ICOT Technical Memorandom: TM-1171

TM-1171

Simple Concurrent Constraint Language
and Concurrent Reflection

by

H. Sugano (Fujitsu)

April, 1992

E 1992, 1C0T

Mita Kokusai Bldg. 21F (03)3456-3191~5

| C DT 4-28 Mita 1-Chome Telex ICOT J32964

Minate-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Simple Concurrent Constraint Language
and Concurrent Reflection

Hirovasn SUGANO

International Tnstitute for Advanced Stwdy of Social Tuformation Seienee,

FLITSU LABORATORIES LIMITED
1-17-25 Shin-Wamata, Ota-ku. Tokve 144, Japan

E-mail: sngatiias Hab fnjitsuwco jp

Abstract

We propose a reflective computation model CCR hased on s siiple conewrrent constraint
prograupuing framework. Primitive commmnpication i OCR s carned ont by weans
of publishing primitive constraints, and a conenrrent reflection whicl allows conenrrent
exerution of hoth object level and weta level compntations is formalized. CCR does not
depend o any hardware architectures and implementation issues to keep its generalivy aud
abstractuiess, and we give its operatioual semanties i terms of a transition svstem. Thus,
i our framework. intelligeut hehaviors of concurrent systems conld be madel naturally
and transparently,

1 Introduction

Reflection and metaslevel progrannuing have veceived mnch attention in progranuning lugiapes
researches for recent years [1.0 2. 3. 4. 6, 7. 10 11]. Partienlarly, in case of logic prograanming,
reflection provides a uniform framework i whieh pure logie langnages can be extended i oa
Hexible and logically transparent manuner. In fact, taking advantages of reflection. we developed
a reflective, bt sequential, logic programming lagnage R-Prolog®. aud showed that lots of
extra-logical predicates I progravmung langnage Prolog can be redefined with a logically clear
setnantics[10, 11].

In roocurrent systews, partionlar attentions ave paid to reflection. especially in concmrent
olject-oriented models!. The reasou is that concurrent systems with reflective eapability Lave
e advantages than sequential systems, beeanse cowenirent systems can uaturally wodaol -
telligent beliaviers including co-operative works in real world activities, operating systeins, pro-
gramuning systeins with debugging facilities. and so on. Concirveney can also be imeorporated io
logic programming languages naturally. As its famons examples, we can see several connnitted-
cheice logic programming languages, being one useful embodinent of paraliel exceution of logic
programs. One defeet of counnitted-choice langnages is that logical feature of prograus caunot
clearly be grasped. The notion of constraints give logical view back to conenrent logic progrion-
tuing languages,

"For examwple, [13] Lots of attenpts in this area con be fonud o 4]

I this paper, we propose a veflective compntation model i conewrrent consbraint logic laoi-
gnages (called CCR) wlich allows conowrrent execntions of object level and weta level eows
putations, We can tnd a few atternpts to incorpovate reflective capability in conenrrent logie
langunge. for examnple (120 However, their approaches do ot anake a0 good use of reflection be-
cause they only deal witl veHection sequentially, This means that, when meta-level compmtation
s executed, object-level compotation is paosed. ool thos possibilities of veflective cowpatation
i ennetrrent systoms ane vestrictod nnfortunately, By allowing conenrveent retection, eotearrent
logie programming langnase will obtain wider application areas,

When we consider veflestive ='1Jlu|JILIiLr.iu11 b copenrrenl |il.llg'|1::.|_';-'. ljrnk'l"l.l':'r, several |}1'r1|:].s*.1m—i
arise. The level of abstraction s owe of the noportant watters. Rellection can be vegacded as
an attewpt to cross the Tnnguage level and boplementacion Tevel, which s anplessant in s seuse
of abstractuess, In ovder to keep ooy seginent woa snitable abstraction level o B-Prolog™.
wi n=eed fortnal semantics instead of stepping ionte uplenentation level, T this work, we also
adlopt the sate way, and we want to avoid to consider implewentation watters socll as mnber
of provesaors, processor topology, and so on, One of one policies is to bsld o wedel wloel does
nirt depened on those mattevs, and to enabile ns tooavgne foonally i soune abstract level, We give
tlhe operational semantios of COR as o forual wodel of frausition systen aod we are working ou
Furthier vesearchies based oo this medel. Not ouly o application areas. theoretival sesules e adso
capected becanse vellection is a kind of progranoning techniogue i a ciorent stats,

Another problemn we shonld solve is that of grannlarity of refiection. To realize conenrrent
reflection. what extent vetective comnputations bave influence shondd Te detersined cleacly, COne
exbrenae is global veflection sdopred 1 RGHO, aud another extrense 15 a loeal reHoeetion where
oudy the agent which cansed veflection = relevant to the reflective computation. Lo one muedel
we adopt o pronping fueilicy o the language Lo give aoscope that reflection ean hiave nflience,

The erganieation of this papeer s as follows. The teect secbion LIves i Liriet 1,-J{_|_|J_;|_11'=ll'.i{}|j_ o et
exctension to synbax of legle progemns proposed m R-Prolog. In Section 3. we introduce a siple
conemrrent constraint laupuage without reflection, OO0 sud give it an operational semantics as a
transition systein, In Section 4. we extend OO by grouping operator, meta-level reprosentation
of object-level oljects. and vellective capability. Finally, Seetion 5 eoneludes this pegier.

2 DMeta extension in constraint logic programs: preliminary

In this section, we review the basie notions aronnd meta and veHective facilities i logic progea-
ming, especially in R-Prolog®. R-Prolog* Lins sowe exlon syntax comparing to pare Prolog (Horn
clause logie). meluding “quote”™. =np”. and “dewn™ symbols?. It does not distingnisls hetwesi
predicate and fmction sybaols. and we deal with thein as predicate symbols, We type thow
as capitalized alphabetical words, ¢, g, Append aud Qsort ave predicate symbols, Terms iu
R-Prolog* ather than variabies e quoted and upped atomwie fonnulas. For exaunple, if P ois a
predicate symbals noad X s aovariable, POX) s an alomic foramla and “PC(E) aud #P0X) ave terms,
where = 18 an up sywbol and # = a0 guote symbol, We sometimes write pCX3 for “FOXD) . and we
use such terms as wanal terms o puve Prolog, which bas nsual fanetion symibols. Beeanse we
also use n:'a.pita.lizu-d Wul.'llzt f:)j_' V:\.[‘j_il.]]]:l_'l‘- fu].luw'lng r.lhr congventional IJ.nT...'q.r'lu:u_, we liave one move
“gquote” symbal § for variables not to lead to confusion. For example, if X = & vaviable, $X is a
qﬂntﬁ“ ".l'-'-'L'I'iFL]"I:I.l.:!., annd it does HITELS Twh:—n-'r' HES] wu'iﬂ.hll.'. Tunh s a0 constant. I;] l.]uI H{‘Lll'l{!'], WS s H
word forms to refer to atomae formulas and terms, and nse two extra-lingnistic symbols # and g
to denote np syinbal = and quote syviubol # ad $.

An ocowrrence of a variable i oa form s called guoted IF the variable ocours in o gquoted
termie. For example. ¥ is quoted in “PCECE), #Q0g(Y),a)). but X s not quoted, Viriables which
are not guoted s terin 1= called pon-geeted variables, Accordiug to those extension. equality

*Down symbol is culy nsed ma vestricted wanner. Thus, we do not rofer to it any wore in s papes.

theory characterizing nsnal Herbrand nniverse {equality and its negation) have to be extended in
aosintable wiy

Definition. 2.1 The equality theory ETM. which stands for Equality Theory with Meta-
extention, is the set of following forunlas;

19X = X1

VXN =YiA AN =Y, e lXL LX) = iYL Yol for every w-ary predicate
symbaol F.

VX, - YViAa-ooAaX, =Y, — Xy Xl — Py, Y bile for every an-ary
predicate synbol P inehuding = and £

49X N &gl . Yook fov every two different predicate symbols Foand 6.
G Wi #E X Do every terun § properly contaning X

G %X =Y — ulX =ul .

7o W ut = gt} for evory forue ¢ owitlont wonsguoted variahles,

8. Wit #= g=) for every two diffevent tertos £ and = such that ¢ does wot sabsoone s,

T ¥Wigt £ g for every two different teris ¢ ol 50 where it is not the ense both £ aud s are
variabiles,

10, WigX =q4Y — X =V,
0

Lo~ &0 vonditions in the above defimtion are sae as those of Clark’s syntactic cquality theory
(CET). and 6. ~ 10, conditions stipnlate the behavion of up aud quote symbaols,

'roposition. 2.1 Uneler the eouality theory ETM as i axiowm, the f:ﬂluwlns pPropositinns
can be proved.

1. For every formnla (X where X is free and non-quoted. {X = 2] by ¢ X — i)
2. For every formula 90X) where X is frec and gquoted, [X = thHery LX) — it
a

Upped and quoted terws are introduced 1n R-Prolog® in order to deal with meta-level objects
legally m its own langnage. A quoted term vepresents s “term” itself as a sylitactic abgect, It
is dealt with similar to gronnd tenns becanse we caunot substitute nonovariable terms for il as
shown w the above proposition. Tun other words, they are dealt with as a kind of data. Even for a
variable X. it is not a data in itself. but a quoted form $X s deals with as a data. Contrasted witly
quoted tesms, upped forms have somewhat dynamic featnres, Variables in these terns aee used
as same s thoss nsed in 'l'IJ.-CIJ-.[lil.;I'I".' Iugir].;;ngnugq_,—bﬁ exeepl for the levels of torins bound to then
are shifted wp. In other words, they carry an information frow object level to meta level. e
from meta level to object level. Therefore, we can wse uppesd form, for instanee “P(X). siwilar to
compontd terms in well-kunown Prolog.

At the end of this seetion, we wention models of the extended langnage, Let Ty be the set
of all terms withont pon-quoted vapiables, Then, we define an cgnivalenee velation on Ty

Definition, 2.2 An equivalence relation Jy on Ly is delined as a veflestive, symnetone wned
transitive closure satisfying the following condition.

1wt g, qf fur 2 Ty
2. For a pair of terus #.5 € Tyl it~y 5 then wf ~5,, us.

3. For an veary predicate syinbol B oand tevms £y tuobpe oo sy in Ty il t ~p,, s Toradl
Hl<i<nh then flt. oot~ flsi.oos5).

|

We call the gquotient set Ty /Ry ertewded Hecbrornd worioerse, wud models on the extended Her-
brand universe are called ertended Herboond models.

3 A simple concurrent constraint language C'Cl

I this section, we preseut asimple conenrrent constraint Tagnage withont vefective capability,
and its operational sewmantics s o transition system This is similar to the lagnage o [5] which
is & very simple example of e [9]. This languoage Lo o Flat GHC like syntax, aud it o only two
constraint (system) predicates, eguality (=) a6 negation (/=) for simplicity. As R-Prolog®.
it has “quote” and tup” symbols aned no fowetion sywbols, Loes npped atomwie fornmlas e
considered s l"1:l1|111ﬂ1l1||:] terms with fanectors T‘l':llnu. C]H.I'[hl"'ﬂ .H,]_jII: [PrengriLes i eleslinnee] =hanatlagr

tor those of GHO, Thus,

H =0 4 T i,
18 a clause where Hoas a nser-defined aton, Gy oL 0, e constraint atows (witl ouly systein
predicates). 0., I, ave body part wlich consises of vseradefinesd atons aond sonstrnines,

In the following argnments, we assie that the langinage (vorabulay) L consisting of pred-
jeate symbols, and so o, whicl will Le wsed is defined previonsly, Thns, when we use the
words programs | goals and sooon, 1 ks assonned dhat tlll'y s constreted wirlian tlie lnngun.gl;* L
inplieitly.

We assunme that each atom appearing smong the compitation has a aniegne wdentitier. Lilen-
tifiers are fte scouences of natweal mmbers, thevetore tlae set of ideotifiers F0 se detined as
N4 e a free nonnid over the sel of waines] munbers ¥, Each identifior is ateached to the
corresponding atown so that it refeet the tree strnetre of compntational state of lopie prograne-
ing. This weans the followings: for an stom with the dentifier o in a goal. if it Las eluld goads
G G then they have identifiors ol oen vespectively. An ordening relation < o [0 s
detined as tollows: for identifiers v, 0 there exists an weatifier & suely thal of = 7, 0 << 7L

A finite set of constraint atows is called Hevbeand theory or sunply comnstraind,

Definition. 3.1 {Agents, Configurations)

1. Let o be an ddentifior, A be s atonn s P e s po e, A friple (o AP ds ealled s
active agendt, ’

2. Let or be an idewtifior, ¥ be a finite set of variables, C be a constraint. A triple (o V0O is
called a coustruint agent,

3 A fiite seb o oof active agent and coustraint agend s called a configuration if, a) for each
agent. AG € ¢ with the wentitier o and any identifier 4 < o, there exists o constraint agent

AGT € o with the identitier 4, and b} for each active agent AG € ¢ with the ideatifier o
tliere is noowggend oo witly tlee ideadifior = o

]

The set of configurations (on the lanpuage L) is desoted by C The operational semantios of
CO0 s defined as A bransition celation on O

Definition. 3.2 A binary relation B on the zet of configrration C is defined as follows, Let

c.c €C.
e R ¢ = one of the following conditions holds;

1. For au active agent AG = (i, A P) € ¢ where A, Bs a0 onser-defined atow and 2 clause
ol € 1, o = (0= 00 {each ocomrence of variables are ones which does not
appear b ebsuel thal (0) C" = O A (ud, = wH) AG 15 conststent. and {h) every extendedd
Herbrand wodel of C = also ao extonded Hevbrand wodel of 32((0d; = w5 A G, where
15 the constraiut in the constraint agent AG = (e V.O) o = (A AGHU o VO (o
La,.r.. .. {evt - mn, By, P} wlere V= FV(A), 2 = FV{d).

2. For an active agent AG = {0 4,017 € ¢ where 4, s a constraint atom A;(1 < 7 < n)
such that, iF O s tle constraint i tle consteaint. agent AGy = (o, VO O = O A A, s
conststent, o = (A JAGLAG U e VO

3. For a constraint agent AG = (i V.O) € ¢ with its parent eonstraint agent AG =
fee VI DY A there exists a constramt atom C, such that O Fppyy Co D ey C, il
FYVIiC, UV £ 0 then o = (0 AGH U {{o. V. D ACLH) Similwly. if there exists a
coustraint atom O, sweh that O By Coo D mppg O and FVIC, UV £ B then
o = (A AGHU e VO A)

]

{C. R} is a transition system represeatiog (e operational seianticos of CCO. We write ¢ —

for « W ",

Let AG = {Id;. A;. P} be an active agent with nsersdefined atom in s confignration ¢, A
18 sadd to be in fudwee 1 there 15 po cliose in P satisfyiog the condition (a0 of 1, in the above
definition. AG 1= said to be suspended if (a) of 1. in the above defination is satisfied. bt (L] of
1. can not be satisted for any clanses satisfying (a). -

Definition. 3.3 For a transition systewn (OB for OO0 o configiration ¢ & C s called
termanal node i there exists no o anel that ¢ — ¢ Terminal nodes can be devided nto
following thiree groups.

L. A terminal node with no active agents is called a sweces node.
2. A terminal node suel thal some agents ave i failure is called o failure node,

30 A terminal node suel that all agents are suspended is called o deadlock sode,

4 Concurrent reflection in CCR

4.1 Meta-level representation of object-level objects in CC

In the computational veflection framework. it is vequired that the representation syeatein i meta-
level can describe the object-level compntational state, such that prograws and coustraints, We
asswine that sote special predicate (function] symbols are prepared to specify some ternns as
representations of object level states.

Sorts (or bypes) representing seiantic notions ave following reserved predicate syubols;

Id. Gid. Geal. Clause. Prog. Cnstr. Agents.

For one of the above reserved predieate syinbol F oand a term £ f(2) is called a typed terme sd
this weans that ¢ s a neta-level representation of type . For instance, goal (X)) is a0 typed
term. However, if we take a terin sobitvary, i cannot always compose a intaitively meaningtul
typed terin. Acceptable typed ferm shonld be able to nnify the meta-level representation of the
corresponding type.

Programs are vepresented as a list of clanse representation. Clawse veprosentations ave given

as follows: for o clawse ol = H ;= O.. ... G | Moo I, s representabion of 1% a0 fern
clanse(gH, [y, ... gt). e, o oaBL)) where gA i i {|l.:4:ut.13:| formn of an atom A. Thos,
a program P = {r_-.il _____ e_'{,,} s representod by a Tist [f'f]. . ._.:'f,,]. where ef, is the meta-level

represeutation of a clanse ol

Next., we coustder the meta-leve]l vepresentiution of coustraiots (Herbrand theory), Since a
constraint is a set of constraint atoms. weta-level representation of constraints can be given
as lists of gquoted constraint atows, For sstance. a constraint {X = fIYLY = 2.2 = u}
can be represented by a list [#(X=£(Y)), 8(¥Y=2) ,#(Z=a)] in meta-level. However, we canuot
naturally vepresent constraint agents and the connnnieation using eonstraints in meta-level o
this manuer. Thus, we adopt the following representation. For a constraint agent AG = (. V. C}
with ies children agents AGy. .. A, . the representation of AG, AG = [i¥. V.. [Xp..... X
where X, = AG, for all {1 < ¢ < n). Based on those definitions, active and coustraiut apents
are represented as follows, An active agont A7, = {Fd. AP} can be represented by AG, =
[I:Jf A, f‘"] and a constramt agent AG, = (Jd. V.0 can be represented by ARG, = (4. lff-']

Finally. we briefly deseribe the behavior of the mela-interpreter of OO0 . though we do oot
give its precise definition here, We assunie every agent in a configuration Lians 1ts own weta-
interpreter mi. Tlns, for an agent AG and its parent agent AG'. AG i3 assmmed to have its
own 1eba agent m.il:f-’lb. AG‘"]. Metaengents bave their own cuvironments, suel that progrions
and constraints, bat wsually they aee extensions of their olject-level connterparts. By using this
meta-interprerer, we can gel meta-confgnration of a coufigiration of OO For a conlignration
e the weta-coufigneation of o T e is defined as o new confignration bailt by replicing all agents
Ly thear teba-agents, The nuportant vespuirement o eta-interpreter of OO s fairhfuluess of
its behavior, which weans ¢ and T o bebaves exactly smne. We will disenss Chee e tuLecpretoer
matters i other papers,

4.2 Grouping and Reflection

As stated before, i COR. granmlarity problem of reflection i solved by gronping some agents
some respects, We make a slight syntactic modification on that of OO0 as follows. For clanses
in CCR . nzer-defined atom in its body can be annotated by the annotation operator & in ovder
by apskee Lloe sboune be s ovigin of new gronp. For an wser-defined atomn o, ke is called annotated
ator, Wi redefine elauses of CCR s that annotated atoms eonbd appear in its body, For
example,

P(X,Y) = X=[alX1] | Y=[bl¥1], &P{X1,Y1).

is a clanse of COR. As a result. agents st be extended so that cwele slom shonld bave o ki
of growp wl o group several atoms, Therefore. an active agont COR s defined as a i|1l'rl.vl']1'|:1.IJl|f"'-
{Id, Gid. A. P}, where I'd and Cid are wdentifiers such that Gid < Td, A s an aton, and P is s
progrant. Constraint agenuts in CCR are defined by a similar extension,

We now describe what is veflective computation in CCH. Reflection begins at the point when
a reflective goal (agent) is excented. which is defined amd declared by reflect detinition clanse
mentioned below. Active agents with user-defined atow which 15 defined by reflect definition
vlivse are called reflectioe agents. When o veflective agent A, = (e, 4, R(F). 87 with o parent
constraint agent AG. = {o, 4. V.0 is exeented. the dentifier. the gronp dentifier, the program
P oand the constraint O ave reibied and treanted as datain the reflective commpniration, At the sane

tie, following the growping nfonuation specilied in the reflect definition clase, data of some
vther agents are collected,
Reflect definition cluuses deseribe a reflective compmtation in meta level. Its head mnst have

i spocial form
Ne flectire flect femplate, other agents) |

where e flect s a veserves] proedicate syl ve flect fengdafe is a list whose clements arve
exactly one reflective atvmn and sone byped ternd, and other agents 15 oa variable at fist, For

example. & hst
[rit ... f) cidiEd), grd{ Gud). pragt P cvstr (€]

is a reflective template. When a veflective agent BA = (Fd, . Gud,. RifL) in o confimuration
¢ s execnted, the weta-confignration T e and the corresponding meta-level agent is composed
aceopding to the veflective templiate, The variable offoer ageads oentioned above s vsed with a
gpecial type agents ad aospecial fonction symbal fetele For instanee, following veflect definition
clinge deseribes that inforneation about agents with the saoe group G awe gathered s 2 by
throwing a constraimt X = feteh(Grd, agents(27} on varnable X

Reflect([r(...),1d(Id),gid(Gid),prog(P),cnstr(C)],X) :- | X=fetch(Gid,agents(Z}),

Then. the meba-level conpitation proceeds ina meta-configoration T o
We give the formal definition of the operational sesnantics on reflective congmitation in the
next subsection.

4.3 The operational semantics of ('CR

Hased on the transition systemn as the opeeational sensanties of OO0 defined i the previons
section. we will define the operational seuatios of CCR.

Configurations of OCH are defined similar to those of OO0 except that apents bave group
welentifiers, The set of i':illﬁgtll‘lititjllh of COR = writben Cyo Moetac-level representations defised o
Pl previows section is modified accovding ro this extension,

Now we define the operational sopnntios of CCR as o transition system on O

Definition. 4.1 A Dinsry relation ®poon the seb of confignration Cp s defined as follows.
Let e, o' € Oy,
e Ry o' = one of the following conditions holds:

1. For an active agent AG = (o0 A0 P) € ¢ where 4; 15 0 nser-defined atow and & clase
Ade P . A=s{H:. -G | By.... . By teach ocomrence of vavdables are ones which does uot
appear in o), such that (a) O = C A (ed, = uH) A G is consistent, and (b) every extended
Herbrand model of C 12 also an extended] Herbrand wmodel of 3z0{ud, = v H)AG), where O s
the constraint in the constraint agent 4G — fon VOO o = (o] AG U (vt (1 V0 L
LA B Py - 4. B, Py} where Vi = FV(4,). 5= FVic).

2. For an active agent AC = {nd . A Py € o where A, Bs woconstraint atom Al <4 < n)
such that, if ¢ is the constraint m the constramt agent AGy = (o, (V. C). C'=CAA s
consistent, ¢ = (] AG. AG U {{a 3 V.CY)

3. For an anuotated active agent AG = (e, A 8A; P} € o where Ay is aouser-defined aton and
aclansc el € el = (H : — (3 Oy) each oeorenee of variables ave ones wluch
does not appear in o). with the sane condition as in 1. ¢ = (A AGH U (e, {7 VO {0er
1,748 Py o - mud By, PY) where V= FViA;) 2= FV (1}, sl iV =,

4. For o copstradnt agenl AG = {00, V.00 € ¢ with ibs parent constraint agent. A =
{oe, .V D), 0f there exist= a constraint atom € such that CFppap Con D Fppar C ad
FVIC,)uV # 0 then = (\AGH U {{e, V0D A o)) Similady, if there exists
a constraint abom O swel that O Brpay O D Fppy ©) and FVICI UV 2 B then
tf = (A AGH U {{oa. A V. C MO)

For a reflective agent AG = {1 A B where 4; is s vefloctive atow #i7). ¢ 18 con-
strneted as follows, According ro the vellective teplate of its veflect definition clanse,
reflective form BA = R flect{Teogplate, Ver) is constmeted, aned weta-level agent M A =
(oM AY . BA PV is composed. Then, of is defined as TV AG) U {MA).

'.:.'l:

6. For a meta-agent (oo /9. M A7) with its pavent agent 4G, = (o, 2V .OL 3 the constraint
O s a bermn fedeli[gid, X} o = {;-"I.I{‘J_.G,.]] I {{r}_ AV.CAX =alAY }

We can define the success, failire andd deadlock nodes similar to those of OO,

Hetore concliding this paper, we will show one exiongde of refleotion. We inboodieesd the
grouping operator & in Section 4.2, DBy nsing veflection, this operator ean be resdefined oo
franework. The following detinition for the veflective predicite new—group define the saine b
havior as the grouping operator &.

Reflect([new-group(A),id(Td},gid(Gid),prog(P),vlist{V),cnstr(C)] X):= |
Y=fetch{Id,agent={[1)),
mi([Id,Td,&,P], [Id1,04d,V,C]),
parent (Id,Id1).

5 Conclusion

In this paper, we proposed o reHective conenrrent constrain langnage with the copability of con-
cnrrent reflection, Tr s expected that farther researell Dased on this frionework ean be eontimed
in the varions directions.

e of thens is o divection to several madters on semnantios. Althongh we ouly give an oper-
ational semanties of COR in this paper. other kinds of scnemtics from different viewpoints aee
worthy to be considered, for example. veactive beliavior semmnties amd denolational senanties
5. 8] Another interesting divection is exploring nseful applications of eoncturent vetlection. We
AL oW f!KEL'IlleII'IIIg several L-!X.H.u]pli'h of COR i sone nsefnl ;11)[]11('&1.1m| AL,

Acknowledgments

This rescarch was caried out as a part of Fifth Generation Computer System projeet of Japan.
I wish o thank Jive Tanaka. D W. Shin. '!t"unji Kolula and Mouenort Maeda for their frnitful
discussions and helpful comments,

References

(1] H. Abramson and M. H. Rogers. editors. Meta-Programming in Logic Progeammeng. The
MIT Press, 1980,

[2] M. Bruynooghe, editor. Proceedings of the Second Workshop on Meta-programming tn Logic
{META 23}, 1990,

(3]

4]

[8]

[9)

0]

[11]

[12]

[13]

5. Costantini, Semantics of & metalogic programuing laugnage. Iot. J. of Foandations of

Computer Seivece. Vol 1. No. 3. pp. 233 247, 1950,

ECOOP/OOPSLA. ECOQP/OOPSLA B0 Workshop, Reflection and Metalevel Archtectures
v A Mect-Oriented Programrmang, 1990,

H. Gaifiwau, M. 10 Maher, and B Shapire. Tleactive behavior semantios fir conenrvent.
constraint logie programs, I Logie Programming, Proc. of the North American Conference

W opp. 203 3600 LOED.

R Hill awed 0 W Lloyd, Analysis of meta-prograans. Tn Procecdings of the Waorkshap on
Meti-Prograsneng oo Logie Progewmonang (META 88) pp. 27 12, 1088,

I Maes sl D Nardn, editors, Mefa-leeed drelictectures and Reflection, Norvtl- Holland,
1088,

M, Morakang, A decliwative semantics of p:‘ﬁ'h]]l'] 1l'r,=:',il‘ JAredETIRLLLS with !‘n'l'pl"r.llet] AT,
I Proc. of FGCS 88 pp. 374 381, 1088,

VoA Siwnswar, Cowewrrent Consteoint Progromoing Langoeges. PUTY thesis, Canegie-
Medlon Tniversity, 1984

H. Sugana. Meta and Reflective Cotnpmtation in Logie Programs and Tts Semantics. In Mroe.

uf the Secand Workshop on Meto-Programmong in Logic, pp. 19 39, 1990,

H. Sugano. Semautie Cousiderations on Reflective Logie Progracs. lu Proe. of the Logie
Frograomeaeg Conferenee 0 ppo 95 104 FOCYT 19400,

I Tanaka, Meta-interpreters al vetlective operations in GHC. Tn FGOS S8 pp. 774 T8
10EE,

T, Watanabe ad AL Yonerawn, TeHection i an object-oriented coneurvent langnage. o
Peac. of ACM Couf. eu QOFPSEA. Septemlwer 1938,

