hypothesis H.

It should be noted that Popper's measure @ is closely
related both to the Bayesian Weight of Evidence Function (8),
and to the case of the Turing-Good Weight of Evidence Functien

given in equation (9).

We will now describe a confirmation function which we will
call the SES measure of confirmation. SES is an acronym for
Severity and Explanatory Surplus. The measure is formed by



combining Popper's & function with the principle of explanatory
surplus. The SES measure is thus partly based on Popper's ideas,
but it should be noted that Popper's own corroboration function
iz different from the SES measure. An account of Popper's own
corroboration function is to be feound in his [1959] and [1983],

Ch. IV, pp. 217-55.

The SES measure of confirmation is an ordered pair {+ec,-u>,
vwhere ¢ and u are both positive. We express the evidence E as
ECVIEE(2) yhere E'') supports the hypothesis to degree ¢, and E(2)

undermines it to degree u. The calculation of c and u is qarried

out as follows. We first of all consider the evidence E as
giving the results of a number (n say) of tests of the hypothesis
H.? We then consider those tests for which Popper's @ is

pesitive, and sum the values of @ over these tests to give ¢,
We then estimate the fraction {(f say) of the results of the
positive tests which may be considered an explanatory surplius,
and set ¢ = ¢'f. To obtain -u, we simply sum the values of Q@
for the tests feor which @ is negative. The SES measure is
implicitly setting the confirmation or disconfirmaticon of the
hypothesis H on background knowledge equal to zero, and it might
be desirable 1in some cases to correct the measure to take
explicit account of the confirmation or disconfirmation of H on
B. ©One advantage of the SES measure of confirmation is that the
numbers have a simple intuitive meaning. Suppose that C(H,E) =
<+c,-u». This means that H has passed the equivalent of c tests
of maximum severity, and failed the eguivalent of u maximally
undermining tests,

wWe will now apply the S5ES5 measure of confirmation to
Muggleton's machine learning in the case considered at the end
of section 2 in which the evidence E' is divided into E(11ggf2),

In this approach we have to consider the evidence E* as the

result of a number of tests of the hypothesis P. Since E'
consists of n bits, we can take each bit as representing a test.*
Consider a particular evidential bit (EBIT say). Its values can

be coded as 0 and 1, so that Pr(EBIT|B) = 1/2. |If P generates
the cbhserved value EBIT i.e. P passes this test, we have
Pr(EBIT|P&B) = 1, so that @ of EBIT = 1 - 1/2 = 1/2. If P
generates a value different from EBIT i.e. P fails the test, we
have Pr(EBIT|P&B) = 0. so that § of EBIT = -1/2.

Let us now consider E{'), which, by assumption, contains r
bits. We first sum Q over these r bits to obtain ¢’ = r/2. We
have next to estimate the fraction f of E{'' which can be

considered as an explanatory surplus. P has k-bit compression,
and so consists of n-k bits. Thus the explanatory surpius is

r = (n-k) = r+k-n if r+k»*n, or = 0 if r+kin. Thus ¢ = ¢'f, where
f = r+k-n/r if r+k>n, or = 0 if r+k<n. Turning now to E‘??,
which, by assumption, contains s bits where r+s = n, we simply
sum @ cver these s bits to obtain u = -s5/2.
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So the SES measure of confirmation in this case
follows:

is as
Cc(P,E*) = < r+k-n/2, -s/2 > if r+kdn
= <0, -s/2 » if r+kin - {13)
It is interesting to ocbserve the value of ¢ in the case in which
all the evidence is positive, i.e. E* = E'Y), r=n, and s=0. We
have
c(P,E*) = < k/2, 0 > - (14)
Im this case, then,

the positive confirmation is half the value
of the Turing-Good Weight of Evidence Function, and, once again,
the parameter k

is of crucial importance,
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FOOTNOTES

" This paper is part of the Rule-Based Systems project, and I
would like to acknowledge the support of a Science and
Engineering Research Council grant: GR/G 29854, Earlier
versions of the paper were read at project meetings, and I am
most grateful for comments and suggestions from other members of
the project, particularly James Cussens, Dov Gabbay, Tony Hunter,
Steve HMuggleton, and Ashwin Srinivasan.

lPor a more recent account, incorporating further developments,
see Muggleton, Srinivasan, and Bain [199%2].

2The importance of weight of evidence, and the fact that it is

a 3-place function are rightly stressed by Cood (cf. his [1983],
Ch. 15, para 4, pp. 159-60).

*The division of evidence into discrete tests may be somewhat

arbitrary, just as we saw earlier that there is an arbitrariness
in the division of a theory intoc a number of theoretical
assumptions, or of evidence intoc a number of facts. The use of
formalized languages in machine learning, combined with
considerations of context, should help to resoclve this problem.

‘Another approach might be to divide E' intc 'examples' and take

each example as a test. In general each example will need
5?veral bits to enceode it, so that this would give somewhat
different results, The meaning of the warious calculations

remains clear provided it is clearly understood what is being
taken as a single test.
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Towards Inductive Generalisation in Higher
Order Logic |

Cao Feng, Stephen Muggleton
The Turing Institute, George House, 36 North Hanover Street, .
Glasgow G1 2AD, UK

Abstract

In many cases, higher order {Horn) ¢lauses are more suited to express certain con-
cepts when relations between predicates exist. However, to date there has been no
appropriate higher order logic within which efficient inductive generalisation can be
carried out. This paper describes inductive generalisation in M) ~ a higher order logie
which not only retains the expressiveness of A-calculus but also provides for effective
and efficient inductive generalisation. The main strength of M, is twofold: it is a
higher logic extension of the (clausal) first order logic and it can be mechanised in a
way similar to the first order case in Horn clause form. For nonredundant A, nor-
mal terms, their least general generalisation (LGG) is unique, and so is their most
general unification. Inductive generalisation in M} is implemented in the algorithm
HOLGG. This algorithm has been applied to some interesting induction problems in
the induction of higher order rule templates and automatic program transformation.

1 Introduction

Generalisation forms the basis of most inductive learning systems. In first order logic, gen-
eralisation has been well-understood (17, 18, 21|, and many algorithms lave heen devised
based on these principles [13]. Using a first order inductive tool [13], we can obtain the
clauses:

YAVYVZ.ancestor(X,Y) «— ancestor( X, Z), ancestor(Z,1"). (1)
VAVYVZ lessdhan(X,Y) — less than(X, Z), less than(Z,Y). (2)

which are the generalisation respectively of the facts: less_than(1,3),less than(2,4),... and
ancestor(john, steve), ancestor(steve, mike), . ..

The clauses in (1) and (2) are very shmilar in the sense that (1) can be obtained from (2)
by substituting the predicate symbol ancestor for less_than, and vice versa. If we allow for a
special variable P, it is not difficult to see that both clauses in (1) and (2) are “substitution
instances” of the clause:

VXYYYZ.P(X,Y): —P(X,2),P(Z,Y) (3)

with P being substituted by ancestor for (1) and lessthan for (2). As P is a predicate
variable, this clause needs a higher order language that goes beyond the first order predicate
logic used in present machine learning research and applications.

In general, a term E is more general than another term F whenever theie is a substitution
6 for which £6 = F. Therefore the formula in (3) is more general than beth in (1) and (2).
Because the clause in (3) contains the higher order variable “P", its meaning is not clear
before it is made precise by formal semantic and syntactic definitions. Thus we need to
consider the problem of how P, X, ¥ and Z are interpreted in (1), (2) and (3). This



has been partially tackled by logic programming in higher order Horn clauses [14], whick
incorporates new methods to deal with higher-order terms.

(Obviously, the higher order clause is a more powerful representation both in terms of
expressiveness and efficiency. Conversely, if we are given the higher order clause such as the
clause in (3) we hope that we can more quickly find the rules (1) and (2) with respect to

some given facts (perhaps in higher order).

2 Motivation

In order to introduce a higher order language we need to address several issues pertinent in
inductive learning. The main concerns are:

¢ Expressiveness. Meta-level information about inductive problems can, in many cases,
only be expressed adequately with higher order terms. The induction of program
transformation rules is [7] is a case in point.

¢ Induction. Inasmuch machine learning is concerned, we need to consider how (3) can
be obtained, especially from the given formulae such as (1) and (2). This gives rise to
the need of the induction of (3). Similar to the case in first-order logic [17, 18, 13], this
may be solved by generating the least general generalisation (LGG) of terms in this

language.

e Efficiency. To achieve practical efficiency, deduction and induction in this language
must be easy to compute. In specific, corresponding to first order logic the lower bound
of generalisations and unifications of terms must be unique as both are unique for the
language of first order terms.

Follewing Robinson, unification has become the basis of resolution-based logic deduction.
Huet [6] found a semi-deterministic unification algorithm for higher-order terms. Inspired by
the success of the logic programming language Prolog, AProlog [14] has been developed as
a full higher-order extension of Prolog. It has been successfully applied in writing program
transformers, theorem provers and a number of other areas [15, 2],

Similar to MGU, the least general generalisation (LGG) of terms (17, 13] plays an impor-
tant role in the emerging field of wductive logic programming, which is evalved from logic
programuning and conventional machine learning [12]. However, as the field matures the need
for various higher-order notions has arisen in order to guide the induction of Horn clauses
from facts (ground atoms). These include rule templates [20, 8, 4], predicate determinations
and modes [13], variable types (9, 19] and predicate commutativity [9].

At present, higher order terms already have many applications in machine learning:
these include inductive learning [13], analogical reasoning [5], constructive induction [20] and
model-driven induction [8]. It is argued that higher-order terms provide elegant expressions
for many problems. However, the higher order formalisms used in research to date are ad
hoc. In particular they deliberately avoid using A-calculus. They therefore lose the expressive

power of higher-order logic.
In a higher order logic, a term E is more general than another term F, or F is more

specific than £, if and only if there is a substitution § such that E# is A-convertible to F.
This is denoted by E >3 F or F <; E. The relation >4 is transitive, nonsymmetric and
reflexive and thus defines a partial ordering over terms. E =; F, or E is #-equal to F if and
only if £/ > Fand F 23 E. When E>; Fbut E#4 F,wesay Fl > For F <; E.

Aterm E is a common generalisation of a set of terms T if and only if E is more general
than each of the terms in 7. A term E is a least general generalisation of a finite set of
terms T if and only if: 1) E is a common generalisation of T; and 2) for any F <4 E, F is
not a common generalisation of T,
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It is shown in {3] that in general there are mult_iple.ar an infinite number of solutions for
the LGG of two higher-order terms that are expressed in full afn A-calculus (see Appendix
A). In order to compute LGGs efficiently, it is desirable to have a restricted A calculus such
that MGU and LGG are unique in the condition of not sacrificing effectiveness. It is, indeed,
only the formula (3) in Section 1 that we are most interested in. To achieve this we will have
to place some additional conditions on A-calculus and hopefully we can find a manageable
subclass of the general A-calculus. One such restriction is Ly {11]. Ly [11, 16] is a restricted
subset of AProlog which has unique MGU and LGG. But it is ill-equipped to express many
problems. In particular it cannot represent recursions in its terms which we shall see in

Section 6.

3 M,: a restricted higher order language

Readers unfamiliar with simple (typed) A-calculus may go to the Appendix A for the relevant
information on A-calculus. Throughout this paper, the terminology is similar to that used
in logic programming, especially Prolog. Variables are denoted by upper case letters U/ to
Z; formulae and terms by other upper case letters; constants by lower case letters; types by
Greek letters o,  and +; and substitutions by Greek letters 8, & and etc., when confusion
does not arise. The constant “«" is often used as an infix operator for convenience of
understanding. In a few occasions we will use calligraphical upper-case letters to denote
sets. Suitable super- or sub-scripts may also be used.

A L; [11] term contains only frece variables that are applied to bound variables. For

example, the formula
AXAYAZ(P(X,Y) — P(X,2), P(Z,Y)). (4)

is a [,y term. The free variable P only has arguments that are bound variables in the formula.
P is said to be applied to X and ¥ and A.X is called an abstraction from AY.AZ.(P(X, Y] «
F(X,Z2),P(Z,Y)). A variable in an abstraction is called a bound variable, otherwise it is a
free variable. We will also say a variable is free to a term (or subterm) if it is not bound by
that term (or subterm). When there are many successive abstraction variables in a formula
such as in (4) we may write “AXY Z".

The term in (4) is closely related to (3) as the quantifier*vX.F" is an abbreviation for
“II(AX.F)" and II is a constanl expressing universal quantification (and similarly “3X.F”
is for “E(AX.F)").

Though MGU and LGG is unique in Ly, it is too constrained to express simple terms
that contain recursion. Practical examples of the restrictions of Ly can be seen in Section 6.
But now let us look at a simple modification of the above term:

AXYZ.(Ps(X)Y) — P(X, 2}, P(Z,s(Y))). (5)

Because it contains a constant s in the arguments of P, (5) is not a Ly term which is
important in many logic programming problems (see Section 6). We shall introduce a more
powerful calculus called M. In this calculus, a subterm such as s(X), called an object term,
is explicitly allowed.

An object term consists of externally bound variables and constants of distinet types from
any bound variables without abstraction. A variable X in a term F is externally bound if F
is a subterm of some term £ and X is bound by an abstraction in E outside of F. The use
of object terms gives rise to the necessity of the other two extensions in M.

M, 15 a restricted typed A-calculus. In My 1) It is allowed to perform o, §, & and
7 conversions on terms. The & conversion rule is described in Appendix B; 2) Any free
variables in M, terms are only applied to arguments that are object terms; 3) It contains at
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least constants x and 4 such that for any object term of M, E, x(£) = I3 and ¥(E) = E,
if E = (EyE;), and ¥(E) = x(E) = F otherwise. (Both are undefined for non-object terms).

Clearly M) is an extension of the Ly language [11], in which the & rule is not permitted
and the arguments of free variable functions can only be externally bound variables. y and
i are analytical selectors in an analytical syntax as defined by McCarthy. Fortunately many
programming languages, such as Lisp and Prolog, have these functions. In M, these are
further restricted to the application to object terms, which do not contain abstractions as
defined in this paper.

4 M) normal and nonredundant terms

A term is M, normalif and only if it is in oy normal form and conlains no irreducible &
expressions. We will be interested in LGGs and MGIs that are M, normal. The following
definition is adopted from that in Section 2. E is the My normal LGG of a set of Ay normal
tertns T, if and only if: 1) £ is M, normal and is also & common generalisation of 7; and
2) F' iz not a common generalisation of 7 for any M, normal term F <, & '

For M, normal term § = p{U,U{a)), the substitution containing & conversions such
as 0 = {U/AXif X = a then E, else E;} is not applicable. If applied it results in
58 = p((AX.if X = a then Ey else E;), Ey), which cannot be reduced further because
X in X = a is a free variable to X. This term is not a M, normal term.

Lel E be a M, term and E' be a f-equal term to £. A subterm F of E will have some
trace F', 50 to speak, in E'. F'is called the residual of I'. A subterm F of E is redundant
if £" = E' —~ {F'} and E" =4 E, i.e the residual of F can be removed and siill maintain
f-equality.

Clearly, any redundancy can only happen in terms with free variable functors. If £ is a
subterm of F with free variable functor and no other subterm of I has the same functor,
then any term containing only constants and repetitive bound variables in £ is redundant:
Because & is the only subterm that has the free variable as its functor, we are free to devise
various substitutions to decompose E into its subterms and then remove all constants and
repetitive bound variables from it. The operation to remove redundant subterms is called
a reduction (not to be confused with @, g, 6 and n reductions of A calculus). After simple
reductions, constants will appear only in subterms that appear in multiple places of a terms.
[3] describes an algorithm that can reduce a M, to its nonredundant form. In the rest of
the paper we refer terms to M, normal, nonredundant terms and their L.GGs to M, normal,
nonredundant LGGs.

We need also to consider unification, which is the dual of LGG. E is the common instance
of a set of M, terms 7 if E is more specific than each element of 7. E is the most general
instance (MGI) of a set of M, terms T if and only if: 1) E is the common instance of
T; and 2} F is not the common instance of T for any F >3 E. The substitution # for
which Ef = E\VE; € T is called the most general unifier (MGU). M, normal MGU is
similarly defined except that F, F and E; € T are all My normal terms. It is proved in
[3], in normal and nonredundant form the MCU and LGG of M, terms are unique. The
unification algorithm is also given in [3].

5 Implementation

LGG and unification in M, is implemented in Prolog, and is called HOLGG. The LGG
algorithm has two parses. The first parse is ELGG which collects all the multiple appearances
of subterms into a set of triples I' = {{(X, 5, T)}}. Then T is sorted to obtain I' = Uz, It
for which I'; = {({X, 5;,T;}} and each 5j1 and Sy in Ty have the same functor and so do Ty,



and Tjo. In the second parse, CLGG takes S, T and I'; (1 =1,...,m) as input and produces
F. CLGG also calls the algorithm VLGG.

MLGG: anti-unification (LGG) algorithm for M, normal terms.
INPUT: two M) normal terms 5 and T of the same type;
OUTPUT: a M, normal term F = MLGG(S,T).

1. '= ELGG(S, T, 0);

2. Sort I" such that T' = I,_J‘l':1 I'; for which I'; = {{ X, SilSi1, s Sin)y
Ti(Ti1, ey 856)) } for i =1,.

3. F=CLGG(S,T,T,8).

ELGG
INPUT: S, T and the binding variables X
OUTPUT: I' = {(F}, 55, 15)} where F;, 5, have different functors.
l If §=\V.5 and T = AY.Ty, then ' = ELGG(S,,Th, XY);
S =551, 50 ), T = Tp(Th, ..., Ty) and 55 = Ty = C, where
C is a constant or C' € X, then I' = UL, ELGG(S:;,Ti, X);
3. If So # To, then I' = {{X,5,T)).

CLGG
INPUT: S, T, the sorted T and the binding variables X;
OQUTPUT: F is the M) normal LGG of § and T.
LIS =AV.5 and T = AV.Th, F = \Y.CLGG(S,,T,,T, XY);
2. If S = So(51, ..., 5), T = Tu(11,...,T,,) and 5p = Tp, then
F=0C(F,..., ] where F; = CLGG(S;, T,, T, X);
3. If § = So(S1,.00y Su)y T = To(Ti, .., T) and Sp # To, and (X, 5, T)
is in I'; and there exist F, (i = 1,...,1),
3.1. If Sy and Ty are constants or free variables, then F' = Vg, 7.
":Fh Fa, ..., Fr};
3.2. If Sy € X and Ty is a constant or a free variable, then F =
Vig 1y (S0, 11, 3, ..., FY);
3.3. If Sy is a constant or a free variable and Ty € X, then F =
V{D Tn[TﬂrFla F‘h ""'|E :|-|
34. Ii 5, € X and Ty € X, then F = Ve, Tu[SUr-[U:FlrFZ! ,HL
where Fs = VLGG(S5q,VLGG(...,VLGG(Si o, U, X)) A
and Fr = VLGG (T, VLGG(..,VLGG(Ti 1, T:;, X), ,,,],JE']
such that § = .:...[{A.i’.ﬁsjm..,m and T = (...({(AX.Fr)F).. . F);
4. B8 =5(5,..,5), T =TT, ...,T%) and Sp # Ty,
4.1. If 5y and Ty are constants or free variables, then F' = Vo, T
{Xl-,X1;~--1X:}:
4.2. If 55 € X and T4 15 a constant or a free variable, then F =
VSq .Tu(sﬂ!-X11- Xa, .., X:'J;
4.3. If Sg is a constant or a free variable and Ty € X, then F =
I‘{?u,Tn{Tﬂ_s Xlsxh ey ,jl:';};
4.4, If 55 € X and To e X, then F = VSD,]h(S‘UTTh| A1, Aa, ...,.Y;JI;
where X; € X (i = 1,...,1) are bound variables in 5§ and T

VLGG: Variablisation of terms in M,.
INPUT: two terms S and T and binding variables X;
OUTPUT: F = VLGG(S,T, X).
1. IS =AV.S, and T = AV.Ty, then ¥ = AV VLGG(S,, Ty, X¥);
2.If8=T=0C and C is a constant or C € X, then F = (;
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I US=005,. ,5)and I'=0C(11,...,13) and (s a constant or
C € X, then F = C(VLGG(S,T1, X)....., VLGG(S,, T, X));

4. If S, T contain variables in X , then fail otherwise F' = V57 for a
variable named by 5 and T

6 Applications

LGG has played an important role in inductive logic programminog in first-order logic. The
following examples show the applications of LGG to acquire higher-order clause templates
from given first-order clauses.

Example 1. Given the first-oorder facts:

less_than(0,2), less_than(1,4), less_than(2,4), less_than(3,5), .
less_than{0,3), less_than(1,1), less_than(2,5), less_ than(3,6), ...
less_than(0,1}, less_than(1,2), less_than(2,3), less_than{3,4), less than(15), ...

we are able to obtain the following, using an algorithm such as Golem [13]:
VXY Zless than(X,Y) v less_than(X, Z),less than(Z,Y),

and similarly
YXY Zancestor(X,Y) «— ancestor( X, Z), ancestor(Z, YY),

In both clauses X, ¥ and Z are universally quantified. Note YX.F is the abbreviation of
TI[AX.F) and Il expresses universal quantification. Their higher-order LGG is

YXYZ.P(X,Y)+ P(X,2),P(Y.,Y),

where P is a free variable and “=" is an infix constant. I may then becomne universally
quantified as this gencralisation is accepted.

Though [, can still be used to express the higher-order term in Example 1, the clause in
the following example, which contains recursion and represents a majority of problems that.
we are inlerested in, cannot be expressed within Ly. This is because Ly forbids the existence
of constants in the arguments of free variables.

Example 2. Given the first-order clauses with X, ¥, Z and W universally quantified,

VXY ZWreverse(cons(X, V'), Z) — reverse(Y, W), uppend(W, cons{ X nil), Z),
VXY ZW.inasert_sort(cons( X, V), Z) «= insert sort(Y, W), insert(X, W, Z),

we can obtain
VAYZW. Pleons(X, V), Z) « P(V, W), Q(W, X, Z),

where “reverse” is a version often referred 1o as “najve reverse”, P and () are free variables.
and “coms™ is a list processing function.

One may observe that the first-order facts seem to be the objects in the induction of
first-order clauses. These clauses Lthen become objects that characterise the properties of
higher-order objects — in this particular case it is second order predicate constants such
as “reverse” and “insert”. At this “order”, we are mainly concerned with the properties
of the predicates, the first order objects will be universally quantilied, and they are “taken
for granted” when studying ohjects that may apply on them. Afler this, the higher-order
objects may become universally quantified.

If we extend this scenario further, we can imagine that through progressive quantification
clauses of successive orders can be induced thal characterise objects of hisher arder objects.
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Another application area is the discovery of program transformation rules. Huet and Lang
7] discussed methods for program transformation of recursive computations into iterative
ones. A set of second order clause templates for transformation were suggested and they are
applied through second order unification to produce more efficient programs based on the
Darlington and Burstall [1] method. As they remarked, the opposite problem with regarding
to the discovery of such templates is a difficult task. Few templates are known and no

‘automatic methods exist for performing such discovery.
Example 3. The higher-order logic clause in Example 1, though interesting, is computa-

tionally inefficient. To satisfy the first predicate P(X,Y), it needs to nondeterministically
satisfy P(X, Z) and then P{Z,Y). More efficient programs for ancestor and less than are

respectively:

VXY Z.less than(X,Y) — successor( X, Z), less than(Z, X),
VXY Z.ancestor(X,Y) « parent(X, Z), ancestor(Z, X),

where suecessor(X, Z) expresses that Z is the successor of X in Peanc's formalism, and
parent{X, Z) states that Z is the parent of X. Both are computational more eflicient. Thus
possible program transformations are:

(VXY Z.less than(X,Y) « successor(X, Z), less than(Z, X)})
—
(VXY Z.less than(X,Y) + less_than(X, Z),less than(X,Y)),

(VXY Z.ancestor(X,Y) «— pareni( X, Z), ancestor(Z, X))}
—
(VXY Z.ancestor{ X, Y ) — ancestor( X, Z), ancestor( X, ¥)).

The LGG produces a program transformation template, though the conditions for the trans-
formation are omitied. '

(VXYZ.P(X,Y) — Q(X,Z),P(Z, X)))
E——
(VXY Z.P(X,Y) — P(X,Z), P(X,V)).

In fact, such a template is applicable when  is a special case of P (i.e. F by one).
Example 4. The recursive list reverse program is described in 3. A more efficient iterative
(tail recursive) version of it is:

VXY ZWU.reversel(cons(X,Y), Z, W) + append([X], Z,U), reversel(Y, U, W)

where “reversel” contains an accumulator Z. When “reversel” starts with “reversel(List, nil,
HeversedList)" and is terminated by “reversel(nil, ReversedList, Reversedlist)", it yields
the reversed list. Thus we have a transformation

(VZ.reversel(nill, Z,Z) &
YXYZWU. reversel(cons(X,Y), Z, W) — append([X], Z, ), reversel (¥, U, W))
(reverse(nil, nil) &

VXY ZWreverse(cons{X,Y), Z) — reverse(Y, W), append(W, cons( X, nil), £)).

We also know another transformation which concerns with the addition of the elements in a
list:

(VZ.sumlistl(nil, 2, 2) &

VXY ZWU.sumlistl{cons(X,Y), Z, W) — add( X, Z,U), sumlist1(¥, U, W))
—

(sumlist(nil 0) &

YXY ZW.sumlist(cons(X,Y), Z) — sumlist(Y, W), add(W, X, 7)),
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where “plus” is a function that returns the addition of two numbers. When started with
“sumlistl(List,0, SumQ fList)" and terminated by “sumlistl(nil, SumO fList, SumO fList)",
the iterative computation also returns the sum of the elements in the list. The LGG of the

two is:

(VZ.Pl(nil, 2,2) &

VXY ZWIL.Pl{cons(X,Y), Z,W) « Q(Z,X,U), P1(Y, U, W))
—

P(nil, V) &

VXY ZW.P(cons(X,Y), Z) — P(Y,W),Q(W, X, Z))

with free variables P, @, Pl and V.

This is an alternative expression of McCarthy's transformation [10]. For the sake of
convenience we have omitted the conditions for this transformation to apply. It is in fact
that, among others, V' must be the lower bound element of the appropriate Lype and Q be
a transitive and communicative function. This problem can be addressed by relative least
general generalisation (RLGG) that will be discussed briefly in Section 7. However, its detail
is beyond the scope of this paper.

The other potential application areas are analogical reasoning and the automatic acqui-
sition of grammar rules from example sentences and the generalisation of proofs. However
we will not discuss them in this paper.

7 Discussion and future research directions

Recently, inductive logic programming [12] has witnessed a growing trend in utilising higher-
order (or meta-level) logical notions in existing ILP framework, This is motivated, in part,
by the need to develop more effective and efficient ILP methods. These noticns are often
adopted as declarative biases in many forms including functional constraints on the predicates
in clauses and templates for the clauses being induced. However current methods lack
coberent framework for accommodating these notions.

Our future research work is concerned with expanding the current (first order )ILP frame-
work, in which higher-order mductive inference may be described as the discovery of a hy-
pothesis H from examples and background knowledge such that:

MaBAHRET
MABANHY E- (6)

it M A B LY. M in relation (6) represents a set of higher-order (A Prolog) clauses. The
hypotheses in H now can he either first-order or higher-order clauses. B is the background
knowledge, EY and E= are respectively the set of positive and negative examples. Cor-
responding to cxisting ILP theory, it is necessary to develop methods for generalisation in
higher-order logic. In doing so we hope to achieve two aims: a) to develop more eflicient
methods for inducing first-order clauses, and b) to induce higher-order clauses such that they
can aid induction of both classes of logic programs.

From the experience of [LP in first-order logic, in the next step we nced to study the
relative least general generalisation (RLGG) for higher-order logic programs in the presence
of background knowledge. Similar to the first-order case [13], we may have to deal with-
a restricted logical model of the background knowledge. We also need to investigate the
computability of such a model of the background knowledge. If this is successful the results
will have implications in [LP and to the discovery of aulomatic program transformation
techniques.
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A Syntax of A-calculus terms

A term in (simply typed) A-calculus can be one of the following:

1. Atom. A variable or constant (of type a) is 2 term (of type a;

2. Application. An application of F {of lype § — a) to E {of type 8} is a term
(£ E) (of type a);

3. Abstraction. The abstraction of a term F (of type &) on a variable X (of type
) is the term (AX.F) (of type 7 — &) that binds X in the scope F.

The type of a term F is denoted by r(F). One may verify that (1), (2) and (3) in
Section 1 are terms, and 7(F} = (a,a — §) and 7(+) = (§, 5,5 — ), assuming that
(X} = 7(¥Y) = 7(Z) = a. Types are not essential in some results. They are polymorphic
when used.

We denote (...((F Ey) Eg) ...E,) by the expression F(Ey, Ey, ..., E,) if F'is an atom, and
its type (a) — (ag = ..(aq = §)..)) by (e, @2, ...,an — #), where 7(E;) = a;. F is called
the functor, E; (i = 1,2,...,n) the arguments and n the arity of F'. We also abbreviate
(AX0.(AX7 (A, F))) to (AKX X2 Xo F) and X, X, X, to X.

The order of an atomn is the depth of the nesting of parentheses in its type + 1. The
order of a term is the highest order of its atoms. The order of X, ¥ and Z in (3) is 1, and
the order of P is 2. The order of (3) is therefore 2.

A.1 A-conversions

Let #{X/E} be the operation of substitution that replaces each occurrence of X in F hy
E. X is free in F 1[ 1t does not occur in the scope of an abstraction in I that binds X. E
is free for X in £ if £ does nol appear in the scope of an abstraction in F' that binds X.
These two conditions are used to avoid possible name clashes in the following definition of
A conversions.

A substitution is a set of ordered pairs § = {X,/E; |i = 1,...,n}, where X; are distinct
variables and each E; is a term of the same type as X;. The application of # to a term I is de-
noted by F'# and it is the term (..((AX.F)Ey)Es).. ) E,). Intuitively for each X;(i = 1, ey 1)
F# is the results of replacing X at each place in F by the subterm E;. The composition of
substitutions, denoted by & -4, is the same as defined in first-order logic (sometimes we may
omit the dot).

The conversion rules of the general A-calculus is

1. a-rule. AX.F is convertible to AY.(F{X/Y})if ¥ is free for X in F, and vice versa:
2. f-rule. (AX.F)E is convertible to F'{X/E} if E is free for X in F, and vice versa;
J. p-rule. AX.FX is convertible to £ 1if X is not free in F, and vice versa.

The convertibility’ of two terms is an equivalence relation. The rules can be carried out in
both left-to-right and right-to-left directions. A-Convertible terms are considered to be equal
to each other. An application of a conversion rule is called a a (or 8 and ete.) reduction
when applied in the left-to-right direction and an ezpansion in the opposite direction. A A
term that cannot be reduced by rules of any kind is said to be in normal form.

Church and Rosser proved that the normal form of a term is unique. For any convertible
A terms E and F, there is a term § in normal form such that F and F can be reduced to
5. They also proved the normal form of a term can be obtained by attacking the leftmost

' Note often an @ conversion is used prior to a § conversion to change the names of bound variables,
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reduction on one-by-one basis until no reduction is possible. We should bear in mind at
this point, apart from o, # and 5 rules, there are other conversion rules that alse maintain
Church and Rosser properties such as the & and &g rules that will be introduced in Appendix

B.

B Extension to §; conversion

We will first consider a conversion rule of &, which is a variant of the § conversion rule
studied by Church in an extension to afn A-calculus. The &; conversion rule 15 defined as
follows. If E and F are in Adgny normal form without variables free in £ and F-

1. §EF = AXY. X il E is a-convertible to F
2, 6EF = AXY.Y otherwise,

AXY.X is known as “true” and AXVYY as “false” in the standard A-calculus (In Church’s
system, truth is expressed by AXY.XY -— the combinatory number 1 - and falsity by
AXY X(XY) — the number 2. This is an arbitrary choice).

i rule is similar to a weaker form of the equality theory introduced in modern deductive
logic. Similarly to afin A-calculus, the application of the &; rule from left-to-right is called
a &y reduction. It is shown that & reductions maintain the Church-Rosser properties of
A-calculus when the reduction expressions are carried over from the original (perhaps not in
(éyn normal form) terms. We shall restrict ourselves to such a A-calculus.

The term AXY.X selects the first argument of X and Y, whereas AXYY selects the
second. Using the 8y rule we can construct a term: F = (AX. ({6 XN)E,1E;). When F
is applied to a term M, we obtain FM = (({(§ M N)E,)E,) which corresponds to “if M is
a convertible to N, then £ else 7", where SgMN is the & reduction expression and E,
and E3 are the terms applied upon by this reduction. M, N F, and £, are in 6y normal
form. M and N contain no variables free in them. We shall denote F by “AX.af X =
N then Ey else Ey". Clearly, (AX.F,) is convertible to (AX.if X = N then E, else Ey) if
£y s g-convertible to £y,
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Abstraction

This paper presents a framework of obtaining a natural deduction proof of a given logic formulae
based on similarity among formulas under the assumption that similar formulas have similar
solutions. A formulae to which a proof has already been given is called a guiding problem. From a
guiding problem, a schema which is applicable to a class of similar formulas is constructed by
abstraction. A schema acts as a specification of proofs and any object formulae having the same type
to a schema can be obtained according to the typed proof structure, The analogical reasoning based on

this idea 1s formalized using typed language in the framework of higher order logic. Finally, we show
that this analogical reasoning procedure can be realized based on higher order unification within the
computable scope.

1. Introduction

In order to realize an intelligent system on machine, one of the most important problem is to
introduce a reasoning mechanism which break through the wall of present deductive theorem proving
paradigm. For such purpose many reasoning systems such as abductive reasoning, inductive
réasoning, non-monotonic reasoning and so on have been studied. The analogical reasoning is a
mechanism to reason by finding certain similarity with some already known problem, and is
considered as a most essential mechanism which supports the creative thinking of human beings. It
has been proposed several kinds of models for analogical reasoning systems €103, Among them , the
reasoning system based on the generalized knowledge produced from already known formulae by
abstraction is called the abstraction based analogy®'4 There are some papers applied the analogical
reasoning to the scientific problemsi224.8381 In this paper,an abstraction based analogical reasoning
system for LK proving will be formalized focussing the following aspects.

(1) What is the suitable formal system for formalizing the abstraction based analogical reasoning ?

(2)How to realize the similarity among objects?

(3) How to realize the abstraction process?

{(4)How to mechanize the analogical reasoning processes?
We will formalize this framework as illustrated in Fig.1. Where,the proof of a guiding problem is
obtained probably by trial and error. This proof structure is abstracted as proof schema. Then a new
formulae ? is proved using the similarity between ? and some guiding problem. This similanty check
is done by the unifiability with schema constructed from the guiding problem. The proof of ? is
derived by the substirution obtained from the unification. By this analogical reasoning process, we can
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expect to reduce the nondeterministic aspects from the processing and to realize certain non-deductive
reasoning

Schema proof stru

(abstracted formula)

Fig.1 Proof construction by analogy
In Section 2, the basic properties and proof theory of natural deduction system LK is surveyed.The
analogical reasoning system proposed uses the abstracted knowledge called schema: In Section 3,
the schema construction from guiding problems is discussed. In Section 4, a unification based
analogical reasoning procedure is proposed. Some examples are also given and some remarks on
these approach are discussed as the conclusion in Section 5.

2 LK system and natural deduction proof
2.1 LK system
The logical formulae is defined inductively as follows.

du=A [~ 0] Ov ] ad| ¢ 6| Vx| 3xd
;where A is an atom. By '8, we denote a seguent. The LK system is a logic system which

consists of the following inference rules:

forL) A T28 BI—50 {or-R) [8.A B fandl) A BI—8  (adR)I'sA ['—B
AvBTI—8 '8 AvE ArBT—8 I'=A~B
(impL) T8 .A BA— A (imp-R) LA—© ., B (al-L) Alxi=], =6 @l-R) =0, Alxi=y]
LA SBA—B A r—aaA oB VxA(x)[—© I8 YxA(x)
(some-L)A[x=v], (8 {some-R) =6 Alx:=t] (thin-L) [=& {thin-R} [=8
IxA(x)—E I'—8,3xA(x) A8 I—+8A
(not-L) T8 A (or-R) AT—=0 Cu) =0 A Ad— A
=A T8 - ~-A .8 A8 A

A sequent A—A is trivially true and is called an axiom. A LK natural deduction proof is produced

by applying the inference rules in nondeterministic, and can be represented by a derivation tree.

Q@) — gfa)
Pal—pl@) g@-—»3xgl) bl g
apaioga - 3xax) 00 g Jxgx)
A\l —» i
~pla) vab) ¥z (p(x) Sa(xl)— Jxqix)
—(p(a) valbAVx (plx) oq(x}) —3xglx)
—p(a) vablaVx (p(x) 2gq(x)) 23xq(x)
Fig.2 A natural deduction proof.



A formulae is provable if there exists a proof tee whose root and leaves are labeled with the -
formulae and certain axioms respectively. In Fig.2, an example of LK proof of the following

formulae is shown: —p(a) vg(b)a¥x (p(x) 2q(x)) D3xq(x)

2.2 Term representation of LK proof
Each inference rule is looked upon a function which maps from the assumptions given in the upper

side of the rule to the conclusion given in the lower side of the rule. For example, the or-L rule
corresponds to a function with the type [A, T'—8]3[BI =8| -[AvBI 28 ]

A T8 BI—6 (or L)
AvBI -8
This can be represented as the following term:

[AvBI'—=8] = ar-L([A, '=8],[BI —=8])
In the similar way, any LK proof is able to be represented by a term. In the followings, we denote the
term representation of a proof for sequent "= © as proofi]l’—@), and call it as a proof term..

Example 2. IThe proof term of the next formulae ¢ ( the same one given in Fig.2}
= —{plavglb)} A ¥x (plx) o qlx)d = Ixqlx)
is expressed as
proofl$ = imp-R{and-L{or-L{all-Limp-L{p{a)}—p(a).some-R(g(a)—qa))).thin-L{some-Rgbl—qbl) })
» and this term can be considered as a function from [pla)-+plal]. [gla}-+q(a)] w [(pEvglblavx (px) o gix)) >3x
qix}], that is, this proof term has the following type.
[pla)—pla)] - [gla)—q(@)]— [ab)—abl]—[(pla)vaba¥x (p(x) = q(x)) = 3x gqfx)].
The labels of any leaves of completed proof are the axioms, that is, the sequents in the form [A,
=@ A] or equivalently in the form [A—A). Thus the proof term of each completed proof is the form
such that tarm(... tlem{A—A),... . term({B—=B)). A proof in which some parts are not completed is
called a partial proof. It is noted that the sequents at the leaves of partial proofs are not always

axioms. For example, let us consider the proof given in Fig.3,which is a proof of Fig.2 in which the
subproofs for the formulas [p(a) ,¥x(p(x)2q(x)}—3xq(x)] and [q(b)—3xq(x)] are not completed.
qb) —» Jxq(x)  (thin_L)

plad ¥x (pix} Sgixdi—s Jxgix) Q). vx (p{x) Sglx)l — Jxa(x)  (~_L)
pla) wal) ¥ (p{x) Salxll— Jxqxd  (~_L)
(o) vl e (plx) ogixhl —Jxglx) (o _R)

—(pla) va(bl~¥x (p{x) Dq(x)) o3xg(x)
Fig.3 A partal proof of Fig.2

A term representation of this partial proof is given as follows:
AX AY. imp-R(and-L{or-L(X, thin-L{Y)))
;where X and Y represent the partial proof for [p(a),vx (p(x) 2q(x))— Ixq(x)] and [q(b)— Ixq(x)]
respectvely. Therefore, the partial proof given in Fig.3 implies the proof having the type
[p(a),¥x(p(x) oq(x))— Ixq(x)]—[ q(b)— Ixq(x)]— [—(p(a) va(b))A¥x (p(x) Dq(x)) D3xq(x)].



Example 2.2 We can consider each LK inference rule as a panial proof in which its assumptions are not completed. In

the case of or-L inference rule, or-L is a function of the type (A, T—8 )= (BT —8)— (AvBI'—=8 ) such that AX
AY.0r-L(X,Y) where X is the variable for the subproof (A.'—8), and Y is the variable for the subproof (B,I'—@).

We can consider that the proofs whose proof tree are different only at the leaves are similar together.

Basing on this idea, an analogical reasoning system will be designed.

3 Schemata for Proof Analogy
3.2 Simple Schema as proof types

We call a formulae whose proofs have already been known to be a guiding formulae or guiding
problem.We assume that some guiding problems are collected as a database. A schema constructed
from guiding problem g is defined as a formulae in which some predicates of g are abstracted as
predicate variables. A simple schema is a schema which is constructed from g by simply replacing
several predicates appearing in g with predicate variables. For example, let g be a formulae such that

g =[p(a)v qb)]AVx(p(x) 2 q(x))> 3x.q(x).
Then the following formulae is a simple schema.
schema, = (P(a)v Q(b))AVX(P(x) S Q(x))> 3x.Q(x)
,where P,Q are 2nd order predicate variables. The proof tree for schema, is given by replacing the

predicates p, g with P, Q as illustrated in Fig.4.

- O = O
Pla)—» Ma) O — Ix0x) O —» Ofb)
Play P@ oOfa) —» IxOfx) O(b) = JxO(x}
_Pla) Vx (P(x) 20())—> 3x0(x)  O).Yx (P(x) SO()) = Fx0(x)
v = X

(Plal vObYiaWx (P(x) SOx]) —T 00}
—={P(a) vBNAVX (P(x) 2Q(x)) 23xQxx)
Fig.4 A simple shema construction

This means that the type of schema, is the following,
[P(a)—P(a)]=([Qa)—=Q(a)] = [Q®) = Q)] = [ (P(2)vQ(b)) A ¥x (P(x) D Q(x)) > Ix Q(x)]

and the proof term of schema, is given as follows:
prmﬂmbcmatjzhnpmand-L{crr-L{a]l-L{imp-L(P{a)—rP{a}.snma-R(Q{a}—rQ{a}}}.
thin-L{some-R{Q(b)—Q(b)) ).

From this schema, , the proof of any formulae obtained by replacing the symbols P,Q of schema,
with any formulas can be denved. This depends on the following well-known property. -
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[Proposition 3.1:Formulae substitution rule]
If a sequent ' A is provable, then the substituted formulae ITP:=p(x,,x,,...,x )]— A[P:= pxy,Xs,
..»X_)] is also provable, where [P:=p(x,,x,,..., x)] is a substitution of the formulae in the form of

P(t;,ty,...,t) in T and A with p(x;:=t;, X550, .00 X 550 ) &

Example 3.1 The prool of the following formulae h which is obtained from schema, by substituting P and Q by p
Srand s  respectively has similar proof structure 1o schema, as shown in Fig.5.
h=[ = {{plE)2rb)]v{sbla Wb)NAY{(PpE) Drix)of (six)a tx)) o Ix.(si0A W]

Its proof term is obtained as ptm[{h}=[prmf{schcma’}]{p S isal ).

s{adar(a) — sfadatiad
paioral s plal or@  s@isi@ —» i) _sbiatbi— siiailb)
{a)> rla) p{aona) = s{alalia) — Ix(s(xdalix]) shiat(b) = Ix(s(xhatlx})
alora) Valpxionx)o s(alax)—dx(s(xdallx A =3 3 (s{x}allx
o Al Y LAz = Ixsixiallx

{ {plai=rlal v (sbiatbiax (oo os(x)alfx)] = Ixsix)abx)
—=[( plalor(@) v Gatblavx ( pi)onx)) ()AL >3 xls{)mx))
Fig.5 The proof of h by analogy .

3.2 Fundamental Schema with Constraints
We call the sequents appearing at the conclusions of LK inference rules as the fundamental

formulae. Let form(A,B) be a fundamental formulae whose proof is obtained from assumption

Asp(A.B). We denote the formulas in which A, B are replaced with some formulas XY or & by
F_schema(X,Y) or F_schema(®) respectively. and call them fundamental schema. Now, we discuss

the provability of F_schemata. Since X,Y and @ take any formulas as their values, we consider

them second order variables. We show, at first , that if a formula form(A,B) is provable from
assumption Asp(A,B), then corresponding any F_schema is also derivable from the same
assumptions Asp(A,B) and the imposed constraints introduced according to the used rule.

For example, let form(A,B) be a sequent (PAQ)vR,I—@, and this is proved using the or_L inference
rule with Asp(A,B)={(PAQ) =6, R,r=8}. Then any formula of the form XvY, -8 ,where X and
¥ are arbitrary formulas, can be proved using Asp(A,B) and constraints X—(P~Q), Y—=R in the
following way. |

X—Pal)) (PAQ) T8 YR R =8
X[ =6 Y8
XY =6

Fig.6 A proof construction based on F_schema.

This property holds each F_schemata and is stated as follows.

[Theorem 3.1] If a fundamental formulae is provable and constraints are satisfied, then the
corresponding F_schema is provable using the same assumptions of the fundamental formulae and
the constraints

Froof: The proof structure of each fundamental schema can be constructed by substituting the



symbols A, B with X, Y or @ respectively, and combining the partial proofs for constraints using
Cut rule. Since the proof for each inference rule and constraints are provable, the combined proof for
each F_schema is provable. Q.ED
E formulae E_schema —Constraint _Proof construction

XA A0 Yo B BIog

AT B0 XI—0 Y16 A0 Y0
Av B, =8 XvY, =8 X—A, Y=B XvY, =8
[28.AB TI28.XY L=20.AB A X B Y
rseAvB T8 XvY A B=Y =8 XY
r=8XxvyY
ABI=O L XI=8 XA Y5 B ABI=0
An BI'—=0 XAYI'—8 X—=A, YB X Y M6
' X Y, T—=0
[—=A T—B [=2X TI'—X [=A AX '-B BoY
F—=A~B F—XAY A=X B—Y I'—= X FrsY
T=XAY ’
Io0.A BASA I20X YADA X BAsA Yo
A oB.A-B.A ILX=oY.A=8 A ASXYB Fr=aX YA
[LXoY. A8 A
[A0.B _XI»@.Y LA-O.B XA B Y
r—-e.AoB r=6,xaY X—=AB—Y XIi=se. ¥
r—=e, XY
Alxst). =0 Dle=(.—E = = =
VrA(X), =0 Vad(x), =0 V. B (x)=VxAX) S(x=0I—0
Vad(x) =6
=8, Alx=y] I'—6 , Ox=vy] o8 Alx=y) Alx=y)®(x:=y)
C—=8,¥xA(x) I,—=8,¥xd(x) VAR =Y. D(x) 120 Pix=v]
T'=8,Yxd(x)
Alx=yl [0 Dix=yl, [0 = : Alx=II=0
IxA(x) -8 Ixd(x) S Sxd(x)—+IxAx) Plx=yl B
Ixd(x) , =80
=28 Alc=1] =0 Ox=(] = = =
T'—=83xAlx) =8, And(x) T Al )= Ind(x) F—=0 %=t
=8, Ixd(x)
I=0. A I-20.X [—8.A AoX
=4, =8 =X, & A =X =8 . X
=X, =8
r— Xl—e X A A0
=8, ~A T8, ~X X— A XI—8
r—=e.,-x

Fig.7 F_schemata and proof structures

The proof for each F_schema is summarized in Fig.7, where the double underlines mean some
composition of inference rules. By proofiF_schema) and proof*(F_schema), we mean the partial
proof whose assumptions are not specified and its completed proof, respectively. Then it holds the
following term -repusemaﬁnn for proofs of F_schemata

proof*(F_schema(X,Y)) =proofF_schema(X,Y))+ proof(X,Y:A,B),
proofiF_schema(X,Y))=[LA\B.(proofiguiding-form(A,B))1X Y
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where proofiX,Y:A.B) is a proof of assumptions in partial proof obtained from constraints, and +
means its addition to partial proof.

Example 3.2 For aF_schema having XwY, F—8 as its conclusion, its partial proof is given as foliows,

AT=8 B I8 = KT8 Y I'g
AvE, '8 XY, =8
The term representation of this F_schema is established by substtuting the symbols A and B with X and Y of the
proof term of fundamental formulae as follows,
proof* XY, I'—=8) =proof{ XvY, I'—8)} + proof (X, Y:AB)
prock( XvY, T—8) = [AAAB.(or_L{prooflAT—8) , proof(B =8 NIXY
prooflX,Y:A B proofiX, I —8Hproof(Y I'—=8)

proofl T'—&j=cut(proofl AT —8),subproof(X A )
prooflY =8 =cu proof(B,M—8), subproo Y — B)}

3.3 Schema with constraints

In this section,we shall discuss the relation between the proof terms of schemata with ;:onsnajnm and
their instances. Let fmm{g(i)) be a formula whose proof has alrcady been derived as proofig( (A)),
and let fmm{g{X]} and prmﬁ{g[x)) be the fnrmula and proof term obtained from fom:{g{&}} and
pﬂ.}ﬂﬂg{ﬁu]} by replacing some of the symbols in A with the symbols in X respectively, where A and
X are the list of predicates in fﬂm(g{h}} and fmm{gl:x}]. It is noted that proof[g(x}} is not always
completed. We denote a completed proof of proofig(X)) by proof*(g(X)). In the followings, we take
form(g(X)) as a schema constructed from g, and sometimes denote form(g(X)) as schema .For
example, let form(glpg))=[p(a)v qb)]A¥x(p(x) > g(x))> 3Ix.q(x). Then wec have schema =
form(g(®, Z,¥, 9)) = (da) v ¥(b)) AVX(E(x) 2Q(x))> Ix.©(x) as one of the schemata. The

proof term of this schema proofig(®, Z,'¥,0)) is obtained as follows.

Constraints:
Mﬁﬁﬂﬁhﬂﬂ_ i) - Jx€Nx) a) — =(a)
Dfa) ¥x (SO0 SO IxO0x)  WHLYX (00 0000 —» IxeXx) ¥ (b) —» &xb)

v Y (Z Qa) — @)
Dzl v =ix )} = dxENx
= (D{g) v ¥ AT (Z(x) 20} 2TxeNx)
Fig.8 proof schema.

It is noted that each leaf of proofig(A)) is of the form A, T" - Aa, and the corresponding sequents

of proofig(X)) may be partial proof. That is,the sequents at the leaves of the proof tree are the
subproofs which should be proved further. They are called the constraints. In the example of Fig.8,

we have to prove the constraints and combine with proofig(®,Z,¥,©)) to obtain the complete proof
proof*(g(d,Z,¥,0)) from proofig(®,E, ¥, 0)).

Let constr(g(X:A)) be the set of constraints between form(g(A)) and form(g(X)) . For example, the
formulae fanﬁ[g[p.qJ,S}}={p(a}vq[a]Jn‘ﬂ’x(r{x]:s(x}}:Ex.t{x} is provable if the constraints
pla)—s(a), r(b) —1(b), r(a)—1(b) are all provable. This intuitive meaning is given in the following
infersnce rule.
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proof*(g(X))

[Theorem 3.2] If form(g(A)) is provable, then the proof of schema form(g(X)) is provable. The proof
proof*(g(X)) is given by patching the proof(g(X)) with the proof of constraints prooficonstr(g(X:A)))
which are introduced according to the used inference rules.

Proof: Let (r) be any LK inference rule used at the root of prmf{g{i}}. Then it holds from Theorem
3.1 that the corresponding part of the proofig(X)) is provable under the constraints decided by (r).

For each step of the proof p_rmﬁg(i]), the corresponding part of proof of prmf[g{i}] is correct in
the similar discussion, where its constraints are the union of the constraints used until the step. The
final step of the proof, i.e., the leaves of prooflg(X)), are not completed, but they are also provable
from Theorem 3.1 using the same assumpton to pmc:f{gffi}} and constraints. That is, the
proof*(g(X)) can be established by combining the prooflg(X)) and prooficonstr(g(X:A))). Q.E.D

4. Schema Construction
4.1 Unification based Abstraction
A schema is a meta representation for formulas which are syntactically similar, and its proof term

represents the proof type. We can consider the proof term of each schema as the specification of
proofs. The proofs of the instances of the schema have the similar structure. This means that each
instance formulae of a schema is a realization of the specification corresponding to the schema and its
proof 1s an instance of the proof schema. This relation is illustrated in Fig. 9.

specification <==> schema <==> proof schema <==> term(second order)
fr f 1 f
| - i 4 ]
realization <==> formulae <==> proof instance <==>term( first order)
Fig.9 Schema as proof types
Unification theory is concerned with problems of finding the existence of some substitution ¢ for
given terms 1,12 such that s(ti)=s(t2). The dual of the unification is called the generalization or anti-
unification. Intuitively, the generalization is to find for given terms s, t , a term z of which both s
and t are instances, where z is called a generalizer of s, t'4. As we have observed in the previous
section, the generalization for g,h is performed by transforming o proofig), proofih) using this
matching algorithm.

formulag:g ========> proof term:proofig)
|
U abstraction
[}
schema:schema, <== == proof schema:proofischema,)

Concerning to the higher order unification and anti-unification algorithm, the other articles should
be referred 0%12330 A term built on variables of order at most two and constants of order at most
three is called a second order term. The unification between a second order term and the first order



rigid term is called the second order matching pmhlr:.m It holds the following property.

Proposition 4.1[15] The 2nd order matching problem is decidable and produces a complete set
of minimal mawch of t and r.
4.2 Schema Construction By Abstraction

In this section, we demonstrate how schemata are constructed from guiding formulas using
examples. Let g and h be a guiding formulae and a given target formulae respectively. Assume that
the proof of g is given as in Fig.10 and the type of proof structure of g is represented as proofig).
The schema for proving h is constructed by the generalization of g and h assuming that h is provable
according to this proof type.The abstraction is done by replacing the predicate p,q by second order
variables P,Q) and disagreement parts with new second order variables @ . In this example, the
schema schema, can be derived, and constraints should be constructed according to the F_schema. In

this case, we have the constraint such that ®—P which appears at some leaf. Then the proof of h by

analogy to g is given by patching the proofig) with the proof of constraints as shown in Fig.11

g= pla) ~ ¥x(p(xlog(x)) > 3x.q(x) afa) —» gla)
proofigl=imp_R(and_L(all_L(imp_L{|p(a)—p(a)] @) = pla) _afa) = Jxqlx)
some_R({[q(a}—q@)])). Malp(a) S gla) —» Ixalx)
_pa) Vx (plxh ooixl— Ixgix}
h=[{ r{a) vp(a)) Al rla) Splala¥x(p(x)og(x)) o Ixgx) p{al A% (p{x} Sqlxh —Txgix}
proof(h)=imp_R(and_R(all_L(imp_L{ [( r(a) vp(a)) ( ra) op(a)—p(a))] —pla)a¥x (p(x) Sq(x)) S3xglx)
some_R([q(a)—q(a)]))) Fig.10 A natural deduction proof for .
schema, =(a) AVx(P(x) S Q(x}} S3x.Qlx),
Constraine =P
Q) — gla) ria)-—»ria) pla)-—spia) plal—pla)
Dfa) » pla) ogla) —» Ixgix) palraop(al—pla) plalr(@iopal—pll
dia) ¥x (pix x X (rarvpladaira)opla))—pla)
Da) A vx (plx) ool -3 xglx) (b¥Proof of consraint
= Pa) AVx (p(x) 2g(x)) =3 xgq(x)
{a) Proof schema .sdwm.:tn

Fig.11 A proof construction for schema with constraints.

Next, let us consider to prove the following formula v which is syntactically similar to g using the
.s‘c:bn:ma‘: v=q(a) » ¥x({p(x)>q(x)) > Ix.q(x).

But, its proof is slightly different with the previous example. By examining similarly, it is easy 1o see
that its proof cannot be obtained unless q(a)—p(a) is provable. But this can be proved if we use the
other proof schema as shown in Fig.13,

afal — gfa) [ (a)— g(a]
—qla) — Jxqix) A () —» Jxglx)
—qla) . (pa) oglall—» Jxq(x) @) L (pla) Sglal—» Jxgla)
(@ ., ¥x (p(x) oa0adi— Ixglx) Yia) , ¥x (p(x) g0 — Ixalx)
—a(a) A¥x (p{x) gix}) —2xg(x) —Fia) A¥x (p(x) Sq(x}) =3 xq(x)
—g{a) AV (p(x) 2gx)} =Fxg(x) =¥ (a) A¥x (p{x) 2q(x}) >Fxqlx)
Fig.12 A proof structure for v Fig.13 Proof for schema,
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schema, is given in the similar form to sc:hcma* such that ¥ (@)AVx(P(x)2>0Q(x))> Ix.Q(x) ,but its
constraint is ¥—Q. Using this schema,, the proof of the following formula w_
w= [r(a)a(r(a)2q(a))] AV x(p(x)>q(x)) = Ix.q(x).
can be obtained by replacing ¥ with [r(a)A(r(a)=q(a))] and completing the proof of constraints
[r(a)a(r(a)>q(a))]—q(a). By such obscrvations,we get a general proof schema such that
schemata =(O{a)v¥ (b)AYx(P(x) > Q(x)) =3x.Q(x)
Constraints: @—=P, '¥—(Q.

Example 3.3 The analogical proving of w using schemata is not available though its syntax is similar 10 g or b,
because its constraint r(a)}—p{a)vg(a) is not provable. w= r(a)aVa(p(x)og(x)) = 3x.q(x).

4.Proving by Analogy

4.1 Proof Procedure
The rough sketch of this procedure is illustrated in Fig.14. We assume that standard schema have
already been obtained as schema database, and let its elements be §,,S,...,5_.Firstly, a given target
problem w is checked if some similar guiding problem exists or not. There are two cases for this
step. One is to construct a schema from g and w by generalization. The other is to search a schema on
the schema database which is unifiable both with g and w. We are intending to develop a system
which combine the both cases. This similarity check is examined using 2nd order matching
algorithm. If there exists a schema S which match to w, then a unifier is produced. The proof of w is

derived by o(proof(S))+proof(constraints).

schema proof
S d.ns,. =S=o=== L proof(S),...

l

g Maiching 4 a{proof(S))}+proofconstraints)
U

E = W i proof(w)
similar
Fig.14 Analogical Proving procedure
Procedure
input: w (formulae) ;output. proof(w);
begin

Find a schema S which match with w
(1) if there is no such schema then stop and output " prove by yourself”
(2) else choose (in nondetermistic ) a schema S:

(2-1)compute unifier such that o(S)= w
(2-2) check if it satisfies the constraints
ifit satisfies then output ofproof(S)]+proof(constraint)
else " prove by yourself”
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It is noted that the procedure uses only 2nd order matching, it is realized in the computable scope.
[Theorem 4.1] The analogical proof reasoning procedure proposed here for LK is computable.

4.2 Working Examples
In this section, We demonstrate an example, Let h be a formula such that
h= ((p(a)ar(a))v(gla)ar(a))A¥x(p(x) > q(x))> Ix.q(x).
Here, we assume that we want to solve this by the analogy with g.
& =[p(a)v q(b)]A¥x(p(x) = g(x))=> Ix.q(x).
Their proof terms are given in the following forms, where axiom parts of proofih) are arranged
according to the proof structure.
g====> proofig)=imp-R(and-L{or-L{all-L{imp-L(p(a)—p(a),some-R(q(a)—q(a)))),

thin-L{some-R(g(b)—q(b)) ))))).
g peneralization

h====2proofih)= imp-R(and-L{or-L(all-L((imp-L{(p(a)~r(a)) —p(a),some-R(q(a)—q(a)))),
thin-L(some-R((q(a) Ar(a))—q(a)) ))))).
By the gencralization, we get the following proof schema.
imp-R (and-L{or-L(all-L((imp-L(®(a)—P(a),some-R(Q(a)—Q(a)))),
_ thin-L{some-R(¥(2)—=Q(a)) )))).
Then we get the following schema schema,
sc:hcmaf (D (a) vF (b)) A Vx(P(x)2Q(x)) D Ix.Q(x)
constraints: &(a) = P(a), ¥(b) — Q)
", where @ and W are predicate variables. The proofischemag) and proof(constr( ®(z) = P(a),'¥/(b)

~» Q(b) ) are obtained as in Fig.15(a),(b).

Ofa) — Ofa) P(a) — P(a)

©fa) 5 Pla)  O(a) —3x0(x) Pl Ob) Consuaints: . _P(a).R(a)-»P(a)

SEPDOO@-—=Ix0R) ) o Ix0x) ®(a) —» P@ P(a)aR(a)—P(a)
Pl ¥x (Plx) oON-> Fx0G)  FOLYE (Px) o) = 33000~ ¥(b) — Qb)
— D) vOb , ¥ (P(x) SON— IxQ(x) _Oa) - O

—{ Dfa) v ¥ DNV (P(x) SOY —Ix0(x) ' O(a) R(z)—0)

= (D) v FO)AYx (P(x) 2(x)) 53x0Q(x) ' Qla)aR{2)—(a)

{(a) Proofs for schema (b) Proofs for constraints,

8
Fig.15 Schema with constraints for proving h.

By the matching of h with schema, as typed terms, we get a substitution o={®:=par,
¥:=garP:=p,Q:=q}.The proof(h) is derived as
proof{h)=[A®A¥APAQ. proofl schema )] (pAT)(gAT) (P)(r)+

[AOAYAIPAQ. prooficonstr (PP, ¥-Q))) (par)(garip)(T)

6.Discussions _
We proposed an analogical reasoning for LK proof system based on higher-order abstraction. By

this approach, a kind of proof system by analogy can be realized in natural way. Especially, it holds a

similar interpretation of the analogy to the formulae as type concept such that the schemata



corresponds to specifications and object proofs to their realizations. The procedure proposed here
can be realized using the higher order unification algorithm for typed terms in the computable scope.

The analogical reasoning system can be considered a reasoning system which uses the already
known knowledge as heuristics. By these approach, we can expect o reduce the difficulties arising in
the nondeterministic process by solving it according to the guiding solutions. If the knowledge of
guiding problem is a assumption, then the proposed analogical reasoning process becomes a kind of
abductive reasoning system. Such nondeductive reasoning systems may be formalized using
proposed framework theorencally.

However, there exist scveral important problems to be solved . The most essential one is to design
an efficient unification algorithm.In the unification procedure, there exists the nondeterminism in
applying the imitation and projection rules. Therefore we should devise more tightly the strategy of

unification procedure. One solution for this problem is to restrict the syntax of A-term language and

the usages of second order variables adsquately.

The other problem is that the schema expressed by second order variables are too general for many
cases. Hence undesirable unifiers will be output sometimes. In order to specify the schema more
precisely, some additional axioms should be attached to such schema.

In present, the reasoning is realized as a simple substitution using schema. If a more powerful
inference mechanism such as the higher order resolution system is inroduced in this framework, the
more flexible and intelligent analogical reasoning system can be realized.

When we prove a formulae using this system, then a proof is able to be obtained. But, it is not
always good proof for us. To translate the result to a better proof form is one interesting problem.
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Abstract

The EBG system builds an explanation and learns a concept description as its
generalization, when a domain theory is complete. It does not work when a domain
theory is incomplete. In order to solve this problem, we propase EBG by analogical
reasoning as a method to carry out EBG for an incomplete domain theory. In this
paper, we present the mathematical formalization of EBG, construct EBG by
analogical reasoning and realize it for Prolog programs.

1 Introduction

EBG(Explanation-Based Generalization) takes as input a domain theory, a training
example, a goal concept and an operationality criterion. Then, it returns as output an
operational concept definition that is a generalization of the training example, and is a
sufficient condition for the goal concept. EBG has extensively been studied in the field
of machine learning(3, 8, 11, 12], and reported that it efficiently solved many problems.
However, mathematical discussions for EBG have not yet been developed well. In the
present paper we present the mathematical formalization of EBG.

EBG needs a complete domain theory so that it does not work when a domain
theory is incomplete, It is important to solve this problem as pointed out by many
papers(l, 3, 4, 9, 12, 13, 15, 16]. In this paper, we propose EBG by analogical reasoning
which copes with an incomplete domain theory. We make up rules which are needed in
a domain theory by means of analogical reasoning[2, 5, 6, 7).

Numao and Shimura presented a method of analogical inference using explanation-
based learning[14). In contract we present a method of EBG with an incomplete domain
theory using analogical inference.

This paper is organized as follows. In Section 2 we present the mathematical formal-
ization of EBG and characterize EBG. In Section 3 we give some concepts on analogical
reasoning necessary for our discussion. In Section 4 we present the EBG by analogical
reasoning. In Section 5 we describe the realized EBG by analogical reasoning for Prolog
programs.



2 Formalization of EBG

In this section we define the EBG in a formal way. See[10] for detailed definitions of

first order logic.
An atomic formula is simply called an atem. An atomic formula without variables is

specially called a ground atom. A definite clause is a clause of the form
A+« By,...,B, (n20)

where A and B; are positive literals, and it called a rule. A finite set D of rules is called
a domain theory. A non-empty finite set T of ground atoms is called a training ezample.
Both D and T are sets of definite clauses. P = DUT is called a program. P has at least

one constant symbol, because T in a non-emply set.
Let Up be the Herbrand universe for P, and Bp be the Herbrand base for F. Let
Mg be the least Herbrand model for F, that is, the set of all ground atoms which are

logical consequences of P.
A generalization G of a ground atom is called a goal concept. Let P be a program,

and I1p be the set of predicate symbols in P. A subset O of [Ip is called an operationality
criterion. Let TI(O) be the set of all atoms which have predicate symbols in O.
The triple (P, G, O) is called an input of EBG.

Definition 1 For an input / = (P, G, Q), an ezplanation tree EX for I is a finite tree
satisfying the following conditions:

(a) Each node of the tree is an element of Mp.
(b) The root node is an instantiation of G.

(¢) If a node « in the tree has children f£,...,8s (n = 1) in this order, then a «
Bi,..., B, is an instantiation of a rule in P.

(d) Nodes in I1(O) have no children.

Standard Prolog systems employ the computation rule which always selects the left-
most atom in a goal together with the depth-first search. We number rules which are

used in the explanation tree in the following way:
(1) Each node which is not an element of I1{Q) is numbered with the depth-first search.

(2) Let @ be a node which has children f,..., 8, (n 2 1) in this order and C be a
rule in P which a generalization of a «~ B,...,fn. If & has a number j, then C
is denoted by Cj.

By means of the numbering above we can use the rules in the generalized derivation.

Definition 2 For an input I = (P, G, 0), a generalized derivation GE for I is an SLD-
derivation which consists of a finite sequence (— Gy) = («— G), + Gy,...,+— G, of goals,
a sequence Ci,...,C, of rules in P, which are given in EX, and a sequence 6,,...,8, of
" most general unifiers such that each Gy, is derived from G, and Ciy, using 8iy4.



Figure 1: Numbering nodes and sequence of rules in a explanation tree.

A generalized derivation GE depends on an explanation tree EX. An ezplanation
is to construct an explanation tree EX. A generalization is to generalize a sufficient
conditions of a goal concept by a generalized derivation GE.

Definition 3 EBG is to derive a general definition R of a goal concept G from an input
I'=(P,GG,0) by an explanation and generalization.
It is denoted by

1757 R,
where c
r={ (n =0)
GoG, (n21)

and (~ G, ) is the goal of the generalized derivation of depth n.
Now we can easily prove the following facts:
Proposition 1 For any input I = (P,G,0), | P RiffGe I1{O).

Theorem 1 For an input I = (P,G,0), let R be G — A;,...,An (m = 1), where A;
are positive literals. Then, I %2° R iff the following eonditions hold:

(a) There exists a F, = {(B ~ B,,...,B,) € P|B ¢ I1{(0),n 2 1} such that F, - R.
(b) There exists a substitution 8 such that {R} UTI(O)|m, GO,
(c) G € 1(O).

These facts assert that EBG is a deductive reasoning from a program which satisfies
the input conditions.



3 Analogical Reasoning’

Haraguchi and Arikawal2, 5, 6, 7] defined a formal analogy as a relation of terms with
an identification of facts. This section prepares, according to their works, some concepts

on analogical reasoning necessary for later discussion.
For programs P; and P,, let U; be the Herbrand universe for F,, B; be the Herbrand

base for P; and M; be the least Herbrand model for F.

Definition 4 Let P, and P; be programs. We call a finite subset  of U; x U; a pairingof
terms. We define the set ot to be the smallest set that satisfies the following conditions:

(a) ¢ C ¢¥,
(b) (tit;) € @t = (f(te,-- - tn), f(thoo 0 t0)) € 67,
where f is a function symbol appearing in both P, and F,.

Definition 5 A pairing ¢ is called a partial identity if " is a one-to-one relation be-
tween terms,

Definition 6 For a pairing ¢, two ground atoms a = p(t;,...,1,) € P, and &' =
p(ty,...,1.) € P, are said to be identified by ¢, denoted by awc’, if (;,1') € ™.

Definition 7 Let ¢ be a pairing, and A; be a set of ground atoms. Then, two rules
without variables

R= (& = ﬁll*"tﬁn}rﬁ= {ﬂ* '_15:_;”-118;}
- are called a (v, 4;, Az)-analogue if
ﬁi € 4, ﬁ; € A?:a@'ﬁ:}rgﬁaﬁ;‘ {1 . n]‘

Definition 8 For a pairing @, we define a set M fori = 1,2,
M; =U, M}
JH'P = M;
MM ={a| RPUM;UP: } a

a rule in D; (i # j) such that
R and R’ are a (p, Ay, Az)-analogue.

There exists the instantiation R of
Rl=({R' =¢ *—ﬂ;w--,ﬁ;

Definition 9 For a pairing ¢, the set PAIR(y) of rules is defined as follows:
(a) t~t', for each {t,t') € ¢,
(b) f( Xy, .., Xa)~ f(¥h,...,. 1o)== Xy ~ 1,..., X ~ 1,

where ~ is a predicate symbol which does not appear in P, and P; either, and f is a
function symbol appearing in both F; and F;.

TH



Proposition 2 The following conditions are equivalent:
(a) (t.t') € ¥*.
(b) PAIR(¢) &~ 1"
Definition 10 A copy of a program F;, denoted by copy(F;), is defined as follows:
copy(P:) = {(A)i = (Bi)i,...,(Ba)i | A « By, ..., B, € B},
where (A); = pi(ty,...,t.) if A =p(ts,. .. ).

Definition 11 Let F,, P, be programs, and ¢ be a pairing. The analogical union of Py
and P, denoted by Pyl is defined as follows:

PyoPy = copy(Py) U copy(P2) Utrans(P) U trans(P;) U PAIR(yp),

where
i
Pa(Wa, .o Wo) .. Pty yta) = ooy
trans{P,) = < b Wiyt~ W, g(s1r000088), ’
qil:uh'“:ijvgl(sli"'lskL
Slwﬂ,...:skkar,” e B
J
_pl{ufl'l"'lufn]*_”"c P[fh---:fn}‘_”w
trans(P,) = Wi~ W, ~ 1, GlS1y .y 8k), .
QI{I”;«.‘-~1Vk:|:-?2{511=--+5k}1
l"‘r]"vsh....v;."-'.ﬂh... E
\ J

Proposition 3 Let p(t;,...,1,) an atom. The following conditions are equivalent:
(a) plty,... 1) € M.
(b) PieP b pi(ty,... ta).

4 EBG by Analogical Reasoning

EBG assumes that domain theory is sufficient to prove that the inferred generalizations
follow deductively from what the learner already knows[12). In this section, we take off
this assumption, and define a notion of EBG with an incomplete domain theory.

We consider two objects 5; and 5; with analogous training examples and incomplete
domain theories. First, we present the analogy . Then, using the analogical union on



, we make up rules which are needed in domain theories. In this way, we construct
EBG by analogical reasoning. -

Let D; be a domain theory for 5;, T; be a training example on §;, G; be a goal
concept for S;, O; be an operationality criterion for §;, F; = D; UT; be a program for
5; and I; = (F;, G;, 0;) be an input of EBG by analogical reasoning.

In this paper, we regard an analogy ¢ as a pairing of P, and F£,.

Definition 12 A reformation of a program F,, denoted by Fi(¢), is defined as follows:
Fi(p) = Puref(F),
where

Pl{wh"':wh} ey
thl"“’w"]‘_-”‘ WI~£11-1-1WHNEHI-

- Wi, W),

ref(P) =4 e, W) @1(Visee s Vid@alsa,ouse)y [
“~31,+..,Vk~s;,,...
€ trans(Py)

[ p;{Wi,...,Wn]n—.,,,
p(le;-:Wni:i}_""+ t]""-"W]‘-..,rﬂNW“,
ref(Ps) = ¢ EAMERSRS R @2V, - W) (s, .oy 86), f
s~V s~V ..
€ trans(F;)

A

Definition 13 For inputs [} = (P;,G,,0;) and I = (P2, G2, 03), let » be a pairing
of Py and P,. An erplanation tree EX; for I; is a finite tree satisfying the following
conditions:

(a) Each node of the tree is an element of M.
(b) The root node is an instantiation of G;.

(c) If a node « in the tree has children £,..., 45, (n = 1) in this order, then a «~
B1y..., Ba is an instantiation of a rule in Pi(yp).

(d) Nodes in I1(O;) have no children.

In order to use rules in a generalized derivation GE;, we number the rules which are
used in an explanation tree EX;, in the same way as in EBG.

(a) Each node which is not an element of I1(Q) is numbered with the depth-first search.



(b) Let e be a node which has children 4,,...,8, (n = 1) in this order and C be a
rule in Fi(¢) which is a generalization of @ ~ fy,...,5,.- If-« has a number j,
then C' is denoted by C;.

Definition 14 For inputs I, = (P, G,0y) and I = (P3,G3,03), let ¢ be a pairing
of P, and Fs. A generalized derivation (GF; for I; is an SLD-derivation which consists
of a finite sequence (— (Gi)o) = (— Gi},— (Gih,...,+~ (Gi)a of goals, a sequence
Chy.. . Gy of tules in Pi), which are given in EX;, and a sequence 8y,...,8, of most
general unifiers such that each (G;)iy, is derived from (G;); and Ciyq using fiy,.

A generalized derivation GE; depends on an explanation tree EX;. In EBG by
analogical reasoning, an ezplenaiion is to construct an explanation tree EX;, and gen-
eralization is to generalize a sufficient conditions of a goal concept using a generalized
derivation GE;.

Definition 15 For inputs I} = (P, G;,04) and I; = (P;, G2, 0;), let ¢ 'be a pairing
of P, and F;. EBG by analogical reasoning (EBG by AR, for short) is to derive a
general definition R; of a goal concept G; from an input I; by an explanation and a
generalization.

It 15 denoted by
1; 552 n,

where

(G (n=0)
R“{GHG;)“ (n>1),

and (+ (G;)n) is the goal of the generalized derivation of depth n.

Proposition 4 For inputs I, = (P, Gy, 0;) and I; = {P;,G3,03), let  be a pairing of
P, and P,. Then, I; 255 G, iff G; € I(0)).

proof. I E—?E (3;

iff there exists an explanation tree of depth 1 with the root G;

if G; € 1(0;). O

Theorem 2 For inputs [} = (P,,Gy,0,) and I = (P,,G3,0;), let ¢ be a pairing of
Fy and P, Let R, be G; — A,,..., A, (m = 1), where A; are positive literals. Then,

EHG

1; =, R; ifl the following conditions hold:

(a} There exists a (Pi()), = {(B ~ B,,...,B,) € P(y) | B € TI(0;),n = 1} such
that (Pi(w)), F Ri.

(b) There exists a substitution § such that {f;} UII(O:)|a; F Gif.
(c) G; g TI{O;).



proof. (=) Suppose [; EES R.. Let Cy,.:.,C, be the sequence of rules of the general-
ized derivation of depth n. Then, {Ci}uU,.-.,U{C,} F R;. Furthermore, C;,...,C, €
(Fi()).. Hence, (Fi(p)), F Ri.

Since A;,...,An € I[{0;), there exists a substitution # such that A;0 € H(Giﬂu.-.
Hence, R; U H{G‘ )Iw FGib.

(«=) Suppose that the conditions (a),(b) and (c] hold. By (c) there exists no substi-
tution « such that II(O;) F Giv. Then, by (a) and (b), there exists a substitution # such
that A;8 € TI(0;)|s:. Hence, there exists an explanation tree with the root G # and the

leaves A,f..., Anf. Thus, we have ] Z2° R, O

Thus, EBG by AR is a deductive reasoning from a reformation of a program which
satisfies input conditions. A reformation of a program depends on .

5 A Realization of EBG by AR

The EBG by AR system is a unification of the EBG system and the analogical reasoning
system. The unified system carries out EBG and analogical reasoning simultaneously.
If there exists missing rules in domain theory, the system carries out EBG. If not, it
carries out making up missing rules by means of analogical reasoning and EBG.

Unifiability of terms is essential for a realization of EBG by AR. Hence, we require
a pairing ¢ to be a partial identity.

Now we present a definition of EBG by AR for Prolog programs according to (2, 5,
8, 11].

(C1) raaaun,abg{ﬂual,ﬁanﬂnal.Lenves,Fairing,ﬂa}:-
r_ebg(Goal,GenGoal,Leaves,Wa),reason(Goal,[ J,Pairing,Wa),!.

(C2) r_ebg(A,GA,L,Wa):-
prolog(A,Wa) ,ebg(A,GA,L),!.

(C3) r_ebg(A,GA,L,Wa):-
reason_ana_ebg(A,GA,L,Wa).

(C4) reason_ana_ebg(Leaf,GenLeaf,GenLeaf Wa):-
eperational(Leaf),!,prolog(Leaf ,Wa).

(C5) reason_ana_ebg((A,As),(G,Gs),(L,Ls) ,Wa):-
r_ebg(A,G,L,Wa),r_ebg(As,Gs,Ls,Wa).

(C6) reason_ana_ebg(A,GA,L,Wa):-
fact(Wa(GA:-GAs) ) ,copy ((GA:~GAs), (A:-As)),r_ebg(As,GAs,L,Wa).

(C7) reason_ana_ebg(A,GA,L,Wa):-
prematch(A, (GB:-GBs) ,Wa) ,world(Wa,Wb),reason_B((GB:-GBs),Wb),
make_clause(Wa-Wb, (GA:~GAs), (GB:-GBs) ,Pair),compact(Pair,Pairl),
epic(Pairl),consistency(Pairi,Wa),copy((GA:-GAs), (A:-As)),
r_ebg(A=,GAs,L,Wa),!.

First suppose that a fact of assertion A and arule C « By,...,B, (n > 1) in P, are
represented by the following Prolog clauses: :

fact{w;, (A — true)).



far:t[w;, [C '!_ Bl:" ..,,En]).

respectively, and stored in Prolog database, where w; is a world name for an object 5;.

The predicate reason_ebg takes an instantiation of a goal concept as its first argu-
ment, a goal concept as its second argument, and a world name as its fifth argument,
and returns a general definition of a goal concept in the third argument, and a partial

identity of P, and F; in the fourth argument.
The predicate ebg carries out EBG. The predicate reason carries out analogical

reasoning. The ordered set of clauses (C2) and (C3) carries out EBG, if possible. The
ordered set of clauses {C4), (C5) and (C6) works as a pure-Prolog interpreter. The
clause (CT) is a significant rule of EBG by AR. The part from prematch to copy in the
body of (CT) carries out making up rules which are needed in domain theories.

Finally we present an example of EBG by AR.

Example

W1 consists of the following clauses:

Goal concept Gy: gef (X,2)

Domain Theory Dy: ggf(X,Z) :-gf1(X,Y) ,gf2(Y,2).
gf(X,2):-p(X,Y) ,£(Y,2).

Training Example T: f(b,c). m(a,b).
fld,e). mic,d).

Operationality Criterion 0;: operational(G):-member(G,[£(_,.),n{_,-)]).
W2 consists of the following clauses:

Goal concept Gj: ggf(X,Z2)
Domain Theory Dy: gf1(X,Y) :=gf(X,Y). p(X,Y):-£(X,Y).
gf2(X,Y) :-gf (X,Y). p(X,Y):-m(X,Y).
Training Example Ts: f(bb,cc). m(aa,bb).
f{dd,ee). mice,dd).

Operationality Criterion Oy: operational(G):-member(G,[f(_,.) ,m(_,)]).
The question to our EBG by AR system is
7- reason.ebg(ggf(aa,ee),gef(X,Y),Leaves,Bind,W2).
The answers from the system are
X=X,
Y =Y,
Leaves = m(X,_18717), £(_18717,_15781), m(_15781,_21719), £(_21719,Y)
Bind = [a-aa,b-bb,c-cc,e-ee,d-dd]

Figure 2 shows that we can not construct explanation tree for W2 in the

usual EBG system but can construct it in our EBG by AR system. It is the
same with W1.

6 Conclusion

We have given a formalization of EBG. We have shown that EBG is a deductive reasoning
from the program which satisfies the input conditions. As a result, we have given
a formalization of EBG by AR and its realization, by unifying EBG and analogical
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reasoning. Our EBG by AR is a method to carry out EBG even when domain theories

are incomplete.
The analogy treated in the present paper is a pairing of terms. We can generalize

our EBG by AR for an analogy defined by a pairing of function symbol and predicate
symbol[17].

Wl ggf(a,e) w2 ggf (aa, ee)
|
[ I
gfl{a,c) gf2ic,e) gfl (aa, ec) gf2{cc,aea)
gfila,c) gf{c,e) gf(aa,cc) gfi{cec, ee)
pla;,b} fib,c) plc,d) fid,e) plaa,bb)f(bb,ccplcc,ddif (dd, ae)
mia,b) mic,d) miaa,bh) mi{ce, dd)
""-u ..-"'..
" -
-~
“-..-‘ ",-!"
T
N
ggf (aa,ee)
i : i
i #
gfl {aa,cc) gf2 (cc, ee)
gflaa,cc) gflcc,ee)
NS S— . R—
p(aa,bb) f(bh, cc) plcc,dd) fid'd;w.:}
miaa, bb) mica, dd)

Figure 2: Explanation of W2 using EBG by AR.
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Fundamental Properties of Inductive
Reasoning

Klaus P. Jantke
Technische Hochschule Leipzig
FB Mathematik & Informatik

Karl-Liebknecht-Strasse 132
Leipzig 7030, Germany

Abstract

Inductive reasoring is mainly faced to the problem of processing infor-
mation which may be incomplete. Therefore, inductive inferences may be
somehow speculative. Conclusions drawn have frequently to be considered
hypothetical. There 1= no general way out, except giving up the potential
incompleteness and, hence, leaving the whole area of inductive reasoning,

In order to cope with these inherent difficulties of inductive reasoning,
one may require desirable propertics like consistency of hypotheses. Other
seemingly natural properties are motivated by efficieney considerations.

Within the talk, there are introduced and investigated several fundamen-
tal properties of inductive reasoning. A couple of results are discussed which
illustrate both the importance and the restrictiveness of these properties. It
is assumed that these results apply to inductive logic programming directly.

The talk is intended to initiate a deeper and partially new communica-
tion between scientists from the inductive logic programming community and
those scientists working on other areas of inductive reasoning.
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2 Perscnal Approach te Linguistics Oriented
Inductive Logic Programming

Gregers Koch

DIXU, Copenhagen Uniwversity, Denmark.

hAbhstract

A new concept called Computaticnal Logico-Semantic Induction is introduced.
It is a special kind of inductive logic programming, and it may be considered
a generalisacien of the old concept grammatical inference that may in turn

be characterised as a kind of computational syntactic induction, Thg concept
iz clarified by an example.

The possibility of automation is discussed in considerable danail The
implementation of computational logico=-semantic induction has to do with the
construction of a kind of blackbox to accept a traditional syntactic descrip-
tion of a linguistie universe. Besides the blackbox must accept as input a
finite set of pairs (Ek,Fk) where Ek is a text from the linguistic uni-
verse, and Fk is the intended semantic representation corresponding to tha
input Ek. For instance, the Fk may be in the form of a2 logical formula or
a8 logical code. Qutput from the blackbox should be a program that translates
linguistic input E into logical output F in such a way that in particular
the input Ek gives the cutput Fk. Here is required a complete match with
the given examples.

Some possible principles for the construction of such a blackbox by logic

i
programming methods are discussed. These principles are clarified by appli-
cation to a few small sample texts. We conclude that thls new concept of
camputational logico-semantic inductien is extraordinarily promising.

Introduction

This paper investigates methods and tools for developing a specific kind of model
of human language learning capability, by presenting a performative simulation
model (here termed a computational logico-semantic induction system [16, 18]).

The same methods and tools may be applied for the purpose of implementing
a wide variety of computational systems including certain kinds of rule-based
expert systems and certain kinds of modern grammars (in particular the so-
called unification grammars) [17].

The advantage of logico-semantic induction is its applicability in the context
of constructing natural language interfaces as well as a variety of other user-
friendly types of interfaces to expert systems and other computer systems.

We are studying the problem of constructing language acqulsition models
from specific data. That is, we could be claimed to be modelling an extremely
advanced type of information processing systems, viz. human beings in the role
of acquiring language capabilities. However, we are modelling the performative
aspects only. No claim whatsoever is made as to the possible descriptive power
of the resulting models from a psychological point of view (so we might call it
purely antropomeorphic information technology).

The focus of this paper is on logico-semantic induction which is a method for
the systematic pattern identification and extraction in linguistic data sequences,
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in particular at a semantic and a combined syntactic and logical level of inter-
pretation. It provides a means for the automated analysis of verbal protocols,
and it constitutes a method for the automated construction of a logico-semantic
parser. ' i
Logico-Semantic Induction and its automated variant Computational Log-
ico-Semantic Induction designate a completely new method from the area of
logic programming and natural language processing. In contrast to the majority
of other inductive approaches the method here does not deal with induction in
a space of possible assertions but instead with induction in a space of possible
logico-semantic representations. Here is given a short introduction to the con-
cepts. A more comprehensive discussion by this author may be found elsewhere.

The particular kind of inductive inference that we have in mind may be illus-
trated by means of a diagram. Along the first axis we shall map all the possible
assertions or utterances (in some suitable encoding), and along the second axis
we shall map all possible representations within the framework of a particular
representational notation (and similarly in a suitable encoding). A semantic the-
ory will then occur in the shape of a mapping from the axis of utterances into
the axis of representations (as long as we presuppose unambiguity, otherwise it
will be generalised to a relation).

For example, we might {rom the following facts

crow number 1 is black
crow number 2 is black
crow number 3 is black
eic.

make the attempt to induce the following more general assertion: [2]

all crows are black.

The type of induction advocated here is of a different kind: From the following

conventions

text E1 has the logico-semantic representation F1
text E2 has the logico-semantic representation F2
text 3 has the logico-semantic representation F3

etc.

we should like to find a (possibly very limited) linguistic universe L and a (logi-
cal) program P such that for each text e in L its corresponding logico-semantic
representation { is the result (output) of executing the program P with the given
e as input. Here the example texts E1, E2, E3 etc. are all included in the linguistic
universe L.

Computational Logico-Semantic Induction may be considered a generalisa-
tion of the old concept grammatical inference that may be characterised as a
kind of computational syntactic induction [11].

The possibility of automation is discussed in considerable detail. The imple-
mentation of computational semantic induction has to do with the construction



of a kind of blackbox to accept a traditional syntactic description of a linguistic
universe. Besides the blackbox must accept as input a finite set of pairs <e,fx >
where ¢y is a text from the linguistic universe, and fy is the intended semantic
representation corresponding to the input ex. For instance, the fy may be in the
form of a logical formula or a logical code. Output from the blackbox should be a
program that translates linguistic input e into logical output { where especially
the input ey gives the output fy. Here is required a complete match with the
given examples. ’

Some possible principles for such a blackbox are discussed. These principles
are clarified by application to a few small sample texts. We conclude that this new
concept of computational logico-semantic induction is extracrdinarily promising.

This paper contains a briefl discussion and sketches a solution. A more com-
prehensive discussion is in preparation [13, 14, 16]. _

Here we are concerned exclusively with parsing or textual analysis. Analogous
considerations can be made concerning textual synthesis or generation.

This work on computational logico-semantic induction was performed under
heavy influence by some of the leading approaches within logic grammars like
those of A. Colmerauer |3, 4], V. Dahl [7, 8, 9], F. Pereira (23, 24, 25, P. Saint-
Dizier {27, 28], and M. McCord [21, 22].

It may really be seen as an attempt to unify some rather diverging tendencies
in the philosophy of language, namely Creswell's lambda-calculatoric theory [5,
6] and some montagovian ones [19, 10|, and on the other hand, the first order
logical theories from logic grammars [12, 16]. The contribution here seems to

support any of these theories.
' As an example we may investigate the following English sentence

(1) Mary believes that Peter loved a woman

Within the limits of a modestly extended first order predicate calculus we
may assign to the sentence the following two interpretations or logico-semantic

representations, respectively:

(2) 3y[woman(y) & believe(pres,mary,love(past,peter,y))]
{3) believe(pres,mary,dy[woman(y) & love(past,peter,y)])

An absolutely central problem of semantics (here called the logico-semantic
problem) is to assign to each input text from the appropriate linguistic universe
one or several formalized semantic representations. As formalizations we will
here consider only logical formulae belonging to some particular logical calculus
(like definite clauses or Horn clauses, first order predicate logic, some extended
first order predicate logics, the lambda calculi, and Montague’s intensional logic
(19))-
The principles of implementation are quite clear and fairly well developed,
as may be seen by studying the example below (another example may be found
in [16]). But as far as an actual implementation is concerned, we are working on

it albeit in a rather slow pace (due to lack of resources).
— ik



A Small Example

Now time is probably ripe to investigate the example mentioned above. This may
be seen as a further development of the ideas discussed in [16]. If the syntactic

description is the following little grammar

(4) Sent — Np Vp
Np — Det Noun | Prop
Vp = Tv Np | Vp-s that S

(in the last production rule we have used a categorial grammar notation) then we
may look {or a representative, also called an exhaustive text. Such an exhaustive

sample text may be the following:
Mary believes that Peter loved a woman

Within the chosen semantic representational notation (a predicate calculus of
arbitrary high order, PC,,) we may prefer to use a kind of generalised quantifiers
for representing some {two) possible interpretations of the sample text in the

following way:
(5) a(y,woman(y),believe(pres,mary,love(past,peter,y)))
(6} believe(pres,mary,a(y,woman(y).love(past,peter,y)))

The two interpretations deviate by one having as a presupposition the exis-
tence of such a female and the other not having that presupposition. Montague
grammars like PTQ would obtain the same distinction.

If we choose to consider the first formula (5) to be the intended represen-
tation, the method here will lead in a mechanical fashion to the logic program
shown below (7), written in the form of a logic grammar.

The program constitutes just a syntactical description augmented with at-
tributes or decorations as may be seen by ignoring the functional arguments
(then quite simply the grammar of (4) occurs).

Let us see what happens more precisely in our method. The intended resulting
formula (5) should be represented as a tree structure like that in figure 1. Then

the following steps should be performed:

Step 1: Enumerate the boxes in the intended result structure. {In our example
this means that the boxes will get the numbers from 1 to 7, as in figure

1).

Step 2:  Construct the syntactic structure (by performing parsing or syntactic
analysis).

Step 3: Create a match between the result structure and the syntactic struc-
ture. More precisely, make a connection from a numbered box in the
result structure to the lexical category in the syntax structure to which

the word (lexical or syncategorematic) belongs. This is an indication of
the vertex in the syntax tree where that fraction of the result structure

a1 —
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Step 4:

Step 5:
Step 6:

Step T:

I

belzves that Peres

Figure 3:

having the relevant word as its top vertex, is being constructed as the
result attribute of the vertex.

Construct the flow from the so-called focus variables (form a new vari-
able for each Np phrase, as in figure 2).

Construct the flow in the lexical rules.

Connect each pair of numbers corresponding to an edge in the result
structure (here the tree structure should be respected, as in figure 3
where the following pairs are connected: 7-6, 5-4, 6-4, 3-2, 4-2, 2-1).

Check the consistency concerning arity and local flow.

In our example the augmented syntactic structure will be like figure 3.

The resulting logic grammar will be the following:

(7) S(V,W,U) — Np(X,Y,2),Vp(X,W,V,U)
Np(X,Y,Z) — Prop(X)
Np(X,Z,W) — D(X,Y,2,W),N(X,)Y)
Vp(Y,X1,Y1,V) — Vp-s(X,Y,Z,W),[that},S(W,Z,V)
Vp(Y, W, V,U) = Tv(X,Y,Z,W),Np(Z,V,U)
D(X,Y,Z,a(X.Y,Z)) — [a]
D(X,Y,Zevery(X,Y,2)) — [every]
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Concluding Remarks and Perspectives

As to which representation languages are acceptable with respect to this method,
there seems to be a high degree of freedom so that we seem to be near the im-
plementation of a general information theoretical or computer science paradigm

like this:

N blackbox s

i

Anyway, there exists a requirement that a kind of homomorphy property,
a kind of compositionality should be available in the relationship between in-
put and output. One or another variant of Frege's principle of compositionality

should be obtained:
To the extent that our rules are of the form

Po(G{¥1,-¥n))—Pi (¥1)seesPa(¥n)

we know about the semantic representation function Sem that
Sem(Pg)=G(Sem(P,),....Sem(P,))

where Pu:PlAPE - Pn

provided that Py is the fragment of the input text belonging to the syntax
category pi for all ke{0,1,..,n}.

And this property is precisely one way of expressing Fregean compositionality.

One perspective of this approach is that it allows a generalisation into what
we tend to call computational logico-semantic abstraction [18]. In this context
it is profitable to make use of certain results from the modern computer science
disciplines of logic programming, attribute grammars, and denotational semantic
theories.

Another perspective concerns automated learning. Computational logico-
semantic induction has the property that the system will be able to improve
its linguistic performance (i.e., handling new information of 2 semantic nature)
by adoption from a single occurrence of a grammatical rule. That must be effec-
tive automated learning par excellence!

5o, besides concluding that the method of logico-semantic induction is not
only new but also promising we are able to discuss Al-problems related to in-
ductive learning from the following perspective: inductive reasoning as a way of
managing linguistic information in logical systems. Hence in this case it is not
really a question of empirical information, and of course its relationship to Al
is always arguable (what is the precise content of AI?), but a surprisingly high
degree of automated learning is actually obtainable.
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Abstract

It is important for a learning program to have a reliable method of deciding whether to
treat errors as noise or to include them as exceptions within a growing first-order theory.
We explore the use of an information-theoretic measure to decide this problem within the
non-monotonic learning framework defined by Closed-World-Specialisalion. The approach
adopted uses a model that consists of a reference Turing machine which accepts an encoding
of a theory and proofs on its input tape and generates the observed data on the ontput tape.
Within this model, the theory is said to “compress” data if the length of the input tape is
shorter than that of the output tape. Data found to be incompressible are deemed to be
“noise”. We use this feature to implement a compression-guided specialisation procedure
that searches for the best-fitting theory for the data (that is, the one with the shortest
input tape length). The approach is empirically evaluated on the standard Inductive Logic
Programming problem of learning classification rules for the KRK chess end-game.

1 Introduction

Induction is an uncertain process. Scientific theories are ascribed various degrees of belief de-
pending on how well they agree with known facts. As new information becomes available certain
hypotheses may scem more likely and others less so. For instance consider the Julian calendar
in which leap years were held to be necessary once every 4 vears. This can be represented in
Prolog with negation by failure as

normal{ Year) - year(Year), not leapf(Year).
leap{(Year) - modulo(Year,4,0).

This ruleis correct up to around one part in a hundred and so up until 1582 errors could simply
be treated as noise. However after 1500 years the mismatch with astronomical measurements
forced a revision of the calendar under Pope Gregory XIII. In the Gregorian calendar the rules
can be written as follows.
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Hleapd(Year) - modulo(Year {,0/, not leapl00{Year).
leap100(Year) :- modulo{ Year, 100,0), not leap{00(Year).
leap{00( Year) - modulo( Year, {00,0).

The aim of Inductive Logic Programming (ILP) is to antomate the construction and revision
of logical theories by using example facts and background knowledge [17]. In the case above,
examples are of the form nermal(1381) or not{normal{1582)) and background knowledge would
contain a definition of medule. ILP methods based on closed-world specialisation [3] would
progressively specialise the overgeneral clause normal(Year) by inventing (and generalising) new
abnormality predicates (corresponding to leapd, leap 100 and leap400). This process is capable of
generating the Gregorian calendar theory and has recently been used to construct a complete and
carrect solution for the standard KRK illegality problem from the machine learning literature
[2]. However, a key issue remains to be addressed: there is no mechanism by which a non-
monotonic learning strategy can reliably distinguish true exceptions from noeise. For example, a
strategy based on closed-world-specialisation would continue specialising until a correct theory
is obtained. In noisy domains, this will necessarily result in fitting the noise. In this paper we
explore the possibility of using a general information-theoretic model developed in [18, 21] to help
distinguish noise from true exceptions. An important consequence of adopting this model is that
theories found to be “compressive” (described below) are, with very high probability, significant.
A simple search procedure is developed to find as compressive an explanation as possible for the
data. Its results are evaluated empirically for the standard ILP problem of learning classification
rules in the KRK chess end-game.

2 Information-Theoretic Evaluation of Hypotheses

In the 1950's Carnap [7] and others suggested “confirmation theories” aimed at providing a
statistical underpinning to the problem of the plausibility of inductive inferences. Various diffi-
culties and paradoxes were encountered with these approaches which meant that they were never
applied within machine learning programs [16]. Instead, confidence in alternative hypotheses has
for the most part relied on cither ad hoc notions of simplicity (the Occam’s razor principle) or
on statistical tests of significance based on the coverage of a rule and prior probability estimates
of the classes present in the data ([9, 10]).

The choice of the most compact hypothesis is the basis of Rissanen's “Minimal Deseription
Length” (MDL) principle[23]. This states that the best theory for explaining a set of data is one
which minimises the sum of;

1. the description length of the theory in bits and
2. the description length of the data when encoded using Lhe theory.

Within machine learning the MDL principle has been applied by [11] to delermine the the
best sampling rate for character recognition and by [24] to the problem of learning decision
trees. However, its application to first-order learning remains largely unexplored. It forms
the motivation for the encoding measure used in [23]. However, the simplifications result in a
number of problems (identified in [10]). Muggleton [18] addresses this issue using a model related
to algorithmic information theory ([26, 13, 8]). In his approach, the significance of a hypothesis is
evaluated by comparing the length of the input and oulput tapes of a reference Turing machine.
The components to be minimised in the MDL approach are represented on the input tape as
a Horn clause theory and a proof specification. The latter specifies how the examples on the
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output tape are to be derived using the theory and background knowledge. {Figure 1: from
[21]). A theory is deemed significant if the length of the input tape (in bits} is shorter than that

Lot ape Cruggr e
Ilml 151 1660 T 001 £ IOLINDLI E0L
Lagic Proofs Positwve and Nepsuve exangles
pragram

Figure 1: A Turing machine model for learning logic programs

of the output tape (the theory and proofs are said to compress the data). This model has been
empirically evaluated in [21] and shown to be better suited to learning first-order theories than
the statistical measure used in [9, 10]. In the following section we describe a method of using
the compression obtained from this approach to guide the progressive correction of first-order
thearies within a non-monaotonic framework.

3 Compression-Based Non-Monotonic Induction

We incorporate the Turing machine compression model in Figure 1 within the non-monotonic
learning framework developed by Muggleton and Bain ([3, 2]). Their technique commences with
an over-general logic program. This is then progressively corrected by a hierarchical decompo-
sition strategy. At each level negated exception predicatles are introduced (and generalised) to
account for exceptions. Figure 2 shows an algorithm that performs the alternate operations of
specialisation and generalisation characteristic of closed-world-specialisation.

It is worth noting here that:

1. Asin [15], there is an assumption that the exceptions to a rule are fewer than the examples
that satisfy it. :

2. The call to generalise results in an attempt to induce a (possibly over-general) rule by a
learning algorithm.

3. All rules are added to the theory. Further, all negative examples covered by an over-general
clause are taken to he exceptions and the clause is specialised with a (new) abnormality
predicate.

Each correction performed by the CW3 algorithm is an atlempt to imprave the accuracy of the
theory, at the expense of increasing its size. Clearly, if the correction was worthwhile, the gain
in accuracy should outweigh the penalty incurred in increasing the theory size. ln encoding
terms, each correction increases the theory encoding on the input tape and decreases the proof
encoding. In the model in Figure 1, a net decrease in the length of the input tape occurs when
Lhe correction succeeds in identifying some pattern in the errors (Lhat is, the errors are not noise).
The new theory consequently compresses the data further by exploiting this pattern. Using this
feature, we evaluate the utility of updating a theory by checking for an increase in compression.
We note the following consequences of using the compression model within the non-monotonic
framework adopted: '

1. Only compressive theories are deemed to be reliable in the miodel. Thus, while we can
adopt the MDL principle of selecting the theory with the shortest input tape, we can be



start:
PosE = positive examples of target concept
NegE = negative examples of target concept
return learn{ PosE, NegE)

learn(Pos,Neg):

ClauseList = []

repeat
= generalise( Pos,Neg)

if C# 1]

PasC = positive examples covered by C
NegC = negative examples covered by C
Pos = Pos - PosC
Neg = Neg - Neg(
ClauseList = ClanseList + {C,PosC NegC)

until C = |

Theory = ||
foreach (Clause, PosC Neg(C) in ClauseList
if |[NegC| # 0
Theory = Theory + specialise(Clause,PosC,Neg()
clse .
Theory = Theory + Clause
return Theory

specialise(HornClause,Pos,Neg):
hd(V5,..., ¥y) = lead of HornClause
Body = body of HornClause
ab = a new predicate symbaol
SpecialisedClanse = hd(Vi, ..., V5} — Body, not{ab(V;, ..., V.))
PosE = positive examples of ab formed from Neg
NegE = negative examples of ab formed from Pos
return SpecialisedClause + learn{PosE,NegE)

Figure 2: Non-monotonic inductive inference using closed-world-specialisation (CWS)
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confident of not having fitted the noise only if the theory itself is compressive. Stated
differently, we can be confident that highly compressive theories have avoided fitting the

noise as much as possible.

2. With the closed-world assumption, all examples are covered. Consequently, the output
tape has to be encoded only once. Input tapes for alternate theories are compared against

this encoding.

3. Consider an over-general clavse in the current theory. The proof encoding described in
121] ensures all variables of the clause are bound to ground terms. Specialising this clause
involves adding a negated literal to its body. By appending this literal to the body, we are
guaranteed that it will be ground. This ensures safety of the standard Prolog computation
rule used by the Turing machine.

4. The proofl encoding for each example has two parts: a choice-point specification and a
proof tag. Since the negative literal appended to a clause can never create bindings, the
choice-point specification remains unaltered. The size-accuracy trade-off referred to earlier
therefore reduces to a trade-off between increasing theory size and decreasing tag size. Not
having to recalculate the choice-point encoding for each specialisation is a major benefit as
this is an extremely costly exercize.

While the aim 15 to obtain the most compressive subset of the clauses produced by the CWS
algorithm, it is unnecessary to examine all subsets since clauses constructed as generalisations
of an abnormality predicate cannot be considered independent of the parent over-general clause.
For example, it makes no sense to consider the following set of clauses for explaining leap years:

normal( Year) :- year(Year), not leapd(Year).
leap{00{ Year) - modulo(Year,§00,0).

Despite this, there may still be an intractably large number of clause-sets to consider. Conse-
quently, we adopt a greedy strategy of selecting clauses in order of those that give the most gain
{in compression). This strategy has to confront two important issues: devising a reliable method
of deciding on the “best” clause to add to the theory and the fact that adding this clause may
not produce an immediate increase in compression.

A simple way to address the first problem is to select the clause that corrects the most
errors. Since decreasing errors is the only way to shorten the input tape, the gains are larger
for theories that make fewer errors. This works well if all clauses are of approximately the
same descriptional complexity. A hetter estimate would account for the complexity of individual
clauses as well. This can be done using average estimates of the cost of encoding predicates,
functions and variables. In the experiments in the next section, this more sophisticated estimate
has proved unnecessary. This i1s because the clauses fitting noisv data tend to correct fewer errors
and therefore, considered later using the simpler estimate. For the other clauses, the gain from
correcting errors dominates the loss from increased theory size.

To address the problem of local minima, it is clearly desirable to have a method of looking
ahead to see if a (currently non-compressive) clause will be part of the final theory. To decide this,
we calculate an estimate of the compression produced by the most accurate theory containing
the clause. The clause is retained if this expected compression is better than the maximum
achieved so far. Each time an actual increase in compression is produced, the theory is updated
with all clauses that have been retained. Figure 3 shows how the estimate is caleulated.  The
estimated compression will usually be optimistic because it it assumes that all errors can be
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estimate{ Theory):

Neorrect = number of examples correctly classified by Theory

Nmaximum = number of examples that the learner can hope to classify correctly
Qutbits = length of output tape (in hits)

OldTheory = length of Theory (in bits)

OldTags = current length of correction tags (in bits)

Choices = length of choice-point encoding (in bits)

NewTheory = OldTheory x Nmaximum / Ncorrect

NewTags = length of correction tags to correctly classify Nmaximum examples
Estlnbits = NewTheory + Choices + NewTags

return {Qutbits - EstInbits)

Figure 3: Estimating the compression from a theory

compressed. However within the compression model adopted, it is extremely unlikely to get any
more compression from a theory that is completely correct on noisy data than from an incorrect

one

that leaves the noise uncompressed. Of course, one way to guarantee an optimistic estimate

i to assume that there will be no increase in theory size {as opposed lo the current scaled
estimate). However, this gives no heuristic power and usually ouly prolongs a futile search for a
correct theory. Figure 4 summarises the main steps in the compression-based selection of clauses

as described here.  The fellowing points deserve attention:

1.

4
We

At any given stage, only some clauses produced by CWS are candidates to be added to the
theory (recall the earlier statement that over-general clauses have to be considered before

their specialisations).

The “best” clause refers to the clause sclected using the simple error-count measure, or
the more sophisticated one that accounts for the estimated theory increase. To obtain the
latter requires a knowledge of the number of predicate, function and variable symbols in

the clause.

Consider the siluation when the estimated compression from adding the “best” clause
is no better than the compression already obtained. Figure 4 does not acknowledge the
possibility that some of the other clauses can do better. It is possible to rectify this by
progressively trying the “next best” clause until all clauses have been tried.

The procedure in Figure 4 is reminiscent of post-pruning in zerc-order algorithms (the
clauses are constructed first and then possibly discarded). A natural question that arises
is whether it is possible to incorporate the compression measure within the specialisation
process The analogy to zero-order learning algorithms is whether tree pre-pruning is feasi-
ble. The answer is yes, and in practice may be preferred as it avoids inducing all clauses.
The price to pay is that it may not be possible to estimate reliably the utility of a clause.

Empirical Evaluation

evaluate the utility of using compression as a reliable noise detector on the standard ILP

problem of learning classification rules for the KRK chess endgame [19]. However, contrary to
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start:
ClauseList = clavses produced by CWS

return select.clauses{ ClauseList)

select_clauses(ClauseList):
Theory = PartialTheory = ||
Compression = 0
repeat
PotentialClauses = clauses in ClauseList that can be added to theory
= “best” clause in PotentialClauses

if C # (]
PartialTheory = PartialTheary + C
NewCompression = compression of Partial Theory

if NewCompression > Compression
Theary = Partial Theary
Compression = NewCompression
else
EstCompressinon = estimate( PartialTheory)
if EstCompression < Compression return Theory
until ¢ = [
return Theory

Figure 4: Compression-based selection of clauses produced by CWS

normal practice, we chose to learn rules for KRK-legality (as opposed to KRK-illegality). This
provides an extra level of exceptions lor the specialisation method. Given background knowledge
of the predicates If/2 and adj/2, Figure 5 shows the target theory. It is possible to achieve an
accuracy of about 99.6% without accounting for the second level of exceptions. In fact, the
theory shown in Figure 6 is about 98% correct.

For our experiments, we adopt a simple noise model termed the Classification Noise Proccss
(CNP) [1]. In this, a noise of n implies that (independently) for each example, the sign of the
example is reversed with probability %. This is not the only random noise process possible. For
example, a noise of 7 in our mode! corresponds to a class-value noise of 27 in that adopted by [22]
and Donald Michie (private communication) advocates a process that preserves the underlying
distribution of positive and negative examples. Finally, although the procedure described in
Figure 4 is not dependent on any particular induction algorithm, the results quoted here use
Golem ([20]).

Figure 7 tabulates the percentage aceuracy of the most compressive theory for different noise
levels. Here “accuracy” refers to accuracy on an independent (nuise-free) test set of 10000
examples. Since the compression model only guarantees reliability for compressive theories,
nothing can be said about those for which compression is less than 0 (irrespective of their aceuracy
on the test set). In Figure 7, an entry of “." denotes thal the theory obtained is non-compressive
on the training data and consequently, no claim is made regarding its accuracy on the test set.
The results highlight some important points. Compressive theories do appear to avoid fitting the
noise to a large extent. The price for this reliability is reflected in the amount of data required. In
comparison, it is possible that other techniques may require fewer examples. However, they either
require various parameters to be set ([10]), use ad hoc constraints ([23]) or need an additional
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% legal{ WK_file, WK _rank, WH_file, WR_rank, BK_file, BK _rank)
legal{A,B,C,D,E F) :- not ab00(A,B,C,D,E,F).
ab@0{A,B,C.D,C.E) - not abl1{A,B,C,D,C,E).
ab00(A,B,C,D,E,D) : not ab12(A,B,C,D,E,D).
ab00(A,B,C,D,E,F) - adj(A,E), adj(B,F).
ab00{A,B,A,B,C,D).

ab12(A,B,C,B,D,B)  lt(A,D), It(C,A).

ab12{A,B,C,B.D,B)  It{A,C), It{D,A).

abI1(A,B,A,C,A,D) :- It(B,D), #(C,B).

ab11(A,B,A,C,A,D) - It(B,C), It(D,B).

Figure 5: A complete and correct theory for KRK-legality

legal(A,B,C,D,E,F) :- not ab00{A,B,C,D,E,F).
ab00(A,B,C,1,C,E).

ab00(A,B,C,D,E ).

ab0O(A,B,C,D,E,F) :- adj(A,E), udi(B,F).

Figure 6: An “approximately correct” theory for KRK-legality

data set for pruning ([6]). Further, most of them are unable to offer any guarantee of reliability
(the approach followed in [10] can select clauses above a user-set significance threshold). In
this respect, our empirical results mirror PAC ([27]) results for learning with noisy data in
propasitional domains ([1]): with increasing noise, more examples are needed to obtain a good
theory. 1t is also worth noting that the conditions covered by the sccond level of exceptions (the
cases in which the White King is in between the White Rook and Black King) accur less than 4
times in every 1000 exampies. This is only picked up in the noise-free data set of 10000 examples
(in which there were 38 examples where the rules applied).

Exlending the PAC analogy further, Figure 8 shows the results from a different perspective.
For different levels of noise, this figurc shows the number of training examples required for the
“approximately correct” theory of Figure 6 to be compressive. For example, al least 170 examples
are required to obtain a compressive theory that is 98% accurate on noise-free data. While these
numbers are approximate (they are obtained by extrapolating the compression produced by the
theory for the different training sets in Figure 7) they do indicate the general trend of requiring
larger example scls for increasing noise levels,

5 Conclusion

The task of distinguishing between exceptions and noise is an issue that is typically ignored in the
literature on non-monotonic reasoning. It is, however, of fundamental importance for a learning
program that has to construct theories using real-world data. One way to approach the prob-
lem is to see if the exceptions to the current theory exhibit a pattern. The compression model
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Training Set Size
Noise (%) | 100 | 250 | 500 | 1000 | 5000 | 10000
0 99.7 | 99.7 [ 99.7 | 99.7 | 100
5 _ [981 (981 )99.7 1997 [99.7
10 _ | [981[981 [997 [99.7
15 - [ 1981981 [99.7 [99.7
20 _ [ 1. |981 997 [99.7
30 _ T 98.1 | 98.1
40 - |- - - 98.1

Figure 7: Test-set accuracy for the most compressive theory -
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Figure 8: Examples required for a 98% correct and compressive theory
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we have used in this paper uses an information-based approach to check whether the pattern
detected warrants specialising the theory. While it can be formulated as an implementation of
the Minimal Description Length principle, more significant is the fact that theories found to be
compressive in the model are unlikely to have detected chance patterns. Our empirical results

suggest that by selecting the most compressive theory, it is possible (given enough data} to reli-
ably avoid fitting most of the noise. Clearly, it would be desirable to confirm these results with

controlled experiments in other domains. In practice, the method has found interesting rules on
an independent problem of pharmaceutical drug design ([12]). Finally, the results also lend sup-
port to the link between compressive theories for first-order concepts and their PAC-learnability.
While various authors have shown such a connection exists ([4, 3, 14]), it would be nice to show
that their concept of compression fits that used here.
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Abstract

As the field of inductive logic programming matures to the stage of being applicable
to practical probiems, the question of handling imperfect data becomes increasingly more
important. We have developed the ILP system mFOIL, which is based on the FOIL
approach and uses Bayesian probability estimates to handle imperfect data. The paper
presents mFOIL with its noise-handling mechanisms and discusses its performance on the
benchmark problem of learning illegal chess endgame positions from noisy examples. It
also describes the application of mFOIL to the more practical problems of learning rules
for finite element mesh design and learning qualitative models of dynamic systems.
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1 Introduction

As the field of inductive logic programming (ILF, Muggleton 91) matures to the stage of being
applicable to practical problems, the issue of handling imperfect data becomes increasingly
more important. Namely, learning in real-life domains often means learning from imperfect
data. The various kinds of data imperfections include: random errors (noise) in training
examples, Loo sparse training examples (from which it is difficult to reliably detect correlations),
and unsuitable concept language (which depends on the background konowledge and may not
facilitate the formulation of an exact description of the target concept).

Systems which successfully deal with imperfect data usually have a single me chamsm called
noise-handling mechanism, to cope with all three kinds of imperfection mentioned above. FOIL
(Quinlan 90} includes a noise-handling mechanism based on a simple scheme of encoding the
induced clauses. However, several prohlems with this mechanism have heen identified (DZeroski
01, Dieroski and Lavra¢ 91, Lavraé and Dzeroski 92) stemming from the defficiencies of the
encoding scheme used (Muggleton, Srinivasan and Bain 92). LINUS {Lavrag, Dzeroski and
Grobelnik 91) was shown to perform better than FOIL on the problem of learning illegal
positions in a chess endgame from noisy examples (DZeroski and Lavra& 91, Lavra? and DZeroski
92). As LINUS transforms the ILP problem to propositional form and then uses attribute-value
learning systems, it relies on the noise-handling mechanisms of the latter.

In the mEFOIL system, described in this paper, noise-handling techniques used in attribute-
value systems are directly incorporated within the FOIL approach. The noise-handling tech-
niques include Bavesian probability estimates, such as the Laplace estimate and the m-estimate
(Cestnik 90, 91), and significance based stopping criteria. Section 2 presents mFOIL in detail,
including its search space, search heuristics and stopping criteria. In Section 3, the performance
of mFOIL, FOIL and LINUS is compared on the benchmark ILP problem of learning illegal
chess endgame positions from noisy examples. The application of mFOIL, FOIL and GOLEM
to the problem of finite element mesh design is described in Section 4. Finally, Section 5 gives
a brief description of the application of mFOIL to the problem of learning a qualitative model
of the dynamic system of coupled containers (J-tube).

2 Handling noise in mFOIL

mFOIL is largely based on the FOIL approach. There are, however, several important dif-
ferences. As far as the search space is concerned, mFOIL uses some additional information,
such as the symmetry and different variables (rectified literals) constraints, to reduce it. The
main difference is that, instead of the entropy-based information gain heuristic, a more direct
error estimate is used as a search heuristic. This may be the Laplace estimate or the more
sophisticated m-estimate, which takes into acount prior probabilities of the positive (&) and
negative (@) examples. In addition, mFOIL uses a beam search strategy as opposed to the
hill-climbing search used in FOIL. Finally, a stopping criterion based on statistical significance,
similar to the one used in CN2 (Clark and Niblett 89), has been implemented in mFOIL.

Similar to LINUS and unlike FOIL and GOLEM {Muggleton and Feng 90), mFOIL can use
non-ground background knowledge. On the other hand, several simnplifications have been made
as compared to FOIL. First, unlike FOIL (Quinlan 91), mFOIL handles determinate literals
as any other literal. Second, instead of using partial orderings to prevent infinitely recursive
clauses, a very simple constraint is used. Namely, a clause Head «— Body must not contain a
literal identical to Head in its body, which does not always prevent infinite recursion. Finally,
while FOIL is implemented in C, mFOIL is implemented in prolog (Quintus Prolog) and is
thus fairly slow.
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2.1 Search space

The search space of mFOIL is determined by the predicates from the background knowledge
and their corresponding declarations. The background knowledge may take the form of a
prolog program, which may contain non-ground and non-unit clauses, as in LINUS, FOIL and
GOLEM, on the other hand, can use only ground facts as background knowledge. Background
predicates have to be defined in such a way Lhat each call to a predicate always instantiates
(hinds) all of its unbound output arguments.

The training examples have the form of gound facts. Structured terms may appear in
training examples and background knowledge, but are treated as constants by mFOIL. This
in fact means that f(a,b) and f(c,d) may only be generalized to a variable A, and not to a
structured term f(X,Y), in the clauses generated by mFOIL. To enable generalizations of the
latter form, the transformations of flattening and unflattening (Rouveirol 90) may be used,
which translonm function symbols Lo predicate symbols and vice versa.

For each predicate in the background knowledge the types of its arguments have to be
specificd. Type resirictions are taken into account when constructing possible literals. In
order to further reduce the search space of possible literals, additional information from the
declarations is used, including input/output modes (designation of arguments as input/output),
possible symimetries of predicates and rectification of literals.

Input/output modes, similar to the ones in GOLEM and FOIL are used in mFOIL. An
input argument is processed so that a new variable cannot be introduced in its place. Fither a
new or an old variable may be put in place on an output argument. If no mode declaration is
given for a predicate, mFOIL assumes that all of the arguments may be either input or cuput.
However, at least one of the variables in a literal must be old, regardless of mode declarations.
This constraint is enforced in FOIL as well.

A binary predicate p is symmetric il the truthvalues of p(X, V) and p(V,X) are equal for
any bindiug of X and Y. This means that only one of the literals p(X,Y) and p{Y,X) need
be considered when adding literals to the body of a clause. In general, a predicate may be
symmetric in several pairs of arguments.

A constraint that all variables appearing in a literal be different is applied in mFOIL, thus
further reducing the number of possible literals arising from a predicate. Namely, it usually
turns out that literals like p(X,X) are non-discriminating, i.e. have truthvalue false (or true)
for all possible values of X. Thus, they impose an unnecessary computational overhead in
the learning process. Literals that do not contain identical variables as arguments are named
rectified literals. By default, only rectified literals are allowed in mFOIL. This constraint may
be eliminated by setting the value of a parameter in mFQIL.

2.2 Heuristics

The main difference between mFOIL and FOIL is that, instead of the entropy-based information
gain heuristic in FOIL, a more direct error estimate is used as a search heuristic in mFOIL.
This may be the Laplace estimate or the more sophisticated m-estimate (Cestnik 90, 91), both
of which have proved to handle noise successfully in attribute-value learning systems (Clark
and Boswell 91, D2eroski, Cestnik and Petrovski 92).

If a clause covers n training examples, out of which s are positive, its expected accuracy is

estimated as
841

4+ 2
by the Laplace error estimate. The m-estimate of the expected accuracy is given by

ErpectedAccuracy =

S-I-me""

EzrpectedAccuracy = T
n+m
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where p* is the a priori probability of the class @. This may be estimated by relative frequency
from the whole training set. By default, the Laplace estimate is used as a search heuristic.

It should be noted that the probability estimates in mFOIL are computéd directly from the
examples in the original training set, as opposed to the use of a local training set of extended
tuples for this purpose in FOIL. This decision is justified by the following argument. Suppose
a single noisy training example, erroneously classified as positive, is covered by a clause. This
example may be extended to, for instance, ten tuples in the local training set. Estimating the
expected accuracy from ten positive tuples would yield a result high encugh to be accepted
under most conditions. Thus a clause might be built covering a single erroneous example.

The Laplace and rr-estimate used as search heuristic allow for a kind of pruning similar to
the gain pruning in FOIL (Quinlan 90). This kind of pruning is described here, although it is not
yet implemented in mFOIL. Suppose a literal L with new variables is to be added to a clause.
If the clause specialized in this way covers s positive examples, the best we can achieve with
further reflinements is a clause thal covers s positive and no negative examples. The heuristic
value of such a clause would be £ and ﬁf‘—;{lj if estimated by Laplace and the m-estimate
respectively. If this value is less than the heuristic value of the best partial clause found so far,
no replacement of new variables in L with old will produce a better clause. Consequently, such
replacements need not be considered, thus saving considerable computational effort.

In fact, any well behaved heuristic function facilitates this kind of pruning. Suppose that
the heuristic value of a clause covering s positive and ¢ negative examples is estimated by a
a function H(s,t). The pruning process described above is than justified if ma:—tl = 0 and
E'—-}g:—"l < 0.

2.3 Search strategy and stopping criteria

A covering approach, similar to the one in FOIL, is used in mFOIL. This means that clauses
are built repetitively, unlil one of the stopping criteria is satisfied. After a clause is built,
the positive examples covered by it are removed from the training set. The search strategy in
mFOIL is beam search, which at least partially alleviates the problem of getting into undesirable
local maxima typical for greedy hill-climbing search.

The search for a clause starts with the clause with empty body. During the search, a small
set of promising clauses found so far is maintained (the beam), as well as the best signi ficant
clause found so far. The default size of the beam is five clauses. At each step of the search,
the refinements of each clause in the beam (obtained by adding literals to their bodies) are
evaluated using the search heuristic, and the best of their improvements constitute the new
beam. To enter the new beain a clause has to be possibly signi ficant. The search for a clause
terminates when the new beam becomes empty (no possibly significant improvements of the
clanses in the current beam have been found at the current step). The best significant clause
found so far is retained in the conceptl description if its expected accuracy is better that the
default accuracy (the probability of the more frequent of the classes & or &), estimated from
the entire training set by relative frequency.

The significance test used in mFOIL is similar to the one used in CN2 (Clark and Niblett
Bg} and is based on the likelihood ratio statistic {Kalbﬁeish Tg} Ifa CLEI.USE COVEDS T1 f:}v.’,1'a,[1',|,p|-e:5,I
s of them positive, the value of the statistic can be calculated as follows. Let p* and p~ be
the prior probabilities of class @ and &, estimated from the entire training set. Tn addition, let
¢* =2 and ¢~ =1 = ¢*. Then we have

. _
Likelihood Ratio = 2 x n x [qﬂug(%—} + g log(<-))
p P~

This statistic is distributed approximately as x? with one degree of freedom. If its value is
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above a specified significance threshold, the clause is deemed significant. The default signifi-
cance threshold is 6.64, corresponding to a 99 % level of significance.

A kind of pruning, implemented in mFOIL, is based on the following argument. Suppose
a partial clause covers s positive examples. The best we can hope to achieve with refining
this clause, is a clause that covers s positive and no negative examples. The likelihood ratio
stalistic would in this case have the value —2s x log(p™*). If this value is less than the signifi-
cance threshold, no significant refinement of this clause can be found. Otherwise, the clause is
possibly stgnt ficant.

The search for clauses is terminated when too few positive examples (possibly zero) are
left for a generated clause to be significant or when no significant clause can be found with
expected accuracy greater than the default. Demanding an expected accuracy (estimated by
the heuristic value) higher than the default accuracy may cause constructing no clauses at all in
domains where negative examples are prevalent. In such cases, the criterion of accuracy might
be ommited and the expected accuracy ol Lthe construcled clauses disregarded, provided that
they are significant. The search would then terminate when no further significant clause could
he constructed. Afterwards, the clauses with very low accuracy might be discarded if desired.

3 Learning illegal chess endgame positions
from noisy examples

This section discusses the performance of FOIL and mFOIL on the task of learning illegal chess
endgame positions from noisy examples. Various amounts of noise were artificially added to the
correct examples in an incremental fashion. mFOIL using the m estimate as search heuristic
achieved better classification accuracy than FOIL. FOIT. and LINUS were compared earlier on
training sets with various amounts of noise, which was added nonincrementally (Dzeroski and
Lavrat 01), The performance of FOIL and mFOI is also compared with these results.

The problem of learning illegal positions in the chess endgame domain White King and
Rook versus Black King (KRK endgame) is described by Muggleton et al. (89) and Quinlan
(90). The target relation illegal{ WKf, WKr, WEf, WRr, BKf, BKT) states whether the position
where the White King is at (WK, WKr), the White Rook al (WRf, WRr) and the Black King
al (BRf,BKr] is not a legal White-to-move position.

The background knowledge for this problem consists of essentially two relations, adja-
cent(X,Y) and less_than(X,Y), indicating that rank/file X is adjacent to rank/file Y and
rank/file X is less than rauk/file ¥, respectively. According to the type constraints, each of these
relations is replaced by two predicates, one for each type of arguments. Thus, the background
knowledge consists of the following predicates: adjacent_file(X,Y) and less_file(X, ¥) with argu-
ments of type file (with values a to &), adjacent_rank(X,Y) and less_rank(X, ¥} with arguments
of type rank (with values I to 8), and cquality X=Y¥, used for hoth types of arguments. The
relations adjacent_file(X,Y), adjacent_rank(X,¥) and X=YV are symmetric.

Experimental setup

We largely followed the experimental design described by Dzeroski and Lavraz (91), except
that noise was added incrementally. There were five training sets of 100 positions each and one
testing set of 5000 positions (Muggleton et al. 89). Three series of experiments were conducted,
introducing noise in the training examples in three different ways. First, noise was added in the
values of all the arguments of the target relation illegal, then in the values of the class variable,
@ and ©, and finally, in both the argument and the class variable values.



Each series of experiments was performed using one of the three ways of introducing noise
and a chosen noise level. The chosen amount of neise was first introduced into the training sets.
Five sets of clauses were then induced, one for each of the five training sets, and their accuracy
was tested on the 5000 examples set which remained intact (non-noisy). The accuracies given
are the averages of the accuracies of the five clause sets.

In our experiments, z % of noise in argument A means that in z % of examples, the values
of argument A were replaced by random values of the same type from a uniform distribution.
For example, 5 % of noise in argument A means that its value was changed to a random value
in 5 out of 100 examples, independently of noise in other arguments. The class variable was
treated as an additional argument when introducing noise. The percentage of noise introduced
varied from 5 % to 80 % as follows: 5 %, 10 %, 15 %, 20 %, 30 %, 50 %, and 80 %. Background
knowledge and testing examples were noise-free.

In earlier experiments with FOIL and LINUS on the KRK endgame, noise was added to the
training examples independently for each percentage, i.e., in a nonincremental fashion. Suppose
we had a training set of 100 examples. To add 10 % of noise in the values of argument A, all
correct values were taken and 10 of them were randomly selected and corrupted. Ia the exper-
iments described in this section, noise was added incrementally. First, 5 values were corrupted
oul of the 100 correct values. Next, out of the 95 remaining nonnoisy values. additional 5 were
corrupted to achieve 10 % of noisy values. Five more examples (out of the uncorrupted 90) are
replaced with noisy to achieve 15 % of noise in argument A.

A recent version of FOIL (2.1) was used in the experiments. It was run wilth its default
parameters. The parameters in mFOIL were set as follows. The beam size was set to five
(default) and the significance threshold was set to zero (no significance was tested). The
construction of clauses was stopped when a clause with expected accuracy (estimated by the
search heuristic) less than the default accuracy was constructed. The Laplace estimate and the
m-estimate, with several different values for m, were used as scarch heuristics. The values for
m were as follows: 0, 0.01, 0.3, 1, 2, 3, 4, 8 and 16.

The three series of experiments with mFOIL were repeated with a significance threshold of
99 %. Finally, some experiments were performed on training examples with nonincremental
noise. LINUS using ASSISTANT (Cestnik, Kononenko and Bratko 87), FOIL and mFOIL with
m = (.01 were applied in this case to examples corrupted with all three kinds of noise.

Results

The results of the three series of experiments performed with FOIL and mFOIT, for different
kinds of noise and different valucs of m are given in Table 3. Noise affected adversely the
classification accuracy of both FOIL and mFOIL. The classification accuracy decreased as the
percentage of noise incrcascd: the most when it was introduced in both the values of the
arguments and the class variable, and the lcast when introduced in the values of the class
variable only.

As noise was introduced incrementally, accuracy dropped monotonically when the amount
of noise increased. In earlier experiments with nonincremental noise {Dzeroski and Lavrac 91)
an increase in accuracy was ohserved when noise increased from 15 % to 20 %. As such an
increase is not present in the results of experiments with incremental noise. we may conclude
that the icrease was due Lo the nonincremental nature of the noise added. and not to seme
specific properties of the learning systems involved.

It can be noted that even with noise in the arguments only, the achieved classification
accuracy drops below the default accuracy (2/3) for high levels of noisc. This indicates that
the training examples are still being overfitted. To illustrate this phenomenon, we adapt an
argument from Clark and Boswell (91). At 100 % noise in the arguments, the arguments an
the class are completely independent. The maximally overfitted rules (one per example) would
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Noise

Error estimate 0 5 10 15 20 30 50 &0
Laplace 95.14 50.11 8041 7832 7366 7257 67.91 50.20
m = 0.0 05,53 H8.27 8245 76.50 7498 7280 64.27 55.556
m = (.1 85.57 91.87 B4.58 "BDOG 7495 T261 68.42 59.10
m = 0.3 92.57 8171 EB4.04 TOO2 TH40 V242 G220 HRO1
m=1.0 0533 9185 81.52 T9.54 T4.74 T3.53 65.54 60.34
m=2.0 04,21 8053 82,16 TT.T2 T4.52 T4.04 6864 61.21
m=3.0 64,21 8871 80834 T6.78 T2T72 7306 66.79 60.50
m = 4.0 93,78 BH6.98 TO.88 Th.B6 T4L.30 TLO91 6496 61.47
m = 8.0 B6.92 TO44 T0OR T2.14 T1.50 66.45 65.23 65.40
m = 16.0 TH.22 T6.22 G7.7TY? GG G607 66.30 635.38 66.30
best m 95.57 O1.87 B4.50 BO.OE 7640 T4.04 BR.G4  GE.I0
Ferf. Q4 82 91.64 8045 T6.81 TA.70 TI.19 63.25 AT.5H
(a) noise in the arguments
Noise
Error estimate 0 5 0 15 20 a0 50 B0
Laplace 05.14 9271 BE.90 #6.40 B4.58 B3I.75 T73.74 60.25
m = .0 25,54 94.1% BE.BG B5.74 BAHA9 8219 T5.37 L5.BD
m = 0.01 95.57 94.26 92.02 RO.96 8B.14 B6.01 79.20 64.17
m = 0.0 95.57 054.26 91.34 80.28 HBE.3T HLEE TEA4 6504
m = 1.0 95.33 9402 90.7¢ 8874 BT.55F RS2 TT.AT 6467
m = 2.0 84.21 93.01 89.30 BV.T6 B6.B6 BT 76.94 063.44
m = 4.0 94.21 91.80 BT.AR BA.TD R4.10 B4.07 76.69 G387
m =410 493.78 02.00 BY.7TI BT.AR 2461 BHGE 76.26 G4.54
m = §.0 86.92 R5.81 8165 8560 T9.84 BOB4 T5.61 64.81
m = 16.0 TH.22 TH.22 A2 TR.22 TR.OZ BlGY T6.56 63.96
hest m D507 9420 92.02 BY.96 BH.OT B6.01 T9.20 65.04
FOIL 04,82 04,237 90.07 83.31 8753 ®4.51 71.86 60.65
(b) noise in the class variable
N oise -
Error estimate 0 5 10 15 20 30 50 &0
FLaplace 05.14 B5.36 7576 7508 T1.60 G64.22 51,38 57.58
m = 0.0 05.53 B5.56 TY.02 V268 T71.95 64.64 B0.62 56.99
o= (1.01 95.57 BO.64 8016 7658 T3.01 6864 B4.53 50.84
m = (L5 A5.57 B9.62 79.83 V538 T3.09 6R.20 68.27 54.65
m=1.0 05.33 BETZ TLLT TE.36 T4.74 69.65 A5.65 AR08
m = 2.0 D4.21 BRBAHY TO4E THID TZIE 6573 6442 &0.79
m=230 94,21 HET4 BOLTS 744 TREY G609 Go11 6173
e = 4.0 93.78 BA.G66 TA.OS TATS TILT4 67.18 65.00 G052
m = 8.0 A6.92 80.21 72.16 7233 T0.57 6Y.19 65.14 59.54
m o= 16.0 TH.22 T6.22 T1.97 i _?l.?g' 67.79 68.21 R2.76 oO0.24
best m 95,57 BO.64 BO.TY T6.5B T4.74 6965 66.27 6173
FOTL 94.82 8928 76.94 T2.8% TL.OZ 6B.14 61.33 5T.BA

(c} noise in the arguments and the class variable

Table 1: Classification accuracy of mFOIL and FOIL ou the testing set.
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then be correct with probability 1/3 if the class is & and with probability 2/3 if the class is
& (the default probabilities of positive and negative examples). The probability of a correct
answer would then be % ® %-!-% ® % = %, or 55 %, which is lower than the 66 % default accuracy.
The overfitting observed in our experiments reflects behaviour between these two extremes.
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Figure 1: Accuracy of FOIL and mFOTL with best m on the KRK endgame
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Figure 2: mFQIL with best m and 99 % significance threshold: noise in arguments and class

If the best m is chosen for each percentage of noise, the results achieved by mFOIL are
better than the ones achieved by FOIL or mFOIL with the Laplace estimate. Moreover, if
mFOIL uses the m-estimate with m = 0.01, it still performs better than with the Laplace
estimate, as well as better than FOIL. The differences between mFOIL with m = 0.01 and
FOIL at 10 % and 15 % of noise of all kinds are significant at least at the 90 % level.

Figure 1 gives the accuracies on the test set for mFOIL with the best m and FOIL, for
each kind of noise. The curves labeled ‘exact’ represent the percentage of training examples
{possibly noisy) correctly classified by the correct definition of the relation illegal. When noise
1s introduced in both arguments and class up to 20 %%, the accuracy achieved by mFOIL with
hest m is quite close to the “exact’ curve, which means that mFOIL handles noise well.
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Figure J: Accuracy on training examples with nonincremental noise in arguments and class
If a 99 % significance threshold is applied the performance of mFOIL with best m decreases.

Similar results have been reported for CN2 (Clark and Boswell 91). However. it still performs
better than FOIL for noise above 13 %% in arguments or both areuments and class. A comparison
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of accuracies of mFOIL with best m and FOIL, for noise in arguments and class is given in
Figure 2, ; i

Finally, we compare the performance of mFOIL with m = 0.01, and a zero significance
threshold, FOIL and LINUS using ASSISTANT on training examples with nonincremental
noise. The results for noise in arguments and class are ziven in Figure 3. mFOIL achieved
better classification accuracy than both FOIL and LINUS using ASSISTANT.

4 Finite element mesh design

The problem of learning rules for finite element (FE) mesh design was first studied by Dolsak
and Muggleton (92), where GOLEM was given examples from three structures, a hydraulic
press cylinder, a paper mill and a hook. A comparizon of the performance of FOIL, LINUS and
GOLEM on the same data is given by Dzeroski and Dolsak (91). Dolsak {91) gathered data
about three additional, more complex, structures. In this section, we describe the application
of mFOIL, FOIL and GOLEM on the mesh design problem, siven the data about the hydraulic
press, the paper mill and the three additional structures. We first briefly review the learning
problem, then describe the experimental setup and finally compare the performance of the three
systems.

The learning problem

The finite element method is used extensively by engineers and scientists to analyse stresses in
physical structures, Figure 4 shows a typical instance of such a structure, with a corresponding
finite element mesh. The structure shown is a cross-section of a cylinder from a hydraulic
press used in the leather industry (Dolsak and Muggleton 92). The main problem in designing
finite element meshes is to decide on the appropriate resolution for modelling each part of the
structure.

Figure 4: A typical structure and its corresponding FE mesh

The resolution of a FE mesh is determined by the number of elements on each of its edges.
The problem of learning rules for determining the resolution of a FE mesh can, thus, be for-
mulated as a problem of learning rules to determine the number of elements o ag edge. The
training examples have the form mesh(Edge, Number of elements), where Edge is an edge
label (unique for each edge) and Number of .elements is the number of elements on the edge
denoted by label Edge. In other words, the target relation mesh has arguments of tvpe edge
(which consists of ail edge labels) and elements. where elements — {1.12,17}.
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Number of elements

Structure 1 2 3 4 5 6 7 8§ 9 10 11 12 1T %
A 21 9 3 2 3 1 2 13 1 55
B g 9 1 11 4 4 42
C 6 6 2 14 28
D 14 13 2 28 a7
E 23 36 11 5 9 4 6 1 1 96

Table 2: Distribution of number of edges w.r.t. number of elements

In our experiments, five different structures were used for learning, described in more detail
in Dolsak (91). The positive training examples were derived from these structures. The negative
training examples were generated under a modified closed world assumption. They included
most facts of the form mesh(e, n), which were not among the positive examples. However,
for the positive example mesh(el5,8), the facts mesh{cl5, T), mesh(cl5,9) and mesh(cl5, 10)
are not among the negative examples. A detailed description of the training data is given in
Dolsak (91). There were alltogether 278 positive examples and 2840 negative examples. The
distributions of the edges according to the number of elements is given in Table 2.

The background knowledge described some of the factors that influence the resolution of a
FE mesh, such as the type of edges, boundary conditions and loadings, as well as the shape
of the structure (relations of neighborhood and oppositness). According to its importance and
geometric shape, an edge can belong to one of the following types: important_long, important,
tmportant shert, nol amportant, circutt, half circuit, quarter cireuit, short_for_hole, long_
for_hole, circuit_hole, hal f _circuit_hole and gquarter circuit_hole. With respect to the bound-
ary conditions an edge can be free, one_side_fired, two_side_fized or fired. Finally, according
to the loadings an edge is not_loaded, one_side_loaded, two_side loaded or continuously loaded.

Training aramplea Beackg round dnowledge

mesh{ads, 12).

holf eirenit_hale(a3g).

two_side. fized|a38).

& Edge type Boundary condition Loading
meshial, 17). impertanilong(al). fized{al]. not _{oaded|al).
mesh{als, 4). imporient_short(al5). | fired(al5). cond Joaded(al5).
mesh{ald, 1). shart_for hole(al®). fized(al6). cont loaded(alf).
mesh(alT, 2). lemg_for_hole(alT). Fized{alT). cont oaded{alT).
mesh{adb, 12). halfsireuit{a3df). two_side_fired(alB). | notdoaded{a36),

cont Joaded{a38).

i =] Geameiry af the structure
meshlal,1). neighbour{al5, a38). opposite(als al). same{ads,al’)
mesh{als, 12) neighbour(alf, pis). oppasite{al T, al). seme|ad’, ads)
mesk(alg, 1). nesghbour(als, a16). opposite{adB, alT),
o neighbour({ald, al?), apposite(adT, ads),

Table 3: An ILP formulation of the FE mesh design problem

Background knowledge about the shape of a structure includes the symmetric relations
neighbour and opposite, as well as the relation equal. The latter states that two edges are not
only opposite, but are also of the same length and shape, such as concentric circles. Unlike
the unary relations that express the properties of the edges, the relations neighbour, opposite
and equal are binary. The arguments of all background predicates are of type edge. For
each predicate, the first argument is an input argument and the second 15 an output one. An
excerpt from the training examples and background knowledge, describing the labeled edges
from Figure 4 is given in Table 3.
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Experimental setup

For each of the five structures, a set of clauses was derived from the background knowledge and
examples for the remaining four structures and then tested on the structure (leave-one-out).
In the classification process, the induced rules have to assign the correct number of element to
each of the edges. More precisely, to determine the number of elements on edge E, the goal
mesh(E, N) is called, where E is bound and N is not. If N is assigned the correct number,
the rules scores one. If it is assigned an incorrect number, or is not assigned a value at all, the
rules score zero.

As the recursive clauses that were built in preliminary experiments caused infinite loops,
no recursive clauses were allowed in mFOIL and GOLEM, and recursive clauses built by FOIL
were discarded afterwards. For the classification process, the rules were ordered according to
the Laplace estimate of their expected accuracy. Clauses with accuracy less than 80 % were
discarded (in FOIL, this is done automatically).

mFOIL used the background knowledge as described above. In addition, literals of the form
X = v, where v is a constant, were allowed for variables of type element. The Laplace estimate
was used as search heuristic. Clauses were constructed until no more significant clauses could
be found. The default beam size (five) and significance threshold (39 %) were employed.

As FOIL does not have literals of the type X = v, relations of the form s v{X') were added
to the background knowledge for each constant of type element. The default parameters were
used in FOIL2.1. A few of the induced rules were recursive (as no partial orders exist in this
domain, the recursive literals came into the clauses throgh the determinate literal facility of
FOTL2.1). However, they were discarded as they caused infinite loops.

In the experiments with GOLEM, some preprocessing of background relations was necessary.
Due to the restrictions of introducing new variables and mode declarations in GOLEM, it was
necessaty to split each of the relations neighbour, opposite and equal to several subrelations.
The transformation is described in detail in Dolsak and Muggleton (92} and Dolsak (91). The
noise parameter (aumber of negative examples that may be covered by a clause) was set to five.
The rlggsample parameter was set to 50, and the testsample was set to 500000. These values
were suggested by one of the developers of GOLEM.

FOIL's run time on each training set amounted to five minutes ou a SUN SPARC 1. mFOIL,
unplemented in prolog, took about two hours for the same task. GOLEM, with settings as
deseribed above, look a litile more than one hour.

Results

several clauses induced by mFOIL are given below. Similar clauses have been induced by FOIL
and GOLEM.

mesh(4,B) :- B=1, not_important(A).
mesh(A,B) :- quarter_circuit(A), B=9.
mesh({A,B) := B=2, short{4),
opposite(A,C), not_important(C}.
mesh(A,B) :- two_side_fixed(4), B=6,
oppesite(A,C), cont_leoaded(C), half_circuit{C).

mFOIL had problems with the relation neighbour. This predicate does not discriminate
between positive and negative examples. Therefore, the accuracy gain is zero. Consequently,
this predicate is never used in the induced clauses. In FOIL, which extends the tuples, the
gain is also small, but can be nonzero. Another problem in FOIL is that the large number of
background relations increases the number of bits nceded to encode a clause. Thus, less clauses
are allowed to be built.
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FOIL mFQIL GOLEM

A 17 22 17
B 3 12 9
C 7 9 5
n 0 6 11
E 3 10 10
p 34 59 52
T 12 21 19

Table 4: Number and percentage of examples correctly classified by FOIL, mFOIL and GOLEM
in the FE mesh design domain

The number of test examples correctly classified by FOIL, mFOIL and GOLEM is given
in Table 4. mFOIL and GOLEM performed better than FOIL, their performance being com-
parable. However, the classification accuracies achicved are hardly encouraging. As stated by
Doldak (91), a close inspection of Table 2 reveals thal each of the objects has some unique char-
acteristics. These can not be captured when learning from the other structures. In addition,
in mFOIL and FOIL, the neighbour relation is not used appropriately in the induced clauses,
which means that essential information is not taken into account.

To determine the possible gain of the proper use og the neighbour relation, we conducted
a simple experiment with mFOIL. The starting clause mesh(E, N) « which is refined by
specialization, was replaced by the clause mesh(E,N) — neighbour(E, F), This enabled
mFOIL to use the properties of the ncighbouring edges in the induced clauses. While the
number of correctly classified edges for objects A to [) remained approximately the same, the
number of correctly classified edges of object E increased from 10 to 47. This suggests that
a significant improvement is possible if information about neighbouring edges is taken into
account properly.

To improve the above results, a larger set of structures should be used for learning, which
would provide for some redundancy. Information about the neighbors of an edge should also be
taken inte account in an appropriate manner. To encourage the use of the neighbor relation,
a lookahead is needed, which would allow for nondeterminate literals with zero or small gain.
Such lockahead is already implemented in FOIL for determinate literals with zero or small gain.
In a similar way, nondeterminate literals with nonnegative gain might be added to a clause. In
the mesh design domain, the cosl imposed by this extension should not be prohibitive.

5 Learning qualitative models

Bratko, Muggleton and Variek (92) presented an application of GOLEM to the problem of
learning of qualitative models in the QSIM {Kuipers 86) formalism. A qualitative model of the
coupled containers (U-tube) system was generated from four positive examples and six near
misses gencrated by an oracle. The induced model was shown to be dynamically (but not stati-
cally} equivalent to the correct model. In this section, we describe the application of mFOIL
to the problem of learning a qualitative model of the U-tube system, which consists of two
containers connected with a pipe.

Bratko, Muggleton and Varsck (92) suitably formulated the problem of learning qualitative
models in the ILP framework. For the U-tube system, the target relation is the relation
legalstate(La, Lh, Fab, Fha), where La, Lh denote the levels of water in the containers and
Fab, Fba denote the flows from one container to the other. Under suitable assumptions, the
problem of learning the legality of states is equivalent to the problem of learning the dynamics
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of the system.
The background kunowledge consists of the pred:cal;es add(F1, F2, F3), mult(F1, F2, F3),

minus(F1, F2), mplus(F1, F2), m_ominus(F1, F2} and deriv(F1, F2), which correspond to
the QSIM constraint primitives. Corresponding values were ommitted to constrain the difficulty
of the learning problem. All arguments of the background predicates are of the same type; they
are compound terms of the form Fune: QualValue/DirQ fChange.

In our experiments, we used the four positive examples given by Bratko, Muggleton and
Varsek (92). However, instead of the six oracle-generated negative examples, we used a set of
543 randomly generated negative examples (Zitnik 91). The results of learning with GOLEM
from the same sets of positive and negative examples and several different arrangements of the
backgronnd knowledge are given in Zitnik (91).

The background knowledge for mFOIL was in the form of a prolog program, defining the
QSIM theory and consisting of the predicates mentioned above. For comparison with Bratko,
Muggleton and Varsek (92), the mult relation was excluded from the background knowledge.
All of the background predicates, except deriv are symmetric. For example, add{X,Y, 7Z) is
eanivalent to add(¥, X, Z). The same holds for the predicate muli. Similarly, minus(X,Y’)
is equivalent to minus(¥, X'). All arguments of the background knowledge predicates were
considered input.

=
=)

QO =1 T M ke B BD e

Model

minus{Fab,Fba), add(Lb,Fab,La), m_minus(La,Fba), deriv(Fab,Fba)
minus{Fab Fba), add(Lb Fab,La), m_minus{La,Fba), deriv(Lb Fah)
minus( Fab,Fba}, add{1.b,Fab,La), m_minus{La,Fba), deriv(La,Fba)
minus(Fab,Fba), add(La,Fba,Lb}, deriv(La,Fba), m_minus{Lb Fah)
minus( Fab,Fba), add(La,Fba,Lb}, deriv(La,Fba), m_plus{Lb,Fba)
minus(Fab,Fba), add(La,Fba,Lb), deriv(Lb,Fab), deriv(La,Fba)
minus{Fab,Fba), add(La,Fba,Lb), deriv(Fab,Fba), deriv(La,Fba}
minus{Fab,Fba), add({ La.Fba,Lb), deriv(Fba,Fab), deriv{La,Fba)
minus{ Fab,Fba), add(La,Fba,Lb), m_plus(La Fab), deriviFba.Fab)
10 | minus{Fab,Fba), add(La,Fba,Lb), m_plus{La,Fab), deriv(Fab.Fba)
11 | minus(Fab,Fba), add{La,F'ba,Lb}, m_plus(La,Fab), deriv{Lb,Fab)

12 | minus{Fab,Fba), add(La,Fba,Lb), Ltl.plus[La,Fah] deriv(La,Fba)
13 | minus(Fab,l"ba), add(La,Fba,Lb), m minus(La,Lb), deriv{Fha,Fah)
14 | minus(Fab,Fba), add{La,Fba,Lb), m_minus{La,Lb), deriv(Fab,Fba)
15 | minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Lb), deriv(Lb,Fab)
16 | minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Lb), deriv(La,Fba)
17 | minus{Fab,Fba)}, add(La,Fba,Lb), m_minus{La,Fba), deriv(Fba,Fab)
18 | minus{Fab,Fba}, add(La,Fba,Lb}, m_minus(La,Fba), deriv{ Fab,Fba)
19 | minus{Fab,Fba), add{La,Fba,Lb), m_minus({La,Fba), deriv(Lb,Fab)
20 | minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Fba), deriv(La,Fba)

el

Table 5: Qualitative models for the U-tube system generated by mFOIL

The Laplace estimate was used as a search heuristic in mFOIL and the default significance
level (99 %) was employed. With a beam size of five (default), two clauses were generated.
After we increased the beam size to 20, a single clause was generated:

legalstate(La,Lb,Fab,Fba) :-
minus{Fab,Fba},
add(Lb,Fab,La),
m_minus{La,Fba},
deriv(Fab,Fba).
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This clause correctly distinguishes between the given positive and negative examples, but is not
equivalent to the correct model. However, there are 19 other clauses (madels) in the beam, all
of them distinguishing correctly between the given positive and negative examples. According
to stalistical criteria and their complexity (length), these are considered to be equivalent by
mFOIL. Table 5 gives all of the models from the beam.

Model 6 in thc beam is equivalent to the correct ‘classical’ model dynamically. It is also
statically equivalent, if the corresponding values are not considered. The same holds for model
16 in the beam (Zitnik, personal communication}). Out of the possible 194481 possible states,
these models cover 130 states (among which 32 arc really positive). When all 32 positive
examples and the same 543 negative examples were given Lo mFOIL, it was able to’generate,
among other clanses in the beam, the two models from Table 5 which are equivalent to the
correct, model, even with a beam of size 10 and the mult relation in the bacground knowledge.

For comparison, from the same examples, and background knowledge as in Bratko, Mug-
gleton and Vargek (92), GOLEM induced the following model (Zitnik 91), where the condition
derivsimplified(D,E) actually means deriv(Lb,Fab).

legalstate(la:A/B, 1b:C/D, fab:E/B, fba:F/D) :-

deriv_simplified(D,E),
legalstate(la:A/G, 1b:C/H, fab: I/G, fba:J/H).

There are several problems with using GOLEM to learn qualitative models. As GOLEM
can use only ground facts in the background knowledge, ground facts had to be generated from
the non-ground prolog program. The number of facts generated was so large that the add
constraint had to be replaced by three of its sub-constraints, in order to reduce the number
of ground facts generated. Another problem with GOLEM is that an induced model can have
several interpretations, due to the fact that GOLEM may choose to generalize and introduce
new variables (as in the term fba:J/H above) whose meaning may be difficult to grasp.

Similar problems appear when using FOIL (Zitnik 91). Some of these problems are absent
in LINUS, as it has typed variables, and can use non-ground background knowledge. However,
LINUS cannot introduce new variables, which can prevent it from learning an appropriate
model when some important vanables are missing in the initial description of the problem.

None of the above problems appears in mFOIL, as it can use non-ground background knowl-
edge and the typing of variables prevents unclear generalizations, while still having the possi-
bility to introduce new variables. It should be noted, however, that new variables that may
be introduced by the background knowledge predicates are likely to be non-discriminating and
thus some kind of lookahead would be needed to treat them properly.

6 Summary and discussion

To summarize, mFOIL uses noise-handling techniques adapted from attribute-value systems in
an [LP framework. These include the use of Bayesian probability estimates as search heuristics
and significance based stopping criteria. Their use has improved noise-handling as compared to
FOIL and LINUS, as demonstrated on the benchmark problem of learning illegal chess endgame
positions from noisy examples.

Similarly, mFOIL performs better than FOIL on the problem of learning rules for finite
element mesh design. Its performance is comparable (slightly better) to the performance of
GOLEM. The fact that the performance of both mFOIL and GOLEM is actually unsatisfactory
is primarily due to the small number and diversity of the structures used for training and
testing. In addition, the inappropriate treatment of nondiscriminating literals in mFOIL may
be improved by using some kind of lockahead, as is experimentally verified.

In the domain of learning qualitative models, the ability of mFOIL to use non-ground
background knowledge proved useful. The models generated by mFOIL are represented directly
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by QSIM constraints, and not their subcomponents, which makes their interpretaion much
easier than the interpretation of models generated by FOIL and GOLEM. Among the models
generated by mFOIL, two are equivalent to the classical model both statically and dinamically.
As mFOIL can intreduce new variables, it may also be suitable for learning models for systems
where some important variables are missing in the system description.

It should be noted that the significance criterion used in mFOIL does not take into account
the background knowledge given. It is based purely on the number of positive and negative
examples covered by a clause and not on its length or the particular literals appearing in
its body. Another significance criterion, based on a general encoding scheme, is presented by
Muggleton, Srinivasan and Bain (92). As the main difficulties with noise-handling in FOIL stem
from the defficiencies of the encoding scheme used, using an improved encoding scheme might
significantly improve its performance. Further work will address this problem and investigate
the use of a better encoding scheme within FOIL.
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Abstract

Inductive Logic Programming (ILP) has only recently addressed the prob-
lem of learning from neisy data. The main goal of the paper is to improve the
understanding of noise-handling mechanisms by giving an analysis of proposed
heuristics for dealing with noise. It is argued that the proposed accuracy and
information gain heuristics can be used as search heuristics and stopping cri-
teria in clause construction. as well as simplification criteria in post-processing
of clauses. Furthermore. these heuristics can be improved by applving latest
advances in estimating probabilities from the distribution of covered positive
and negative examples, in particular by using the m-estimate. The problem of
learning illegal positions in a chess endgame is used to illustrate and analyse
how different search heuristics split the training set according to the distribn-
tion of positive and negative examples. indicating that the m-estimate is most
appropriate {or predicting the best split.
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1 Introduction

Concept learning can be viewed as heuristic search of the space of concept descriptions
[16]. The choice of the description language of concepts L¢ determines the search space,
called the hypothesis space. In Inductive Logic Programming ([LP) [17], the search
space is determined by the language of logic programs where an induced hypothesis
consists of a set of program clauses. Non-interactive emprrical ILP systems, which
induce a single hypothesis from a large collection of examples, use some restricted
form of logic programs to gain efficiency. For example, FOIL [23] induces function-free
program clauses; GOLEM [19] allows only determinate literals which restricts the way
of introducing new variables; QuMAS [18] and LINUS [13] are restricted to deductive
hierarchical database clauses.

[n empirical [LP, the following is given [9): languages Lg, Ly and Lg of training
examples, background knowledge and induced hyvpothesis: a set of pasitive and negative
examples (& and & ground facts) of an unknown predicate p; background knowledge
- a knowledge base of predicate definitions ¢; (other than p) specifving information
about arguments of the examples; a coverage relation between Lo and Lg w.rt. Lg:
and a quality criterton defined on predicate definitions in Lg. The task is to find a
definition for p as a set of clauses, expressible in Lz, satisfying the quality criterion.
The induced target predicate definition consists of clauses p(.X;,..., \Xo) — Ly,.... L..
The body Li,..., L, is a conjunction of positive literals ¢;( Y1, ..., ¥;) and/or negative
literals not g;(Yy, .- ., Yi). The quality criterion usually requires that the hvpothesis is
consistent and compiete: when learning from imperfect data this is relaxed, to avoid
overly specific hypotheses.

Empirical ILP aims at overcoming the main limitation of classical ID3- and AQ-
like algorithms namely the linited expressiveness of attribute-value languages. which
do not allow for effective use of background kunowledge. As a consequence. [LP can
potentially tackle a broader set of problems. However. to solve important real-world
probiems it must also cope with imperfect data. This problem has onlv recently been
addressed in [LP [23. 12, 2. 10].

Domains involving imperfact data can be noisy. incomplete and inezact: data can
also have missing arqument relues in training examples [12]. Voise is due to ran-

dom errors in training examples and,'or background knowledge. [ncompleteness means
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training examples which are too sparse to allow reliable correlation detection. Inezact-
ness is due to the inappropriate or insufficient background knowledge which does not
allow for formulation of an exact definition of the target predicate. Usually, inductive
learning systems use the same noise-handling mechanisms for dealing with noisy, in-
complete and inexact data, typically designed to prevent the construction of hypotheses
overfitting the data.

Having selected the description language, the structure of the search space and the
search strategy of an ILP system, its success of dealing with imperfect data lies in the
choice of heuristics used to evaluate the quality of a clause. In top-down empirical ILP
svstems, heuristics used in clause construction consist of search heuristics used to select
the next literal to be added to the body of a clause, and of stopping eriteria used to
stop the search of literals/clauses. In post-processing, based on stmplification criteria.
induced clauses are refined by eliminating literals, which results in shorter clauses with
higher classification accuracy on unseen cases.

Usually, the relative frequency and the Laplace estimate are used as probability
estimates in different heuristics. To avoid their limitations, the Bavesian m-estimate
[4, 7] can be used; it can deal with a small number of examples and can take into
account different prior probabilities of classes.

The development of practically applicable [LP algorithms requires a clear under-
standing of the mechanisms for dealing with imperfect data - their roles. effects and
underlving assumptions. To this end. the main goal of the paper is an analysis of
heuristics for dealing with noise. Based on the generalization as search paradigm.
Section 2 proposes a common framework for describing empirical [LP algorithms per-
forming top-down search of the hyvpothesis space. Section 3 introduces (weighted)
accuracy and information gain as heuristics for evaluating the quality of a clause. Sec-
tion 4+ gives different probability estimates: relative frequency. Laplace estimate and
m-estimate. Analvsis of applving (weighted) accuracy and information gain as search
heuristics in a chess endgame is given in Section 3. Finallv. Section 6 gives an overview

ol some heuristics actually used by individual [LP svstems.



2 A generic top-down empirical ILP algorithm

The proposed framework is based on the generalization as search paradigm [16] and the
work on generic AQ-like descriptions of concept learning algorithms [11, 9]. waing
selected Lg, Lg and Lg, an ILP system can be described in terms of the structure
of the search space (specialization/generalization operators); the search strategy; the
search heunistic for selecting the next literal to be added to/removed from the body
of the current clause; the criterion for stopping the search of literals; the eriterion for
stopping the construction of the hypothesis; and the method of clause posi-processing.

In empirical ILP, the search of the hypothesis space can proceed top-down (FOIL,
LINTUS, mFOIL {10}, FOCL [2]} or bottom-up (GOLEM). In top-down search, based
on specialization operators, various search stratezies can be applied.

A generic top-down empirical ILP algomthm consists of three main steps: pre-

processing of the training set. construction of 2 hyvpothesis and its post-processing:

s pre-process Traming sei

o initialize Hypothesis Hypo :=10
s repeat {covering}
o nitialize Clouse Clause :=T — Q and Q = true
» repeat {specialization)}
» specialize Clause Q:=Q.L
o until necessity stopping criterion is satisfied
» add Clause to Hypothesis Hypo := {Hypo.Clause}

o remove positive examples covered by Clause from Training_set
» until sufficiency stopping crilerion is satisfled
v posl-process Hypothesis according te simplification criterion

Pre-processing handles missing argument values in training examples and. when no
negative examples are given, the generation of negative examples.

The construction of a target predicate definition can be seen as consisting of two
repeat loops. referred to as covering and specialization. Specialization starts with a
clause with an empty body and continues by heuristicallv searching for a literal L to be
added to the current clause T — Q. leading to new clause T — Q. for Q' = Q. L.' The

two loops are controlled by two stopping criferia. used to decide whether to stop adding

It is assumed that all specializations occur by adding a literal to the body of clause T — .
including the specialization in which a variable in the head is replaced by a constant. Otherwise.
T" — Q' should be used.
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literals to a clause and whether to stop adding clauses to the hypothesis. In domains
with perfect (exact) data, the sufficiency criterion requires completeness (coverage
of all positive examples) and the necessity criterion requires consistency (no covered
negative example). In domains with imperfect data, the two criteria are implemented as
heuristics for evaluating the clause quality aimed at avoiding overly specific hypotheses.

Fost-processing refines the hypothesis by removing literals from a clause and by
removing clauses. In domains with imperfect data, heuristic simplification eriteria are
used to reduce complexity and improve the accuracy of the hypothesis when classifying
unseen cases. Post-processing of single clauses could be performed immediately after

the specialization loop.

3 Accuracy and information gain heuristics

Quinlan [21] introduced an entropy/information-based search beuristic in the construc-
tion of decision trees. Various other measures for estimating the “gooduess of split”
were proposed by other authors [1, 14]. An empircal comparison of search heuris-
tics by Mingers [14] showed that there is little difference between them and that their
use reduces the size rather than improves the accuracy of induced hypotheses. How-
ever, experiments by Buntine and Niblett [3] showed that this holds in some domains
while in the others substantial differences may arrise also in the accuracy. Further-
more, the accuracy depends also on the choice of heuristics applied in post-processing
of rules/decision trees/clauses [2. 13, 22, 23], such as heuristics for post-pruning of
decision trees,

Heuristics use different probability estimates. It was shown by Cestnik (3] that
the method for estimating probabilities used in the heuristics has a greater impact
on the accuracy than the actual form of the heuristics (accuracy, entropy. gini-index).
Therefore. in order to improve accuracy in ILP. we propose to use simple heuristics
defined in this section. and a reliable probability estimation method as proposed in
Section 1.

What follows is a proposal of heuristics to be used in ILP as search heuristics
and stopping criteria in clause construction, as well as simplification criteria ia post-
processing. Proposed heuristics are functions that evaluate the quality of a clause.

Let n be the number of examples in the initial training set. n= of which are positive.
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Furthermore, let n{Q) denote the number of examples in the current training set Tgy.
n2(@Q} of which are positive and n®{Q) are negative. The current training set Ty is
the set of examples covered by clause T' +— .

The simplest measure of the quality of clause T « @ is its expected accuracy

defined as probability that an example covered by the clause is positive ¥:
Ald) = p(2|Q) (1)

Different probability estimates. outlined in Section 4, can be used to compute p(={Q).
{for example, the relative frequency of covered positive examples "?f,[q%l_ Expected ac-
curacv can be emploved in its variant, named the expected error estimate, which is
computed as 1 — A(Q).

Another measure of the quality of a clause is its expected informativily
Q) = loga p(21Q) =

To better suit the ILP framework. the proposed heuristic differs from the entropy-based
informativity {21} which could be used instead. The goal in ILP is namely to build
clauses covering as many positive examples as possible (preferably excluding negative
examples) and not to build descriptions that would maximally discriminate between
classes = and =. As for usual entropyv, it may be used if we want to generate a
description of class = as well,

Given current clause T «— @ and new clause T — @' with body Q' = Q. L. accuracy
gain AG(Q, L) and information gain IG{Q, L) are defined as follows:

AGQ. L) = A(Q) — Q) = p(=1Q') — p(3Q) (3

IGIQ. L) = Q") = 1(Q) = loga p(=]Q") — loga p(2|Q) (43

[o beuristics the use of weights is proposed. Without taking into account the
number of examples covered by a clause. the heuristics can namely favor very specific
clauses with high gain [24]. Thus we introduce weights in formulas {3) and {6). It we

weight accuracy and information gain by the relative frequency of positive exampies

*In ILP terms. p(=1@Q) means p{T'Q). i.e.. the probability that the head of clause T — @ is implied
by its body. For correct clauses. p{TiJ) is L. but this is not necessarily true for clauses induced {rom
noisy examples.
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covered at an individual specialization step %%, we obtain weighted accuracy gain
WAG(Q, L) and weighted information gain WIG(Q, L):

n?(Q
WAG(Q,L) = 5] x (p(elQ) - p(1Q)) ®
Sy
WIG(Q,L) = Sgid x (1og: p(31Q) = logs HEIQ) Q

The main purpose of introducing weighted gains is to find the balance between the
gain and the amount of examples covered by the clause.

In Section 3, the behavior of the above heuristics is analysed. The heuristics ac-
tually used in ILP systems, some of which are outlined in Section 6. are their (more
complicated) variants.

4 Probability estimates used in the heuristics

Heuristics for evaluating clause quality use probabilities that have to be estimated from
the current training set Tg. Computation of probabilities is based oo the distribution
(split) of positive n?((Q) and negative n®((Q) examples covered by the clause. Usually,
relative frequency is used to approximate probability. However, the reliability of this
approximation decreases with the decreased size of Ty; in the extreme case of only one
positive example in Ty the estimate of p(=(|¢}) is 1. When data is goisy this estimate
is too optimistic. To avoid this problem. Laplace’s law of succession can be used [20].
It states: if in the sample of .V trials there were n successes. the probability of the next
trial being successful is =L, assuming a uniform initial distribution of successes and
failures. To avoid this assumption. Cestnik [4] proposed the m-estimate derived by a
Bavesian estimation procedure: after n successes in V' trials. the probability of success
in the next trial is estimated as “Z22 where p, is the prior probability of success and
m is a parameter of the method.

Let clause T — () cover n[Q) examples. n=(Q) of which are positive. In ILP, the
probability estimates to be used in the heuristics of Section 3 are defined as follows:

Relative frequency

) -
pi=1Q) = Q) (7)

[ts use is appropriate when the number of covered examples is large. and inappropriate.
when it is smail (e.g.. [4]). Problems arise when n{@} = 0 (division by 0). If n(Q) > 0
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and n?(Q) = 0 then p{3|Q) becomes 0, even il n(Q) is small, meaning that the estimate

is not reliable.
Laplace estimale: 2(0)
i 41 -
In ILP there are only two classes & and &. In general, in a domain with k classes.
the corresponding formula is p{C|@) = % The Laplace estimate is more reliable

then the relative frequency when dealing with a small number of examples; however,
it relies on the asswmnption of a uniform prior probability distribution of the two (k)
classes, which is rarely met in practice.

me-eshimate:

n®(Q) + m x p.(@)
n(Q@)+m
This estimate takes into account prior probabilities of classes. The prior probability
pa(=) van be estimated by the relative frequency of positive examples in the initial

training set: %. The parameter m can be set subjectively; it expresses our confidence

p(glQ) = (9)

in the experimental evidence (training examples). The actual value of m should be set
according to the amount of noise in the examples (larger m for more noise). As m grows
toward infinity, the m-estimate approaches the prior probability of the corresponding
class.

By using the m-estimate in [LP, our geal is to provide a firm theorethical back-
ground based on Bayvesian analvsis and to build hyvpotheses which are more accurate
when classifvieg unknown cases [+. 3]. The m-estimate is a general probability estimate.
By appropriatelv setting its two parameters m and p,{2). the other two estimates are
obtained: relative frequency p(=|Q) = "fﬁl {for m = 0}, and the Laplace estimate
p21Q) = L (for m = 2. pa(2) = 1).

5 Experimental analysis of heuristics

The problem of learning illegal chess endgame p'osil.ious i5 used to illustrate and analvse
the use of proposed [weighted) accuracy and information gain as search heuristics in
ILP.

In the chess endgame problem White King and Rook versus Black King the target
relation dlegal{A.B.C.0D.E. F) states that the position in which the White King is at
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(A,B), the White Rook at (C,D) and the Black King at (E,F) is not a legal White-
to-move position. Arguments A, {' and E are of tyvpe file (with values a to h), and
B, D and F are of type rank (with values 1 to 8). An example illegal position is
illegal(g,8,¢,7,¢,8). The task is to learn the definition of the predicate illegal/6 from
examples of legal and illegal chess endgame positions and from background knowledge
predicates which indicate that rank/file .X is adjacent, adjacent or equal, or less than
rank/file Y, as well as the equality of ranks/files. Thus, background knowledge con-
sist of adj_file(X, V), aeq_file( X, V) and less_filefX,¥) with arguments of type file, of
edj_rank(X, Y}, aeqrank(X.Y) and less_rank(X,Y) with arguments of type rank, and

of equality X=Y, used for both types of arguments.

1

Partitions of the training set

Suppose that, from an initial training set of 100 examples [23], an ILP algorithm has

zenerated the following partial clause T =~ Q-
tllegal{ A, B.C, D E, F) +— adj_file[A, E) (10)

covering the 135 examples given in Table 1, 6 of which are positive and 9 negative. This
situation is denoted by a 6-9 split of the current training set Tg. Note that one of the
examples is “noisy”: it is incorrectly classified as legal (negative) although it is. in fact,

illegal positive).

['ia.sitz'ue ezamples | Negative eramples
tllegal(3.2,3.7.4.2) | illegal(3.6,6.6.4.7) (notsy)
Hlegal(7.3.7.1.6.4) | illegal(5.3.1.6.1.3)
tllegal(3.4,3.3.4.3) | illegal(5.6.7,6.6.3)

Cillegal(6.1.2.7.3.2) | illegal(4.3.2.4.5. 8)
illegal(6.4.2.1.5.4) | illegal(3.3.7.3. 4. 3)
tllegal(6.3.3.3.7,3) | illegal(1.2.7.1.2.3)

illegal(8.2.5,5.7.3)

. tllegell3.4.5.6,2.7)

! ilegal{3.2.2.1.7.7)

Table 1: Examples covered bv the partially built clause.
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Adding literal L to the body of clause (10) will lead to a new clause with body
Q' =, L with new splits of Tg. There are 68 further splits of 6-9: 6-0, 3-0, ..., 1-0.
6-1, ...(T ways of choosing among 6 positive examples, 10 ways of choosing among 9
negative examples, disregarding splits 0-0 and 6-9; therefore, Tx10—2 = 68). The splits
are ordered according to decreasing accuracy (1) computed by the relative frequ:snc}'
estimate (7] (see the decreasing function for AC,; in Figure 1): 6 — 0y, 5 — 0q, 4 — 03.
3-04,2-05,1—-06,6—-1:,0—15,4—15.6—245,3 =1y, ...; the index denotes the

split number. The splits on the z axis of Figures | and 2 correspond to this ordering.

Analysis of proposed search heuristics

What literal is to be added next to the body of clause (10) ? For given types and due to
the symmetry of predicate arguments there are 48 possible applications of background
predicates. Out of 63 splits, enly 24 splits can actually oceur by adding one of the
13 literals {since different literals may cause the same splits). Below are listed § of
the 45 possible literals with their corresponding splits: B = F (3 =0;). A = C
(2 = 0s), aeq_file{d.C) (2 = 0s). aeqrank(B,F) (6 - 1;), adj rank{B.F) (3 — 111).
adj_file(C, E) (3—111), not less rank(B, D) (3—64,}, and not aegrank( B, F) {0-3s).

Literal | Split | AG, AG Lan AGm=2 WAG,; |
B=F | 3-0,] 1:0600 4:0.3% 3:0340 11:0.120
A=C| 2-0s| 1:0600 6:0338 9:0273 17:0.080:
aeqrank(B,F)| 6 ~1:| T:0437 5:0.366 4:0348 2:0.213!
adirank({B. F) |3 -1, [10:0350 10:0.255 11:0.21§ 13:0.093 I
Literal Split | I1G.; IGap [ G e WG, |

LT -

B=F|3-04] !:01322 4:095 5:0002 15:0.264]
A=C z—nr,i 1:1.322 6:0.865 9:0.763 ?E:U.l?’ﬁ‘
aeqrank(B.F)| 6—1:| T:1100 5:0918 1:0018 2:0.513
adj _rank({B. F) -‘I—LHIID:D.E}I]T 10 : 0.695 11:0.639 17:0.242

Table 2: Clause quality measured by AG. W AG, IG and WG using different probabil-
ity estimates. Numbers preceding =" denote the rank of splits within each individual
heuristic.

For four literals, Table 2 gives their correspondiag splits and the quality of clause

T — Q" after adding L. Clause quality is computed with accuracy gains AG and 1V AG
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Figure 1: Values of heuristics AG. ¢, AGpLyp, AGm=; and IWAG.; on 68 splits, or-
dered according to decreasing AG.;. Seventh split 6-1. correspending to literal
aeqgrank(B. F), is evaluated as best by AGn=y and WAG, ..

and information gains /G and WG using different probability estimates. Index rf
denotes relative frequency, Lap Laplace estimate. and m = 2 denotes m-estimate with
m set to 2 and probability p.(€) = } (relative frequency of positive examples in the
initial training set of 100 examples). For example, 4 : 0.348 (in row 3. column 5) means
that split 6 — 17 has fourth best rank when evaluated by AG.-». and only seventh best
rank if evaluated by AG,; (7:0.437 in row 3. column 3).

Figures | and 2 show values of heuristics using different probability estimates on
63 splits. Table 2 and Figures | and 2 show that heuristics 4G and [G using relative
frequency evaluate “pure” splits 6-0 ro 1-0 as best. This is questionable as small splits.
such as 1-0. are unreliable. Knowing the chess endgame domain. the hest literal to be
added to clause (10} is aeqgrank( B. F). Its effect is a 6-1 split. reflecting one purposely
corrupted example. By AG,; this split is evaluated only as seventh best. On the other
hand. heuristics AGn=y, WAG: ;. IGn=2, and WG,y (as well as heuristics W AG,,.
WAG = WG e and WG pmos. which are not in Table 2} would in fact select this
literal. For example. AG o; selects the following best splits: 1: 6-0. 2: 5-0, 3: 40, 4;
6-1 (vaiue 0.343 for literal aeqrank({B. F) in row 3. column 7). 5: 3-0. etc. Since ao
literals that would cause 6-0 to 4-0 splits exist. the fourth split 6-1 is selected as best.
leading to clause illegaliA. B.C.D.E. F) — adj_fileiA. E).aeqranki B. F). Having
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Figure 2: Values of heuristics IG,;. [Grap, {Gm=r and WIG,; on 68 splits, ordered
according to decreasing AG, ;.

set m = I, the covered negative example is considered noisy.

Figure | (and 2) shows that heurstic AG,; {and [G,;) is substantially different
from the other three heuristics which are, on the other hand. qualitatively similar.
Heuristics AGr,, and AGn=; are the “closest” according to a measure of closeness
which was introduced to count the differences between the split ranks produced by the
two heuristics. In our domain this is understandabie since Laplace assumption of the
uniform prior distribution of classes = and & is not too strongly violated. having a 6-9
partition of positive and negative examples.

Furthermore. using the same measure of closeness. it was shown that all WAG
(and W IE) heuristics are “closer” to AGma: (and [G—;) than other heuristics are.
Since empirical evidence strongly suggests to use m-estimate in order to achieve better
classification accuracy [4. 7. 3. 10]. this leads also to the hvpothesis that heuristics
using weights perform better than unweighted ones. the best being 11" AG and W /G
using m-estimate. As a rule of thumb. if AG is to be used then AG., is recommended.
Else. let LW AG be used. To support this claim more firmlv. more empirical evidence

[rom the performance on real-life domains is needed.
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6 Heuristics of selected ILP systems

Below is an outline of some of the heuristics used by selected ILP systems in construc-

tion and post-processing of clauses, relating them to accuracy and information gain.

as well as probability estimates.

Heuristics used in clause construction

In clause construction, search heuristics are used to evaluate the quality of a clause in
order to select literal L to be added to the body of current clause T — . Stopping
criteria are used to decide whether to stop adding literals to a clause and whether to
stop adding clauses to the target predicate definition.

FOIL [23] uses a variant of the WG heuristic (6) using relative frequency (7). Let
Ty contain n®(Q) positive and n?(Q) negative tuples and the choice of literal L give
rise to new set Tg.. [f n®¥(Q) positive tuples in Ty are represented by one or more

tuples in Tge, the information gained by selecting literal L amounts to WIG(QL L) =

n2(Q) x (I{Q") - I{Q)) = n®2(Q) x (loga %g—? — loga %] The difference between

this heuristic and {6) is in the weights. In FOIL. T4/ is obtained as a set of extensions
of tuples in Ty that satisfy £. Therefore, if a positive literal with new variables is
added to the body of the current clause, the size (azrity) of tuples in Ty increases in
Tg. M tuple in Ty can also give rise to more than one tuple in Tgr.

To implement noise-handling. FOIL employs a stopping criterion hased on the en-
coding length restriction [23] used to restrict the total length of an induced clause to
the number of bits needed to explicitlv enumerate the positive examples it covers. The
construction of a clause is stopped when it covers only positive examples {is consistent |
or when no more bits are available for adding literals to its body. The encoding length
restriction allows for building too specific elauses which cover a small number of exam-
ples {121 which is inappropriate in noisy domains. The search for clauses stops when
no new clause can be constructed under the encoding length restriction. The encoding
length restriction does not emplov probability estimates.

[o mFOIL [10]. the search heuristic is the expected accuracy (1) using the Laplace
estimate (3) as in CN2 [3] or the m-estimate {9). Probability estimates are computed
from the original training set. unlike the local training set of extended tuples in FOIL.
This is justified as follows. Suppose a single noisv example. erroneously classified as
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positive, is covered by a clause. This example may be extended to. for instance, ten
tuples in the local training set; estimating the expected accuracy from ten positive
tuples could then lead to a clause covering a single erroneous example.

A sufficiency stopping criterion in mFOIL 15 the significance of a clause. To avoid
construction of too specific clauses, mFOIL uses a significance test (similar to the one
used in CN2) which ensures that the distribution of examples covered by the clause is
significantly different from that which would occur by chance. Significance test does
not employ probability estimates. The search for clauses is stopped when all positive
examples are covered, or when too few examples are left for a generated clause to be
significant, or when oo significant clause can be found with expected accuracy ‘greater
than the default.

LINUS [13] is an ILP environment which incorporates existing attribute-value learn-
ing algorithms ASSISTANT [6], an AQ-like algorithm NEWGEM, and CN2, Therefore.
search heuristics and stopping criteria are imported from these systems. For example.
in ASSISTANT an information-based search heuristic is applied, and the stopping cri-
teria as used in pre-pruning of decision trees include atiribute suitability {estimated

by its informativity), class frequency and node weight.

Heuristics used in post-processing

In post-processing, induced clauses are refined according to a simplification criterion.

Clauses in FOIL are post-processed immediately after their specialization is com-
pleted: this is done by eliminating irrelevant literals. A literal is irrelevant if it can
be removed from the clause without decreasing its expected accuracy {1}. When the
whole set of clauses is constructed. redundant clauses are removed.

Brunk and Pazzani (2] apply reduced error pruning to sets of clauses induced by
FOCL. The set of training examples is split into a set for training and a set for pruning.
Operators delete last literal and drop clause are independently applied to each clause
of the induced definition. The refinement that vields the greatest improvement in
accuracy is retained. The procedure is repeated until the application of any of the
operators would decrease accuracy.

LINUS using ASSISTANT uses a form of reduced error pruning using the expected
T
alQ)
should be used instead. An additional mechanism. available within ASSISTANT. is

accuracy estimate AA(Q) = proposed by Quinlan [22]; however. m-estimate
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Abstract

The goal of this paper is twofold. First, the paper incorporates a new computational mechanism,
constraint-directed generalization, into constraint logic programming. This mechanism is to find a
set of constraints that subsume every constraint set, and therefore it can be viewed as a constraint
logic programming version of least general generalization in inductive logic programming. Second,
we propose a method for learning spatial relations using constraint-directed generalization. In this
method, a set of quantitative data as examples are subsumed to a region which is represented as a
get of linear constraints. This region is then translated to abstract terms, that corresponds to qual-
itative descriptions. The method supports acquision of spatial constraints about layout problems

and constraint generation for transforming quantitative information to qualitative descriptions.

1 Introduction

Reasoning about spatial relations on real-world objects is important for Artificial Intelligence,
Computational Geometry, Robotics, Graphics, CAD and so on. For example, qualitative reason-
ing about space and motion[3], and maintaining consistency for interactive graphics[8)[11] involve
computation of geometrical relations on parameierized objects. In this application, consiraint is
a useful notion rather than procedure and control structure. Programming is achieved by giving
2 set of constraints, and program execution is done by using constraint satisfaction, which assigns
consistent values to variables. This programming style called constraint programming has been
recently emerging, and various constraint languages have been developed[15)[5)[8].

Constraint programming supports declarative style of programming. However, it is difficult to
give an appropriate set of constraints for solving problems, because spatial constraints are repre-
sented as equations and inequalities. For example, exiracting constraints about layout problems
and constructing the model of a robot manipulation environment are time-consuming tasks. The nl-

timate goal of this research is to provide an automatic constraint acquisition rather than describing

constraints directly.
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To solve the problem, we propose a compuiational mechanism for learning spatial relations from
examplés. This mechanism can be characterized as constraint-directed generalizalion, which finds
a sel of coustraints subsuming every constraint set. A desired set of linear constraints are auto-
matically obtained by using constraint-directed generalization. This set can then be transformed
to qualitative descriptions through abstraction. Finally, spatial relations are represeted as logic
programs.

Frem a standpoint of constraint pregramming, consiraini-directed generalization.is regarded
as introducing a generalization operafor into a consiraint language. There are typical logical
operations,and and or. While and operation constructs a region which is represented as a set of
constraints, er does not. The generalization operalor constructs the minimum region subsuming
or-constructed region.

Acquiring spatial relations can be viewed as learning qualitative rules from a given set of quan-
titative data. Recent work on machine learning has focused on application to qualitative reasoning
aboul physical sysiems. For example, Braike ef. ol demonsirated a learning method of qualitative
models from the behaviors of a physical system in inductive logic programming framework[10](1).
The framework of constraint-directed generalization can be integrated with inductive logic pro-
gramming, because constrained clauses are induced by incorporating the structure of constraints
into inductive logic programming. The similar approach is found in [12].

The paper is organized as follows: First, we show a basic idea for learning spatial relations using
constraint-directed generalization. We then design a constraint logic programming language for
realizing constraint-directed generalization. Section 4 presents an integrated framework between
constraint logic programming and inductive logic programming. Section 3 and 4 provides a basis
for the subsequent sections. Section 5 formulates consiraint-directed generalization. In this section,
constraint logic programs are generated from examples and background knowledge which reflects
feature descriptions of the problem. Section € translates constraint sets to qualitative descriptions

through abstraction. Section 7 provides some extentions. Section 8 concludes the present study.

2 Basic Idea

Before describing a learning method, we illusirate a simple example for explanatory purpose. Fig-
ure 1 shows an object and an obstacle that are connected at a point. This figure represents
translational and rotational freedom of the object.

Our goal is to generate a general rule for freedom from positive instances. Finding the movable
region of {reedom is not trivial; it must be derived from geometrical relations between the object
and the obstacle. In the case of rotational freedom especially, it seems to be difficult to find such
region depicted in Figure 1. Instead, it is easy to detect whether specific objects are movable or
not, and therefore generating rules from such examples is meaningful.

We focus on the following properties in learning spatial relations:
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1l
(a) Problem (b) Translational freedom

(c} Rotational freedom (clockwise, counter-clockwise)

Figure 1: Spatial Relations [14]

. Problem description

It is important for problem descriptions to decompose a given problem into a set of mean-
ingful sub-spaces. In Figure 1, the auxiliary line of a boundary of the object is essential
for translational freedom. To solve this problem, we shall produce the extended problem
description from a given problem. This mechanism is supported by an axiomatic system in

constraini logic programming.

. Operations on objects
This property concerns with problem descriptions. Interactions among objects must be con-

sidered in producing the extended problem description. Since the object and the obstacle are

connected at the edge, problem descriptions are extended how such objects interact.

. Generating examples

An efficient learning depends on how to generate and sclect a desired set of examples in
the extended problem description. The reasoner finds a representative in this description,
and poses a query whether it is positive or negative. In this process, coarse decomposition

improves the efficiency for learning; a set of examples are sequentially praduced.

. Generalization to feasible regions
This property finds the minimum region which subsumes every positive instances and is con-

sistent with every negative instances. Since positive instances are given as a set of constraints,
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Examples Problem Description

Constraint Transformation

Extented Problem Description

'

| Constraint Logic Program

cira_ Abstraction

Logic Program

Figure 2: Constraint-directed Generalization

the generalization works as information compression.

5. Transforming constraint sets to symbolic descriptions
A generalized region does not corresponds to problem descripiions. The transformation from

constraint sets to symbolic descriptions is achieved by abstraction. This process produces a

constraini logic program.

6. Verification
The produced program is verified by posing queries where examples are selected from the

extended problem description.

The learning method we propose is shown in Figure 2. Partsin arcs are procedures, and reciangle

areas are input-outputs {or those procedures.

3 Language Design

In this section, we design a constraint logic programming language {or constraint-directed general-

jzation.
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3.1 Syntax and semantic domain

Consiraint logic programming is formulated as many-sorted first-order logic[4]. A symbol such
as function, predicate and variable is a zequence of a set of soris. Let a set of function symbols,
predicate symbals and variables be I, II and V respeciively. 7{E U V') denotes a set of terms, IT is

divided info IIp and Tlz. The former is a set of user-defined predicate symbols, while the latier a

collection of built-in predicate symbols such as equality.
For p € Ilp,c € Mg, t; € (DU V), We say p(ty,...,1,) is an atom, and c{!,,:..,tm} is a

constraint.
A constrained clause is of the form:

HelC
HelC «~ By,...,B,

where I, B; are atoms, and € is a constraint set.
In constraint logic programming, the structure gives an interpretation of Il and Z. The structure
R specifies assignments of Il and . Let # be an assignment to variables. The solution soln(c) of

the conslraint ¢ is represented as {ollows:

soln(c) = {9|R = cb}
In case of a constraint set C, the solution is described below.

soln(C) = {f|¥e € C R |= cf}
C is satisfiable if the solution of C is not empty.
W R E=CH

Let A ¢ C be a constrained atom. If C is satisfiable,

{A8]¥c e C R | cb)

is called interpretation.

Lat [ be an interpretation. The clause
HoC «— By,..., B, (1)

is true, il the following conditions are satisfied:

30 % = C8
{Bi6,...,B.8}CT — Héel

Lemma 1
HC?Cai—Bl‘}C],.”,BnOCh I:IZJ
implies

Ho(CoU...uCp) — Bi,..., By (1)
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Proof: Suppose that (2) halds:
FOVC R | Ci8
{H]_ aﬂ';ﬂ,.._, Hﬂbcnﬂ} '[_:_ I
Thus,
HoCplh el

holds. Then the formula
JeRE(CoU.. . UC,)r

{Bio,... Bue} C T

is satisfied. Therefore, (3) holds. a
The above lemma indicates that constraints can be eliminated from constrained clauses in the

body.

3.2 Constraint system
Ve define the domains of sorts as follows:
¢ Herbrand universe

« Real

» Finile set of constraints

The first two is the same as the constraint logic programming language, CLP{R). The last indicates
a finite set of constraints, that are constructed by Il and r(Z U V). In this formulation, terms in

constraints may be recursive structure.
The constraint set Ilg consists of “{=,>,>}". A collection of function symbols includes the

operator “** and “@"., “*” finds the union of two constraint sets, and is regarded as the ordinal
AND operation in constraint logic programming. “@" finds the minimum set of constraints of
two constraint sets, and thus we call the operator generalization operator. The minimum set of

comstraints is defined below,

Definition 1 Let {Cy,...,Cn} be o coliection of constraint sets. We say the constraint set C
the least general constraint set (in shorl, LGCS) of {Cy,...,Cp}, if the following conditions are
salrsfied:

1. C>¢C;
2 Forall D such that D>C;,, D>C

where
cC>D

indicates thai
soln(C) 2 soln(D)

The two [unctions are closed, and constructs the following algebraic system:
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Proposition 1 (Constraint system)

commmulalive law Cr*» Gy =0+ Y
CiaC:=Ca 0,

idempotent low Cx=C
Cec=C

grrociative law (C1#Cy) e C3 = Cy #(Cy0 Ca)
(CreCeCi=018(C2Ch)
Ca{}=C

weak distribution law (C; @ C3)+# O3 2 (O + C3) & (O34 Cy)
[G1 B« (Catp (;;]J > [f_.-:1 #+Ca) B Gy

Proof: The formula about “+* is obvious. The commutative and idempotent law about “@" is also
clear. We prove the associative law about *@" below.

Let C be the minimum set of constraints of {Cy, C3, Cs}.

GC Cy ® Cy
GC >

I

The minimum set of C; & €3 and €3 is more specific than any gencral constraint set of the three.
GC 2 (C1@Ca)dCy (4)

However, (C; @ C3) @ €5 is general than C;, 03, Cs.

(CralC)aly > O

(CieaCy)dCs > O

(CiBC)®C; > Gy
Thus,

(CiheC)alCs > GO (5)
By (4),(5),

GC = (C1®Cy) @0y
similary,

GC Ci1@®(Cr@ Cy)

We then prove the weak distribution law.

CieC2C 20 +Cy
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Thus,

(C1@Ca)eCy > Cr+ (s (6)
Similarly,
(Ci@Ca)» Cy 2 CaxCy (71
By (6),(7),
(C1@C2)*Cy 2 (Cy+ C3) @ (Ca+ Cs) (8)
By (8),

(C1r&Ca)# (CamC3) =2 (Cr= (ComCy)) @ (Cy + (C2 Ca))
{f:']_ L] Cg} E}I[Gi F Ca] ﬂ:}{f::g # C-';] $C3
(Cr=Cr)@Cy '

(A%

O

Note that the distribution law does not held. This is due to the fact that the generalization
operator convers a larger region of original regions that are constructed by AND operator. Thus,
in order to generalize a set of constraints, we first apply AND operator and the generalization

operator in turn,

4 Inductive Constraint Logic Programming

In this section, we propose inductive constraint logic programming framework, which general-
izes constrained clauses based on the structure presented in the previous section. Inductive logic
programming proposed by Muggleton[10] is based on inverse resulution rules. These rules con-
sist of V-Operator and W-Operator. Using the operators, Plotkin’s RLGG(relative least general

generalization)[13] can be realized.
In general, the statement “the formula A is general than the formula B with respect to C" is
described as follows:
CkEA—=Band CEB—-C

In constraint logic programming, the above formula is extended as follows:
RACEA—Band RAC = B — A
where | denotes the structure. Thus, RLGG is formulated below.
1. RAPE RLGG — (AA B)
2. RAPEAANEB

3. For any consistent C such that RAPEC — (A A B)
RAPEC— RLGG

We formulate inverse resolution and RLGG in constraint logic programming below.
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4.1 Inverse resolution wih constraints

We focus on absorption rule, which is one of the functions of V-Operator. It is suflicient for spatial
relations to deal with this rule, though other rules are formulated in a similar way. Before doing

this, we define partially derived clause.
Definition 2 (Partially derived clause) Suppose that a constrained clause 45 given as follows:
HieCy— A),..., A, (9)
We say the above clause partially dertved clauvse, if there 45 no clause such that
BioCw—Dy,..., Dy
where B; is variant for A,

To obtain a partially derived clause from a consirained clause C L, we substitute atoms in the

body of CL by resolution. This process corresponds to partial computation.

Proposition 2 A consiraini sel Cy of a constrained clause CL is more general than that Cq of the

partially derived clause:
€120

Proof: A constraint is added to the original constraint set C; through resolution. Thus, C) is more

general than Cj. o
The following proposition is a constraint logic pmgfa.mming version of absorption.
Proposition 3 (Absorption) Let C'L,
H1¢C14—..4.1,...,An []D]

be a partially derived clause. Suppose that the clause CL is derived by resolving CLy and CL;

which contains an negative literal, and C L is of the form:
HoC + By,..., By (11)
The most specific clause CLy | constructed by V-operator is represented as follows:
Ho(C+Cy#8))—By,...,Bn, Hy (12)
where 6 is a consiraini sel used for unification between H, o Cy and the negative clause in CL; |.
Proof: Suppase that (10} and the negalive clause are of the form:

cL, = {H]OCl}UJ‘i
{HQOCQ}U.E

ClLy
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where the following conditions are satisfied:

"lH] O{C]. ¥ 31} = D,I.-G(Cg *Ej)

Dke D
We put as follows:
CLy = Ao(Ci#6)
C'L"g = {HyeCa}u(D - {Dy}) e 8y
E = CL{-CL;

Then the following equations are satisfied:

CclL, = CL-E
{H2¢Cq} (&) [D - {Dk}}ﬂ}ﬂ;

It

where the inverse constraint set of 87 is denoted by 8. Thus,
6065 = {)
This yields
[HioCy}uD - {Dy) = (CL-E)od;?
Therefore,

CL, = (CL-E)edy'u{Dy}
= (CL-E)ob; U {-Hi}o(Cy+8 %0
((CL- E)u{-Hi}o(Crsb))o 83"

The most specific clanseC Ls | of CLq is oblained by the equation
E=6'=4¢
Hence,
CLy| = CLU{=Hi}o(Cix8)

By Lemma 1,

CL]l Hﬂ[:i—Bh...,Bm,HIQ[C!tﬂi}

HG{C#CI*Ei}l—Bh...,Bm,HI

Note that the most specific constraint set is used [or finding C'L; |.
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4.2 Least general generalization of constrained clauses

As Muggleton presented, RLGG is derived by finding Lgg of a set of clauses that V-Operator

constructs, We describe Lgg for constrained clauses below,

Let a constrained clause be
HoeC « Ay,.... A, (13)

Suppose that the atoms Jf and 4; are translated as H' and A! that have distinct variables. The

formula {13} is translated as follows:
HoC «— Al,... A

where C' includes the equality between fresh variables and terms. The above clause is called the

normal form of (13).

Let two normal forms be

H1¢GJ = Al.-u.fin
H;OS; — .E‘l,.,.,Bn

where H; and H2 have the same predicate symbol, and these have distinct variables. In this case,
the normal forms are unifiable. Suppose that & is a mgn of Hy and /3. Lgg of the normal forms

is obtained as follows:
I 0[‘:-']!5'1{‘ i GQ'HQU] — Ihe,.. .',DJ‘U,..,, Dq-t?

where

o= LUy '{14. = .BJ]'
Dk':' = Al'. = BJ'
So far, we do not describe a generalization procedure for constraint sets. This is done in the

next sechion,

5 Constraint-directed Generalization

Finding the minimum set of constrainis depends on the set of sorts. In Herbrand universe (ex.
Prolog), two terms are compared and are replaced by a variable if the function symbols are different.
In linear constraint domain, the minimum set is a convex hull that covers two consiraint sets.

In general, spatial relations are specified with Euclid space B™. Suppose that we consider a
bounded space 5 € R™. A sct of lincar constraints construct a convex hull, which is the minimum
polyhedral set covering the point sequence (%1, %3,...,%m) in B®. Thus, the minimum constraint
set covers any convex hulls corresponding o given constraint sets. Due to the result of computa-

tional geomeiry, we can simply design a constaint solver for constraint-directed generalization.
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Let a point in 5 be zg, and a non-zero vector be #; € S(i = 1,m). A linear constraint is

represented as follows:

2 = mp+MTi+-+ Indnm (14)
Moz o0
E,xi- < 1

where zg is called the starting point.

Linear constraints are described within a constraint logic programs. As for Figure 1, a program

may be defined as follows:

border(T1) {T1={X =-50%L, X =-100+L,0< L<1}}
border(T2) {T2={X=-100+L,X ==50+L,0< [ <1}}.
border(T3) o {T3={X=25+«L,X =100+L,0< [ <1}}.

border(T4) o {T4={X1=100+L X2=100+«L,0< L <1}}.

L)

&

However, it is impossible to find freedom of the object using the above definition. The definition
does not include potential constraints that are meaningful for problem descriptions. For example,
auxiliary lines such as symmetric and orthogonal one with respect to a boundary play a role for

freedom. To solve the problem, we propose a methed of constraint transformation in the next

section.

5.1 Constraint transformation
Let the transformation system be T. T consists of the {ollowing rules:

s symmetric operator “O MWz,
A vector z; is selected from a set of vectors. The sign of an element of z is reversed, and

z} denotes such vector. The original constraint is transformed as follows:

A =Iu.+‘}|j£1+'--+lk£"k+'”+)lm‘fm

+ arthogonal operator “C L z4(s,t)"
A vectar is selected from a set of vectors . Two elements 3,¢ of z, are substituted for —t, 5,

and z| denotes such vector. The original constraint is tzansformed as follows:

‘.'I!::I:J;.-{-.:'u'f],+---+}Lk£’k+'--+lm£m

» translational eperator “C || y,"
Another consiraint

Y=Y+ My 4ot Ami,

is selected. The translormed constraint is as follows:

=

T =HU+JI.1£1 + ot AEm
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As for Figure 1, the symmetric transformation constructs boundary lines that are symmetric to
the original line with respect lo x- and y-axis. The orthogonal transformation is used for finding

rotational freedom. The translational transformation plays a role of decomposing the original

problem description through interactions of objects, though this transformation is not used in this

case.
A transformation step is to construct a constraint set Ciyy from C; through the transformation

system T'. This process is described as follows:
Ci % Cin

Transformation steps construct from the original problem description Co to Ci(i = I1,00). The

extended problem descriplion is represented as U C\.
The constraint inv(t3) in Figure 1 is obtained by transformation steps twice. This constraint is

described below,
11 = =25, r3 = —=1004

5.2 Generalizing constraint logic programs

A transformed constraint is also linear. Thus, the extended problem description PD is described
as the form (14) within constraint logic programs. Positive E* and negative instances £~ are also
described within constraint logic programs. Background knowledge K is specified as constraint
logic programs. Constraint-directed generalization is specified as the tuple (PD, E¥, E™, K), and
is to find a set of clauses /I which satisfies the following conditions:

1. RAPDAK Il - EY
2. RAPDAK ¥EH = E-

As for Figure 1, the above formulation is described as follows:

PD:
border(T1) o {T1={X =~50+LY =-100+L,0< L <1}}.
border(T1M X} o {T1={X=-50+L,Y=100«L,0<L <1}}
border(T1W[X,Y]) ¢ {T1={X=50L,Y=100+L,0<L<1}}.
Et:
movable(C1) o {Cl={X=-4+LY=-1+L[0<L<1}} {15)
movable{C2) o {C2={X==1+L Y =3+L0<L<1}}. (16)
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movable(C3) o {C3={X=3+L,Y=-1+L0<1l g_l]},
movable(C4) o {C4={X=L,Y=-4+«L,0<L<1}}.

E=
— mouable{0BST) o {OBST ={X = -50+ L1 =100+ L2-100% L3,
Y =—1004+ L1 =100« L2~ 50 L3,
0<L1,0<L20<L3,L1+L2+ L3 <1}).
K:

clockwise(Ty,T3) —
border(T1), border(13),
start(Ty) = start(Ty),
~ angle(Ty) > angle(T3).

(17)
(18)

Notice that there is the relation clockwise(Ty,T3) in the background knowledge. This relation
specifies that the boundary line T3 is in clockwise direction of the boundary line Ty. The relation
holds, if the starting points are the same (start(Ty) = start(T3)) and the constraint angle(Ty) >

angle(T,) holds.
We put the following condition for generalizing constraint sets.

Definition 3 (Generalization condition) The starfing points of two constraint sets must be the

same for generalizing the consiraint sets.

Since all positive instances in Figure 1 are the same, these instances can be generalized.

We find a least general generalization of the positive instances. By focusing on the clauses (15)

and (16), the absorption rule produces the following clauses:

movable(Cl) o {.--} —
clockwise(T'1,T2),... clockwise(T4 M [X,Y],T2),..., .
movable(C2) e {---} — .
clockwise(T1,T2),..., clockwise(T4 W [X,Y],T2),..., .

The BLGG is constructed as {ollows:

movable(Cl1@® C2) o {-++} —
clockwise(T1,T2),... clockwise(T4 M [X, Y], T2),..., .

So far, the target of generalization is an original problem descripiion. The next siage is to

generalize clauses for some problem descriptions. As shown previously, a generalized clause for a
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problem description has the same conditional parts, Generalization of the conditional parls are
also performed by giving different problem descriptions.
Generalized clauses for each problem description is as follows:

movable(C1@ C2) e {---} —
clockwise(T1,T2),..., clockwise(T4 W [X, V], T2),..., .

movable(Cl1@ C2)e{---} —
clockwise(T1,T2),...,clockwise(T4 ™ [X, Y], T2),..., .

Each clause is generalized and the following clause is produced:

movable(C1& C2) o {1} ~—
clockwise(T1,T2), ..., clockwise(T4 ™ [X,Y],T2),..., .

Simplifying the conditional part yields the following clause:

movable(C1 @ C2) o { )} —
clockwise(T4 W [X,Y],T2).

In this case, we put the same instances for each problem description. The above clause can also be

obtained from different problem descriptions.

6 Abstraction

This section describes a mathod of ahstraction, which eliminates constraint seis in constraint logic
programs. This method can be viewed as transformation from constraint logic programs to ordinally
logic programs. This is also viewed as producing qualitative descriptions from quantitative data.
A subsel of gualitative descriptions corresponds to the extended problem descriptions. In this
description, a constraint may be signified as a symbol. This symbol is called abstract term. For
example, the constraint set of the houndary line 7'1 is represented as the absiract (erm {1.

Definition 4 (Abstraction) Abstraction i1 defined as tranforming constraint logic programs fo
logic programs whose domain is Herbrand universe. Let v be the abstraction operator. The trans-

Jormalion rules are as follows:

1. Abstracting ¢ consirainl sel
If an abstact term T 15 assigned to the constraint set C, the transformation rule i3 as follows:
CoT _
Otherwise C is transformed to the abstract term which correaponds the minimum consiraind

setl covering C.
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2. Abstracting funciion )
Let T, be the abstraction of C;. If the function f is assigned to the abstract term f', the

transformation rule is specified as follows:
A€y Cn) = (T, T))

3, Abstracting constrained atom
Let Y be the abstraction of X,. If p 15 assigned to the abstract lerm p', the transformation
rule i3 specified as follows:
P X1, Xn)oC S (Y., 1)

4. Otherwise the abstroction of X is X dtself.

Note that a constraint set is elitﬁina.ted in abstraction. This is interpreted as substituing a con-

strained alom to the abstract term,
We put abstract terms as follows:

{X=—-4+L,Y=-2+L,02L <1} = 1L

{X=-1+L,Y=-3sL0<L <1} & 12

(X =5+LY=4+L0<L<1} S {3

{X=-1+LY=-42L0<L <1} S 4
C1aC2 = comb(C1,C2)

CHlz,y] & inv(C)
The constraint logic piogram shown in the previous section is abstracted as follows:
movable(comb(12,13)) +— clockwise(i2,inv(i4)).

This rule is read as {follows:

If the boundary Line £2 is in clockwise direction of the symmetric line of t4, the movable

region is the composition of 12 and 3.

7 Extension

Producing examples is to find the representative of a constraint set. A small set of examples
improves the efficiency of learning process. For this purpose, we construct a most simple zet of the
extended problem descriptions threugh constraint translormation.

We use the following heuristics in constraint transformation:

s The principle of parsimony
Before producing complex constraint sets, simple consiraint sets such as symmetric, orthog-

onal and translation constraints should be generated.
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» Fairness
The constraint transformation is faitly achieved for each constraint set.
Fairness does not focus on particular constraints. This heuristics does not have bias in producing

the extended problem descriptions.

8 Concluding Remarks

This paper proposed a framework for learning spatial relations from examples using constraint-
directed generalization. Constraint-directed generalization is regarded as introducing a constraint
system into inductive logic programming. Inductive logic programming provides a general frame-

work in that background knowledge is used for describing the problem domain. Our framework is
also general, because the constraint system is purely mathematical, and is not dependent on the

particular domain. This property provides an apparent {ramework for developing realistic inductive

learning systems.
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Abstract

This paper presents results on using a theory revision system to automatically
debug logic programs. FORTE is a recently developed system for revising function-free
Horn-clanse theories. Given a theory and a set of training examples, it performs a hill-
climbing search in an attempt to minimally modify the theory to correctly classify all of
the examples. FORTE makes use of methods from propositional theory revision, Horn-
clause induction (Foil), and inverse resolution. The system has has been successfully
used to debug logic programs written by undergraduate students for a programming
languages course,

1 Introduction

Most of the recent work on inductive logic programming has focused on the synthesis of
logic programs from examples, e.g. FOIL [Quinlan, 1990] and GoLEM [Muggleton and Feng,
1990]. There has been very little work on automated debugging of logic programs since
Shapiro’s original work on the subject [Shapiro, 1983]. Although systems like FOIL and
GOLEM generally make use of existing subroutines, e.g. lcarning reverse given append,
the supplied definitions arc extcnsional rather than intensional and these systems can only

*This research was supported by the National Science Foundation under grant IRI-9102926 and by the
NASA Ames Research Center under grant NOC 2-6208. The second author was supported by the Air Force
Institute of Technology faculty preparation program.
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learn new theories and cannot revise existing ones. However, unlike Shapiro's system, recent
systems do not rely on an omniscient oracle that is capable of determining the truth of
arbitrary ground atomic formulae. Consequently, current systems require much less user
interaction.

This paper presents results on using methods for first-order theory revision to automati-
cally debug logic programs without the use of an oracle. We are developing a theory revision
system, FORTE [Richards and Mooney, 1991}, that modifies an incomplete and/or incorrect
Horn-clause domain theory to fit a set of training examples. When the domain theory is
viewed as a logic program, theory revision corresponds to automated debugging from I/0
pairs. The design of FORTE has been influenced by a number of previous developments.
Mauny of its basic revision operators (delete antecedent, add antecedent, delete rule, and add
rule) are based on similar operators in EITHER, a predecessor of FORTE for propositional
Horn-clause theories [Ourston and Mooney, 1990; Mooney and Ourston, 1991). FORTE also
makes use of a FOIL-like algorithm to add new rules and antecedents, and several inverse-
resolution operators [Muggleton and Buntine, 1988] to generalize and compress the theory.
The system has recently been augmented with a path-finding method for overcoming local-
maxima [Richards and Mooney, 1992] and modified to handle recursion.

To test the resulting system, we collected buggy Prolog programs from students in an
undergraduate course on programming languages. Students were asked to hand in their
initial versions of programns for finding a path in a graph and inserting a new element after a
specified element in a list. The collecied programs included a total of 12 distinctly different
buggy programs. FORTE was able to correctly debug all but oue of these programs based on
a relatively small set of training examples.

Since induction of complete programs is a very difficult problem, we believe automated
debugging is a more realistic goal with greater potential for practical utility. Induction of
programs in other languages has not been particularly successful. Even the most sophis-
ticated systems have been able to produce only relatively toy programs [Barstow, 1988,
Using inductive techniques to revise buggy programs has not been explored nearly as well,
and we believe our initial results in oracle-free inductive logic-program debugging are quite
promising.

The remainder of the paper is organized as follows. Section 2 presents an overview of
FORTE's basic revision algorithm. Additional details on the revision algorithm are presented
in [Richards and Mooney, 1991; Richards and Mooney, 1992]. Section 3 presents results on
antomatically debugging actual student programs. Section 4 presents results on debugging
subroutines nsing only examples for the main program. Section 5 discusses related work and
Section 6 presents directions for future research. Section 7 presents our conclusions.
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2 FORTE’s Theory Revision Algorithm

In order to revise a logic program, one must first detect an error. FORTE attempts to prove
all positive and negative instances in the training set using the current program. As in most
ILP systems, positive (negative) instances are tuples of constants that should (should not)
satisfy the goal predicate. When a positive instance is unprovable, some program clause
needs to be generalized. All clanses that failed during the attempted proof are candidates
for generalization, When a negative instance is provable, some program clause needs to be
specialized. All clauses that participated in the successful proof are candidates for special-

ization.
When an error is detected, FORTE identifies all clauses that are candidates for revision.

The core of the system consists of a set of operators that generalize or specialize a clause to

correctly classify a set of examples. Based on the error, all relevant operators are applied
to each candidate clause. The best revision, as determined by classification accuracy on the

complete training set, is implemented. This process iterates until the theory is consistent
with the training set or until FORTE is caught in a local maximum, i.e. none of the proposed
revisions improve overall accuracy.

FORTE maintains a list, for each program clause, of all errors for which the clause may
be responsible. After trying to prove all instances, the clauses are ordered by the number of
errors for which they may be responsible. Note that we treat specialization and generalization
separatcly, so each clause may appear twice in this ordered list. Revision begins with the

clause that provides the greatest potential benefit.

2.1 Specializing the theory

When one or more negative instances are provable, the theory needs to be specialized. There
are two basic ways to do this: delete a clause or add new antecedents to an existing clause.
Deleting a clause is a simple operation. The clause identified in the revision point is deleted
from the theory, and the remaining theory is tested on the training set.

Adding antecedents to a clause is more complex. Our goal is to climinate incorrect proofs
of negative instances without eliminating many (or any) of the correct proofs of positive
instances. It may be necessary to create several specializations of an existing clause, For
example, we might specialize the propositional rule

a = b, ¢
in two different ways

a = b,c,d,e
a :- b,c,tf
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FoRTE employs two competing methods for adding antecedents. The first is similar to ForL
in that it adds antecedents one at a time, choosing at any point the antecedent that provides
the best information gain. Our information metric is different from FOIL's in that it considers
only the number of positive and negative instances - not the number of proofs of positives
and negatives.

The second algorithm is called relational pathfinding [Richards and Mooney, 1992]. We
designed this method based on the assumption that relational concepts are usually repre-
sented by a small number of fixed relational paths connecting the arguments of a predicate.
Relational pathfinding is reminiscent of Quillian's spreading activation [Quillian, 1968]. In
essence, the variables already present in the clause are treated as nodes in a graph. Rela-
tions in the predicate are treated as edges (predicates with arity greater than two are simply
edges with more than two ends). THe graph associated with the overly-general clause is
frequently disconnccted into separate subgraphs. Relational pathfinding seeks to find a path
of additional relations that can be used to join the distinct subgraphs into a coherent whole.

2.2 Generalizing the theory

When one or more positive instances cannot be proven, the theory needs to be gencralized.
There are several ways to do this in FORTE: deleting antecedents from an existing clause,
adding a new clause, or using the inverse resolution operators identification or absorption.
As with clause specialization, several generalizations of a clause may need to be generated
in order to provide proofs for all of the positives without letting negatives become provable.
There are two approaches to deleting antecedents from a rule. The first approach, which
works well in simple cases, is to delete antecedents singly, based on a simple information
metric. However, in some cases, we may need to delete several antecedents simultaneously
in order to gain anything. A simple example of this is an "m of n" type problem. Given the

clause
a:-b,c,d, e, £
it may be that all of the antecedents are important, but positive instances are distinguished

by satisfying any three of them. In this case, we would need to create the rules

= b,

= b
= b
b

r
) )

] ¥

oW oo
anonon
o Hh D B

1] ¥

and so forth. However, deleting a single antecedent may not help, since none of the positives
may satisfy a four antecedent rule like

a := b, c,.d, a

—163—



In order to add a new clause, FORTE copies the clause identified in the revision point. It
then deliberately over-generalizes this clause by deleting all antecedents whose deletion allows
the proof of one or more previously unprovable positives — even though their deletion may
also allow proofs of some negative instances. This ovcrl_v general rule is then gweu to the

antecedent addition algorithms described in the section on specialization.
Lastly, FORTE can use the inverse resolution operators identification and absorption to
generalize a program. Identification allows alternate definitions of a particular literal to come

into play. For example, suppose we have the following two clauses in our program.

Assume ¢ in the first clause was a failure point in an attempted proof of a positive instance.
Identification replaces the first clause with the third clause shown. This does not affect
current proofs, but it allows other definitions of x to generalize proefs that use the first

clause.
Absorption is, in effect, the complement of identification. Suppose we have, in our

program, the first two clauses shown below,

a:-b, ¢, d
x :-—ec, d

Absorption notes the common antecedents and replaces the first clause with the third one.
Again, this does not endanger any existing proofs, and has the effect of allowing alternate
definitions of x to come into play. Absorption 1s particularly useful for developing recursive
clauses, since x and a may he the same predicate.

3 Debugging Student Programs

In order to test FORTE's debugging ability, sample logic programs were collected from stu-
dents taking an undergraduate course on programming languages. Students were given an
assignment to write several short logic programs. The first problem involved finding a path
in a directed graph, a standard test problem for FoiL [Quinlan, 1990]. Below is a correct

program for this problem.

path{A,B):-edge(A,B).
path(A,B):-edge(A,C),path(C,B).



The second invelved inserting an element in a list immediately following a specified item.
Below is a correct program for this problem: !

insert_after([AlB],A,C,[A,CIE]).
insert_after([A|B],C,D,[AIE]) :- C\=A, insert_after(B,C,D,E).

where insert_after(X,A,B,Y) inserts B after the first occurrence of A in the list X. Students
were asked to hand in the initial versions of their programs before running and debugging
them. We received 3 distinctly different buggy programs for path, and 9 for insert_after.

FORTE was given each of these 12 programs to debug together with a training set of
correct input-output pairs, The training set for path was a complete set of positive and
negative examples for an 11-node graph (15 positive, 106 negatwe] The training set for
insert.after contained 10 positive examples for lists up to size 3 and 23 selected negative
examples. For this problem, FORTE is also given a definition for components.

The system was able to correctly debug all but one of the 13 programs. Debugging time
took an average of 68 seconds for the path programs and 350 seconds for the insertafter
examples running in Quintus Prolog on a Sun Sparcstation. One program was not properly
debugged duc to a local maximum. The revisions included deleting incorrect clauses, adding
additional literals to clauses, and adding totally new clauses. Below is one of the buggy
student programs for path:

path(A,B):-edge(B,4A).
path(A,B) :-edge(A,B).
path(A,B):-edge(A,C),edge(D,B),path(A,C).

The first clause is incorrect since a directed path is desired. Since it covers a number of
negatives and no positives, FORTE retracts this clause as its first revision. Since the student
wrote the recursive clanse with two edges and a path, the case of a path of length two is not
handled. As a result, FORTE adds the rule:

path(A,B) :- edge(A,C), path(C,B).

Finally, FORTE decides to delete the student’s original recursive clause since the new clause
covers all of the examnples it covers. The result is the simple correct program presented

earlier, :
One of the buggy student programs for insert.after is shown below:

insert_after([A|B]},C,D,[A|E]):-insert_after(B,C,D,E).
insert_after([A|B],A,C,[A,CID]):-insert_after(B,A,C,D).

't should be noted that FORTE uses a function-free representation like FoiL. A term shown as [A|B)]
must actually represented by an additional literal, components(X,A,B), in the body of Lthe clause. FORTE
transiales ils results into normal Prolog notation for readability.
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This program is missing a base case, so the first revision FORTE makes is to add the clause:

insert_after([AIB],A,C,[A,CIB]).

Next, the system adds the antecedent C # A to the student’s first clause to prevent answers
that never insert the desired item. Finally, the student’s second clause is deleted because
the instructions were to insert C only after the first occurrence of A. The result is the correct

version of insert_after previously presented.

4 Additional Debugging Examples

Since the students in the previous experiment were writing their first Prolog programs, the
examples could not be too difficult. Like many ILP systems, FORTE can actually induce
complete programs for such simple problems. Given an empty initial theory and the same
data used to refine the buggy programs, FORTE can construct complete and correct defini-
tions for path and insert_after. Consequently, it is not particularly surprising that it can
also debug programs for these problems.

However, FORTE can also debug programs which, due to fundamental limitations or
resource constraints, existing ILP systems cannot induce without an oracle, Since they
cannot crezte uew predicates, systems like FOIL and GOLEM cannot induce programs with
recursive subroutines unless they are given extensional definitions of these subroutines. For
example, they cannot produce a program for reverse given only a background definition for
components of a list — they need an extensional definition of append. Although FORTE is
also unable to induce programs with recursive subroutines from scratch, it can debug many
incorrect definitions. _

As an example of fixing a recursive subroutine, consider the following buggy definition

of subset.

member (A, [AIR]).

member (A, [EIC]).

subset ([1,4).

subset ([A1B],C) :- member(A,C), subset(B,C).

The second clause for member is missing the recursive literal member(A,C) from its body.
FORTE successfully added this antecedent given only 64 positive and negative examples of
subset and a definition of components - explicit examples of member were not necessary.

5 Related Work

As previously mentioned, most recent work in ILP has concerned the complete induction
of logic programs from examples [Quinlan, 1990; Muggleton and Feng, 1990; Kijsirikul ef
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al., 1991). Shapiro’s Prolog debugger, PDS6 [Shapiro, 1983}, uses many techniques from his
learning system, MIS; however, it requires a great deal of user interaction. The user must
be available to answer membership queries as well as provide other detailed information.
FORTE requires only a sufficient supply of examples; no oracle or additional user interaction
is required. .

Work in automated debugging for other programming languages has primarily employed
static methods that compare a program to a formal specification {Katz and Manna, 1976
abstract program plan [Johnson, 1986], or existing correct program [Murray, 1988]. By
comparison, PDS6 and FORTE are dynamic. They run a program on specific examples,
detect errors, and use them to revise the program.” Consequently, dynamic methods require
only partial, extensional definitions of programs. This is an important advantage since formal
specifications are frequently unavailable. Systems that require an existing correct program
(c.g. TALUS [Murray, 1988]) are primarily useful in tutoring environments, since a correct
program is rarely available in other situations.

Most other work in theory revision is propositional in nature, and thereforc inapplicable
to logic programuning (Ginsberg, 1990; Towell and Shavlik, 1991; Cain, 1991]. FocL [Pazzani
ef al., 1991] uses an iuitial theory to guide a FOIL-based system; however, it produces a flat,
operationalized definition instead of a revised theory. A version of FOCL that performs theory
revision has been developed [Pazzani and Brunk, 1990]; however, it requires significant user
interaction. Finally, FOCL has not been tested on logic programming problems and it is
unclear how its operationalization procedure would handle recursion.

6 Future Work

As with all existing ILP systems, the problems currently used to test FORTE are quite
simple. Consequently, we plan to test FORTE's ability to debug more difficult programs. An
interesting problem we are considering is debugging a Prolog implementation of ID3 [Bratko,
1990]. Since debugging is normally much easier than program synthesis, we believe FORTE
should be able to handle larger problems than purely inductive systems. We also plan to
test FORTE on other real-world problems such as revising qualitative models of complicated
systems [Bratko et al., 1991; Richards and Mooney, 1992] and revising the Chou-Fassman
theory for protein folding [Maclin and Shavlik, 1991).

Like many other ILP systems (e.g. GOLEM, FoIL), FORTE is unable to create new
predicates. Current predicate-invention methods such as inverse resolution [Muggleton and
Buntine, 1988] are computationally very demanding and usually employ an oracle. Effi-
cient oracle-free methods for predicate invention are needed to revise programs that require
additional recursive subroutines.

*The terms static and dynamic are borrowed {rom [Murray, 1988).
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We are also developing techniques for learning search heuristics [Mitchell, 1984; Cohen,
1990] to improve the efficiency of logic programs. Meta-rules for when to use a particular
clause can be empirically learned using sample calls for which the clause ultimately failed
or succeeded in leading to a final solution. Such examples can be extracted from the search
conducted during the execution of a logic program [Cohen, 1990]. Existing ILP systems
should be useful for learning search heuristics from these examples. As an example, eonsider
the following exponential-time sorting program:

naivesort(X,Y) :- permutation(X,Y), ordered(Y).

permutatian([],[]).
permutation([XIXs],¥s) :~ permutation(Xs,Ys1), remove(X,Ys,¥s1).

remove(X, [X]1Xs],Xs).
remove (X, [Y|Ys),[Y1Ys1]) :- remove(X,Ys,Yst).

ordered([_X1).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).
The predicatc remove(X,Y,Z) is true if removing one of the occurrences of the item X from
the list ¥ leaves the list Z. The predicate permutation actually uses remove to insert an
element into a list at every possible position. Using examples for when each of the clauses
for remove leads to a success or failure, it should be possible to learn the following heuristics:
the base case ultimately leads to a solution when Xs = [] or when Xs = [Y|Ys] and X < ¥;
the recursive clause leads to a solution when X > Y. If these constraints are folded into the
existing rules, the resulting definition for remove is:

remove (X, [X],[1).
remove (X, [X,Y|Y¥s),[Y]Ys]) :- X =< Y.
remove(X,[YI¥s],[YI¥si]l) :- X > ¥, remove(X,Y¥s, Ysi).

When this new procedure is used by permutation, it always insecrts the element X before
the first element of Ys1 that is greater than it. Upon inspection, it is clear that the result is
an insertion sort, where permutation always returns a sorted permutation and the ordered
check is redundant. Consequently, by learning heuristics for when to use each of the clauses
for remove, we have turned an O(n!) sorting algorithm into a O(n*) one! We are currently
developing an ILP system that learns such heuristics using a FoIL-based inductive learner.

7 Conclusions

Antomated program debugging is an area of ILP that has not been extensively explored.
Shapiro’s original work in this area has not been followed-up nearly as well as his work on
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induction of complete programs. We believe that recent developments in first-order induction
and theory revision hold great promise in developing dynamic automated debuggers for logic
programming. Initial results on using our theory revision system, FORTE, to debug logic
programs is quite promising. It is already capable of debugging actual student programs for
simple problems without any user interaction. We plan to extend our tests to larger, more
realistic problems and to develop effective learning methods for improving the speed as well
as the accuracy of logic programs.
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Abstract

The problem of correcting faults in the subconcepts of a theory is very important,
but is so far given little attention from the study of theory refinement. This paper
presents a system that automatically refines the theory expressed in the function-free
first-order logic. Our system can efficiently correct multiple faults in all the concept
and subconcepts of the theory, given only the classified examples of the concept.
Olur system first learns the correct operational definitions of the concept by using a
combination of an explanation-based and an inductive learning algorithms. It then
uses the operational definitions to infer the correct definitions of the concept and
subconcepts by means of abduction. The system has been successfully tested in
refining a theory in chemistry.

1 Introduction

Knowledge acquisition is recognized as a major bottleneck in the development of knowledge-
based systems. The knowledge or theory elicited from an expert tends to be only approx-
imately correct. By theory refinement, the approximate knowledge is transformed into a

more complete and correct one. Automatic theory refinement increases the efficiency and

quality in constructing a knowledge-based system.
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Since the given theory is nearly correct and complete, it is generally assumed that the
structure of the refined theory is similar to that of the given theory. In other words,
the given and the refined theories should be defined by the same set of concept and
subconcepts. Thus, the goal of theory refinement is to correct the faults in all the concept
and subconcepts.

Although a large number of theory refinement systems have been developed, the prob-
lem of correcting faults in the subconcepts is given relatively little attention. In some
existing systems (e.g., IOE[1], IVSM[3] and FOCL[4]), refining the theory is feduced to
refining the operational definitions of the concept. However, refining only the operational
definitions leaves the subconcepts remain incorrect. In other systems (e.g., PDS[6]), it is
assumed that the training examples of the subconcepts are also given. However, giving
the examples of all the concept and subconcepts burdens the expert too much.

The problem of our interests is to correct faults in all the conzept and subconcepts of
the theory when only the examples of the concept are given. We present a system called
RLA (Refinement by Learning and Abduction} that can correct a combination of faults
in a relational theory, or a theory represented in the function-free first-order logic.

The approach used in our system is based on learning and abduction. First, the system
learns the correct operational definitions of the concept by using a combination of an
explanation-based and an inductive learning algorithms. Tt then uses these operational
definitions to infer the correct definitions of all the concept and subconcepts by abduction.

The remainder of the paper is organized as follows, Section 2 describes how to learn
the correct operational definitions of the concept from its examples and an approximate
theory. Section 3 explains how the operational definitions are used to to infer the correct
theory. The next section gives an example of how the system refines a simple theory.
Then, the paper reports the results of testing the system by using a theory in chemistry.

The final section compares RLA with related systems.
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2 Learning Correct Operational Definitions

In RLA, the operational definitions are learned by using a combination of an explanation-
based and the FOIL inductive learning algorithms. During the operationalization, a

modification of FOIL's Gain heuristic is used to detect faults in the theory.

2.1 FOIL

FOIL[5] is an automatic inductive learning system that learns function-free Horn clauses
from the examples represented in the form of tuples. In the outermost level, FDIL uses
the covering strategy. In the inner level, it uses the divide-and-conquer strategy to grow
a clause by adding literals one by one to the body part.
FOIL uses an information-based heuristic to select the most promising literal during
a clause construction. The whole purpose of a clause is to characterize a subset of the
positive tuples. Therefore, it is appropriate to focus on the information provided by
signalling that a tuple is one of the positive kind. If the current training set, T}, contains
T}"‘ positive tuples and T.” negative tuples, the information required for this signal from
15 is given by
I(T3) = ~loga( T /(T + T7)).
If the selection of a particular literal L; extends T; to Ti4,, the information given by
the same signal is similarly
I{Tipr) = ~logo( T35, /(T + T3
Suppose that T.'" of the positive tuples in T; have extensions in Ti;;. The total
information we have gained regarding the positive tuples in T} is given by the number of

them that have extensions, T.'t, multiplied by the information gained regarding each of

them, i.e.,
Gain{L;) = T x (I{T:) = I{Tis1))-

According to Quinlan, Gain is negative if the positive tuples are less concentrated in



Tisy than in T, and is small if either the concentrations are similar or few tuples in T;
satisfy L;. Using the Gain heuristic, FOIL searches from general to specific by adding

literal that mostly discriminates the positive from negative tuples.

2.2 Detecting Incorrect Literals

Since the given theory is only approximately correct, its rules may contain some incor-

rect literals. We now describe an approach to detect them. The approach is based on

measuring the usefulness of a literal.

Definition 1 The usefulness of a literal L;

A literal L; is useful if it is in the space of literals of FOIL, and if

e its normalized Gain, (1{15) = 1{Tiy1)), is greater than the given Gain threshold, #,

or,

e it is a generate literal for another literal, and the combination of the two literals is

useful,
If a literal is not useful, 1t is useless.

A generate literal is a literal that when it is deleted from a clause, the body of the clause
has some variables underivable from those in the head. In other words, a generate literal
produces new variables for the other literals in the clause. In our implementation, & has
the default value of 0.25, but it is adjustable according to the certainty of the correctness
of the given theory.! When 8 is set to a large value, RLA refines the theory radically,
i.e., it distrusts the given theory, tends to discard a rule and rebuilds a new one. On the
other hand, if § is set to a small value, RL.A refines the theory conservatively. By varying

8, RLA can refine a theory radically or conservatively as desired.

1This default value eorresponds to about 1.2 times increase in the concentration of the positive tuples
in the total tuples.
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The usefulness of a literal is measured by its normalized Gain, rather than its Gain, since
the value of the normalized Gain does not depend on the size of the training examples.
On the other hand, the value of Gain can be large in case of a large training set, even
though the literal poorly discriminates the examples. By measuring the normalized Gain,
we can detect the useless literals which are considered as certain kinds of faults. Examples
of the useless literals are the literals that are irrelevant to the concept, and the literals
which are redundant with the existing literals. Such useless literals can be easily detected
since they exhibit a low normalized Gain. A non-terminating recursive literal with no
established partial ordering among the variables is also a useless literal since it is not in

the literal space of FOIL.

Next, we define the Gain of a clause, another important idea used in our algorithm.

Definition 2 The Gain of a clause C

Gain(C) =Ty =< (I(Ty) - I{Te)).

I{Ty) = —loga(To" [{T5" + T3 ).

I{Te) = ~loga(T3 /(Tg +T5 ).
where Ty and Ty are the number of the positive and negative examples in the remaining
training set Ty, respectively. Ty is the number of the positive ezamples in Ty that have

extensions in T, Tg and T. are the number of the positive and negative tuples that

satisfy C', respectively.

According to the definition, the Gain of a clause C becomes greater as more positive

examples and less negative examples satisfy the clause.

2.3 Learning Correct Operational Definitions

Now we are ready to describe the algorithm that learns the correct operational definitions.

Algorithml, as shown in Figure 1, is based on a combination of FOIL and an explanation-
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based algorithms. It consists of three main steps: operationalization, specialization, and

rule creation.

Algorithm1
Input: A theory Th defined by a set of concept and subconcepts, and a set

of training examples
Qutput: 1. A set of operational definitions, Op, U L;'s, which arc consistent

with the training examples
2. A theory Th' which is derived from Th by deleting all the useless

literals

1} Operationalization: Operationalize Th by expanding the subconcepts,
resulting in the operational definitions, Op;’s.

1.1 Among the remaining rules of a subconcept, select the one that has
biggest value of Gain. Consider only the useful literals when measuring

Gain of a rule.
1.2 Do not expand an internal call of a recursion.
1.3 Let Th' be a theory derived from Th by deleting all the useless literals.

2) Specialization: Use FOIL to choose a set of literals L, such that every
Op; U L; does not cover any negative examples.

3) Rule creation: If there are some positive examples uncovered by the
existing operational rules, then use FOIL to create more rules by choosing sets
of literal [;'s.

Figure 1: The algorithm for learning correct operational definitions

In the first step, the concept operational definitions, Op,’s, are generated by expanding
the subconcepts. During the selection of the rules to expand, the algorithm removes the
faults detected as useless literals. When all the useless literals are removed, rules having
only these literals are deleted. Among the remaining rules, the rule with the greatest
value of Gain is selected first.

In the second step, a set of literals [;'s are added to the overly general Op;’s so that

the (Op, U L,)’s are no longer overly general. The literals are selected from the space of
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all the operational literals and the literals that represent the subconcepts.

In the third step, more operational definitions of the concept are created if the existing

ones do not cover all the positive examples.

3 Inferring the Theory from its Operational Defini-
tions

In the last section, we described how to derive a theory with no useless literals and the
correct operational definitions. In this section, we describe how they are used {o infer the
correct theory which is the output of the refinement system. The algorithm that performs

this task is shown in Figure 2.

Algorithm?2
Input: 1. A set of operational definitions, Op; U L;'s output from Algorithm1
2. A theory without any useless literals, Th', output from Algorithml
Output: A theory Th" which is defined by the set of concept and subconcepts
of Th' but can be operationalized to Op; U L;'s

1) Find a correction set ' = ) U O3 where

€1 = {add(sey, l;;)} where the addition of the literal I;; to the k" rule
of the subconcept sc oflers an account for the addition of [j; € L; in the
second step of Algorithml, and

Cy; = {add(scyey,l;;)} where the addition of [; to a new rule of the
subconcept sc offers an account for the addition of I;; € L; in the third
step of Algerithm1.

2) For each individual correction ¢ € C starting from the ones with lower
preference values to the ones with higher preference values,

If the correction set C—{¢} can still derive all Op;UL,"s then C = C—{c}.
3) Refine Th' according to C, resulting in Th".

Figure 2: The algerithm for inferring the correct theory

The main idea of the algorithm is to determine to which subconcept each literal added



during step 2 and 3 in Algorithm! belongs. This is done by abduction; the reasoning that
finds an explanation of a set of data. Here, the operational definitions that are underivable
from the input theory are viewed as the data to be explained. An explanation is a set of
corrections in the theory that makes the operational definitions derivable. An individual
correction is represented in the form of add(sc,,l;;), which suggests the addition of the
literal {;; to the body of the n* rule of the subconcept se. The rule can be an existing
rule or a new one.

First, the algorithm collects a set of the corrections. For an existing operational defi-
nition Op; U L;, an individual correction is selected from a set of add(scy, l;;), where sc;
is a subconcept rule that is expanded to Op; U L;, and [;; € L;. For a newly created
operational definition, an individual correction is selected from a set of add(seuen, li;),
where scpey is a new rule of s¢, and §; € L,. An individual correction add(se,,l;;) is
selected if I;; € L, for all operational definitions, Op; U L;’s, expanded from se;,.

At this point, if the theory is refined according to the correction set, all the operational
definitions will be derivable. However, since there may be superfluous corrections, the
algorithm removes them from the correction set. The algorithm attempts to remove the
correction that has a lower preference value before the one that has a higher preference
value. Since we usunally prefer smaller number of corrections to larger one, il is appropriate
to assign the preference value in a way that helps minimize the number of corrections.
Assuming no mutual recursions, we specify the comparative preference values over any

pair of corrections as:

» For existing rules se; and ac}, if sc calls 8¢/ as a subconcept then add(se;, 1) is

preferred to add(sc),!).

¢ For new rules s¢; and sc, if sc calls sc' as a subconcept then add{sr:;r, 1} is preferred

to add(sey, ).



¢ Otherwise, the comparative preference values of add{sc;, 1) and add(sc},[) are de-

cided arbitrarily.

4 Example of a Refinement

As an example of how RL.A works, consider Figure 3a and 3b which shows the correct
cup theory and the theory to be refined, respectively. The theory to be refined has
multiple faults: some are in the concept while others are in the subconcepts. Inputs
to the Algorithm] are the incorrect theory and enough number of the examples of cup.
The classified examples of the liftable and stable subconcepts are not given. Some

examples given are shown in Figure 4. With all the necessary inputs, the theory is refined

in the following steps:

cup(X):-
insulate heat(X),
stable(X),
liftable(X),
cup(X) :-paper_cup(X},
stable{X) :-bottom{X,B),
filat(B}.
stable(X) :-bottom(X,B),
concave(B).
stable(X) :-has_support (X).
liftable(X):-has(X,Y)
handle(Y).
liftable(X):-
small(X},
made from({¥,¥Y),
low density(Y).

(a) Correct theory

cup(X}:-

red(%),/* irrelevant =/

stable(X),
liftabla(X),

{* missing rule =/

stable(X):-bottom(X, B),
flat(B).

stable(X):-bottom{X,B),
concave (B},

/% missing Tule */

liftable(X):-has{X.,¥Y)
handle(Y).

liftable(X) =

/* missing literal #/
made_from(X%,¥),
lowdensity(¥Y),

cup{X):-

/* missing literal */
stable(X),
liftable(X),

/= missing rule */

stable{X) :-bottom(X,B),
flat(B).

stable{X}:-bottom({X,B},
concave(B).

/* missing rule =/

liftable(X):-has(X,Y)
handlea(Y).

lifrabla(X):-

/* missing literal #/
made from(X,Y),
low density(Y).

elastic(Y)./+* irrelevant =/

(b} Thesry te be refined

Figure 3: Cup theory
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Positive Examples

PL : cuplcl). has{(cl,hl). handle{(hil). botteom(ci,bl). Fflat(bl}. pgreen{ci),.

P2 @ cuplc2). small(c?). madefrom{c2,aluminium}. red(c2)
low_density(aluminium). beottom(ec2,b2). concave(b2).

P3 : cup(c3). paper_cup(c3). greeni{c3).

Megative Examples

Nt : mneglcupi{n.cl)). has(nci,nhi}. handle(nhil). bottom(n.cl,n.bi}.
convex{nbl}. red(n.cl). lightin.cil). _

N2 ¢ negleup(ne2)). madefrom(n.c2, aluminium). low.density(aluminium).
bottom{n_c2,n b2}, concave(n.b2). biglnc2).

Figure 4: Training Examples

1. Firstly, the concept cup is operationalized by expanding stable and liftable.
During rnle selections, Algorithml deletes all the faults detected as the useless
literals. The faults deleted are red and elastic which are irrelevant to cup. The

outputs of this step are the following four operational definitions:

(1) cup(X) :- bottom(X,B),flat(B),has(X,¥),handle(Y).

(2} cup(X) :- bottom(X,B),flat(B),made _from(X,Y),low density(Y).
(3) enp(X) :- bottom(X,B),concave(B), has(X,Y), handle(Y).

(4) cup(X) :- bottom(X,B),concave(B),made from(X,Y), low density(¥).

2. Next, FOIL specializes the operational definitions by adding insulate_heat(X) to

(1) and (3), and adding small(X) and insulate heat(X) to (2) and (4).

3. Then, more operational definitions are created since there are some positive ex-

amples unprovable by the existing definitions. The operational definitions are now
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extended to the followings. The underlined literals are the literals that are added

by FOIL.
(1) cup(X) :- bottom(X,B),flat(B), has(X,Y), handle(Y),insulate heat(X).

(2) cup(X) :- bottom(X,B),flat(B),made from(X,¥),low density(Y),
small(X),insulate_heat(X).
(3) cup(X) :- bottom(X,B),concave(B), has(X,Y) handle(Y),insulate _heat(X).

(4) cup(X) :- bottom(X,B),concave(B),made from(X,Y),low_density(Y),
small (X),insulate_heat{X).

(&) cup(X) :- has_support(X),liftable(X),insulate heat(X).

(€) cup(X) :- paper_cup(X).

At this peint, the theory with no useless literals in Figure 3¢ and the correct oper-

ational definitions are output from Algorithml.

. Next, Algorithm?2 determines to which subconcept each literal added by FOIL be-
longs. This is done by abduction. First, the algorithm finds a set of individual

corrections. In this case, the correction set < is the union of:

Ci = {add(cupl,insulate_heat(X)), add(stablel, insulate_heat( X)),
add(liftablel, insulate_heat( X)), add(stable2, insulate_heat( X))}

add(liftable2, small{ X)), add(li ftable2, insulate heat{ X)), }

and

Cy = {add{cup2, has support(X)), add(stablel, has_support( X)),
add(cup2, li ftable( X)), add(cup2, insulate_heat( X)),

add(stable3, insulate_heat{ X)), add(cup3, paper_cup{ X))}.
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Then, the algorithm attempts to remove the superfluous corrections from C in the
order of preference value from low to high. Here, add{cupl,insulate_heat{X)) is
preferred to the other corrections in € that add insulate_heat(X) to the existing
rules, and add(stable3, has_suppori(X)) is preferred to add(cup2, has_support(X)).

After the removal, C' is reduced to

C = {add(cupl,insulate_heat(X)), add(liftable2, small(X}),

add(stabled, has_support( X)), add(cup3, paper_cup( X)) }.

Finally, the theory in Figure 3c is refined according to the corrections in C, resulted

in the theory in Figure 3a.

5 Experimental Evaluation

Currently, RLA is implemented in IF-Prolog on a SUN SPARC Station 1. To evaluate
the system, we made a refining experiment by using a theory of buffer solutions which is
a theory in chemistry. The purpose of the theory i;s. to classify whether a given solution
consisting of two solutes (or dissolved substances) is a buffer solution. A buffer solution
is a solution that maintains nearly constant pH despite the addition of a small amount of
acid or base. The theory is constructed by using FOIL to learn the concept from examples
selected by an expert. The expert then reorganizes the theory into the predefined concept
and subconcepts, some of which have recursive definitions.

The theory is then modified to include some faults by randomly applying the follow-
ing four operators: the rule-deletion, rule-addition, literal-deletion and literal-addition
operators. The literal-addition operator randomly adds a literal from a set of all literals
and binds at least one variable in the literal with existing variables in the clause. The
rule-addition operator constructs a rule by iteratively using the literal-addition operator.

Each operator is applied to the theory with equal probability, @. The probability ranges
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=il

Modification | Concept error{%) | Subconcept error(%) | Total error(%)
probability (e) | Initial | Refined | Initial Refined | Initial | Refined
0.05 20.0 00 214 0.0] 209 0.0
0.10 45.7 57| 357 214 | 39.0 16.1
0.15 62.8 11.4 40.0 30.0 47.6 238

0.20 45.7 11.4 48.5 32.8 { 476 25{.? J

Table 1: Comparison of the error rates in the initial and refined theories

from 0.05 to 0.20. The modified theory may contain a combination of faults.

Inputs to RLA are the modified theory and four selected positive examples of the top-
most concept. The negative examples are automatically generated by using the closed-
world assumption. The total number of the examples used is 288. The classified examples
of the subconcepts are not given. To see how many errors the system can decrease, we
compare the input theory with the refined theory by using 7 test examples of the concept
and 14 examples of the subconcepts. Note that the examples of the subconcepts are also
needed to test whether the subconcepts are correctly refined. Qtherwise, it is impossible
to distinguish two theories that have the same operational definitions but have different
structures. Table 1 shows the experiment results averaged on five trials for each value of
a.

The experiment shows that RLA can effectively refine a theory that has a high error
rate; for example, it can reduce the error rale as high as 21% to 0.0%. The experiment
also shows that the classification errors of the refined theory gradually increase as the
errors in the initial theory increase. Most of the errors are due to the errors in the
subconcepts; our systemn cannot decrease the subconcept errors as effectively as decrease
the concept errors. An investigation reveals that the subconcept refinement is rather
ineffective when the initial theory is severely modified and all the rules of a subconcept

are deleted. When all rules of a subconcept are deleted, it is impossible to construct them
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without constructive induction. Adding this ability to our system is a topic for the future
research. |

It is important to note that when the error rate of the initial theory is almost 50%,
RLA can still learn the definitions of the top-most concept with less errors than when no
theory is given?. The less error rates can be accounted by the fact that the hypothesis
space of the learning is changed when the theory is given. Take the case of a theory
that has a subconcept with a recursive definition for example. In this case, if the theory
with that subconcept is not given, it is impossible to learn a finite number of rules of the

top-most concept that classify all the test examples correctly.

6 Comparison with Related Work

In this scction, we compare RL.4 with the theory refinement systems that are based on

related approaches.

6.1 & (Refinement by eXample)

R [T], the predecessor of RLA, is a system that can refine a relational theory with multiple
faults. Both RLA and R, similarly refine a theory by learning the operational definitions
before inferring the correct theory. However, RLA improves over B, in many aspects. The
main improvement is that, when constructive induction is nol needed, RL.A can create
the subconcept rules that are missing from the original theory while 3, cannot. Thus,
the theory refined by RL.A is more similar to the original theory than the one refined by
R . The experiment on the same theory and examples also shows that the theory refined
by RLA is considerably more accurate than the one refined by R, . Furthermore, since
RLA is based on the idea of abduction which has been extensively studied, its behaviors

are better understood than that of R, , which is based on a specific algorithm.

*With the same training examples but without au input theory, the coucept definitions are learned
with an error rate 14.2% while the subconcepts cannot be learned.
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6.2 Ginsberg’s system

Ginsberg's theory refinement system[2] also refines a theory by first learning the opera-
tional definitions. The main difference between his system and RLA is that his system
can refine only the theory represented in the propositional logic, the language with lower
expressive power than the first-order logic used in our system. Like R., his system is

based on an adhoc approach which makes its behaviors difficult to be predicted.

7 Conclusion

We discussed the problem of automatic theory refinement when multiple faults exist in
the theory. We then presented the RLA refinement system that is based on the ideas
of learning and abduction. Our system can overcome many difficulties in the existing
systems. Particularly, it can correct a combination of faults in both the concept and
subconcepts when only the examples of the concept are given. The experiment shows
that RLA can effectively refine a theory with multiple faults.

An important topic for further research is to inéorpnratc constructive induction into
our system. This will address its inability to learn a subconcept that is missing from the
given theory. Another research topic is to extend RLA so that it can refine a theory

when the training examples are noisy.
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Is it possible for a machine to learn te play chess optimally given only example
positions and some simple facts about the geometry of the board ? Below is part of

Learning Optimal KRK Strategies

Michael Bain
The Turing Institute Limited
36 North Hanover Street
Glasgow G1 2AD
UK

e-mail: michael@turing.ac.uk

Abstract

Omuiscient databases for chess endgames can be constructed by full-width
backward chaining from won positions. Complete tabulations are available for
certain endgames, including King and Rook against King (KRE), which con-
tain optimal depth-to-win information. Previous work has applied decision-
tree learning to construct rules for the classification of positions from such
databases as won or not won. The current work takes an Indoctive Logic
Frogramming approach, using methods of geperalisation in first-order logic
and specialisation by predicate invention. Hesults are given on learning rules
from example black-to-move KRK positions which are won-for-white in a fixed

1 LlIiLIbEI Uf H1Oves.

Motivation and First Results

such a program, in Prolog, lcarned under the stated conditions.

krk(0,Kfile,3, WRfile,1,Kfile,1) :- not(wrfile_threat(Kfile, WRAle)).

krk(0,c,WKrank,a, Wlirank,a, BKrank :- wrrank safe(WHKrank, W Rrank, BKrank).

wrfile threat(BKfile, WRfile) :- diff{ BKfile, WRfile,d1).

wrrank _safe(2,WRrank,1) :- 1t(2, WRrank).

wrrank safe(Krank, Wiltrank lrank) :- diff( Krank, W Rrank,d2),
wrrank safe( Krank, W Rrank, Krank) :- diff{ Krank, WRrank,d3).
wrrank safe( Krank WRrank,lkrank) :- diff{ Krank, WRrank.d4).
wrrank safe(Krank, WRrank,Krank) - diff{ Krank, WRrank,d5).
wrrank safe(Krank, WRrank,Krank) :- diff(Krank, WRrank,d6).
wrrank.safe(1,8,1).
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This program is complete and correct for the canonical set of legal Black-to-
move (BTM) positions in the King and Rook against King (KRK) endgame which
are won-for-White (wiw) at a depth of 0 moves (i.e. checkmate). The top-level
predicate is krk/7, the first argument of which gives the depth of win in moves for
a minimax-optimal strategy. The other six arguments specify positions by the file
and rank {z and y) chessboard coordinates of, respectively, the White King, White
Rook and Black King. The two clauses for the top-level predicate are complete and
correct in the sense that they cover all and only those positions in an exhaustive
database (described in Section 2.1) which are won at depth 0. This solution, which is
discussed in more detail in Section 4, calls the primitive predicates 1t/2 and diff/3
which define the relations < and symmetric difference for files and ranks. Apart
from these background predicates, two machine-invented predicates which are here
labelled wrfile_threat/2 and wrrank_safe/3 complete the definition.

[n the KRK endgame the maximum depth of win for BTM positions is 16 moves.
Currently, we have Prolog programs learned by the Inductive Logic Programming
system GCWS (described in Section 3) which are complete in the above sense for all
depths of win, i.e. from 0 to 16. To our knowledge this is the first time an optimal
strategy for a complete endgame has been learned automatically in this way from
example positions and low-level background knowledge predicates. In this paper
we present results for complete and correct definitions in Prolog at depths of win
of 0 and 1 moves. We are continuing to work on correction by specialisation of
definitions at the remaining depth levels, and expect to incorporale these results in
a subsequent version of this paper. For the present however we will describe only
the results from learning the definitions of won at depths 0 and 1. The outline of the
paper is as follows. Section 2 contains descriptions of the KRK endgame database
used. In Section 3 the learning approach is discussed, The learned definitions are
covered in Section 4 and their relation to other work in Section 5.

2 DMaterials

In previous work chess endgame databases have been used as sources of train-
ing and testing examples for machine learning experiments [Qui83, Sha87, Mug87,
MBHMMS89, Bai9l]. The current work employs an exhaustive database which is a
complete tabulation for the KRK endgame. The entries of this database contain
optimal depth-to-win values for all positions. These entries constititute examples
of position classes at each depth of an optimal strategy. Our training and testing
examples were randomly sampled from this database.

2.1 Retrograde analysis of endgame databases

The retrograde analysis method for generating chess endgame databases as described
in [Tho86) employs reduction of the space of positions by removing from considera-
tion those positions equivalent to a canonical set by symmetry. Consequently, any

—184—



Key:
— WK octant

-——— WK reflection

-=-=-=  BK reflection

- -+« WR reflection

e B e e i
T
-

R W Rk th  ~§ O

- Sl L
S ot S
Sttt Ferted ooy
1 &':’#’6';. fe Errs o]
i i e e

Figure 1: Canonical positions diagram
The axes of reflection and noles in the text indicate how the pieces of
any non-canonical position may be translated to give its canonical equivalent.
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be translated to its canonical equivalent before its database value may be retrieved.
The exact symmetries which may be exploited vary according to the pieces in the
endgame. In the KRK database used to provide examples for the current work three
types of symmetrical translation were applied. These are diagrammed in Figure 1
and their meaning is as follows:

WK octant these ten squares are the canonical locations for the White King (WK);

WK reflection reflection about the axes indicated place the WK in a canonical
location;

BK reflection with the WK on squarcs al, b2, ¢3 or d4 and the Black King (BK)
above the diagonal al to h8, the BK can be reflected about this axis to place
it below the diagonal;

WR reflection with both WK and BK on the diagonal and the White Rook (WR)
above the diagonal, the WR can be reflected aboul this axis to place it below
the diagonal.

The database contains information only on black-to-move {(BTM) positions.
However this is sufficient to allow optimal play using only a legal move genera-
tor which is operated with 2 ply (1 move) lookahead. Since every won position is
tagged in the databasc with its minimax-optimal depth-of-win value, and the learned
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Depth Number | Depth Number
0 27 9 1712

1 78 10 1985

2 246 11 2854

J 81 12 3597

= 198 13 4194

3 471 14 4553

6 592 15 2166

T 683 16 390

B 1433 Total 25260

Figure 2: Depth of win, optimal play
Depth is depth-of-win for white in moves with black-to-move; Number is num-
ber of positions. There are a total of 23260 wins. Together with 2796 draws
this gives a total of 28056 positions used for positive and negative example sets.

definitions contain the same values, this method holds also to allow the output of
the learning-from-examples method to play optimally.

2.2 BTM WFW positions in the KRK database

Following the removal of redundancy due to symmetries the total space of legal
canonical positions in the KRK endgame reduces from a potential 262144 to 28056.
In the BTM database used in our experiments the number of positions won-for-
white was 25260. Each of these positions is tagged with its depth-of-win value. The
number of positions in each depth-of-win class is tabulated in Figure 2.

3 Method

In the present work the goal was the induction of complete, correct and con-
cise theories in the KRK domain. Example positions for Black-to-move (BTM) and
win at depth D, where D is a number of moves, were extracted from an exhaus-
tive database computed by the standard retrograde analysis method as discussed
above. In this method, each entry in the database contains a pesition labelled by
its minimax-optimal game-theoretic value, which in this case is its depth D. Such a
database is taken to be a complete and correct definition of the endgame (although
this has not vet been proved), containing as it does all legal positions for the given
pieces together with their optimal depth-of-win labels. In logical terminology such a
database may be thought of as an extensional definition of the endgame. Therefore
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Let d be depth of win

Let Py be positive examples

Let Ny be negative examples

Let B be the standard background
Let N4, be rand_subset{|Fs|, Ng)
1=10

Let T, be GOLEM(F,, Ny, B)

REFPEAT
Let B, ={e:e€ Ny, T, F e}
IF F, =) BREAK
J=1+1
Let T, be GCWS(T,, E,)

1=

Figure 3: GCWS algorithm schema.

the database is a complete and correct Ltheory of KRK. Alternatively, the database
is a relation < D), P > where D is depth-of-win and P is a canonical position. How-
ever, despite reductions due to the removal of positions equivalent by symmetry,
the database is too large to be called a concise theory. The goal was therefore the

induction of a program which:

l. on input of a legal BTM position in KRK outputs the minimal depth-of-win
for white;

2. on some measure was more concise than the database representation.

In this paper the experimental tasks were restricted to positions with depth 0 or 1.
Also, we did not apply any measure of relative conciseness. A suitable candidate
measure could be HP-compression as described n [MSHE}E],

We adopted an Inductive Logic Programming approach. Generalisation steps
were carried out using the Rlgg algorithm as implemented in Muggleton and Feng's
GOLEM system. Correction of over-general clauses with respect to a targel model
was carried out using the Closed-World Specialisation technique ([BM91] in a new
Prolog implementation by the author. The combined system is called GCWS and is
as described in [Bai91] with & new extension which enables the automatic invention
and introduction of non-negated exception predicates during the specialisation pro-
cess. The method can be viewed as implementing a form of automatic hierarchical
problem decomposition.
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An informal complexity constraint on the number of clauses used in any predi-
cate definition was applied for learning the depth 0 and I definitions, based on the
hypothesised limit on human short term memory capacity of T2 chunks. (A Prolog
predicate is defined using one or more Horn clauses, where each clause contains a
single positive literal with the same predicate symbol and arity).

To avoid bias of the method by supplying the learning algorithm with a large
number of predefined domain-specific background predicates, the background knowl-
edge was restricted to contain only one specifically chess-oriented geometrical pred-
icate, namely the absolute symmetric difference between [iles and between ranks.
The other background predicate available was “strictly-less-than” (<) over files and
over ranks.

Details of the experimental method are given in Figure 3 in the form of an
algorithm scherna. At each depth of win, the positive examples are all positions in
the database which are won for white at that depth, and the negative examples are
selected randomly from the remaining positions in the database.

Each depth of win was treated as a separate learning problem. The results for
depih 0 are in Section 4.1 and for depth I in Section 4.2,

4 Results

To recap on the Prolog representation used, the target predicate for the concept was
krk/7. The first argument of this predicate indicates depth of win, in the range 0 to
16. The remaining six arguments give the file and rank coordinates for, respectively,
the White King, the White Hook and the DBlack King. I'ile arguments are in the
range a to b while rank arguments are in the range 1 to 8. Note that these values are
those used in the standard algebraic chess notation. For instance, the unit clanse
“krk(0, c, 1, a, 3, &, 1)" is read as “the black-to-move position WkK:cl WR:ad Bk:al
is won-for-white at depth 0 (i.e. in 0 moves)". Recall that only legal positions are
UUL[EJI.E]H[EKI.

Background knowledge was restricted to the predicates diff /3, symmetric differ-
ence, and 1t/2, strictly less than. Two argument types were used for file and rank
arguments, as for the target predicate. A third type was used for absolute difference
arguments,

Throughout this section we illustrate each top-level clause in the induced dehini-
tion in a figure containing diagrams of partial chessboards. The diagrams indicate
position classes covered by the clause indicated. Dotted lines and arrows are used
to show variations in placing of the attacking White Rook.

4.1 BTM WFW depth 0

The induced Prolog definition for BTM WFW depth 0 is shown in Figure 4. Clause
1 of this definition is illustrated in Figure 5. As in clause 1, when the new predicate
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krk{0,A,3,B,1,A.1) :- not(nonkrk1(A,B)}. % Clause 1
nonkrki(A,B) :- diff(A,B,d1).

krk(0,c,A,a,B,a,C) :- krk2(A,B,C). % Clause 2
kek2(2,A,1) - 1t(2,A).

krk2(A,B,A) :- diff(A,B,d2).

kek2(A,B,A) :- difi(A,B,d3).

krk2(A,B,A) :- difi(A,B,d4).

kek2(A BA) - diff{A,B,d3).

krk2(A,B,A) - diff( A,B.d6).

krk2(1,8,1).

% Key (labels for machine-invented predicates) :

%  nonkrkl=“wrfile_threat”
o krk2="wrrank safe”

Figure 4: BTM WFW depth 0

has only a single clause in its definition, it may be replaced with the clause body.
In incremental learning this could however be undesirable - the invented predicate
if retained might have further clauses added lo its definition. For the time being
we can interpret clause | as follows : “any BTM KRE position with the kings on
the same file, the white king on rank 3 and both the rook and black king on rank 1
18 WFW depth 0 when the symmetric difference between king and rook files is not
17. The machine-invented predicate nonkrk1/2 clearly relates to the idea of rook
safety when the black king is in check. It might be labelled wrfile_threat /2. This
concepl is apparent from the diagrams in Figure 5. Diagram (i) shows the placings
of the White Rook on rank I, essentially on file a and files e to h. Diagram (ii)
illustrates the same pattern shifted one file to the right, with the White Rook on
rank 1, files a, b and f to h.

The second clause is in a sense the dual of the first, this time for rank values,
with the machine-invented predicale krk2/3 being labelled wrrank.safe /3. This
is shown in Figure 6. Diagram (i) illustrates the first clause of krk2/3, with the
Kings not in opposition. Diagram (ii) covers the remaining clauses of krk2/3 where
the Kings arc in opposition. In all cases the White Rook attacks the Black King
down file a from the safety of rank 3 or above, _

These two clauses cover all 27 positions won at depth . Although this is a small
number of examples, the complexity of describing the concepts involved is clear from
the diagrams of Figures 5 and 6.
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kek(1,A,3,B,C,D,1) - kek1(A,B,C,D), diff(A,B,d2), diff(A,D,d1).

kekl(ec,a,A,b) - not(nonkrk12(A}).
krkl(c,e,A,d) - not{nonkrk12({A)).
krkl(d,b,A c) - not{nonkrkl12(A)).
krkl(d,f,Ae) :- not(nonkrk12(A}).

nonkrkl12(1).
nonkrk12(2).
krk(1,¢,2,A,B,a,C) - krk2(A,B,C). % Clause 2

krk2(A,4,3) - not(nonkrk21(A)).
krk2(A,3,2) :- not(nonkrk22(A)).
krk2(A,4,1) :- not(nonkrk22(A)).
krk2(A,5,1) :- not(nonkrk22(A)).
krk2(A,6,1) :- not(nonkrk22(A)).
krk2(A,7,1) :- not(nonkrk22(A)).
krk2{A,8,1) :- not{nonkrk22(A)).

nonkrk21(a).
nonkrk21(b).

nonkrk22(a).
krk(l,c,1,A,3,a,2) :- not(nonkrk3(A)). % Clause 3

nonkrk3(a).
nonkrk3(b}.

% Key (labels for machine-invented predicates) :
%  krkl=“wrrank salc”

%  krk2=“wrfile_safe”

%  nonkrkl2="ranklte2”

%  nonkrk2l="filelteb”™

% nonkrk22="edgefile”

%  nonkrk3=“filelteb”

% Clause 1

Figure 7: BTM WFW depth 1
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Figure 8: BTM WFW depth 1, clause 1

4.2 BTM WFW depth 1

The induced Prolog definition for BTM WFW depth 1 is show in Figure 7. The top-
level predicate krk/T has three clauses in this definition. Clause 1 of this definition
is illustrated in Figure 8 There arc four diagrams in this figure, each of which
show essentially the same pattern of attacking relationships between the pieces.
Diagrams (i) to (iv) depict the patterns for the four clauses of the definition of
the the invented predicate krk1/4. This predicate might be labelled wrrank_safe,
since it 15 principally & condition on the White Rook’s rank safety. This is because
the keyv attack relationships are defined by the top-level of clause 1. To see that the
patterns do indeed cover checkmate at depth 1, refer to diagram (i) in Figure 8, The
Black King 15 forced to move to cl, which is followed by the White Rook moving to
al. Black 1s in check with no further moves. Recall that this checkmate position is
covered hy the pattern of diagram (i) in Figure 5.

The second clause of the BTTM WFW depth 1 definition has only the machine-
invented predicate krk2/3 in the clause body. The clause has the White King
fixed on square ¢2, and a condition is required on the relalion ol the White Rook
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to the Black King. We might label this condition wrfile_safe, since the White
Rook is restricting the movement of the Black King without directly attacking it or
being attacked by it. The key patterns are shown in Figure 9. In diagram (i) the
locations of the Kings are fixed with the White Rook free to cccupy rank 4 on any
file apart from a or b. This pattern corresponds to the first clause in the definition
of krk2/3. Diagram (ii) presents an interesting configuration with the Kings in
opposition. This pattern corresponds to the second clause of krk2/3, which covers
one position where the White Rook is attacked by the Black King but defended by
the White King. The remaining clauses in the definition cover positions falling into
pattern classes closely related to that of diagram (i). For instance diagrams (iii)
and (iv) corresponds to clauses 3 and 4, with the Black King forced to move into
opposition on file a followed by the the White Rook moving to give checkmate on
this file.

The third clause in the definition of the predicate krk/7 covers positions fitting
the pattern of Figure 10. Here the positions of both Kings are fixed, and the Black
King is forced to move into square al. Irom its safe postion on rank 3 at file ¢ or
greater, the White Rook moves to a3 giving checkmate. The reader may care to
verily that the patterns shown account for all 78 of the canonical BTM positions
which are WFW at depth 1.

5 Discussion

Work on the inductive synthesis of knowledge employing the “easy inverse trick”
[Mic86] pushed the nascent technology of decision-tree induction to its limits in
the late 70s and early 80s [Qui83]. These initial results in chess endgamne domains
led to a variety of successful applications. The landmark KARDIO system used a
deep model of the heart to synthesise shallow rules for ECG interpretation [BML89)].
Among the rules which came out of this study were some previously undiscovered in
over 200 years of cardiology. This route was also taken in an application to satellite
fault diagnosis [Pea88]. Most recently, an ILP approach in the same domain allowed
the learning of significant temporal relations not expressed in the earlier solution

[Fen81].

The role of Machine Learning in previous work has focused on database com-
pression. Even with decision tree induction this compression can be significant, as
in the KARDIO work. Typically, however, in the chess endgame applications to
date the bottleneck for decision-tree induction has been selection of an adequate set
of attributes. For example, in experiments on the KPaTKR domain [SM86] most
of the effort was expended on hand-crafting the attributes which capture the nec-
essary relational features of the won/uol won predicate. The novelty of the present
approach lies in the application of relational learning using Rlgg as implemented in
GOLEM coupled with specialisation techniques based on predicate invention. This
follows from earlier results with a similar approach in the simpler KRK illegality
domain [Baidl].
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The predicate invention methods by which induced clauses are specialised by
introducing literals into the clause body are a special case of predicate invention
within Muggleton’s “refinement lattice” framework.

6 Concluding remarks

We have presented a results from learning optimal strategies in the KRK endgame.
Optimality is achieved through the use of examples extracted from an exhaustive
database for the endgame. A complete theory for black-to-move, won-for-white po-
sitions at all depths (0 to 16) has been learned automatically from ground instances
of positions and only low-level background knowledge. The definitions for win at
depths 0 and 1 have been fully specialised and were presented as a complete and
correct definition of the target concept at the levels. They have been tested fully on
the exhaustive example set.

Acknowledgements. This work was supported by TED project 4/1/1320 on Tem-
poral Databases and Planning. [ thank Dr Stephen Muggleton for proposing the
KRK project, and Prof Donald Michie, Prof Ivan Bratko and the members of the
Turing Institute ILP Group for their comments and suggestions regarding this work.
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Abstract

The machine learning program Golem from the field of inductive logic programming
was applied to the drug design problem of modelling structure - activity
relationships. The training data for the program was 44 trimethoprim analogues
and their observed inhibition of E. ¢oli dihydrofolate reductase. A further 11
compounds were used as unseen test data. Golem obtained rules that were
statistically more accurate on the training data and also better on the test data than
a Hansch linear regression model. Importantly machine learning yields
understandable rules that characterised the chemistry of favoured inhibitors in
terms of polarity, flexibility and hydrogen-bonding character. These rules are in
agreement with the stereochemistry of the interaction of trimethoprim with
dihydrofolate reductase observed crystallographically. We conclude that machine
learning offers a new approach which complements other methods and could
provide vital insights to direct the time-consuming process of the design of potent

pharmaceutical agents from a lead compound.
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1 - Introduction

The design of a potent pharmaceutical agent from a lead compound is often based
on an understanding of the quantitative structure-activity relationship (QSAR) in a
related series of ligands (e.g.(1, 2, 3)). Generally, the structure of the receptor is
unknown and systematic variation of the chemical properties of the ligands is used
to infer the requirements imposed by the receptor binding site. Any method that
can model accurately QSAR from a small sample of the total number of ligands will
aid greatly in the rapid discovery of a compound with optimal activity and will be of

clinical importance.

A standard method for modelling a QSAR was proposed by Hansch (4, 5, 6), in
which the physicochemical properties of a series of similar compounds are linked
by an empirical equation to their biological activity. However the equation gives
little insight into the structure of the binding site. Recently, neural network modals
have been applied to QSAR with some success (7) but the design of the network is

highly subjective and the numerical results are difficult to interpret.

Pattern recognition methods have been used in QSAR. Principal component
analysis (8) is widely used to identify the chemical properties that contribute most to
the activity of a compound but does not give insight into the factors controlling the
binding of a ligand to its receptor. An alternative pattern recognition method with
potential advantages for QSAR is machine learning. Machine learning methods
are non-parametric and non-linear, and work best when using human
understandable symbols to represent a problem. Thus in drug design the concepts
used, such as size, polarity and flexibility, relate naturally to stereochemistry. The
use of such symbols has two potential advantages over the numerical
representation First, the problem can be set up and changed more easily because

the designer can work in comprehensible terms. Background knowledge, in
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particular the stereochemistry of the compounds, can be directly added, while in a
statistical method it would typically be represented by some form of prior
probabilities, or in & neural net by connection weights and topology. Second and
more importantly, the production of humanly comprehensible rules from a machine
learning system allows the rules to be checked for consistency with existing
knowledge, and opens the possibility that the rules may provide fresh insight into

the problem.

In this paper we apply the machine learning program Golem (8) from the newly
developed field of ILP (Iinductive Logic Programming) (10) to QSAR. In the
development of methodologies, it is advantageous to consider systems for which
atomic structural information of the drug-receptor complex is available. An ideal
system is the complex formed between analogues of the drug trimethoprim and the
enzyme dinydrofolate reductase (DHFR) from E. coli which has been studied
crystallographically (11, 12). Thus one can compare the predicted QSAR models
with the X-ray stereochemistry of interaction. These compounds have been studied
by Hansch et al. (6) and so provide an ideal system to compare the per‘fa-r;manca of

machine learning with the Hansch method.
2 - Methods

Data

The study was performed with a training set of 44 trimethoprim analogues (Table
1a) from Hansch et al.{6) and a testing set of 11 further cogeners (Table 1b) from
Roth and coworkers (13, 14) (Table 1). Biological activities is measured as
log(1/K;) where K; is the equilibrium constant for the association of the drug to
DHFR. There are 25 different substituent groups in the set and three alternate

substitution positions (3, 4 and 5) on the pheny! ring (Figure 1a). This yields a set
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ot 8125 possible substituents when the symmetry of the 3 and 5 positions are

included.
- Golem

Golem (9) is a program for machine learning by Inductive Logic Programming (ILP).
The ILP methodolegy (10) was chosen because it is designed specifically to learn
relationships between objects (e.g. molecular structures). In ILP, each language is
a subset of first-order predicate calculus which is expressive enough fo describe
most mathematical concepts and, having a strong link with natural language, leads
to ease of comprehension. Golem is written in the programming language C but

implements predicate logic in the language Prolog.

Golem takes as input: positive examples, negative examples, and background
knowledge described as Prolog facts. It produces as output: Prolog rules which are
generalisations of the examples. In Golem, the generative phase resembles the
standard scientific method. Observations are collected from the outside world { the
activities of trimethoprim analogues). These are then combined by an ILP program
with background knowledge (the stereochemistry of the compounds) to form
inductive hypothesis (rules relating the structure of an analogue with its activity).
These rules are then experimentally tested on additional data. If experimentation
leads to high confidence in the validity of the hypotheses, the rules are added to
the background knowledge. The Prolog rules are constructed so that together with
the background knowledge, they explain all the positive input examples and none
of the negative examples. The method of generalisation is based on the logical

idea of Relative Least General Ganeralisation.

The basic algorithm used in Golem is as follows. Firstly it takes a random sample

of pairs of positive examples. In this application, this will ce a set of pairs of
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compared drugs chosen randomly from the set of all examples represented (see
below). For each of these pairs Golem computes the set of all properties which are
common to both examples. These properties are then made into a rule which is
true of both the examples in the pair under consideration. Having built such a rule
for all chosen pairs of examples, Golem takes each rule and computes the number
of examples which that rules could be used to predict. Clearly these rules might
predict some examples which are false. Golem therefore chooses the rule which
predicts the most true examples while predicting less than a predefined threshold
of false examples. Having found the rule for the best pair, Golem then takes a
further sample of as yet unpredicted examples and forms rules which express the
common properties of this pair together with each of the individual residues in the
sample. Again the rule which gives best predicticns on the training set is chosen.
The process of sampling and rule building is continued until no improvement in

prediction is produced.

A method in Golem is also needed to avoid over-fitting the data and to deal with
noise. These problems are dealt with by using the Minimal Description Length as
impiemented in the compression model of Muggleton (15) Each hypothesis
produced by Golem in the experimentation stage was checked by compression for
significance. Thus rules which have too many variables for the the number of

examples they cover are rejected.

Application of Golem to the QSAR of the trimethoprim series
To apply Golem to the QSAR of the trimethoprim series, the data has to be

converted into a form suitable for Golem. QSAR is generally a regression problem,

in which a real number is predicted from the description of a compound. Howaver,
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Golem is designed to carry-out classification (discrimination) tasks in which a small
number of discrete classes are predicted. This difficulty is by-passed by
considering pairs of drugs and comparing their activities (pairs where the activity
are equal or within the margin of experimental error are discarded). The output is a
set of rules which decides which of a pair of drugs has higher activity. Paired

comparisons are then converted to a ranking by the method of David (16).

The input to Golem are three types of fact: positive, negative and background. The
positive examples are the paired examples of greater activity, e.q.

great(d20, di15).

which states that drug no. 20 has higher activity than drug no. 15. The negative

examples are the paired examples of lower activity.

The background facts are the chemical structure of the drugs and the properties of
the substituents. Chemical structure is represented in the form:

struc(d35, NOj, NHCOCH,, H).

which states that-drug no. 35 has: NO, substituted at position 3 , NHCOCH3
substituted at position 4, and no substitution at position 5. In addition, if either
position 3 or 5 has no substitution, as in drug no 35, the position with no

substitution is assumed to be position 5 (this is used in ref ().

Chemical properties were then assigned héuristical!y to substituents (Table 2).
The properties, chosen to make the approach generally applicable to drug-design
problems, are: polarity, size, flexibility, hydrogen-bond donor, hydrogen-bond
acceptor, n donor, & acceptor, polarisability and o effect. Each of the 24 non-
hydrogen substituents was given an integer value for each of these properties.
This was represented using different predicates for each property and value, e.g:
polar(Br, polar3).

states that Br has polarity of value 3.
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Information was aiso given about the relative values of these properties for the

substituent groups e.g:
polar(OCFg, polard).

polar(CH,OH, polar2).

great_polar(polar4, polar2).
together state that OCF4 is more polar than CH,OH (the "great_polar” fact is

background knowledge about arithmetic ordering).

Finally information was given about the relative vaiues of the properties compared
to fixed values, e.g.

great0O_polar(polar1).

states that a polarity of 1 is greater than a polarity of 0.

The input to Golem was 871 positive facts, 871 negative facts, 2976 facts in the
background information. The run time was about 30 cpu minutes on a SUN

SparcStation 1 per rule.
3 - Results

Golem derived nine rules that predict the relative activities of two drugs. Table 3
lists the machine learned rules in Prolog syntax together with an English
interpretation. The coverage indicates the number of pairs of relationship that are
correctly and incorrectly represented. Each rules relates the relative activities of
two drugs ( A and B} and identifies the chemical properties of substituents that yield

a drug of higher activity.

Table 1 gives the performance on training data of 44 compounds-for both machine
learning and application of the Hansch equation expressed as a rank value. The
prediction from machine learning gave a rank correlation with the observed order

of 0.916 (using the Spearman method (17)) (Figure 2a). As a benchmark, the
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Hansch equation had a rank correlation of 0.794 (Figure 2b). The significance of
the difference in these ranking was evaluated by Fisher's z transformation (17).
The value z = 2.18 is significant at the 5% level and almost significant at the 1%

level (p=0.985).

A better test of a prediction method is its performance on data not used in
developing the algorithm. The structure and activity of eleven new trimethoprim
analogues not used in the original paper (6) on which the Hansch equation was
derived was used as a test set for the two approaches. A ranking of the new 11
drugs relative to all 55 drugs was obtained by: (1) forming all paired comparisons
involving the new 11 drugs, (2) these are added to the predicted resulls of the
paired comparisons of the original 44 drugs, (3) a ranking is then produced from all
the paired comparisons. From this ranking of 55 drugs, a rank order for the 11 new
drugs was extracted (Table 1b) and this was compared by a rank correlation
coefficient to the observed order. The rank correlation for the 11 new drugs by
machine learning was 0.457 compared to 0.415 for the Hansch method (Figure 2).
The Fisher z-value is 0.10 which is not significant {p= 0.540) and reflects t_he similar
rank correlations obtained on a small test set. Thus on the test set, the machine

learning is as accurate as the regression approach of Hansch. Both methods

predict well that the tests drugs have high activity (Figure 2).

A further test of the Golem approach was a cr.uss—varidatinn study in which 44 of the
95 drugs were chosen at random as a training set with the remaining 11 as the test
data. The resultant Spearman rank correlation coefficients (Table 4) for the training
sets are similar to those for the main trial. However in the cross-validation work, the
tesing drugs were chosen over the entire range of activities and the correlation
coefficients were higher than that obtained for the 11 new drugs taken in the main

trial which were at the top end of activity.
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Discussion and Conclusion

The X-ray crystallographic structures of the trimethoprim / £. gcoli DHFR complex
(11) and of the ternary complex (12) with NADPH have been solved (see Figure
1b). In the ternary complex, the phenyl ring of trimethoprim is sandwiched in a
hydrophobic cleft between Phe 31, Leu 28 and Met 20 on one side and Leu 54, lle
54, Ser 49 and with the NADPH cofactor on the other. The aromatic ring is thus
effactively buried whiist the environments cf the 3, 4 and 5 substituents vary. The 4
{i.e. para) position is the most exposed to solvent whilst the meta pnsiti'nns (L.e. the
3 and 5 substituents) are restricted in size by the surrounding protein and cofactor

atoms.

A main aim in using machine learning was to obtain rules that could provide insight
into stereochemistry of drug / DHFR interactions. We examined the features that
favour the better drugs ( i.e. the properties of drug A in the rules). For 3 and/or 5
positions a favourable substituent D is defined as:

h_donor(D,h_don0),

pi_donor(D,pi_don1),

flex(D,G), less4_fiex(G),

size(D,size2),

polar{D,V), great0_polar(V),

polarisable(D,polar1).
The properties are thersefore: not a hydrogen-bond donor; a n-donor of 1; flexibility
< 4, a size of 2; a polarity greater than zero; and a polarisability of 1. Only the
methoxy (OCH3) substituent satlsfies these conditions. These principles are in
keeping with the location of both meta sites ( i.e. both 3 and 5 positions) in the
crystal structures. Both meta sites are partially buried in a hydrophobic
environment and hence have a restriction on size and flexibility. The absence of

solvent at these sites might explain the requirement that the group should not be a
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hydrogen bond donor. Substituents that are n-donaors will force this group to lie in
the plane of the aromatic ring and this has been suggested as a requirement for a
favourable drug (14). Finally, because both meta positions have similar chemical
locations in DHFR, one cannot decide whether the rules in Table 3 for a 3 position
on the chemical compound (Figure 1a) relate exclusively to the upper meta
position or exclusively to the lower meta position or to both locations in the three-

dimensional location (Figure 1b).

The only positive feature for the 4-position is that it should have a polarity of 2. This
property is consistent with a site that is exposed to solvent and should be polar.
Matthews et al (11) proposed that the oxygen of the methoxy group might form a
hydrogen bond with a neighbouring water molecule. In addition the rules suggest
that each of the 3, 4 and 5 positions should not be hydrogen. This is in keeping
with the suggestion (13) that an important role of the 4 position is to force the meta

substituents away from the 4 position towards the 2 and 6 positions.

Golem could have used representations other than chemical properties (Table 2).
The original numerical attributes used in Hansch et al (6) were tried as the
background knowledge to Golem and this alse produced rank correlations in the
training data and test data better than the Hansch eqguation. However, the rules
produced did not provide the insight we were seeking. An alternative approach
would be to represent explicitly chemical buﬁds and their possible movements but

this method is likely to be computationally expensive.

For drug design, we have shown that machine learning can yield rules that model a
QSAR of a series of DHFR inhibitors better than one of the standard methods
widely used. In addition one automatically derives a stereochemical description of
the drug / receptor interaction For DHFR we know that these description are in

broad agreement with crystallographic results. But for many systems of interest
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there will be no structure for the receptor and these rules will thus provide valuable
insight that can guide subsequent drug design. The machine learning approach
will have to be tried on other structure / activity series. If successful we suggest that
machine learning will be a useful tocl in addition to the other approaches in QSAR

to speed the process of drug discovery.

More generally, ILP techniques are particularly appropriate for biological problems
due to their ability to describe complex relational and structural features presented
by this domain. In another recent study, Golem (18) has produced pﬁredictions of
the secondary structure of a/a proteins of 80% accuracy. Together with the results
of this paper, we consider that this demonstrates the wide-ranging potential of ILP

in the domain of modeliing biological information.
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Table 1 Predicted and observed activity of trimethoprim analogues

X gives the substituents. The observed value of the affinity is expressed as
log 1/Kj app- The first 44 drugs (Table 1a) were used in the training sét and the
observed rank ranges from 1 to 44. The final 11 drugs (Table 1b) are the testing
set and the first number is the rank in the 55 drugs and the second the rank for the
11. The rank comresponding rank value obtained by machine learning (Golem) and
by the application of the Hansch equation are in the subsequent cnlﬁmns. These
two algorithms calculate a paired comparisons which is then converted to a ranking
by the algorithm of David (16). A win is when a drug is predicted to have higher
activity in a pair and a loss is lower activity in a pair. The David number of drug X is
caiculated to be the total number of (a) wins of drugs defeated by X minus losses of
drugs to whom X lost, plus (b) X's wins minus X's loses. The David number is used
to rank the drugs; low numbers have low activity, high numbers have high activity.

If the drugs have the same David number they have tied rank.

Table 2 Chemical properties of substituents

PL - polarity which indicates the amount of residual charge on the «- and B- atoms
of the substituent. SZ- size is a measure of the extended volume of the group.
FLX- flexibility is assigned from the number of rotatable bonds. H-D and H-A
indicate the presence and strength of hydmgén-bcnding acceptors and donors. P-
D and P-A indicate the presence and strength of n— acceptors and n-donors. POL
indicates polarisability of the molecular orbitals and SIG is its o-property. These
properties were assigned so that they are internally consistent without any relative

weight between them.
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Table 3 Rules for QSAR derived by machine learning

The rules are first given as Prolog clauses in which ":-" is a definition and a "," is
logical "and”, Then an exact interpretation is given. The rules have been classified
into those primarily relating to substituent 3 { rule 3.1 to 3.6); to substituent 4 ( 4.1

and 4.2) and one that relates to both positions (384.1).
Table 4: Results of cross-validation of machine learning.

The Spearman rank correlation coefficient betweeen the order obtain by Golem
and the true rank is given for the training set of 44 drugs and the testing set of 11
drugs. The drugs in the testing set are defined by the order they are given in

Tables 1a (1-44) and 1b(45-55).

Figure 1

(a) the structure of trimethoprim analogues

(b) a cartoon of the interaction of trimethoprim with DHFR from X-ray structures (11,
12). Faint stippling indicates that the residue lies below the plane of the phenyl

ring, darker stippling that the atoms are above.
Figure 2

Scattergram of the observed rank versus that predicted by Golem (2a) and by

Hansch (2b).
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Table 1a

x log I/K; 2pp Otserved rank by rank by
rank Golem Hansch
3,5(0H)p 3.04 1 17 2
4-O{CH2)sCHs 3.60 2 4.5 4
4-0(CHz)5CH3 6.07 3 4.5 10
H 6.18 4 1 6.5
4-MOrn 6.20 5 1.5 20.5
3-F 6.23 6 4] 6.5
3-{CH2)}7CH3 6,25 7 15 6.5
3-CH>OH 6.28 8 2 16
4-NHp 6.30 9 1.5 3
3,5-(CH20HR 6.31 10 3 23
4-F 6,35 11 8.5 6.5
3-O{CH2)6CH3 6.39 12 16 11
4-HUH2CH20CH, 6.40 13 20 20.5
4-Cl 6.45 14 12 17.5
34-(OH} .46 15 18 |
3-0H 6.47 16 13 el
4-CH, 6.48 17 5.5 17.5
3-DCH»CH20CH4 6.53 18 21 34
3-CH0(CH7)3CHa £.55 19 24 35.5
3-OCH+CONHA 6.57 205 14 13
4-0CF3 6.57 20.5 19 22
3-CH2OCHy 6.59 2 28 20.5
3-Ci 6.65 23 30.5 29.5
3-CH3 6.70 24 30.5 275
4-N(CH3)7 6.78 25 12.5 27.5
4-Br 6.52 27 11 24
4-0CH 6.82 27 225 26
3-O(CHphCH3 6.82 27 29 12
3-O(CH2)5CH; 6.86 29 26 14
4.CHCHa3CHy 6.89 0.5 27 15
4-NHCOCH3 6.59 05 25 12
3-0807CH3 6.92 32 33 25
3-0CHy 6,93 13 34 38
3-Br 6,96 4 37 35.5
3-NO,, 4-NHCOCH; 6.97 35 34 37
3-0CH7C¢Hs 6.59 136 kR 31
3.CF3 7.02 37 32 19
3,4-(OCH,;CH,0CH3 )7 7.22 38 19 40
ED| 7.23 39 38 33
3-CF3. 4.0 HA 7.69 40 41.5 i
3,4-(OCH3)p 7.72 41 415 4]
3.5-(0OCHa), 4-O0(CH2)20CH3 .35 42 43 43
3,5-(OCH3)2 B.38 43 40 42
3.4.5-(0OCH3)s B.57 44 44 44
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Tablelb

X log /K] app Ohbgerved rank by rank by
rank Golem Hansch
3,3-(CHs}, 4-OCH3 7.56 40 1[52.5 91455 4.5
3-Cl, 4-MNH3, 5-CHs 7.74 43 2140 2§44 3
3,5-(CH3)3, 4-OH 1.87 445 3.5]40 2|41 1
1,5-Cls, 4-NHa 7.87 a4 5 35{40 21455 45
3,5-Bry, 4-NH3 §.42 48 5044 4| 53 10
3,5-(0CHa);, 4-0CH2CgHs B.57 49 6| 52.5 9|52 9
3,5-(0CH3)y, 4-CH3 8.82 505  75[475  55]s45 1
3,5-(0CHs)z, 4-O(CHz)7CH3 8.82 50.5 7.5]52.5 9 |43 2
3,5-(0CH1}q, 4-0(CH32)}5CHa i.ES 52 91525 9] 49 7
3,5-17, 4-0CH- B.87 4.5 10.5 | 52.5 9| 50 8
3,5-1»,4-0H 8.87 54.5 10.5|47.5 55|47 6
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Table 3

Rule 3.1 - (coverage 119/0 train : 105/0 test)

great(A, B) :- struc(A, D, E, F), struc(B, h, C, h), h_denor(D, h_don0),
pi_donor(D, pi_don1), flex{D, G), less4_fiex(G).

Drug A is better than drug B if
drug B has no substitutions at positions 3 and 5 and
drug A at position 3 has hydrogen donor =0 and
drug A at position 3 has r-donor= 1 and
drug A at position 3 has flexibility < 4.

Rule 3.2 - (coverage 244/71 train : 248/4 test)

great(A, B) - struc(A, C, D, E), struc(B, F, h, G), not except3.2(A, B).
exceptd.2(A, B) - struc(A, C, D, h), struc(B, E, h, F), h_donor(E, h_don0).

Drug A is better than drug B if
drug B has no substitution at position 4 unless
drug A has no substitution at position 5 and
drug B at position 3 has hydrogen donor = 0.

Rule 3.3 - (coverage 102/13 train : 33/0 test)

great(A, B) :- struc(A, G, H, 1), struc(B, C, h, D), pi_donor(C, pi_don0),
polar(C, E), great0_polar(E), h_acceptor(C, F), great0_h_acc(F).

Drug A is better than drug B if
drug B has no substitutions at position 4 and
drug B at position 3 has r-donor = 0 and
drug B at position 3 has polarity > 0 and
drug B at position 3 has hydrogen acceptor > 0.

Rule 3.4 - (coverage 129/2 train: 126/0 test)

great(A, B) :- strue(A, C, D, E), struc(B, G, h, h), h_donor(C, h_dan0),
pi_donor(C, pi_don1), flex(C, F), less4_flex(F),
polarisable(G, H), less3_polari(H).

Drug A is better than drug B if
drug B has no substitutions at position 4 and 5 and
drug B at position 3 has polarisability « 3 and
drug A at position 3 has hydrogen donor =0 and
drug A at position 3 has n-donor = 1 and
drug A at position 3 has flexibility < 4.
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Rule 3.5 - (coverage 84/0 train: 52/0 test)

great(A, B) :- struc(A, C, D, E), struc(B, F, h, h), size(C, size2),
h_donor(C, h_don0), polarisable(F, polari1), polar(C, G),
greatD_polar((s).

Drug A is better than drug B if
drug B has no substitutions at position 4 and 5 and
drug B at position 3 has polarisability =1 and
drug A at position 3 has size = 2 and
drug A at position 3 has hydrogen donor =0 and
drug A at position 3 has polarity > 0.

Rule 3.6- (coverage 23/0 train: 16/0 test)

great(A, B) :- struc(A, C, D, E), struc(B, F, h, h}, h_donor{C,h_donQ),
polarisable(C, polari1), flex(F, G), flex(C, H), great_flex(G, H),
great6_flex(G).

Drug A is better than drug B if
drug B has no substitutions at position 4 and 5, and

drug B at position 3 has flexibility > 6 and

drug A at position 3 has polarisability = 1 and

drug A at position 3 has hydrogen donor =0 and

drug A at position 3 is less flexible than drug B at position 3.

Rule 4.1-(coverage 289/72 train: 99/0 test)

great(A, B) - struc(A, D, E, F), struc{B, h, C, h), not except4.1(A,B).
exceptd.1(AB) :- struc(B, h, C, h), size(C, size3).
exceptd. 1(A,B) - struc(B, h, C, h), size(C, size2), h_acceptor(C,h_acc1).

Drug A is better than drug B if
drug B has no substitutions at position 3 and 5 unless
drug B at position 4 has size=3 or
drug B at position 4 has size = 2 and hydrogen acceptor = 1.




Rule 4.2 - (coverage 187/2 train: 193/2 test)
great(A, B) - struc{A, E, F, G), struc(B, C, D, h), not_h(E), polar(F, polar2).

Drug A is better than drug B if
drug B has no substitution at position 5 and
drug A has a substitution at position 3 and
drug A at position 4 has polarity = 2.

Rule 3&4.1 - (coverage 85/0 train: 55/0 test)

great(A,B) :- struc(A,C,D,E), struc(B,H,\,h), h_donor(C,h_don0), polar(C,F),
less5_polar(F), size(C,G), less5_size(G),
polarisable(l,J}, less2_polari(J), sigma(l,K), great1_sigma(K).

Drug A is better than drug B if
drug B has no substitution at position 5 and
drug B at position 4 has polarisability < 2 and
drug B at position 4 haso>1 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has polarity < 5 and
drug A at position 3 has size <5
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Table 4

Run Rank correlation {C-Er."rlem]l f.‘rrugs in testing

training testing -
main trial 0.92 0.46 45, 4B, 47, 4B, 49, B0, 51, 52, 53, 54, 55
validation 1 |0.97 0.75 11, 31, 34, 42, 20, 24, 30, 23, 37, 8, 39
validation 2 |0.93 0.57 16, 48, 43, 19, 22,10, 41,33, 35,1, 9
validation 3 |0.95 0.61 14,3, 46, 6, 4, 53, 28, 25, 27, 51,7
validation 4 |0.94 0.86 54, 50, 49, 45,12, 21, 44, 55, 38, 15, 18
validation 5 {0.95 0.63 36,47, 26,32, 2,17, 40, 13,52, 29,5
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Abstract
Many anempts have been made to solve the problem of predicting protein secondary

structure from primary sequence but the best performance results are still disappointing. In
this paper we show that the use of a machine learning algonthm which allows relanonal
descriptions leads to improved performance. The [LP program Golem was applied o
learning secondary strucrure predicoon rules for alpha domain type proteins. The input to
the Program consisted of 12 non-homologous proteins (1612 residues) of known structure,

together with background knowledge describing the chemical and physical propertes of the

residues. Golem learned a small set of rules that predict which residues are part of «-

helices - based on their positonal relagonships, chemical and physical properdes. The
rules were tested on 4 independent non-homologous proteins (416 residues) giving an
accuracy of 81% (+/-2%). This is an improvement over the previously reported result of
73% by King & Sternberg on the same data using the machine learming program PROMIS,
and the best previously reported result in the literature for the alpha domain of 76%
achieved using a neural net approach. Machine learning also has the advantage over neural
network and statistical methods in producing more understandable results.
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1. Introduction

An acuve research area in the hierarchical approach to the protein folding problem is
the predicton of secondary structure from primary strucrure! 1, Most of these approaches

invelve examining the Brookhaven database!? of known protein stuctures to find general

rules relating pnimary and secondary soructure., However, this database is hard for humans
to assimilate and understand as it consists of a large amount of abstract symbolic
informauon although using molecular graphics provides some help. Today the best
methods of secondary stucrure prediction achieve an accuracy of between 60-65%.!3 The
generally accepted reason for thus poor accuracy is that the predictions are being carmied out
using only local informatoen. and long range interactions are not taken into account. Long
range interacions are umportant because when a proteins folds up, regions of the sequence

which are linearly far separated become close spatally. Established approaches to the

problem of predicting secondary smucture have involved: Bayesian stanstical methods, !
and hand-crafted rules by experts.2 More recently a variety of machine learning methods

have been applied: both neural networks®® and svmbolic induction.”"!!  An exact

comparison berween these methods s very difficult because different workers have usad
different types of proteins in thewr data sets.

One approach to get higher accuracy in the predicuon of secondary structure is to
decompose the problem into a number of sub-problems. This is done by splitting the data

set of proteins into groups of the same type of domain stucture, e.g. proteins with

domains only having a-helices (alpha type domains). or B-stands (beta type domains), or

alternate -helices and f-soands (alpha/bera rvpe domains). This allows the learning

method to have a more homogeneous data set, allowing bernter prediction; but assumes a
method of determining the domain type of a protein. The decompositon approach is
adopted in this paper where we concentrate solely on proteins of domain type alpha, On

these type of proteins. neural networks have achieved an accuracy of 76% on unseen

proteins (using a slightdy more homologous darabase than used in this paper). 13 These
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proteins have also been studied using the symbolic inducton program PROMIS, which
achieved an accuracy of 73% on unseen proteins {using the same data as the present
study).® Compared to the machine learning method used in this study, PROMIS has a
limited reprlesﬂntatiunal power, This means that it was not capable of finding some of the

important relatonships between residues that the new method showed were involved in a-

helical formation
In this paper, Inductive Logic Programming (ILP)!* is applied to learning the

secondary structure of alphz type domain proteins. ILP is a method for automatically
discovering logical rules from examples and relevant domain knowledge. ILP is a2 new
development within the field of symbolic induction, and marks an advance in that it is
specifically designed to learn sguctural reladonships berween objects - a task pardculariy

difficult for most machine leaming or statistical methods. The [LP program used in this

waork is Golem.!? Golem has had considerable previous success in other essendally

relational application areas including Finite Element Mesh Design.”’ construction of

Qualitanive models, 17 and the construction of diagnostc rules for satellite technology. 18

2. Methods

2.1. Golem

Golem is a program for [nductve Logic Programming (ILP). The general scheme
for [LP methods is shown in Fig. 1. This scheme closely resembles that of standard
scientific method. Observadons are collected from the outside world (in the case of this
paper the Brookhaven data bank). These are then combined by an [LP program with
backgr_ﬂund knowledge to form inductve hypothesis (rules for deciding secondary
srructure). These rules are then experimentally tested on additonal dawa. [f
expenimentadon leads o high confidence in the hypotheses’ validiry, they are added to the
background knowledge.
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Fig. 1.

In ILP systems, the descriptive languages used are subsets of first-order predicate
calculus. Predicate logic is expressive enough to describe most mathematcal concepts. It
15 also believed to have a strong link with natural language. This combination of
expressiveness and ease of comprehension has made first-order predicate calculus a very
popular language for arficial intelbgence applications. The ability to |earn predicate
calculus descriptions is a recent advance within machine learming. The computer
implementadon of predicate logic used in Golem 1s the language Prolog. Prolog rules can
easily express the learned relationships between objects such as molecular soructures.
Previous machine leaming programs have lacked the ability to learn such relabonships, and
neural network and stanstcal learning techniques also have great difficudry. Thus gives ILP
learnuing algorithms such as Golem a potennal advantage in learning problems involving
chemical structures.

Golem takes as input: positive examples, negative examples. and background
knowledge described as Prolog facts. It produces as output: Prolog rules which are
generalisations of the examples. The Prolog rules are the least general ruies whuch. given
the background knowledge. can produce the input examples and none of the negatve
examples. The methed of generalisacon is based on the logical idea of RLLG (Relauve
Least General Generalisanon). The basic algonthm used in Golem 15 as follows, Firstly 1t
takes a random sample of pairs of examples. In this applicagon, this will be a sep of pairs
of residues chosen randomly from the set of all residues in all proteins repr‘esented, For
each of these pairs Golem computes the set of all propernes which are common to bath
residues. These properties are then made into a rule whuch is oue of both the residues in
the pair under consideranon. For instance if the only common properties of the residues
are that both residues are large and both are three residues distant from a more hvdrophilic
residue then Gelem would construct the following explanation for their being part of an

alpha-helix,
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alpha(Protein,Positon) :-

residue(Protein,Position,R),

large(R),

P3 = Position+3,

residue{Protein,Position.R3),

more_hydrophalic(R3,R). {see 2. 3)
Having built such a rule for all chosen pair of residues, Golem takes each rule and
computes the number of residues which that rules could be used to predict. Clearly these
rules might predict some non-alpha-helix residues to be part of an alpha-helix. Golem
therefore chooses the rule which predicts the most ue alpha residues while predicting less
than a predefined threshold of non-alpha-helix residues. Having found the rule for the best
pair, Golem then takes a further sample of as yet unpredicted residues and forms rules
which express the common propertes of this pair together with each of the individual
residues in the sample. Again the rule which gives best predictions on the raining set is
chosen. The process of sampling and rule building 1s contnued unal no improvement in
predicnon is produced. The best rule from. this process is used to eliminate a set of
predicred residues from the training set. The reduced training set is then used 1o build up
further rules. When no further rules can be found the procedure terminates.

2.2. Database of proteins

Sixteen proteins were selected for the data set from the Brookhaven data bank.! The
training proteins used were: 155C (cytochrome C3350'%), 1CC5 (cyrochrome C3
oxidised™?), 1CCR (cytochrome C2!), ICRN (crambin??), ICTS (citate synthase?d),
1ECD (erythrocruonn reduced.deoxy>*), | HMQ (hemerythrin met23), IMBS (myoglobin

met?®), 2B5C (cytochrome BS), 2C2C (cytochrome C2 oxidised), 2CDV (cytochrome
C3). 3CPV (calcium-binding parvalbumin). The test proteins used were: 156B

(cytochrome B562 oxadised?”), 1BP2 (phospholipase A2%%), 351C {cvtoctrome C551<9),

8PAP (papain®?) - in protein 8PAP only the first domain (residues 1 - 108) is used. the

other doman is of type beta. These proteins have high resolution smucrure and alpha-rype
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domains (secondary structure dominated by a-helices and with little if any B-strands).*?

The proteins were also selected to be non-homologous (little structural or sequential
similanty). This selection was done on the basis of knowledge of protein sgucture and
biclogy; e.g. there 15 only one globin soucture IMBS (Myoglobin). The data set of

proteins was randomly chosen from all the proteins to give a rough 70:30 sphit (Table I).

Secondary structure was assigned using the Kabsch and Sander algorithm 32

Table [

2.3. Representation of the problem
Three types of file are input into Gelem: foreground examples, background facts

and negative examples. These are described in the following subsectons.

2.3.1 Foreground and negative examples

Three types of file are input into Golem: facts that are true. facts that are false and
background facts. The following is one of the foreground examples:

alpha(Protein name, Posinon).: e.g. alpha(133C. 103).

This says that residue 105 in protein 155C 15 an a-helix, The negative examples take the

same form but state all residue posinons in paracular proteins in which the secondary

soucture 15 not 1n an @-helix secondary soucture.

2.3.2 Background facts

The background informadon contains a large vanery of informaton about protein
structure, The most basic of this is the primary soucture informadon. For instance the
fact

positon(155C, 119, p).
says that the residue at posidon 105 in protein 155C is proline (the standard one 20
characrer coding for amino acids 1s used).

As Golem does not have arithmetic informadon built in. informanon has o be mven
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about the sequential relarionships berween the different positions (residues). These

arithmetc-type relatons allow indexing of the protein sequence relative to the residue being

predicted. The first predicate describes 9 sequental positions. For instance the fact.
octf(19, 20, 21, 22. 23, 24, 25, 26, 27).

describing the sequence 19, .., 27 can be used to indexing the four flanking posinons on

either side of posidon 23. The second type gives sequences that are considered to be

especially important in c.—helices?, Thus for instance the background knowledge contains

the facts:

alpha_triplet(3, 6, 9). alpha_pair(5, 8). alpha_paird(5, 9).
The predicate alpha_triplet contain the numbers n. n+1, and n+4, in an alpha helix these
residues will appear on the same face of the helix. Grouping these numbers together is a
heunsnc to allow preferennal search for a common relanonships berween these residues.
Sirmularly, the residues with posinons in the alpha_pair predicate {n and n+3), and residues
with posinions in the predicate alpha_pair4 (n and n+4) are expected to occur on the same
face of a helix.

Ph}rsic:al;."chemlcal properues of individual residues are described by the unary
predicates hydrophabic. very_hydrophobic, hydrophulic, positnve, neganve, neurral, large.

small. tiny, polar, aliphatc, aromatic, hydro_b_don, hydro_b_acc, not_aromanc.
small_or_polar, not_p. ar_or_al_or_m. net_k. aromatc_or_very_hydrophobic.?®> Each of

these 15 expressed in terms of parncular facts such as:

small(p).

meaning that proline is a small residue. The more complicated properues are given below:
hydro_b_don - hydrogen bond denator
hvdro_b_ace - hydrogen bond acceptor
not_aromatc - the complement of the aromade class
small_or_polar - erther small or polar
not_p - everytiing but proline
not_k - everything but lysine
aromanc_or_very_hydrophobic - etther aromanc or very hydrophobic
ar or_al or_m - either aromanc or aliphanc or methionine
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The rather unusual looking logical combinations such as aromanc_or_very_hydrophobic
has been previously found useful.® (For some runs, similar predicates to not_p were

created for all rwenty residue types).

Informadon was also given about the relanve sizes and hydrophobicites of the
residue was given. Thas was descnibed using the binary predicates ltv and Ith. Each of
these is expressed in terms of parucular facts such as:

lv(X, Y)
mearing that X is smaller than Y (scale taken from Schulz & Schirmer-%),

ith(X, Y)

meaning that X is less hydrophobic than (scale taken from Eisenberg?).

2.4. Experimental procedure

A run of Golem takes the form of asking Golem to find a good generalisation rules.
These generalisanon can then either be accepted or Golem can be asked to try and find
another generalisation. A predicdon rule was accepted if it had high accuracy and good
coverage. If a rule was accepted, then the exampies 1t covers are removed from the
background observadons (true and false facts), and the rule 1s added to the background
information. Learning stops when no more generalisanons can be found within set
condinons

(olem was first run on the training data using the above background informaton.
A certain amount of “noise” was allowed for in the data. and Golem was set to allow each
rule o misclassify up 1o 10 negadve instances. To be accepted rules had to have greater
than 70% accuracy and coverage of at least 3%. If a rule had lower coverage than this it
would not be stadstcally reliable. Learning was stopped when no more rules could be
found meenng these conditions. Each rule found was typically very accurate (often in
excess of 90% correct classificanon), overall around 50% of the instances where classified
by the rules as a whole. The accuracy and coverage semngs used to find the rules was
based largely on subjective judgment and experience. Currently work 1s being carried out

to replace the need for subjecnive judgment by objective measures from statstical and
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algorithmic informaton theory.

To improve on the coverage found by these first rules the learning process was
iterated. The predicted secondary structure positions found using the first rules (level O
rules, appendix A) were added to the background information (Fig. 2), and then Golem
was run again to produce new rules (level 1 rules). This forms a kind of bootsrapping
learning process, with the output of a lower level of rules providing the input for the next

level. This was needed because after the level 0 rules, the predictions made were quite
speckled, i.e. only short sequences of a-helix predicted residues interspersed by
predictions of coil secondary structure. The level 1 rules have the effect of filtering the
speckled predictnon and jouning together the short sequences of a-helix predictions. The

iterative learning process was repeated a second time, with the predicted secondary
structure posinons from the level 1 rules being added to the background information, and

new rules found (level 2 rules). The level 2 rules had the effect of reducing the speckling

even more. and clumping together sequences of a-helix. Some of the level | and 2 rules

were finally generalised by hand with the formanon of the symmemical variants of the rules
tound by Golem.

3. Results

Appiving Golem to the maimng set produced twenty one level 0 rules, five
symmemmcal level 1 rules. and rwo symmemecal level 2 rules (appendix A). These rules
combined together to produce a Q5 accuracy of 78% in the maining set and 31% in the test
set (Tables II. [IT). These are the most accurate predictions found by any method to date.
The (05 accuracy is defined as:

((TP+TN)/T)* 100
where TP is the number of correct helical predicdons. T is the number of correct cou
predictions. T is the toral number of residues. The standard error in this predicdeon
accuracies was estimated to be around 2%. Standard error is calculated:
V(P(L-P)/T) where P=Q4/100
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The predicton rate of training and test set agrees within the range of the standard error;
however the figure of 81% prediction on the test set at level 2 may be a slight overssumate,
with a level of 79% being more consistent with the test set prediction. This accuracy sall
compares favourably with previcus results on this problem. The residue by residue
predictions are given in Fig. 3. These give an intwitive feel for how accurate the predictions
are. Although Q4 measure 15 the accepted measure for accuracy, it would be benter to have

a measure more closely related to the informanon given about conformation, e.g. are the

correct number of a-helices predicted. It would also be useful to take into account that the

boundary berween a-helices and coll secondary soucture can be ambiguous.

Table [
Table [I

The rules generated by Golem can be considered to be hypotheses about the way
a—helices form (Fig. 4). They define patterns of relationships which, if they exist in a

sequence of residues, will tend to cause a specified residue to form part of an alpha-helix.
For example considenng rule 12, this rule specifies the propernes of 8 sequendal residues
which if held wall cause the middle residue in sequence (residue B) o form part of a helix.
These rules are of particular interest because they were generated automancally and do not

retlect any preconceived ideas about possible rule form (except those unavoidably built into

the selecton of background informanon). The rules raise many questions about a-helix

formadon. Considering rule |2 again. the residue p (proline) is disallowed in a number of
posinons. but allowed in others - yet proline is normally considered to disrupt proteins. It

1s therefore of interest to understand under exactly what circumstances proline can be fired

lnto an a—helix. One of the most interesting features to be brought out by the rules was the

imporance of relatve size and hydrophobicity in helix formaton, not just absolute values.

[t 15 an idea which warrants further investiganon (N.B. relative values cannot easily be
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used in statistical or neural network methods). One technique of making the level O rules

more comprehensible to to display them on a helical wheel plan. this 15 2 projecton

showing the c=helix from above and the different residue rypes stcking out from the sides

at the correct angle, see rule 12 in Fig. 5. Rule 12 shows ampluphathucity, the ter;dency un

a—helices of hydrophobic residues and hydrophilic residues to occur on opposite faces of

the a-helix. This property is considered central in a-helical smucnre 3% However, most

of the level 0 rules when displayed on helical wheels do not display such marked
amphiphathicity, and a detailed survey of the location of the posiive and negative examples
of the occurrences of the rules is required. This would involve 2 database analysis

combined with the use of interacove graphics.
Fig. 5

One problem raised by protein soucture experts with the rules, is that although they
are much more easily understood than an arrav of numerical parameters or an Hinton

diagram for a neural network, they appear somewhat complicated. This brings up the

question about how complicated the rules for forming a-helices are.” and it may be that any

successful predicrion rules are complicated. The failure of Rooman and Wodak™® to

produce especially high accuracy using patterns with only 3 residues specifies lends

support to thas idea. One approach to make the rules easier to understand may be 1o find
over-general rules, and then generalise the excepton to these rules.”’ [n such a procedure

the over-general rules would tend to be easier to comprehend.

The meamng of the level | and 2 rules are much clearer to understand. [n proteins

secondary structures elements involve sequences of residues, e.g. an a-helix may occupv

ten sequennal residues. and then be followed by eight residues in a region of coil.
However, the level O rules output predicuons based only of individual residues. This

makes it possible for the level O rules to predict a coll in the middle of a sequence or

residues predicted to be of a-helix type: this is not possible in terms of souctural chemisoy.
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This shortcoming is dealt with by the level 1 and 2 rules which group together isolated

residue predictions to make predictions of sequences. For example: rule 23 predicts that a

residue will be in an o-helix if both residues on either side have already been predicted 1o
be c-helices; similarly rule 24 predicts that a residue will be in an a—helix if two residues

on one side, and one residue on the other side have alreadv been predicted (o be a-helices.

4. Discussion
It 15 intended to extend the applicadon of Golem to the protein folding problem by

adding more background knowledge. One form of background knowledge that will be

added 1s the division of each a@-helix into three parts (beginning, middle and end).

Analysis has shown that a specific panern of residues can occur at these positons. 3339

Ths is thought to occur because the physical/chemical environment experienced by the

three different sections is very different: both the beginning and end have close contact with
coll regions, while the middle does not; also a dipole effect cause the end of an a-helix to
be more negative than the beginning. Evidence for the usefulness of this division idea is
given by by rules 17 and 18. The stucture of these rules suggests that thev are biased

towards the end ot a-helices - the residues predicted by the rules occur at the end of the

sequence of defined pnmary soucture. Examinadon of the occurrences of these rules
confirms this, showing that their predicrions tend to occur at the end of a-helices (and often
occur together), Protein secondary structure prediction methods normally only consider
local interactons and this 1s the main reason for thieir poor success. On way of tackling this

problem 1s that used in this paper of iteradve predictions based on previous predicnons.

This may be extended by using well defined long range interaction such as super-secondary
stucture and domain structures. *0 or by using models of constraints.*! It is if hoped that

with the addition of such new rypes of knowledge. thar the predicdon accuracy of Golem
will gradual improve, making it a more and more useful biological tool.

The advantages Golem enjoys in the protein prediction probiem should apply
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equally well to other problems in chemistry and molecular biology. This 15 because
chemicals are structural objects and it 1s most natural to reason and learn about them using
reladonal knowledge. One such applicaton area 15 the human genome project which is
producing a vast amount of sequential DNA data, and has associated with this data are a
number of important learning probiems, e.g. the recogmtion of promoter sequences, the

recognition of ranslaton tninanon sequences, etc. Such problems have been investgated
using neural network methods,*2 and it would be instructive to investigate how well Golem
does in comparison. Golem could also be applied to problems in chemistry. Some
important early machine learmang work was done learning the rules for the breakup of

molecules in mass spectroscopy (Meta-DENDRAL),*? such a problem would be well

suited for Golem.
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not not ot
Alpha alpha alpha beta heta turn nirm Total

Na. | B4E Ted 43 1567 719 803 1612

Train
rago | 0.526 0.474 0.028 0.972 0.446 0.554

MNo, 217 199 10 4046 189 227 4186
Test

rago | 0.522 0478 0.024 0.0976 0.454 0.546

No. [0&5 963 35 1973 08 1120 2028
All

rato | 0.523 0.475 0.027 0.973 0.448 0.552

Table I Data statistics. Staastcs of the random split of the data into training and test sets.
The top row ttles are the types of secondary structure, the left column atles are the splits of
the data into maining and rest sets, No 15 the the number of residues ot thar secondary

structure tvpe. rado is the rato (secondary type. no / total no.).
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Train Test
Level 0 Predicte.ii p _
Actual N\ & o A a o
a 509 339 o 128 89
o 92 672 o 28 .171
73%+1% 72%%2%
Level 1 p . .
A o o A o o
o 666 182 & 169 48
o 169 595 o 42 157
78%+1% 78%+2%
Level 2
A\{ a o AP a
« 626 222 * 160 57
a 126 638 o 24 175
T78% %1% 81%EX2%

Table [T Results summary. Confusion mamces and Q5 percentage accuracies of rules

found (P = predicted. A= acral). Each matrix has the following form AB

CD

The Q- percentage accuracies below each marrix are calculated as P * 100 where
P =({A+D) /(A+B+C+D)

Each percentage is followed by standard emor (i.e. +/-2). Standard error is givenas S =
100 where S = V( P(1-P} / (A+B+C+D))
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No Id. Type Q3

| 155C Train 8.6
2 1CC3 Train 90.4
3 ICCR Train 66.7
4 ICRN Train 80.4
5 ICTS Train 62
6 IECD Train 63
7 THMQ Train 68.1
3 IVBS Train 8.5
9 3B5C Train 824
10 CaC Train 88.-
il DV Tran 82.2
12 3CPV Train T8
13 1568 Test 67
14 1BP2 Test 81.3
15 331C Test 8.0
16 3PAP Test 85.2

Table III Protein results. The Q3 accuracy of the predictions for each individual protein.
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Test Proteins
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Fig. 3 Residue by residue predictions of secondary structute for the maining and test data.
The top line is the primary stucture of the proteins. The middle line is the actual secondary
structure. The bottom line is the predicted secondary stucture. H signifies a residue with

a-helix secondary structure, - signifies a residue with coil secondary sgucture.
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Fig. 4
The list of the rules found by Golem at level 0, level 1, and level 2. The performance of

each rule on the training and test data is given: as the number of correctly predicted residues
and wrongly predicted residues (in rule 1 on the maiming data: 48 residues correct and 8
residues wrong), and the percentage accuracy and coverage. The rules are in Prolog
format: Head :- Body. This means that if the conditions in the body are true then the head
is rue. Taking the example of rule 1:

There is an alpha helix residue in protein A at position B (the head) if:

at position D in protein A (position B - 4) the residue is not aromanc and not lysine,

and at posigen F in protein A (posinon B - 2) the residue is hydrophobic,

and at position D in protein A (posinon B - 1) the residue 1s not aromatc and not proline,
and at position B in protein A the residue is not aromatic and not proline.

and at posinon H in protein A (posicon B + 1) the residue 1s not proline and not lysine,

and at position [ in protein A (posinon B + 2) the residue is hydrophobic and has a lower
hydrophobicity than the residue at posigon D and a lower volume than the residue ar
posidon G,

and at posinion K in protein A (posinon B + 4) the residue is not aromatc and has a lower
hydrophomeity than the residue at posinon F,
- For the level | rules, a prediction of a helix by a level 0 rule is signified by:
al(Protein.Position). The positions of predicdons made by the level | rules used by the
level 2 rules are signified by: a2(Protein.Position).

¥ level O rules
¥ JOINT(1-21) TRAIN: 309/%2 (893%azc, 8%cov) TEST: 128/28 (82%acc, 33%cov)

% BULE 1 TRAIN: 48/9 (84%acc, skcov) | TEST: 12/0 (19C¥acc, S%cov)
alpha{A,8) := ccts(D,Z,F,5,3,53, 2, a9, K),

posicion(A, D, N}, not_arsmatiziNy, not_x(N),

posicion(A, 7, L), nmydzophobisill,

position(A,G,3), not_aromacisil), act_z=i0),

pesition(a, 3,8, aot_azsmatisiCy, act_siC),

position(A,H,Q), not_2(Q), =zoz_=2id),

nositiontd, I, M), hydrophebizoM), LlthiN.d), LtviM, 0),

position(A,®, ?), aot_arsmatiz(?), Llthif,L).

¥ RULE 2 TRAIN: 30/1 (97%acs, +%cowv) TEST: L0/9 (190%acc, S¥cow
ﬂlphﬂ :-hu-a: i Ql:tf{ﬂrf-rF.rG;ﬂrH; :r-.:rK]r

posiciontA, D, Q). ot _piQ), mor_RiIQ).

position(A, 2,0}, not_arsmatezil), small oo _polari(d),

pasitionid, F., R,
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position(A,G,P), not_aromaciciF).

positicn(A,5,C), very_hydropheobici(C), not_arcmaticiC),
position(A, H, M), large(M), not_acomatic(M},
pesicion(A, I, L), hydrophobici(L).

positiaon (A, K, M), large(WN), LltwiN,R}.

% RULE 3 TRAIN: 34/3 (92%acc, 4%cov) TEST: 7/0 (L0O%ace, 3¥cov)
alpha(A,B3) :- oc=f(D,E,F,G,3,H, L, I, K},
position{A,D, L}, neutral{l}, arcmatic_ar_ wvery hydrophobic (L),
posicion{A.c.R), not_pi(R), not_ki(R).,
position{A, 7,2}, small_or_polariQ), not_kI(Q),
position{A,3,C), neutral{C},
posicion{A,G, 0}, not_aromatici(l).,
position{A,H, P}, not_aromaticiP), not_p(P), noc_Kk(EF},
position{A, I,M}, neutral (M}, not_aromatic(M}, not_piM},
position{A, J. W), neutral(M}, aromatic_or_very hydrophobic(M),
lewiw, Q).

% BULE 4 TRAIM: 45/2 (96%, 3%cov) TEST: 14/1 (93%acc, 8kcov)
alpha(A,B) ;- octf(D,E,F,.G,B.H, I,J.%),
position (A, E, M, negtral (M),
positioniA,F,0), nob_aromaticiO}, not_piC), not_xi0),
position(A,G,?), not_aromatici{P},
posicieniA,B.2), large(C), not_arematic(C), net kil),
position(A, H, M), neutral(MN), aromatic_or_very_ hydrophobic(N},
pesition(A, I,R), not_p(R}),
position(A, J,Q), not_arsmacici{Q}, net_g(Q), aoT_KiQ},
position(A, K, L), hydrephobic(L}.

¥ RULE 3 TRAIN: 49/12 (BOY, 6¥cov) TEST: 10/ {(9l%acs, 3kcowv)
alpha(A,8) :- octiiC,2,F,G3,H, L, 7. %),
positionid, 0, M), not_aromaticiM), not_ai(M], aot_<i M),
positionia, 2,00, small_or_polaciQ), not_oilQ), not _<(0),
position(A,F, W), not_arcmatic(N), not_2i(N},
pesiticn{A, 3,21, not_pi(P),
position(A,3,C), hydrophebic(C), Lleh({M.C),
position(A,d,3), noc_p(Q), lehig,Ch,
position(A, I, L), hydrophobicil),
position(A, J,3), liv(S,¥),
positionia, £, &), not_x(R}.

¥ RULE 6 TRAIN: 31/2 (34%acc, 3¥cov). TEST: 7/1 i(88%acc, Ivcov)
al;ha{hfﬂl i oCTID,E, TG 2 H LI KD,

positioniA, S, ¥}, not_aromatcic(d, amaLl_ur_polartxl,

positioniA, .01, not_arsmacici(®), net_ki(Q),

positioniaA, 7,7}, not_aromac-ci(P),

position(A, 5.M), hydrophiliciM), hydrs b_acciM),

position(A,3,2), avdropnebici(C},

positioniA,d,3), not_aromaciciQ), not_k{Q),

posicioniA, L, R), not_arocmatic(R), small_or polarcill,

position (A, J, L), nydropneobaic(l), not_aromaczc{l), small_cr_oolariLl

¥ AULE 7 TEAIN: 29/1 (97%acc, J%cov) TEST: 7/l 3B%acc, Zkcow

alpha(A,B) :- 2ctfiD,2.7,G.8,4, 1,58,
positionla, 2, M), solariM), hydro b acciM},
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position(A,G,L), Largelll. not_ki{L}.
oosition{A,8,C), large(Cl, not_kiC),
posicion(A, 4,0), not_p(Q), not_kid},
position(A, J.F).

oosition{A, ¥, N), not_arcmacic(w), lthid.P).

¥ RULE TRAIN: 40/8 (83i%ace, S%cov) TEST: &/L (Bé%acc, 3¥cow)
alphaiﬁ.;ﬂ] e Qttf:D-EiF:G:BrHrIIJrK]r

position{A,D,N), nor_arcmacici{N}, small_or_polariN}.

posicion{A,Z,L), fydrophobic{l), largeiLl),

position(A,F,Q), LEw(L,Q),

position{A,8,C), not_aromatic(Ch, not_a(Ch,

position{A,H,B), not_p(Pl, not_R{P},

position(a, I, M}, oeutraliM), largeiM),

posicion(A, X, 0), not_aromatic(0), small or polar{C}, net_piC}.

¥ RULE 9 TRAIN: 40/2 (95%,353%cov) TEST: l&/3 (Bd¥acc, Tkcov)
alpha(A,B) :- octf(D.E,F,G,B,H,I,J., K},
position{A,D,M), nof_arocmaticiMl, not_x{M),
position(A,Z,N), notv_arcmacic(N}, small or polari¥), not_x (W],
position{A.F,R), not_k(R),
position(d, G, 0), not_aromatic(DQ), not_oi{d), not_k(O),
wosition{d,3,C), not_arsmacic(C),
position{A, d,P), not_arcmatic(Pl, not_pi(P}, not_ki(P),
pasition{A,J, L), aydro_b_den(L), 1lth{L,C), Lltw(L,P),
positioniA, %, Q), not_aromacic(Q), not_k{Q).

¥ RULE 10 TRAIN: 33/3 (%i%acc,d¥%cov)  TEST: 89/2 (BItacc,d%cow
alohaiA, 3) = 2ctf(D,E,F, 5 3,4, I, J, %),
DositioniA, o.M, noT_arcmacic (M), not_XiN),
pesition{A. =, 00, :oc_ar:matic[c}}.
position(A,T,Ph, neot_arcmacic(P), not_o(P},
sosition{A.,S5,R), not_pi{R), noc_XKiR),
posicion (A, 3,C), noc_piCi, not_x(Ch,
posicion(A, H2,Q), nec_arcmatic(Q).,
position{A,I,L), nydrophobici(Ll, lewi{l,L}, Lltw(MN,Z), lew{P,L).
positianiA, J, M1, nydropnobic(M), not_aromaciciM),
posicioniA, X, 51, aot_pis), aoc_x(S).

¥ RVLE 11 TRAIN: 40/1 (93%acs, Skcov) TEST: 9/2 (8I%acc,d%cowy
alpha(A,d}) :- octfi(D,Z, G, 3,4, 2, 0.X).
positioniA,o9,0), not_arcmaticidy., noc_x(Q),
zosition{A,Z,P), not_aromatici?),
positioniA,f,Q), not_aromaciciQ), aoc_2iQ), noc_ki{(Q),
sosition{A, 3, R}, net_piR), ltwiR,P},
dosition(A,3,C), not_arcmatliciCh,
sosition(A,H, Ny, largei(d), lewiN,L),
ogsition(A, I, L), hydropnocpicill.
oosition{A, M), RydroprnobiciM), not_aromacic (M),
posizion (A, X, 5), noc_pi{3).

¥ AULE L2 TRAIN: 28/3 (3S¥acc, T¥oov) TIST: 13/3 (8l%acc, 8¥covy
diphald,8) :- octi(D, 2,7, 5.3, 8, 1.0, %),

posiction(A,F,.a2), mot_21%).

pasLLian (A, 3.}, nmot_dromaticiNl, not_oiNd,



position(A.B,C), large(C), not_aromatic(C), not_kiC),
positicn (A, H,L), hydrophebici(L), not_kiLj,

positicn(A,L,Q), not_aromatic{d), not_oi{d),

position(A,J,P), not_aromatic(P}, small or pelar(N}, nzz_ 2P},
position (A, X, M), hydcophobiciMl, not_k(M).

¥ RULE 13 TRAIN: 2%/1 (97%acc, 3kcov) TEST: 4/1 (BC%azz, 2%cov)
alpha(d,B8) := octf(D,E,7F.G,B.H, I, J. K,
pasicicniA.D,N), not_argmaciciW).
position{A.E,Q), not_arcmacici{®), small_or_polaridy, =zz_zi0),
not_k {27,
position{A, F, R}, 1Ch{R,N},
pesition (A, 5,C), net_pi{C), not_kiCl.,
position(A,H,P), not_aromatici{P), not_(P), 1lthi?,Q),
positicniA,I,L], hydrophebic(L}, not_aromatic(l), small or polacil),
position(A,.J,Q), not_aromacic{Q), not_p(Q), not_KkKI(CQ).
posicion (A. X, M), hydrophobic(M).

¥ RULE 14 TRAIN: 453/4 (9Z%acc, Skcov) TEST: 1473 (BIkacc, G¥cov)
alpha(A,B) :- octi(D,E,F,G,B,H,I,J,K),

position(A,E,0), aot_aromatici{Q}, not_piG),

pasibion (A, F, 21, 5mall_nr_pular{F], not_aromatic(P), z=zz_2I(F).

not_kiel,

positioniA, 5, Q) net_aromatici{Q)., not_kiQl.

opositioniA, 3,2, hnydrophobic(C), neutral (C),

positianiA,d, L), hydrophobic (L), neautral (L),

position(A, L. M), hydrophobic(M)],

sosition(A, J,¥), neutral (N}, not pi(N),

sositiond{A,X.,R), not_arcmatic(R), small a- polar(R).

¥ RULE 15 TRAIN: 23/5 (B5%acc, 3%cov) TEST: 441 130%=zzz, 2%cov)
Al?hﬂ-‘ﬁ.ﬁ] = DthfDrErF:G:E;HrI;JrKJ;

FositioniA, 3, F), not_k(P1,

sosition(A,E.Q), not_k(Q),

positicn(A, F, 0}, not_aromat:c(Q), nec_o(0V,

positicniA, G, L), hydrophebicil), small =r solaril), =2I_aromatic(L),

positicniA, 3,7), polari(Cl, lchiC,. 5},

oosition(a, &, 5),

sositioniA, I, Rl, not_kI(R),

sositiontA, S, ¥, neutraliN), aet (M),

position(A, B, ), hydrophobic (M), not_acomatciciM).

¥ RWULE ls TRAIN: 15/1 (%96%acc, 3¥cov) . TEET: 441

t280%acc, 2%cowm)
alpna{A,8) :- 2e=5{C,0,E,5,3, 5,4, 5,3, oesf ¥, LM, N, 2, 2.2,7,3),
positionlA,l,8), not_aromatic(S5), not_piE},
position(A. 2,3), small or_polar(U), not_k(Ui,
positioniaA,Z, T}, neot_arcmatic(T), not_2iT), agt_xiTh.
DosationlA, 7, V), aoc_oi(Vi,
positioniA. 3,00, not_o{0), moc_kid), Lzwi0,8),
PesitioniA. 3, 7)., very_hydrophobic(P), not_aromacic:ese,
posaition(A, d,.3), Largeid),
mositioniA, -, 2), small(z),
pesicioniA, J, W), not_piWh,
¥ RULE 17 THAIN: 3475 (BYkacz,dtcow TEST: S/1 -2T%acz, S%cov)
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alpha{h,m t= oCcLf(C,D,E,F,8,G,5:,I:,d), oot f (K, LM N, C,D,E,F,B)s
position(A,C,R), not_aramatic(R), not_p(R), not_k(R),
position{A,D,5), not_ascmaticis), small_or_polar(3},
position(A, E,0), very_hydrophobic({d), largeidl,
position{A,F,Q), neutralid), not_p(Q),
position{A, G, P), very_hydrophchic(P), not_arcmatic(P],

% RULE 18 TRAIN: 26/3 (90%acc, I%cov) TEST: 4/0 (l00%acc, 2%cov)
alphai(A,B} :- octfiC,D,E,F,8,G,H,1I,J), octf{K, L, M, N, C,0,E.F.B),

position(A,C,T), not 2I(T), lehiT,R},

posicion(A,D,5), not_aromatici3).

position(A,Z,R), lLarge(R), LiwviR, T},

position{A,F,Q), neutzaliQ), not_pi(Ql,

position(a,8,0), pelacid), lcthid, 3},

vasition{A, G, ?), hydrophebiz(P), not_aromatic(Fl.,

% BULE 19 TRAIN: 22/4 (8%%azz, 3%cov) TEST: 3/1 (Bi%acc,2%cov)
alpha(A,3) :- octf(D,E,F. G, 2,4, I, 7.5,
position{A,D,P), not_kiF), not_olPf),
position{A,E,N), small o polaciWl,
posicion{A,F, &), lthiR, M.
position(A.G, L), hydrophobic(L), small_or_polar(Li,
position(&,B,C), not_niCl.,
sosition(A,H,0), small_or _polazi(d), nmot_k(d), not_2i(Q),
vosition(A, I, M), hydrephobic (M), not_aromatici(M),
pesition{a, J,5), levi(5,Qi.
position(A, X, Q), not_k(Q).

AUz 20 TRAIN: B4/20 (81l%acz,l0%cav) TEST: 18/4 (B2%acc.B¥cov)
alznaih,3) - alpha_paizl(3,2), algha_tr-inlec(D,Z,F),
alpha_triplac (B, H,E},
poesicion(hA, 3,C8), not eiCh, nez 2(C), aot g(Cl, not i{C), noc_kICl,
not_m(Cy, neT_niCh, not_p(Cl, not_g{C), noc_ricl,

nat_« 120, aoc_ i),

position (A, ,Gh,

position(A,H, I}, not_c(I}, not_e(l), not_£(I}, not_g(I), not_hi(I},
noc_ii1l}, nec_xild, not _mily, not_n(I}, not _pi(I},
not_giIt, ast_wiIl, not_y(L},

position(A,D.Jb, nec_siot, aet_32(JY, ast_e{J), act_f(J), noc_gildl,
net_%iJ), asz_LlIK), net_m(J). net_o(J). not_={J},
not_wisl,

position(A,Z,K), not_2(X), zst_s(X),. not_f(K}, not_h(K), not_ciXi,
not_wiXl,

ALz 21 TRAIN: 72/18 (7T2%acsz, 3%cov) TEST: lB/4 {82%acc, 8%cov)
alphaih,8) :- alpha triplezi(3,25,Z), alpha pairl(2.G).
sositionl(A,B,C), not_si21, net_e(C), aot_gi(C), act_X(C), net_mill,
aot_stS), act_siCl, not_gl(C), noet_x{C), not_yiCl,
oositioniA, 2, 7)), net_2iF), net_2(F), noc_£(F), not_giF). not_niF).
not_1i7), not_<(F), not_m(F), not_a(Fl, not_oiFl,
nct_3(7), oot _wiF}, 2ot _vi(F), '
positioniA, G, H), not_cid), noc_d4iHY, aoc_f(H), not_hi(H), not_L{H),
net_ntEl, not_2iH), noct_c(H), not_wi(H), not_yiEl.
position{A,E, I}, not_=(2), 20t _d(I), aot_2(I), not_Ri{I}, not_Lit(I),
agt_-iId, mez_mil), nec_ad{l), net_p({I, not_z(I},
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not_vi{I}), not_w(ll, net_y{I}.

% level 1 rules

% JOINT: TRAIN: s66/163 (80%ace, TB¥cov) TEST:
% BULE 22 TRAIN: 509/%2 (83%acc, 60%cov) TEST:
alpha(&,B) :- al{A,B}.
% QULE 233 TRAIN: 29%/52 (85%acc, 35%cov) TEST:
alphﬂfﬁ,ﬁ] L= OthID;E;F;GJBfH:IiJfK]r ﬁl(n‘u?}.ﬂ
% FVULE 23h TRAIM: 303/44 {(8T%acc, Ie¥cov) TEST:
alph.ﬂl:&;ﬂ] = gotf(D,E,F, QB H, I, J,8) alia, H),
% RULE 24a TRAIN: 133/10 (9%5%acc, 22%cov) TEST:
alpha(a,8) :- octfl(C,D,EF,B,GH, I.J), al{AF),
% RBRULE 24b TRAIN: 189/5 (97%ace, 22%cov)  TEST:
alphi#A,B} Hi ﬂctffciDiEfFrarG; H.r Ir-.l”: al{ArE]t
¥ RULE 253 TRAIN: 10272 (98%acc, 12%cov) TEST:
alpha{A.E} = Gctff':- DrE.F, EJGi Hf I:JJ:

al{Aa.E}, ali(A,F), alia,H), aLl{a,I}.
% AULE 26a TRAIN: 102/3 {(98%acc,l2%cov) TEST:
alpha{hA,B) :- oc:tE(C,D,E,F,B, G, H,I,J), allA, D),
aliA,H) .
% RULE 26h TRAIN: 86/6 (23%ace, L0%cov) TEST:
alpha(A,8) :- petfiC,D,E,7,28,G. 4, 1,3}, allAC),
aliA,H).
% AULE 28c THAIN: BE/S (95%acc, 10%cov) . TEST:
alphai{a,B) :- oczf(C,D,E,F, 8,6, H,I,J), allh,D),
al(a,I}).
¥ RULE 26d TRAIN: B7/5 (95%accs, lo%cav) TIEST:
aloha(A,B) :- 2cofiC, D, 2, F,8,6, 4, 2, ), aliAE),
alta, Jv.
% lewvel 2 Tules
% JSOINT TRAIN: 626/126 (Bl%acc., Td%cov) TEST:
RULE 27
alpnai(a,B8) := 2ctf(C,0,E,F.B8.G, H#H, I,J), aZi{a.Bl,
al;*hd.{&. E-] s :‘th{CrD.E;F;Baﬁ;:‘E-LJh c'|2 ”’u B]r
% RULE 248
alghaia, 31 - sz, 0.2, 7,8, H, L)

a2fA,B), a2fa, ), a2iAE), a2lA.T), a2lA,G),
alpha(A, By - 2c2f(C,0,2,7,3,G5,4, 1,0},

a2ia,8), a2iA,G), aZiA, d)y, aZia, I).
alosha(A,.B) :- acef(C, 0.2, 7,3, 4, I.J),

azih, 3}, ali1A,Dd), aZ{A,Zy, a2(A,T).
algha(A,8) :- 2czfi(C,0,2,7,8,6 41,0,

azi{i,3), alfA,7), a2lA, 3, a2(A.H).
alphﬂ.{ﬁrﬂl 1= (S 0,25, BeG A, I, T,

az{Aa,8), azZta,g2), aZlA, 7y, azZih, 3).
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169/42 (B80%ace, 83kcov)

128/28 (B2%acs, 59%cov)

B3/10 (39%acc, J8%cov)
alla,G).

85/7 (92%acc, 40%cov)
alla, I).

53/2 (%6%ace, 24%cov)
al{a, G}, al{A.H).

5472 (%8%ace, 25%cowv)

ali{r,F), allh,G).

I5/1  (97%aco, 1é%cowv)
1e/0 (l00%acc, L7kcav)
aliA, 2}, aliA,G).

33/0  (100%aceo, 15%cov)

alta, Dy, allA.G),

3271 (3T%acec, 15%cov)
E.l“’h; E}i ﬂ.l I-ﬁ-rH-:lf
32/1  (19%7%acc, Li%cow)

al(A, ), aliA, L),

1e0/24 (87%ace., Td4%cov)

aZila, 3, a2iA,H).
a2zi(a,z), a2ia, ).

ad (A, 2.
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Ahstract

Due to the large hypothesis space, most ILP systems have applied such constraints
that only very simple concepts have becn induced with a limited background knowl-
edge. An applicability improvement has been recently achieved by representing the

background knowledge as ground unit clauses, allowing a simplier and more effective
selection of relevant background knowledge. This paper presents an overview of ILP

strategies to constrain the search space, and illustrates some problems in the appli-
cability of recent ILP systems by looking at their performance over a simple concept

in chess,

1 Introduction

Indunctive Logic Programming (ILP) is a fast growing research area which rombines Logic
Programming with Machine Learning to induce first-order logic programs from examples
[11]. In ILP, the system’s current knowledge consists of data and background knowledge
expressed as a logic program. The inductive problem is to find a hypothesis, a set of
clauses, consistent with the current background knowledge and capable of explaining the
data in the sense that all the positive literals but no negative literals in the data are de-
ducible from the hypothesis and the background knowledge. That is, given background
knowledge X and some examples &% and £, the induction process tries to find a hy-
pothesis H for which X aH F £ and KAH ¥ £7. These conditions define a search space
on hypotheses. For induction to take place efficiently it is often necessary to structure
the hypothesis space. This iz usually done with a model of generalisation to organise
the search space into hierarchies, where all the clauses below {above) a particular clause
are specialisations (generalisations) of that clause. Roughly, a clause Cy is more general
than clause C5 if in any world & can show the same results as ;. Induction can then
be achieved by searching through those clauses more general Lo a known specialisation
of a clause, or through more specific clanses thin a known generalisation. In general,
there are infinite ascending and descending chains within the hierarchy, constructed by
conjoining and disjoining formulae, and additional constraints are required to limit the
search space.

Section 2 looks at the different search strategies used over the hypothesis space, the
most commaon constraints used to limit this space, the different example presentations,
and the effect of the characteristics of the background knowledge to the applicability of
ILP systems. Section 3 illustrates some of the problems of current ILP systems with a
simple example in chess,
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2 A Review of ILP

2.1 The Search Strategy

ILP systems which search a generalisation hierarchy (or bottom-up) include, Marvin [19],
Cigol [13], Relex [5], Golem [14], Itou [18], Clint [3, 2], and Pal [8, 9]. Bottom-up systems
start with a very specialised clause and gradually generalise it, turning constants into
variables, removing conditions (literals from the body of the clause), or transforming the
body of the clause using background knowledge. In general, an infinite number of facts
deduced from the theory can be used to construct “very specialised” definitions, and even
with finite length hypotheses, there is a large number of ways in which to generalise them.

Systems which scarch a specialisation hierarchy (or top-down), include, MIS [20],
Foil {17], Linus [6], Focl [15], etc. Top-down systems start with a very general clause
and gradually specialise it, replacing variables with terms, adding literals to the body,
or transforming the body using background knowledge. Similarly, there is a very larze
number of ways in which to specialised a clause.

Both approaches suffer from a combinatorial explosion in the search for hypotheses.
Most systems trade efficiency for applicability by applying strong restrictions to limit the
hypothesis space.

2.2 Constraints on the Hypothesis Space

Structuring the hypothesis space with a generalisation/specialisation hierarchy provides
only a guideline to ILP systems and different constraints have been used to restrict the
spare to achieve practical results.

« Functional Restriction: The system is provideded with information which states
what particular arguments can be fixed (output arguments) in a predicate, if the
rest are known (input arguments). This information can be used to form directed
graphs which link input/output arguments and guide the construction of hypotheses
[14, 17, 18, 6). The linkage between input and ontput arguments can be constrained
as well by using typed wvariables, where only inpulfoutput links can be formed
between arguments with the same type,

« Variable Connection Restriction: Consider only clauses in which all variables appear
at least twice in the clause [14, 18, 3, 2, 8, 9] or introduce a new literal to the body
anly if at least an existing variable is used [17].

s Rule Class Resiriction: Construct hypothesis only from a class of clauses. This
can be defined through rule models (i.e., consider only hypotheses which “match™ a
particular rule model [10, 21, 23, 8, 9] or integrity constraints [2]) or with particular
“refinement” operators as in MIS [20].

» Information Content Restriction: Construct hypotheses which produces a compres-
sion in information content [13] or guide the hypothesis search with a measure of
information gain based on the discrimination between positive and negative exam-

ples [17, 6)].

o Initial Clause Restriction: Provide an initial clanse and add only literals to the body
which ean be deduced from the bady of the clause and the background knowledge
{19, 18].
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The above constraints helps to reduce the search space and guide the learning process,
however, the hypothesis space depends mainly on the examples and the background
knowledge provided to the system. The following Sections look at the different example
presentations, the background knowledge, and their effect on the induction process.

2.3 Example Presentation: User vs Batch vs Automatic

It is generally believed that a “careful” experiment selection is more effective for concept
formation than a random experiment selection, and in general, the learning performance
of an inference method changes with the example presentation. Examples can be provided
by the environment, selected by an informed oracle, can be a subset of the example space,
randomly generated, automatically generated by the system, etc. The most common
example presentations are, cither interactively, by the user or an example generator, or
in ‘batch’, selected from an existing sample set (often generated by the user). In general,
the termination criterion can be linked to the example presentation.

o Systems which rely for their success, on a careful presentation of examples by the
user, include MIS [20], Cigol [13], Itou [18], Marvin [19], etc. The user provides the
“right” examples and guides the learning process. The user is aware of the target
concept and determines the criterion of success. Unfortunately, in some of such
cases, the system will fail to produce the required concept if it is provided with
another selection of examples or even with the same examples but in a different
sequence, Choosing appropriate example selections is not always easy and calls
into question the learning capabilities of systems which depends on them.

+ Systems which accept a set of examples in batch, include Golem [14], Foil [17], Liuus
(6], ete. The termination criteria is based on completeness and correctness {with
perhaps some exceptions) of the hypotheses. The user often performs an “artificial”
generation of examples, as not all the domains have them readily available for the
process. It iz difficult to know in advance if the selection of examples is suitable
for the task or if additional examples will be required to correct the hypotheses
produced by the system. This can involve a process of selecting examples, inducing,
and testing the hypotheses until the required results are cbtained.

» Systems which generate their own examples, include Clint [3], Relex [5], Pal [8, 9],
etc. The termination criteria is either given by the user or when the system is
unahle to generate an incorrectness or incompleteness with a new example. Ex-
perimentation (or active instance selection) has been employed in several machine
learning systems [5, 1, 4, 7, 16, 8, 9] to reduce the dependency on the user and guide
effectively the learning process. Most automatic example generators are either too
domain specific or have problems on domains with a large example space.

2.4 PBackground Knowledge: Clauses vs Facts

In ILP, the background knowledge (generally represented as Horn clauses) is carefully
selected by the user. Recent systems (i.e., Foil, Focl, Linus, and Golem), have represented
their background knowledge with a set of ground unit clauses. Both approaches are
analysed below.
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« Most ILP systems which represent their background knowledge as non-ground
clauses, suffer from search problems, need a careful selection of background knowl-
edge definitions (and sometimes of examples}, and have been applied to very re-
stricted domains. Their main problem arises from the combinatorial explosion in
the search for hypotheses, which is severely affected by the size and characteristics of
the background knowledge. The selection of relevant background knowledge in the
construction of hypotheses, often involves some form of derivation process, which in
the presence of recursive definitions needs to be bounded... By carefully choosing
a limited background knowledge, efficiency can ohtained but only at the expense
of applicability... Their main advantages rely on its concise representation, they
can incorporate in principle any previously known concepts witlout requiring any
transformation process, and the new learned concepts are immediately accessible
to the system in the next inductive cycle.

o In trying to improve applicability, recent systems have replaced the representation
of the background knowledge with a set of ground facts, where an efficient index-
ing mechanism can be incorporated and an easy selection of relevant background
knowledge can be performed. This approach has been used in larger domains [1 1] as
it reduces the combinatorial explosion in the search of hypotheses, Ground theory
systems require a careful selection of a “representative” subsel of ground facts in
advance, which is often tailored to the nature of the examples over which the induc-
tion is made. A huge memory space is sometimes needed to store ground theories
and none of the current systems is nsed in an incremental way.

There is a fundamental space-time tradeoff when choosing a particular background
knowledge representation. Systems which use ground theories are limited by the number
of facts that they can effectively process and usually require a careful selection of them.
In general, the genecration of appropriate background facts can be a time-consuming
process, highly dependent on the examples. This memory-greedy and time-consuming
generation process is compensated by an efficiency gain over systems which use non-
ground theories, it constraints the search for hypothesis and facilitates the selection of
background knowledge, which has allow it to be applied to larger domuins. Regardless of
the approach, problems can valy be magnified when adding extra background knowledge
and in general only a very limited number of background concepts have been used by ILP
gystems.

In the next Section. the applicahility of recent ILP systems is analysed over a simple
concept in chess where a large background kuowledge can be used to induced concepts.

3 Chess as a Test Domain for ILP Systems

Chess hias been an interesting and challenging domain for concept learning. Evidence
suggests that high performance of concept learning systems for this domain, depends
on the ability to represent relational concepts [12]. Most ILP systems have been used
to infer very simple concepts, such as list definitions like member, append, etc., the
concept of an arch, family relations, etc., with very restricted background knowledge (e.g.
[20, 19, 13, 3, 18]). By contrast, concepts in chess can involve hackground definitions for
threats, checks, legal moves, distances to places, ete. These concepts conprise a more
realistic background knowledge with a larger hypothesis space from which relatively varied
concepts can be induced.
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Our interest in learning concepts chess has resulted in the design of Pal, an ILP
system capable of learning concepts in chess [8, 9]. Pal was designed to learn concepts
around the idea of patterns from which only a limited number of facts are derived from
the background knowledge. A reasonable large number of background definitions can
be used, which contrasts with most non-ground theory systems which get lost in the
complexities of the search, when additional background knowledge is used. '

Recently, systems have nsed a finite set of facts as background knowledge to improve
efficiency and increase their applicability. Within this approach, probably the best known
state-of-the-art systems are Golem [14] and Foil [17]. Both systems were tested over a
simple concept which can be used in chess'.

3.1 A Simple Example

In domains like chess, some concepts require a very large number of facts to be completely
described? an a careful selection of them needs to be done to maintain efficiency. This can
be a time-consuming process, and it is not always easy to know what to generate unless
the nature of the examples are known in advance. Even with a limited set of backgronnd
facts, Golem and Foil can have problems in domains which are non-deterministic by
nature and where a large example space exists. Both systems have been used to learn
the concept of illegal positions in a white to move, white king and rook against king
endgame. In order simplify the test, a similar representation used in the concept of
illegality was used with additional background knowledge. The target concept, called
diagonal, represents those positions where three pieces are in a diagonal line. The basic
idea behind this concept can be used to learn the concept of pin, skewer, discovery checks,
ete. In addition to the concept of less_than/2, the definition of line/4 was provided as
background knowledge to represent any two positions in a diagonal, vertical or horizontal
line. That is, line{X1, Y1, X2 ¥2) means that position {X1,¥1) and position {X2,¥2)
are in a straight line, while less_than(N! N2) means that N7 is less than N2, For ground-
theory svstems, this represents 1,456 facts for fine/4 and 28 facts for less_than/2. To
simplify the concept, enly positions where the first piece (X'1,¥1} was in the lower left
corner, the second piece { X2, Y2} in the middle, and the third piece {X3,¥3) in the upper
right corner, were considered as positive. This makes a total of 196 possible positive
examples out of 647 (262,144} examples in the example space. With this background
knowledge, the target definition can be defined as follows (see Figure 1):

diagonal(X1,Y1,X2,Y2,X3,Y3) —
less_than(X1,X2), less_than(X1,X3), less_than(X2 X3),
less_than(Y'1,Y2), less_than(Y1,Y3), less.than(¥2,Y1),
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2,X3,Y3).

¢ Pal was tried on the same concept. Pal requires the examples to be given as de-
scriptions of chess positions and unlike other systems, the exact arguments of the
goal predicate are not specified in advance. Pal also requires to know the domain of
the arguments that are used to describe examples to automatically generate its own

'The latest public versions of Golem and Foil {Foil?, an improved version of Foil) were ased in the
test. -

A concept of threat between any two pieces in chess able to distinguish cach piece. side and place,
requires more than 20,000 facts to be completely described.
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[igure 1: Three Pieces in Diagonal

examples. The example positions were described as lists of piece(P,F, R) predicates,
where F and R are the file and rank of a piece, and P represents the particular
piece. Since the piece and side are not important to this test, the domain for P was
[p4, p2, p¥] (the initial example given to Pal is shown in Figure 1). The domain for
E and Fis [1,2,...8]. Pal was provided with the background definitions for line/4
and less_than/2. The example generator only considered changes in the positions
of the 3 pieces. Pal arrived to the following definition after generating 3 + and 135

— examples,

diagonal(pl,X1,Y1,p2,X2,Y2,p3,X3,Y3) —
piece(pl1,X1,Y1), piece(p2,X2,Y2), piece(p3,X3,Y3),
less_than{X1,X2), less_than(X1,X3), less.than(X2,X3},
less_than({Y1,Y2), lees than(Y1,Y3), less than(Y2,Y3},
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2 X3,Y3).

o Foil was tested under the same conditions. The complete background facts for

line/{ and less_than/2 were provided as background knowledge. Different positive
and negative examples were given to Foil to try to learn this concept (the outputs
produced by Foil are also included). Since no negative literals are expected in the
final definition, and in order to simplify Foil's search, they were not considered in
the test”.

— Testl: With the same examples used by Pal (i.e., 4 4 and 135 =), Foil is not
able to produce any definition. Presumably because of the relatively few num-
her of positive examples in comparison with the number of negative examples.

— Test2; TFoil was tested with all the possible positive examples of the target
concept (196 +) and the same negatives examples used by Pal (135 —). With
them, Foil produced the following incorrect definition:

diagonal(X1.Y1,X2,Y2,X3,Y3) —
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2,X3,Y3),
line(X1,X3,Y1,Y3), less_than(X1,X3). '
diagonal(X1,Y1,X2,Y2,X3,Y3) «
=(X1,Y1), =(X2,Y2).

Ilail's tests were carried out with the fellowing parameters: foil? -n -g0 < infile > outfile (i.e., no
negative literals and no determination).
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This is a counter example: diagonal(3,5,4,4,5,3).

— Tests: Negative examples were incrementally added to Foil to try to learn
the correct definition. Each time an incorrect hypothesis was produced, new
negative examples were given to try to correct it, Foil changed several times its
hypothesis {none of which was correct}. For instance, the following definition
was produced by Foil with all the positive examples and the same negative
examples required by Golem to produce the correct definition (i.e., 195 + and
159 —, see below].

diagonal(X1,Y1,X2,Y2,X3,Y3) —
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3), line(X2,Y2,X3,Y3),
less_than(X1,X3), less_than(Y1,Y3).

A counter example: diagonal(1,1,3,1,2,2).

- Final Test: Foil eventually learned the target concept when all the positive
examples were given and with 179 carefully selected negative examples. LFoil's
definition is as follows:

diagonal(X1,Y1,X2,Y2,X3,Y3) —
less_than(X1,X2), less_than(X1,X3),
less_than{¥1,Y2), less.than(Y2,Y3),
line(X1,Y1,X2,Y2), line(X1,Y1,X3,Y3).

Although Foil is able to learn the above concept, it was not until a long process of
several interacting sessions of analysing why Foil failed and previding new exam-
ples to contradict Foil's hypotheses. This example illustrates somne of its problems
previously mentioned in Section 2. Namely, problems of preparing the right data
(background facts as well as examples), and problems with its information gain

heuristic.

Similar tests were run with Golem. However, the background definition of line/4§
is non-deterministic (i.e., the same inputs can produce different outputs). Golem
cannot learn concepts which use non-deterministic background knowledge (i.e., it
cannot learn diagonal with line/§). The way to go around this problem in Golem,
is to design some deterministic background knowledge that could be used to define
an “equivalent” definition. Instead of line/4, the complete background facts for
abs_diff/3 (absolute difference between two numbers) was provided as background
knowledge. That iz, abs_diff(N{ N2 Diff) means that the absolute difference be-
tween N1 and N2 is Diff. This represents a total of 64 background facts. With
this new background knowledge, we expect Golem to arrive to the following equiv-
alent definition:

diagonal(X1,Y1,X2,Y2 X3,Y3) —
abs_diff{ X1,X2,D1), abs_diff(¥1,Y2,D1),
abs_diff(X1,X3,D2), abs_diff(Y1,Y3,D2),
abs_diff{ X2,X3,D3), abs_diff( ¥'2,Y3,D3),
less than{X1,X2) less_than(X1,X3), less_than(X2,X3),
less_than{Y1,Y2)less_than(Y1,Y3), less.than(¥2,Y3).

Similar to Foil, Golem was tested with a different number of examples.
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_ Testl: With the same examples required by Pal, Golem produces the following
definition:

diagonal(X1,Y1,X2,Y2,X3,Y3) —
abs_diff(X1,X2,D1), abs.diff(Y1,Y2,D1),
abs_diff( X1,X3,D2), abs_diff( ¥1,Y3,D2),
less_than{X1,X2), less than{X1,Y3).
This is a counter example: diagonal(1,3,2,2,3,1).
— ‘Test2: Golem was then given all the possible positive examples (196 +) and the

same negative examples used by Pal (135 —). Golem produces the following
(still incorrect) definition:

diagonal{X1,Y1,X2,Y2,X3,Y3) ~
abs_diff( X1,X2,D1), abs_diff(¥1,Y2,D1),
abs_diff( X1,X3,D2), abs_diff( Y1,Y3,D2),
less_than(X1,X2), less_than{X2,X3).

Counter example: diagonal{2,3,3,2,4,1}.
— Tests: Negative examples were incrementally given to try to obtain the solu-
tion. Some of its intermediate hypotheses include {with 196 +, 150 =)

diagonal(X1,Y1,X2,Y2,X3,Y]) —
abs diff(X1,X2,D1), abs_diff(Y1,Y2,D1),
abs diff{ X2,Y3,D2), abs diff(Y2,Y3,D2),
abs diff( X1,Y1,D3), abs diff{X2,Y2,D3), abs_diff{X3,Y3,D3),
less_than(X1,X2), less_than(X2,X3),

Counter example: diagonal(4,3,5,6,6.5).

— Final Test: Colem was able to produce a correct definition with all the positive
example (196 +) and with 159 negative examples. Golem’s definition is as
follows:

diagonal(X1,¥1,X2,¥2,X3,Y3) «
abs diff(X1,X2,D1), abs diff( ¥1,Y2,D1),
abs_diff( X1,X3,D2), abs diff(¥1,Y3,D2),
abs diff(X2,Y3,D3), abs Jifi{¥2,Y3,D3),
abs diff(X1,Y1,D4), abs diff{X2,Y2,D4), abs diff(X3,Y3,D4),
less_than(X1,X2), less than(X2,X3).

Golem is able to learn, at least an equivalent definition of the target concept. How-
ever, due to its inahility to learn non-deterministic concepts, the background knowl-
edge needs to be modified in such a way, that the resulting definition can become
obscure to the user. Similar to Foil, Golem retains the burdensome of preparing
the background facts.

In this Section, Foil and Golem are tried on & particular chess concept which involves -
a relatively simple background knowledge. “In principle”, both systems could be used
to induce other concepts in chess, however the example illustrates some of their main
problems. Both systems suffer from the problem of preparing the background facts. In
chess, some concept definitions can involve concepts of legal moves, threats, checks, ate.
Defining background facts for such concepts is a time consuming and difficult process.



Specially since it is sometimes unworkable for the systems to include all the background
facts, even if they are finite. In such cases, appropriate subsets need to be selected to
maintain efficiency, which requires a prior knowledge of the example sample.

In addition to this, Foil's construction of hypotheses is heuristically guided by its
information gain measure. This measure is affected by the number of positive and negative
examples in the training set. As any greedy search algorithm, Foil is prone to make local
optimal but global undesirable choices. A new implementation of Foil (Foil2, which was
used in the test) incorporates checkpoints, that is, points where two or more alternatives
appear to be roughly equal. If the greedy search fails, the system reverts to the most recent
checkpoint and continues with the next alternative. This however, does not eliminate the
need to carefully choose the training set to ensure that the desired literal is included in
the definition. In domains where the example space can he very large, as with many chess
concepls, trying to sclect an adequate subset for the required generalisation, is not an
easy task and often requires an interactive process of analysing the system failures and
adding new examples to try to correct them.

Golem, in addition to the preparation of the background facts, is limited to learn de-
terministic clauses. Most concepts in chess are, or at least involve some, non-deterministic
concepts. Finding a deterministic counterpart, to intuitively non-deterministic concepts,
is not always easy/possible to do, and sometimes can only be made in terms of such
“opaque” concepts, that the found solutien is not longer transparent to the user. Even
after finding a way around learning a non-deterministic concepl with deterministic back-
ground definitions, the resulting definition, being non-deterministic, cannot be used to
learn in the future.

4 Conclusions

The combinatorial explosion in the search for hypotheses in first-order inductive systems
have introduced several constraints to control this search, among vthers a very restricted
background knowledge applicable to a limited number of concepts. More recent systems
have used ground theories to improve applicability. However, they are still restricted by
the “complexity™ of the background knowledge. In a domain like chess, we would like to
use legal moves, threats, distances between pieces, etc. as background knowledge to learn
several chess concepts. However, this is not so easy to do with ground theory systems,
as a subset of the possible ground facts, tailored to the examples, needs to be carefully
selected. Using non-ground knowledge with appropriate constraints has been successfully
used in chess to learn concepis like forks, threats, skewers, pins, discovery-attacks, etc.,
with several background knowledge definitions [8; 9]. The inadequacies of recent systems
which use ground theories over a domain like chess, suggest that an effective use of larger
background knowledge over large example spaces, comunon to more realistic domains,
may well depend on the use of suitable constraints over non-ground theories.
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Abstract

We describe experiments to devise machine leamning methods for the construction of
control systems by observing how humans perform control tasks. The present
technigue uses a propositional learning system to discover rules for flying an aircraft in
a flight simulation program. We discuss the problems encountered and present them as
a challenge for researchers in Inductive Logic Programming. Overcoming these
problems will require ILP methods that go beyond our current knowledge, including
induction over noisy numeric domains, dealing with time and causality and complex
predicate invention.

1. Learning Control Rules

Almost all applications of inductive learning, so far, have been in classification tasks
such as medical diagnosis. For example, medical records of patients symptoms and
accompanying diagnoses made by physicians are entered into an induction program
which constructs rules that will automatically diagnose new patients on the basis of the
previous data. The output is a classification. We are interested in automatically building
control rules that output an action. That is, when a state of a dynamic system anses that
requires some corrective action, the rules should be able to recognise the state and
output the appropriate action. Just as diagnostic rules can be learned by observing a
physician at work, we should be able to learn how to control a system by waltching a
human operator at work. In this case, the data provided to the induction program ar¢
logs of the actions taken by the operator in response to changes in the system.

In a preliminary study (Sammut, Hurst, Kedzier and Michie, 1992), we have been
able to synthesise rules for flying an aircraft in a flight simulator. The rules are able to
make the plane take off, fly to a specified height and distance from the runway, tum
around and land safely on the runway. While control systems have been the subject of
much research in machine leaming in recent years, we know of few attempts to learn
control rules by observing human behaviour. Michie, Bain and Hayes-Michie (1990)
used an induction program to learn rules for balancing a pole (in simulation) and earlier



work by Donaldson (1960), Widrow and Smith (1964) and Chambers and Michie
(1969) demonstrated the feasibility of learning by imitation, also for pole-balancing. To
our knowledge, the autopilot described here is the most complex control system
constructed by machine learning methods. However, there are still many research
issues to be investigated and they are the subject of this paper. The main problems we
discuss are listed below.

The difference between learning classifications and learning actions is that the
learning algorithm must recognise that actions are performed in response to,
and result in, changes in the system being controlled. Classification algorithms
only deal with static data and do not have to cope with temporal and causal
relations.

In our preliminary study we were able to demonstrate the feasibility of leamning
a specific control task. The next challenge is to build a generalised method that
can learn basic skills that can be used in a variety of tasks. These skills become
building blocks that can be assembled into a complete new controller to meet the
demands of a specified task.

One of the limitations we have encountered with existing learning algorithms is
that they can only use the primitive attributes supplied in the data. This results
in control rules that cannot be understood by a human expert. Constructive
induction (or predicate invention) may be necessary to build higher-level
attributes that simplify the rules.

We believe it is important that machine leaming research should be directed towards
acquiring control knowledge since this will give us a way of describing human
subcogmtive skills and it will result in useful engineering tools.

One of the outstanding problems our research addresses is that subcognitive skills
are inaccessible to introspection. For example, if you are asked by what method you
ride a bicycle, you will not be able to provide an adequate answer because that skill has
been learned and is executed at a subconscious level. By monitoring the performance
of a subcognitive skill, we are able to construct a functional description of that skill in
the form of symbolic rules. This not only reveals the nature of the skill but also may be
used as an aid to training since the student can be explicitly shown what he or she is
doing.

Learning control rules by induction provides a new way of building complex
control systems quickly and easily. For example, the need in aerospace for pilots to
control airplanes close to the margin of instability is putting increasing pressure on
present techniques both of pilot training and of flight automation. We claim that it wall
be possible to build a pilots assistant using inductive methods. A control engineer is
only able to supply automated modules, such as autolanders, provided that envisaged
meteorological or other conditions are not too abnormal. There are specialised
manoeuvres that the pilot would be relieved to see encapsulated into an automated sub-
task, but which cannot, for reasons of complexity and unpredictability, be tackled with
standard control-theoretic tools. Yet they can be tackled, often at the expense of



effectiveness or safety, by a trained pilots skills that have been acquired by practice but
which the pilot cannot explain. Control engineers and programmers, much as they
might wish to, at present have no way to capture these procedures so as to solve the
flight automation problem. In this context, the industry requires a convenient, and not
too expensive, means of automatically constructing models of individual piloting skills.

While our experiments have been primarily concerned with flight automation,
inductive methods can be applied to a wide range of related problems. For example, an
anaesthetist can be seen as controlling a patient in an operating theatre in much the same
way as a pilot controls an aircraft. The anaesthetist monitors the patients condition just
as a pilot monitors the aircrafts instruments. The anaesthetist changes dosages of drugs
and gases to alter the state of a system (the patient) in the same way that a pilot alters
thrust and attitude to control the state of a system (the aircraft). A flight plan can be
divided into stages where different control strategies are required, eg. take-off, straight
and level flight, landing, etc. So too, the administration of anaesthetics can be divided
into stages: putting the patient to sleep, maintaining a steady state during the operation
and revival after the procedure has been completed.

In the next section, we will describe our preliminary experiments using a decision
tree induclion program. While we were able to meet our initial goals, we believe that
we are reaching the limits of the descriptive power of propositional learning algorithms
and will have to a first-order system. Unfortunately, no existing Inductive Logic
Programming algorithm is suitable for use in control applications. Section 3 describes
some of the problems that we face and section 4 suggests a number of avenues of
research for ILP.

2. Preliminary Study

This section provides a brief description of our preliminary study into constructing
rules for an autopilot by logging the flights of human pilots. The reader is referred to
(Sammut, Hurst, Kedzier and Michie, 1992) for more detail. The source code to a
flight simulation program was made available to us by Silicon Graphics Incorporated
(SGI). Our task was to log actions taken by pilots during a number of flights on the
simulator. These logs were then used to construct, by induction, a set of rules that
could fly the aircraft through the same flight plan that the pilots flew. The results
presented below are derived from the logs of three subjects who each flew 30 times.
We will refer to the performance of a control action as an event. During a flight, up to
1,000 events can be recorded. With three pilots and 30 flights each the complete data
set consists of about 90,000 events. An autopilot has been constructed for each of the
three subjects. Each pilot is treated separately because different pilots can fly the same
flight plan in different ways.

The central control mechanism of the simulator is a loop that interrogates the aircraft
controls and updates the state of the simulation according to a sel of equations of
motion. Before repeating the loop, the instruments in the display are updated. The
display update has been modified so that when the pilot performs a control action by



moving the mouse or changing the thrust ur-ﬂaps settings, the action and the state of
the simulation are written to a log file. The data recorded are: )

on_ground boolean: is the plane on the ground?

g limit boolean: have we exceeded the planes g limit

wing stall boolean: has the plane stalled?

rwist integer: 0 to 360° (in tenths of a degree, anti-clockwise)
elevation integer: 0 to 360" (in tenths of a degree, anti-clockwise)
azimuth integer: 0 to 360" (in tenths of a degree, anti-clockwise)
roll_speed integer: 0 to 360° (in tenths of a degree per second)

elevation speed  integer: 0 to 360° (in tenths of a degree per second)
azimuth_speed  integer: 0 to 360° (in tenths of a degree per second)

airspeed integer:  (in knots)

climbspeed integer:  (feet per second)

EIW distance real: E/W distance from centre of runway (in feet)
altitude real: (in feet) '
NIS distance real: N/S distance from northern end of runway (in feet)
fuel integer:  (in pounds)

rollers real: +4.3

elevator real: +3.0

rudder real: not used

thrust integer: O to 100%

flaps integer: 0%, 10" or 20°

spoilers integer:  not relevant for a Cessna

Most of the attributes of an event are numeric, including real numbers, sub-ranges and
circular measures. Since there can be an enormous amount of variation in the way
pilots fly, the data are very noisy. Note also that the output value of induction 15 a
control setting such as the position of the flaps, rollers or elevator. Thus, the output
values are also required 1o be numeric,

At the start of a flight, the aircraft is pointing North, down the runway. The subject
is required to fly a well-defined flight plan that consists of the following manoceuvres:
take off and fly to an altitude of 2,000 feet; level out and fly to a distance of 32,000 feet
from the starting point; tum right to a compass heading of approximately 3307 at a
North/South distance of 42,000 feet; turn left to-head back towards the runway; line up
on the runway and descend; land on the runway.

The data from each flight were segmented into the stages listed above. For each
stage we construct four separate decision trees for the elevator, rollers, thrust and
flaps. The rudder is not used. A program filters the flight logs generating four input
files for the induction program. The attributes of a training example are the flight
parameters of the simulator, listed above. The dependent variable or class value is the
attribute describing a control action. The reason for segmenting the data is that each
stage requires a different manoeuvre. By combining all the data from all stages, we
would be expecting the induction program to construct seven sets of rules for
controlling the aircraft in each of the seven stages. This makes the programs task more
difficult than is necessary since we have already defined the sub-tasks and have told the



human subjects what they are. It is reasonable that the learning program should have
the same information as the pilots. B

For the preliminary study, we used the decision tree induction program C4.5
(Quinlan, 1987). To test the induced rules, the original autopilot code in the simulator
is replaced by the rules. A post-processor converts C4.5s decision trees into if-
statements in C so that they can be incorporated into the flight simulator easily. Hand-
crafted C code determines which stage the flight has reached and decides when to
change stages. The appropriate rules for each stage are then selected in a switch
statement. Each stage has four, independent if-statements, one for each action.

We demonstrate how these rules operate by describing the controllers for the first
stage. The critical rule at take-off is the elevator rule:

elevation > 4 : level_pitch
elevation <= 4 :

| airspeed <= 0 : level_pitch
I airspeed > 0 : pitch_up_5

This states that as thrust is applied and the elevation is level, pull back on the stick until
the elevation increases to 4°. Because the controls take some time to respond, the final
elevation usually reaches 11°, which is close to the valucs obtained by the pilot.
pitch up_5 indicates a large elevator action, whereas, piteh_up_1 would indicate a
gentle elevator action. The other significant control at this stage is flaps:

elevation <= & : tull flaps
elevation > & : no_flaps

Once the aircraft has reached an elevation angle of 67, the flaps are raised.

The rules we have synthesised are successful in the sense that the plane follows the
flight plan just as the human trainer would and lands safely on the runway. Because
induction over a large set of data has an averaging effect, the autopilot actually flies
more smoothly than the trainer. Figure 1 shows a profile of the trainers flight, plotting
the E/W distance travelled as a function of the N/S distance away from the runway.
Each point represents an action being taken by the pilot. This flight can be compared
with the autopilots flight shown in Figure 2. A similar comparison can be made
between the altitude profiles for the trainer and the autopilot, shown in figures 3 and 4,
respectvely.
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Figure 1: Cross-range FProfile for Autopilot
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It is important to note that this study was-not merely an exercise in collecting data
and applying an existing program. The output of an induction program is only as good
as its input. Before obtaining a successful outcome it was necessary to learn how best
to collect and analyse the data and while the study has demonstrated the possibility of
building control systems by induction, it has also revealed many problems still to be
solved. We discuss these problems in the next section and our proposed solutions after
that.

3. Problems

While our work as been concentrated on the domain of flight automation because 1t
provides us with a complex, realistic task that ensures our methods remain practical,
we are mindful of the importance of keeping our methods sufficiently general that they
can be used in other domains. Thus, while the issues we discuss below are described
in terms of the flight simulator, the reader should keep in mind that similar problems
exist in almost all control tasks. The challenge posed in this paper is, Can Inductive
Logic Programming methods be useful in solving these problems and how must they
be extended in order to handle control tasks?

3.1 Causality

For our preliminary study, we used an induction program that was designed for
learning classifications, not control actions. This program, and others of its kind,
produced flight rules such as:

if speed > 130 knols
than thrust = 100%

This accurately summarises the data since high speed is usually due to high thrust.
Unfortunately, it is not a useful control rule since it tells us how we got to a high speed
but not what to do now that were there. The induction algorithm has no way of
recognising a causal relationship between thrust and speed.

There has been some work in trying to extract causal relations from data (Bratko,
Muggleton & Varsek, 1991) but this can be quite difficult when there are many
variables and actions involved. However, the task becomes easier when the program is
provided with background knowledge about causality.

3.2 What does the pilot see?

We do not record the same information that the pilot uses. For example, when landing,
a pilot usually chooses an aiming point on the runway and stays on a steady glide path
by maintaining a direction toward the aiming point. The aiming point and deviation
from it are not recorded since these are attributes chosen by the pilot and are not part of
the instrumentation of the aircraft. As a result, rules become more complicated than
they should be because they must effectively perform a coordinate transformation
between the recorded parameters and the pilots parameters, To avoid this problem, the
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induction program would have to reconstruct the information that the pilot 15 using
from the data and generate new attributes that better reflect the pilots goals.

3.3 Learning General Skills

The present method only learns how to fly a specific flight plan and so is very limited.
We should be able to learn basic skills that can be used as building blocks for a
complete flight. So instead of learning a flight plan, the system should learn rules for
sub-tasks such as, turn left through X degrees or climb to altitude H. Once building
blocks have been leamed, it should be possible to use well-known planning algorithms
to put them together into a complete flight plan. To make reusable rules requires an
induction system that can generate concepts in a first-order language (ie. with variables
and relations).

3.4 Brittleness

When strong disturbances are allowed in the simulation, the airplane can be sent a
considerable distance off-course. If there were no training data for such a situation, the
rules in the autopilot will be meaningless and will result in nonsensical behaviour. A
human pilot would use a deep model to guess the appropriate action to take but our
present system cannot even recognise the himits of its knowledge, let alone reason
about is predicament.

3.5 Determining class values

C4.5 expects class values to be discrete but the values for elevator, rollers, thrust and
flaps are numeric. No ILP system currently allows numeric values. For these
experiments, a preprocessor breaks up the action settings into sub-ranges that can be
given discrete labels. Sub-ranges are chosen by analysing the frequency of occurrence
of action values. This analysis must be done for each pilot to correctly reflect differing
flying styles. There are two disadvantages to this method. One is that if the sub-ranges
are poorly chosen, the rules generated will use controls that are too fine or too course.
Secondly, C4.5 has no concept of ordered class values, so classes cannot be combined
during the construction of the decision tree.

Figure 1 shows the frequency of thrust values in stage 6 of the data for one pilot.
Since thrust is controlled by a keystroke, it is increased and decreased by a fixed
amount, 10%. The values with very low frequencies are those that were passed
through on the way to a desired setting. The graph reflects the facts that this pilot held
the thrust at 100% until the approach to the runway began. The thrust was then brought
down to 40% immediately and gradually decreased to 10% where it remained for most
of the approach. Close to the runway, the thrust was cut to 0 and the plane glided
down the rest of the way.

In this case, class values corresponding to 0, 10, 15, 10, 25, 30, 35, 40 and 100
were used. Anything above 40% was considered full-throttle. Anything below 10%
was considered idle. Another reasonable clustering of values could be to group values
from 15 to 35 together.



Figure 5. Frequency of thruse values in stage 6
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3.6 Absolute and Incremental Controls

An event is recorded when there is a change in one of the control settings. A change is
determined by keeping the previous state of the simulation in a buffer. If any of the
control settings are different in the current state, a change is recognised. For example,
if the thrust is being reduced from 100% to 40%, all of the values in between are
recorded. For thrust, these values arc easily eliminated as noise during induction.

It is not so easy to eliminate spurious values from the elevator and rollers data. Both
thrust and flaps can be set to a particular value and left. However, the effects of the
elevator and rollers are cumulative. If we want to bank the aircraft to the left, the stick
will be pushed left for a short time and then centred since keeping it left will cause the
airplane to roll. Thus, the stick will be centred after most elevator or roller actions. This
means that many low elevator and roller values will be recorded as the stick is pushed
out and returned to the centre position.

To ensure that records of low elevator and roller values do not swamp the other
data, another filter program removes all but the steady points and extreme points in
stick movement. Figure 2 shows a small sample of roller settings during a flight. Each
point on the graph represents one event. Clearly many of the points are recorded as part
of a single movement. The filter program looks for points of inflection in the graph and
only passes those on to the induction program. In this graph, only the points marked in
black will get through the filter.



Figure &. Change in rodlers
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3.7 Good Pilots are Bad

Another problem for data collection is the surprising fact that poor pilots often provide
better training data than good pilots. Of the three pilots for whom we have data, one
flew very erratically, the other two flew smoothly. The data from the erratic pilot have
been the easiest to synthesise rules from. This is because there are many more
examples of actions being performed to correct errors. A good pilots provides few of
these, so the induction program does not generate rules for course corrections when the
aircraft strays. We must devise a learning system that is robust enough to produce
reliable control rules for any pilot who is able to fly competently. One way of doing
this is to incorporate disturbances in the simulation and record the pilots corrective
manoeuvres. This will also be necessary since we want to demonstrate that the
autopilot can handie difficult conditions.

4. Solutions?

Three components are required in an algorithm for learning control rules: a
representation language that includes vanables and relations, the ability to invent new
attributes and relations, and using background knowledge of causality.

These issues have, to some extenl, been investigated by researchers in Inductive
Logic Programming (ILF). Bratko, Muggleton and Varsek (1991) have shown that
causal models can be leamned by ILP when a theory of qualitative physics is supplied as
background knowledge. This work has not yet been extended to lcarnmg control
actions but it is very promising.

Unfortunately, current ILP systems cannot handle the noisy numeric data generated
by a flight simulator and propositional learning programs (such as C4.5) that can cope
with numeric data, cannot make use of background knowledge. Thus we are faced
with the prospect of trying to extend one or the other method. As an alternative, hybrid
systems as suggested by Lavrac, Dzeroski and Grobelnik (1991) are an interesting
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possibility. Using this approach, we take advantage of well-developed decision tree
induction algorithms to perform a first pass of the data and then map the results of the
decision tree analysis into a first-order language for further processing. In the
transformation to a first-order language, constants are turned into variables, allowing
the rules to be reused in a different context, thus enabling us to create building blocks
for new flight plans.

The problem of constructing new attributes and relations to simplify the cutputof a
learning program has been investigated but only using discrele valued data or simple
numeric data. Our problem is that we are dealing with noisy numeric data that have
very complex relationships. It is not reasonable to expect that a program will be able to
reconstruct flight equations from the data or perform complex transformations without
some help. So, while humans are unable to explain their subcognitive skills, they are
able to provide knowledge in the form of a theory to help guide induction. Thus, it is
essential to provide a flexible way of describing background knowledge so thaf it can
be used to preprocess that data before induction.

Causal relations illustrate the importance of data analysis prior to induction. A single
training example for the induction program consists of an action, along with the state of
the simulation when the action was taken. Normally, an induction program is
predictive. For example, the thrust rule discussed earlier, predicts that when the speed
is greater than 130 knots, the thrust will be at 100%. However, we know that the
training examples are logged when an action is taken. For example, a thrust action is
recorded when the thrust is changed from one setting to another, So we already have
some clues about causality. We know that the thrust has changed. Now we want to
know why, One way of doing this is to record the state of the simulation, not as it is at
the time of the action, but as it was some time before. In addition, if we have a
qualitative model that tells us that airspeed depends on thrust and elevation and that a
certain airspeed must be maintained to avoid stalling then these values can be weighted
to help the induction program choose the criteria for an action.

The presence of a causal model can also help remove brittleness from the control
system. We envisage a complete control system consisting of a high-level planner that
uses a gualitative model to establish goals for the system. Rules derived from human-
data are invoked to achieve known goals. When the system wanders into regions for
which there has been no training, the qualitative model may be used to guide control.
This is necessarily slower and not desirable when rapid real-time response is required,
but may be the only alternative in unknown regions.

5. Conclusion

We have presented a problem in learning control rules for real-time systems by
observing human operators. This domain of applications has great significance for
industry and is fruitful area of research. While existing induction algorithms go some
way toward solving the problem, they are inadequate for further progress. This
requires new techniques being pioneered in Inductive Logic Programming. However,
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[LP has not yet addressed a number of issues that are essential if it is to move into the
domain of control systems. These include processing noisy numeric data and the
invention of predicates to describe complex numeric relationships. In additon the work
that has already begun in combining qualitative modelling and ILF must be developed
further.
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