TM-1172

A Process and Stream Oriented Debugger
for GHC Programs

Munenori MAEDA
International Institute for Advanced Study of
Social Information Science,
FUJITSU LABORATORIES LTD.
Hirotaka UOL Nobuki TOKURA
Faculty of Engineering Science, Osaka University

e-mail: m-maeda@iias.fujitsu.co.jp

Abstract

A new GHC debugger for a typical “Process and Stream” programming
paradigm is proposed. When a programmer writes programs following such
a paradigm, he has conceptual images about their executions. However the
conventional debuggers are inadequate to trace/debug GHC programs be-
cause they lack the means to treat both processes and streams directly. Cur
debugger provides several high-level debugging facilitics such as displaying
processes connected by streams, editing the data in streams and controlling
the execution of processes interactively. As these facilities promote to make
programmers trace the execution flow and the data flow from their points
of view, it becomes easier to debug programs following process and stream

paradigm.

Va2

1 Introduction

The GHC debuggers, which have been proposed so far, are classified into two types.
Oge is based on algorithmic debugging[6], and the other on execution tracing?. The
former is based on the denotational semantics of GHC programs and can prune lots
of wasteful information semi-automatically, while the latter, whichk based on the
operational semantics, provides several manual means to prune it. The common
philosophy between them is that “Too much of displaying low-level information is
as bad as too little. Time consumption for debugging depends on an ability of the
debugger as an information filier.” This paper aims at proposing a new debugging
method belonging to the execution tracing class.

In GHC programming, object-oriented[5] and stream-based [2] programming, which
are quite familiar and popular, are centered on the notion of processes and streams.
Each abstract programming module is regarded as a process, some of these connected
by streams, and communicate with each other concurrently. A typical process re-
peats the following: it consumes data from an input stream, changes its own internal
state, and produces data to an output stream. The GHC programs based on such
processes and streams are often called as process oriented programs.

It is difficult to capture a conceptnal execution image of a process oriented pro-
gram when a conventional execution tracer is used. It is because processes and
streams generated at runtime are decomposed into GHC primitives, and they are
never displayed explicitly.

This paper suggests a tracer that fully reflects the notion of process and enables
one to handle both of the specific control flow of processes and the data structure
of streams. This tracer is expected as an information filter to makes the causality
among processes explicit.

The organization of the paper is as follows: first, in Section 2, we will introduce
the model of processes and streams. Additionally some operations and an equiva-

lence relation on streams will be shown. Section 3 will offer a debugging method

'The literature(l] is concerned with only the execution tracing of Occum programs, however,

its discussion is generally adaptable for the most concurrent/parallel programs debugging.

for the process oriented programs. By considering this method, we will be able to
specify some facilities of the tuned debugger. The topics of an implementation of
the debugger will be discussed in Section 4, which are how processes and streams
can be identified and how processes can be controlled. One of the central paints to
cvaluate the debugger is an artifice for better readability of traces. In Section 5,
two visualization techniques adopted by the debugger will be described. A tracing
example will be shown in Section 6. Finally, in Section 7, conclusions and future

work will be presented.

2 Models of Processes and Streams in GHC

2.1 Process model

Two interpretations of a “process” are familiar. One is to regard a gozl as & process.
The other is to regard an “object”[5], in other words, a computational entity such as
a light weight process of UNIX. In the following, we discuss about processes based
on the latter.

A process consists of goals of two types. One type of goal is for the continnation
of this process, while the other is for the internal procedures defined in the process.
The continuation goeal accepts streams in its arguments one by one, and reserves
its internal state in the other arguments. The stream argument works as an [/O
port of the process. The internal state is not affected by other processes, but only
(rejcalculated by the previous state and input data captured from streams.

The features of a process are listed up as follows:

Creation: A process is created hy the first call of the continuation goal.

One-step execution: Reading data from streams, writing data to other streamns,
and chauging the internal state by using internal procedures are regarded as

atomic actions in an execution step.

Continuation and Termination: A process will carry on its computation with

& new internal state when the continuation goal is invoked. Otherwise the

process terminates its execution.

2.2 Stream model

A stream is a sequence of any logical terms, whose operations[8] are limited to
reading the first term of a stream and writing a term on the tail of a stream.
Streams are constructed hy stream-variables SV, stream-functors (SH||ST) and
stream-terminators (}, where S;V is a variable constrained to become either a stream-
functor or a stream-terminator, SH is an arbitrary term that denotes the first data

of the stream, and ST is a stream representing the rest of the stream.

Creation: Streams are created dynamically when a continuation goal of a process

is invoked, where they are assigned to the arguments of the goal.

Data access: The first data D is read from a stream SX by unifying SX with
a structure (D||ST) in the guard part of a clause at runtime. The data D
is writien to a stream-variable SX by unifving SX with a structure (D||ST)
in the body part, where ST, called the tail of the stream SX, is a stream-
variable. In the case of reading or writing several times, each operation is done

recursively for the rest of the stream, ST.

Connection: Two streams S,, Sy, are connected if they are unified in the body

part. One of the connected streams are regarded as an alias of the other.

We define an equivalence relation = on the set of streams &, which is used for

the visualization of streams.
For a substitution o, the following relation ~, is defined on S, which is the set

of streams consisting of variables, terms obtained under the execution.
l.8~,8, eS8
2. (H||S) ~, 5;¥s €S

d. 810 = 540 = 54 =, 52,\#51,31 £5

‘The first reflective rule implies that two lexically identical variables satisfy the re-
lation. The second rule implies that a stream and its subpart are elements of the
same equivalence class. The third means that the connected streams are also ele-
ments of the same equivalence class, The relation =, is defined as the symmetric
and transitive closure of the relation ~,. In the following, we write = for 2_ if ¢ is
clearly understood from the context.

In GHC, a stream is actually realized by a list in most programs, ie. a stream-
functor (D||S) and a stream-terminator () correspond to a term [D | §'} and an atom

[[. We commit this observation, and implement a debngger presented in Section 4.

3 Process oriented debugging

When following the above process model, each goal appearing in the execution trace
exactly belongs to 2 process, which is either a continuation or a part of a internal
procedure of the process. When we trace and check process oriented programs, first
of all we have to do is to extract the goals belonging to a target process from the
“chaotic” execution trace where these goals are interleaved.

The check of the data flow is also required. Unless a process inputs intended data,
the process outputs incorrect data to its output stream, or permanently suspends.
Two reasons why the intended data is not sent to the process are considered. One
is that an adjacent process corresponding to the producer of the data works in
malfunction. The other is that the input of the process maintains disconnection
with the output of the producer, which is a failure by misuse of a shared variable.
In the latter case, it is easier to detect the error if the connection between processes
by streams, which is called “a process network”, is displayed.

Thus for better readability of the execution traces of the process oriented pro-
grams, Process Oriented Debugger(POD) visnalizes the information of processes
and streams in a structured way, which consists of the inputfoutput data, the in-
ternal state values, and the internal procedure traces, and the connection between

processes by streams.

Then programs can be debugged in the following steps.
Step 1. A user starts to execute a target program.

Step 2. The internal state and the ini:rut. foutput data are displayed and investi-

gated at an appropriate interval. The process network is also checked,

Step 3. The program code corresponding to the process that raises an error is
investigated in detail. And any other neighborhood processes that may cause

it to get into anomaly should be chserved as well.

Step 4. The sequences of input/output data are available for checking an abnormal
process by preserving them in the previous execution. Basically, comparing
the sequence of the output data before and after the modification of a program

makes it easier to check the behavior.

Here we consider Step 3 and Step 4. When the process is in malfunction, we
compulsorily suspend its continnation, and proceed to the total execution as far as
possible, because the re-execution of the program costs much time and care. Namely,
it is important to avoid the re-execution when it takes a long time to instantiate
the data on streams up to an enough length, or the program has nondeterministic
transitions.

Re-execution can be avoided in two ways: one is to give the debugger the func-
tions to delete or to modify the unexpected data and to insert data in the stream
interactively. The other is to make the functions preserve the data in streams au-
tomatically and execute a process under the environment made by the preserved

ones.

Thus the execution control functions to be requested to POD is
L. to compulsorily suspend, resume and abort the execution of each proccss,

2. to buffer and to modify the data on streams interactively, and

3. to execute a process with the environment.

{1} proceas gen(state,state, port),sife (port, port), Filter{port, state, port) .
(2} prime(Max,Ps):- true | gen(2, Max, Ns},sift (Ns,PBs).

(3} gen (M, Max,Ms) 1~ HesMax | Ns =[].

14} gen (W, Max,Ns):- Ne<Max, H1:=N+1 | Ns=[N|Nsl],Rgen (N1,Max,Hs1).

(2) sife([],Ps):~ true | Pa={1.

{6) sift([Fp|Fs],Ps}:- true | Pe=[PiPsl}, filter (Fs,P,Fsl),8sift {(Fsl,Psl).
{7) filter{[},P,Fs):- true | Fs=[].

(&) filrter((H|Ns],F,Fs):= true | swiN,P,Fgl, (N|Fsl},Fxs), Efilter[Ns.E,E‘sil .
{9) swiN,P,Fsl,Fs2,Fs)i— N mod P=:=0 | Fe-Fsl.

{10) 5w (N, P,Fal,Fg2,F8) i~ N med P=\=0 | Fs=FgZ.

List 1: Primes generator program with process declaration

4 Implementation of POD

4.1 Process declaration

In our process model presented in Section 2.1, goals are classified into goals for the
continuation and those for the internal procedures. As there is no syntactic difference
between them, they should be specified by means of the process declaration by the
usar.

The process declaration consists of the predicate specification and the continua-
tion marking. The predicate specification begins with the keyword process followed
by the name of the predicate it specifies the usage of each argument. The usage of
each argument is specified by declaring either state or pert in an appropriate or-
der. The keyword state denotes that the argument represents a part of the internal
state, while port means that the argument represents an I/0 port of the process.
The continuation marking represents a continuation, which is done by annotating @
in front of a goal in a clause.

See the “Primes generator” program in List 1 where some annotations for the

process declaration are included. This program will be executed and traced in

Section 6.

4.2 Treatment of streams

Recall that streams are constructed by special variables, functors and terminators.

In POD, streams arc recognized and supported by introducing the tagged data

=1

structures. Each variable, functor, and atom that realizes a stream has an auxiliary
field to store the identifier of the stream. An identifier is associated with each
equivalence class of the streams.

Now the problem is how to implement the identifiers. Note that if two streams
whose identifier are different each other are unified, their identifiers should be ob-
served as the same one. This can be naturally done by assigning a variable to each
identifier and unifying the identifiers when their streams are unified. The problem
whether two streams satisfy the equivalence relation = is solved as the “variahble
equivalence check.”

Our implementation of streams is as follows: the logical terms; ‘Sm’(Var,ID},
‘Sm'([],ID) and ‘Sm’([Head|Tail] ID) are used for representing a stream-variable
Var, a stream-terminator [] and a stream-functor [Head|Tail] respectively, while
the second argument ID denotes the identifier of its stream, and is provided as a
fresh variable.

POD recognizes aud manages streams in the following way. First if the goal
to be reduced is declared as a process, POD replaces the arguments whose modes
are port by the stream-tagged fresh variables. Then the original arguments and
the stream-tagged variables are unified by using the cxtended unification proce-
dure shown in Appendix A. The unification procedure can treat tagged data and
manipulate sireams in the same manner in Section 2.2,

‘The stream-tagged variables and other arguments whose mode is state are
stored in a process table. A process table is prepared for each process, which pre-
serve a couple of arguments every execution step. The visualization of the execution

for processes is achieved by using the process tables,

4.3 Execution Control

In POD, the specific control of a process proposed at Section 3 is realized by
introducing the “valve” inserted into a stream{Figurel). The valve takes the role
of an intelligent data buffer, which has two input ports, one output port, and a

programmable conditional switch to close the output port. One of the two input

Process User's command

cut here

Figure 1: Inserting a valve between adjacent processes

ports is connected to the original stream, and the other is connected to a user's
console. A user can send the commands to the valve, The programmable conditions
are associated with the amount of buffered data and the deseription of a type of
storable data.,

The valve has three states, and each state is changed to another by the user’s
command or evaluating the programmable conditions. The three states are named
as the antomatic migration mode, the conditional migration mode, and the manual

edit mode. In each mode, the valve behaves as follows.

¢ Automatic migration mode
The valve gets data from its input port then it stores in own buffer. If the
buffer becomes full, the valve outputs the first data in the buffer from the

output port.

¢ Conditional migration mode
The valve gets data then it stores in the buffer. If the buffer becomes full or
the data does not satisfy the condition then it displays an alert and changes

its mode to the manual edit mode.

e Manual edit mode
In this mode, the valve never gets new data. The conditions for data to be
stored and the setual data to have alrea.f]._}-' stored can be referred and modified
by using a text editor. After finishing editing, the mode is changed and goes

back to the previous mode.

The data checking condition is provided as the conjunction of GHC goals. The
goal is one of the built-in predicates or an user-defined goal. The built-in predicates
are classified into the type check, the arithmetic comparison and the guard unifica-
tion =/2. The type check goal is like atom/1, integer/1, list/1, etc., the arithmetic
one is like > /2, > /2, < /2, </2. The user-defined goal is a combination of built-in
goals which follows to GHC(Prolog) like syntax.,

5 Visualization of the execution

POD provides two different views, which are called as “stream graph” and “process

chart”, for the visualization of the program execution.

5.1 Stream graph

A stream graph shows the dynamic change of a network graph concerning processes
and streams by the animated icons and lines respectively.

The rule of drawing the stream graph is given as follows.

1. Axn icon representing a process is newly displayed in a graphical window when
the process goal is invoked, which is painted by a specific color that repre-
sents the activity of the process. No lines are connected to the icon, which

corresponds to that the process has no communication channels yet.

2. As soon as two stream-tagged terms which have different identifiers are unified.
all I/O ports which has been connected to those streans already are re-linked

to each other.

3. All lines connected to 2 process icon are erased when a continuation goal of

the process is invoked.

¢. The process icon is re-painted with a different specific color which represents

termination of it when no continuation goal is invoked.

10

5.2 Process chart

We show an cffective display technique for streams. The following observation is

acceptable.

= As a stream is a variable length and unbounded in nature, the whole sequence
of the stream can not be displayed. It is enough to display only a subsequence

generated or consumed newly.

For instance, when a stream S is unified with [Dg, Dy, | T) in the gnard part of a
clause and T is referred in its body, only the different sequence between two streams
S and T, ie. [Dy,Dy), is displayed in Process Oriented Debugging.

Here a new graphical view, ealled as a “process chart” | is proposed, which consists
of many dots and lines. A dot corresponds to an argument which is obtained from
each execution step of a process. A line connects two dots P, and Py, when P, /Py
correspouds to a stream S, /Sy, respectively, and one of the following two relations

15 satisfied.

¢ The “idecntical” relation P, ~+ Py, denotes that all the elements of Sa and Sy

are equal.

© The "adjacent” relation Py — Py, denotes that S, is the longest tail of Sy,.

The definitions of them are presented in Appendix B.

For convenience of the following description, we give the informal explanations
of terms: PS, OA(PS) and RT(PS), which are formalized in Appendix B. 73
is defined as a set of all the streams with their corresponding positions of dots.
OA(PS) is a set of relations defined under P&: ~ on P x P and on PxTxP
where P is a set of positions of dots and 7T is a set of text. RT(PS), called as all
the “root” nodes of P&, is a set of positions which appear only the first arguments
of the above relations, i.e. is used as start positions.

A process chart is drawn by the following steps.

Step 1. Depict N dots rightward which is aligned horizontally with a left margin L

and an appropriate gap H, where the dots represent all arguments of a process

11

with an arity N. Then connect them by a thin dashed line to emphasize that
they are arguments in an execution step of a process. A dot is painted with

black or gray when the corresponding argument is available in input or output

mode.

Step 2. Apply Step 1 downward with an appropriate vertical gap V to each exe-
cution step up to the current execution. If a subprocess is forked among the
i-th and the i+1-th steps, depict the dots of the subprocess’s in a similar way

with a left margin Ld, Ld > L.

Step 3. Let a ;stream 5 be assigned to a j-th argument declared as port of i-th
step of & process PID. Then loe(PID, 1, 5), the location of the stream, could
be mapped to the position of the dot one to one in the plane. A binary tuple
(loo(PID,4,7),5) is called a “stream with its location”, which corresponds to
the dot. For all the dots depicted in Step 1 and 2, make a set TS of “streams
with their locations”, then compute and make an output set ©.A(PS).

Step 4. Conanect two dots I, and P, with a line if P, fus} P, exists in D A(PS), and
write a text lgp along the line. Similarly connect two dots with a double line
if By ~ P, exists in OA(PS). In both cases, a line is painted with the color
of the dots of both ends.

Step 5. Write the values of all the arguments declared as state under their dots,

and also write the values of all the members of R7(PS) under their dots.

6 A tracing example

POD is developed by extending GHC compiler[3, 10] on Macintosh. A user can

trace and debug a GHC program with a direct manipulation interface of POD.
The interface provides several control facilities for the target program in a menu,

so the user can easily manipulate POD by sclecting one in the menu with mouse.

Currently the facilities, (1) the compulsive suspension and (2) the resumption of

12

A i e
| o e e Pl i

Figure 2: Initial view of stream graph

processes, (3) the insertion and (4) the control of valves, and (5) the deletion of
terminated processes are prepared in the menu.

The usages of the menn and the views are described using the program in List
List 1. First suppose that the program and a query goal prime{i0,Ps) are given to
POD. Figure 2 shows the initial stream graph. Here the user is able to investigate
the data on a stream that connects gen and si®t in two ways. One is to stop gen
in order to prevent the creation of new data and to set the valve behind the output
port of gen. The other is to stop sift in order to avoid the consumption of data
and to set the valve in front of the input port of sift. Let the former be chosen.,
He selects the item (1) and makes gen suspended. Selecting ilem (3) followed by
item (2) resumes gen. The generated valve is displayed as an icon in the window
similarly as that of a process. Initially the valve is in aulomatic migration mode
and the default size of the buffer is set to one hundred.

After the process gen finishes generating data, the information in the valve is
displayed in a new window if he selects the item (4). Figure 3 shows that the content
of the buffer is modified by deleting the number 8. Now suppose that he closes the
window and flushes all data in the buffer.

By flushing the data, the execution of sift is resumed spontaneously, and finally
the stream graph becomes stable, which is depicted in Figure 4.

Now process charts of each processes in a window are shown in Figure 5, which

explains explicitly the following.

i3

Before data editing After data editing

Al Vabv, ., Al Tabra, .
Baftacg tva Btircrg Lin,
¥ 9 &
] 7 ;
7 L] 2
& by 5
T [E [megurry 320 Ten [E | mwpinz e

Figure 4: Final view of stream graph

¢ The process gen maintains an output stream that is specified by a vertical
gray line in the lefthand side of the window, which connects all of the third

arguments obtained every execution step. Numbers generated by gen are
aligned and displayed along the line.

o The process filter maintains both an input and an output stream specified
by two vertical lines; the black and the gray in the middle of the window.
The input sequence of numbers on the black line ranges from 3 to 9 except 8
becanse 8 is deleted in the valve. [t is possible to comprehend that filter
generates a number or none every execution step when the output sequence

on the gray line is referred.

14

» The difference between the process chart of sift and others is the presence of
a process fork specified by a dashed line. The process sift also has both an
input stream and an output stream. The output streamn remains unchanged,
while the input stream is dynamically created. sift consumes a number from
the input stream in the first argument, and it generates a prime number and
a filter by an execution step, which is passed to the stream in the second
argument. The input and output stream of the created filter are connected

to the original input and the new input stream of sift respectively.

7 Conclusions and future work

This paper has proposed a process oriented debugger, POD, for GHC programs
which are based on a computation model of processes and streams. In this paper, we
have argued the model of processes and streams, the debugging method for programs
based on processes and streams and the facilities of the debugger. The eguivalence
relation on streams is the bases of the visualization, which depicts whether two
streams are connected or not.

The features of POD are summarized 2s follows:

e showing the interprocess causality by lines and icons in a stream graph, where

lines and icons represent streams and processes respectively,

¢ presenting the connectivity relationship between streams by lines in a process

chart, where lines represent the difference parts of two related streams,

¢ inserting a valve into the front/behind of a process, where the purpose of a

valve are

— avoiding the re-execution of the process by storing input data,

— validating the process modification by comparing its ontput data before

and after the source code changes and

15

— controlling the execution interactively by changing input data or blocking

data to output.

Thus our debugger could handle both of the specific control flow of processes and
the data structure of streams,
The future work is further improvement of the graphical view, stream graph and

process chart,

Stream graph: All gencrated processes are located in the graphic window freely,
which causes less readability in the case of more large scale programs. An
approach is to adopt an appropriate drawing rule for drawing processes and

streams. "To make such a rule be programmable is interesting.

Process chart: A behavior of a process which generates subprocesses, such as a
process 51ft, is not self-evident, so sometimes their process charts should be
referred simultaneously. The readability becomes worse even if multi windows
are available. An approach to display many process charts is to adopt a per-
spective view such as Figure 8. A process chart of a subprocess is connected
to the corresponding process-fork point in the parent process chart. By com-
bining these charts, It will be possible to get various images by changing view
points, i.e. selecting the direction and zooming/unzooming the point of the

chart.

Acknowledgments

This research has been carried out as a part of the Fifth Generation Computer
Project of Japan. The authors would like to express thanks to Dongwook Shin, Youji
Kohda and Jirc Tanaka for their help and useful comments. Masaki Murakami and

Hiroyasu Sugano indebted to construct the matematical formalization. The authors

are also appreciative of their assistance.

16

Appendix A. Extended Unifier for Streams

The terms occurring at runtime are classified into six types; variable, atom, com-

pound term, stream-variable, stream-functor, and stream-terminator.

Here we show the following central cases of the extended unification X = V.

Casge 1

Case 2.1

Case 2.2

Case 3.1

Case 3.2

Case 4

Case 5

Case G

X is a stream variable represented as ‘Sm’(V,ID), Y is a variable.

Then assign Y to X.

X is a stream variable ‘Sm’'(V,ID), Y is an atom).

Then assign {] to V.

X is a stream variable, Y is an atom except [J.

Then assign Y to V, and display a warning dialog.

X is a stream variable ‘Sm’(V(,ID), Y is a list [H|T).

Then assign [H|'Sm’(V5,ID)] to V,, and execute ‘Sm’(V5,ID)=T.

X s & stream variable, Y is a compound term except list.

‘Then assign Y to Vy, and display a warning dialog,

X is a stream variable ‘Sm’(V1,ID;), Y is a stream variable *Sm’'(Vy,IDs).
Then assign Vy and 1Dy to V; and ID; respectively.

X is a stream-functor ‘Sm’([H,|T,],ID), Y is a list [Ha|Ts).

Then unify Hs with H,, and execute T, = Ts recursively.

X s a stream-functor ‘Sm'([H,|T4),ID1), Y is a stream-functor ‘Sm’([Ha|T4),IDy)
Then unify Hy, Ty, 1Dy with Hy, T, ID; respectively and

execute Ty > T recursively. O

A case given two stream-terminators as an input, and a case between a stream-

terminators and a nil list are omitted because it is analogized easily,

The unifier displays a warning dialog as soon as detecting a failure of the unifica-

tlon. At this time a user can choose two alternatives; terminating the total execution

or ignoring this failure to continue the execution.

17

Appendix B. Arrow relations on streams

Let P be the totally ordered set of position identifiers, & be the set of streams. An
element PS = (P, S) of the set P x & is called a “stream with its location”, and
we use a notation PS for a finite set of “streams with their locations”. We also
define two unary functions, f and ¢, on P x § as [ollows; for PS = (P,S) e P x S,
h(PS) = P and t(PS) = S. Aund let a function ¢ be a type converter from stream
to list.

We extend the equivalence relation = on § defined before to =~ on P x S;
(Fa, 5a) = (B, 5,) iff 5, = S;. Since the relation =~ is clearly an equivalence relation,
we can get the quotient set Po of PS divided by the relation ~ where PS is a finite
set of “streams with their locations™; P& = {PSe,--,PS.) £ PE/ .

Definition 1 (Identical arrows) For two position identifiers P2, P, we introduce
anotation F, ~ Fj to indicate that the content of the stream assigned on P, is equal
to that of the siream on F, and P, appears just before F;. The set of identical
arrows TA(x) for x € PS is defined as follows; TA(x) = {h(PS.) ~ h(PS,) |
P5.,PS € x,c(t(PS.)) = c(t{PS)),h(PS.) < h(PS,),-3PS. € x,h(P5,} <
WPS.) < h(PSy),e(t(PSy)) = ¢(t(P5.)}}. O

Definition 2 (Extermination of identical streams) First we define an equiva-
lence relation = for PS,, PS, € x as follows; PS, = PS5, 4 e(t(PS,)) = e{t{PSy)).
Then for x, ¥ is defined by collecting all representatives of y; T = {PS € y |
VPS € [PS] € x/ =,h(FS') £ h{PS)} where [PS] is an equivalence class in y/ =

containing PS. 0O

Here we define a sct Dy y for two streams X, Y such that X = Y Ac(X) # ¢(Y) as
follows; Dxy = {(U,V, W) | append(U, W, e(X)} A append(V, W, ¢(Y))}. Then there

obviously exist the unigue U@y v, V@ x y, W@y y which satisfy (UBxy VOyy Wiy e

Dy y AU, Vi, Wi) € Dy yalen(W@yy) > len(W;) where for VI € List, len(L) re-

turns the number of elementsin alist L. In the following, we abbreviate U@y y, V By, Wiy

as U@ VG Wa if XY are clearly understood from the context.

13

Definition 3 (Streams and all their bifurcations) We can construct Cy with
X such that there exists a “stream with its location” in Cy for two streams in y
where such a stream is shared as their common tails. The set Cy is a minimum set

satisfying the following condition.
1. ¥ CCy

2. VPSS, FS, ¢ {jr, ars. e IL’.-'?, H"r@f(fls‘}ri[ﬁ‘sﬁj = C(E{PS,:D

£ UBypsyupsy = 1, V@ypsaursy = [
3. VPS,, PS, € Cy, h(PS,) # h(PSy).

Definition 4 (Reachable arrows) For two position identifiers P,, P, and for a
list labeled I, 4, a notation P, IE}»L P, introduced newly is used to say that P, and B,
are connected by an reachable arrow, which implies that a list los append a stream
identified by P, becomes the other stream identified by P). The set of reachable
arrows RA(Cy) for ¥ € PS5 is defined as follows; for PS,, PSy € Cy, compute

U@TEPF-:}JU"-5'1J1 V@ﬁ PEa)A(PE)s W @f{PSﬂJr!{PE*J then :;lassif_v b}l’ their values,
Case 1. U@ = [|. Then ra(PS,, PS,) = {h(PS,) & h(PS5)).
Case 2. V@ ={. Then ra(PS,,PS;) = {h(PS,) & h(PS,)1}.

Case 8. UG # | A V@ # [|. Then ra(PS,, PS;) = {h(S.) 2 h(PS,), h(PS,) L
h(PS,) | 3PS, € Cz, |(LU(PS))) = Wa).

Here a set of the reachable arrows RA(x) is defined by using the above auxiliary

function ra as follows:

RA(x)= |J ra(PS., PS,).

VP8, PRECT

Definition 5 (Adjacent arrows) A notation P, = Py for P, % € P is intro-
duced newly, whicl is used to say that P, and P, is connected by an adjacent
arrows, or I, is reachable to 7, through the :;hu:'test distance I ;. First we define
an auxiliary set Gi(£),0 < 1 < n, for a set of reachable arrows, ¢, in an inductive

way. These sets correspond to a notion of “reduced reachable arrows”.

19

Base case. Gylé) = L.

Induction step. Gi.1(€) = Gi{&) — (R, 5 R.} where R, g R. € Gi(&) A R, g

;}.c

Ry, Ry = R, € &,

The set Gi(£) is monotonically decreased, we finally get an irreducible set G,.(¢) on
finite reduction steps.

Then the set of adjacent arrows is defined by replacing the symbol = on G, to
the —, ie., VR, % Ry € Gn, 3R, 4 Ry € AA(E), O

Definition 6 (Generation of an output set) An output set OA(PS) to rep-
resent relationship between “streams with their locations” is defined as follows:
OA(PS) = TA(PS;) U --- UTA(PS,) U AARA(PS;)) U --- U AA(RA(PS,))
where 0 < 1 ﬂ_:m,ﬁE'P_hE. m|

Definition 7 (A set of root nodes) For VP, ~ P, € TA(y), if -3P. ~ P, €
TZA(x) then F, is called “root” of TA(x). Similarly the root P! of the set 4.A4(x)
can be defined as follows: for VP, — F} € AA(y), =37 — P, € AA(x).

A set of root nodes RT(PS) is defined as a set of all root nodes of Z.A(y) and
AA(yY), where y is ranged from PS8y to FS,.. O

References

[1] G.S.Goldszmidt, S.Yemini, §.Katz: “High-level Language Debugging for Con-
current Programs”, ACM Transactions on Computer Systems, Vol.8, No.d,
pp.311-336, Nov. 1990. '

[2] G.Kahn, D.B.MacQueen: “Coroutines and Networks of Parallel Processes”,
Information Processing 77, North-Holland, pp.893-098, 1977.

[3] Y.Kohde, J.Tanaka: “Deriving a Compilation Method for Parallel Logic Lan-
guages”, Logic Programming '87(LNCS 315), Springer-Verlag, pp.80-94, 1088,

20

[4] M.Maeda, H.Uoi, N.Tokura: “Process and Stream Oriented Debugger for GHC
programs”, Proceedings of Logic Programming Conference 1990, pp.169-178,
ICOT, Jul. 1990.

[5] E.Shapiro, A.Takeuchi: “Object Oriented Programming in Concurrent Prolog",
New Generation Computing, Vol.1, No.1, pp.25-48, 1983,

[6] A.Takeuchi:“Algorithmic Debugging of GHC programs and its Implementation
in GHC”, ICOT Tech. Rep. TR-185, ICOT, 1986.

[7] J.Tanaka: “Meta-interpreters and Reflective Operations in GHC™, Proceedings
of the International Conference on Fifth Generation Computer Systems 1988,
pp.774-783, ICOT, Nov. 1988,

[8] E.D.Tribble, M.S.Miller, K.Kahn, D.G.Bobrow, C.Abbot and E Shapiro:
“Channels: A Generalization of Streams”, Proe. of 4th International Conference

of Logic Programming(ICLP)'87 Vol.2, pp.839-857 (1987).
9] K.Ueda:*Guarded Horn Clauses”, ICOT Tech. Rep. TR-103, pp.1-12 (1985-06).

[10] K.Ueda, T.Chikayama: “Concurrent Prolog Compiler on Top of Prolog”, in
Proc. of Symp. on Logic Prog., pp. 118-126, 1983,

[11] K.Ueda, T.Chikayama: “Design of the Kernel Language for the Parallel Infer-
ence Machine”, The Computer Journal, 1990.

21

T

g
TN
S o

front view

.

vl

Eiltmrf 3

ﬁlhﬂn]_

fiwa) L 4

=

—-Y‘m
side view

Figure 6: Iinage of an extended three dimensional process chart

