TM—1170

Modeling Group Reflection in a Simple Concurrent Constraint Language

Hirovasu SUGANO

FUITSU LABORATORIES, 11AS
1-17-25 Shin-Iamata, Ota-ku, Tokvo 144, Japan

E-mail: sugadiias flab. fujitsu.cojp

Abstract

We propose a reflective computation maodel COR based on & shuple concurrent coustraint programming
framework. Prindtive conumesication in CCR is carried out by means of publishing primitive constraiuts,
and a group reflection which allows concurrent exccution of both object level and weta level compnrations
is formalized. CCR does not depend on any hardware architectures and implementation issues to keep its
generality and abstractness, and we give its operational semantics in terms of a trausition system. Thus.
in our framework, complex behaviors of concurrent systems conld be model naturally and transpavently,

1 Introduction

Reflection and meta-level |Jru51'a_unui11g have vecerved much attention in 1:1'ngl'nmming J.TLI]EHILH;I.':" roserelies
for recent years [1, 2, 3, 5, 6, 8]. Particulasly, in case of logic programming. reflection pravides a nnifori
framework in which pure Jogiv laaguages can be extended i a Boxdbie and logieally transparent niannee,
In fact, taking advantages of reflection, we developed a reflective, but sequential, logic progranuing
language R-Prolog*, and showed that lors of extra-logical predicates in programming language Prolog can
be redefined with a logically clear semantics[8].

In concurrent systems, particular attention is paid to reflection, espedally in concwrrent oliject-oriented
muodels!, The reason is that concurrent systems with reflective capability have more atlvantages than
sequential systems, because concurrent systoms can paturally model complex beliviors inclueling ro-
operative works in veal world activitivs. operating systems, prograsming systems with delmgging facilities.
and so on. Coucurrency can also be incorporated in logic prograpuing languages naturally, A its Tunaons
examples, we can see several committed-choice logic programing languages, being one useful embodinent
of parallel execution of logic prograwms. Oue defect of conunitted-choiee Tanguages is tlat logical feature of
programs cannol cicarly be grasped. Tle notion of constraints give logical view Lack to concurrest logic
programming languages,

In this paper, we propese a reflective {‘umpnhi.rinn miodel in coneurrent constraiut I{hgi(‘ |a1|.g1mg'1-.-}
feadled CCR) which allows concurrent execntions of object level and meta level computations Iy mieans
of group reflection. We can find a fow atrewpts to incorporate refleerive capability in coneurrent logic
language, for example [9]. However, their approaches do not wake & good use of reflection heeanse they
ouly deal with reflection sequentially, This weans that, when weta-level computarion is excented, alsject-
level computation is paused. and thus possibilities of reflective compntation in coucurrout systems are
restricted unfertunately, Ty allowing groug reflection, concurrent logic prograumaing Jaugnage will obrain
wider application areas,

When we consider reflective computation in concurrent language, however. several problems anise. The
level of abstraction is one of the inprertant oiat ters. Reflection can e rogarded as an attempt ro eross the
language level and implementation level. whicl: is tupleasant in a seuse of abstractuess. Iu order to keep
our argument in & suitable abstraction level in R-Prolog®. we used formal semantics iustead of stepping
into iml]lﬂﬂl&tifﬁliﬂl! level. In this work. we also .‘LE]lJ]'rT the same WAy, amd we want to avoid to cousider

'For example, [10]. Lots of attempls in this area v e Tound in 4]

V4

inplementation watters such as nnmber of processors, processor topology, and so ou. Oue of our prilinies
is to build a model which does not depend ou those matters. aud ro enable us to argne formadly in some
abstrarct level, We give the operational sewantics of CCR as a formal model of transition system. and we
ave working on further researches based on this mwodel. Not ouly v application areas, theoretical resnlis
are also expected because reflection is a kind of progranuming teclinigue in a current statis,

2 (Concurrent constraint model CCR

2.1 Basic Syntax

Our language is based on & very simple example of co [7], and it is similar to the language in [4]. This
language has a Flat GHC like syntax, and it has only two constraint (system) predicates, eguation (=)
and its negation /=), for simplicity. As D-DProlog®, it has “guote” and "up” symbols aned oo fnpetion
symhbaols, i. e, upped atomic formulas ave considerad as componnd terms with functors i Prolog. Clases
and programs are defined similar to those of GHC, Thaus,

H:=- G G| Broe e, B,. (oo = 0)

iz a clause where H is a user-defined atom. Gy.. ... Gy ave constraiut atows {with only system predicates),
By, .. B, are body part whieh consists of user-defined atoms and constraints, In addition. we introduce
an annotation symbaol to incorporate grouping operation for agents. For clauses in CCR . usersdefined
atom in its body can be annotated by the aunotation operator &, in order to make the atom be an origin
of new group. For an user-defined atom o, ko is called annotared arom. We redefine clanses of OCR so
that aunotated atoms could appear in its body, For example,

POELYY - X=[alX1] | ¥=[b|Y1], EP(X1,¥1).

is a clause of OCR.

We next define agents in CCR. which are basic coustituents of computational states in CCR. We assume
that each agent appeaving among the computation has an identifier and a group idestificr. Ilentifiers ave
finite sequences of natural nunbers, therefore the ser of identifiers 10 are defined as V4. a set of finite
sequence of natural numbers. Each identifier is artached to the corvesponding atom so that it reflact the
tree structure of computational state of logic programming. This means the followings: for an atom with
the identifier & in a goal, i1 18 has child goals &y, Lo Gy, then they have identifiers al.. . .an respectively.
An ordering relation < on TD is defined as follows; for identifiors a, 3, if there exdsts an identifier & such
that af = 8, o < 3.

A finite set of constraint atoms is called Herbrand theory or simply constrasnt,

Definition. 2.1 {Agents, Configurations)

1. Let @, ﬁ e an identifier such that = _.::'I_ and A be an atonn A ‘t-;l'i[:I]lE' {l,’l,ﬁ. ,—1} 15 called an aefzpe
agenit.

2. Let a7 be an bleutifier such that o < 3. 17 be a finite set of variables, C be a constraint. and P he
o program. A quintuple {o. 3, P, 1) is called o constroint agent

3. A finite set ¢ of active agent and coustraint agent is calicd a configuration if, a) for cach agent 4G & ¢
with the identifier o aund any identifier o' < a, there cxists & coustraint agent AG' € ¢ with the
identifier o', and b} for each active agent AG € ¢ with the identifier n, there is no agent in ¢ with
the ideutifier = o

3

In 1. and 2. in the above definition. a is called the identifier of the agent, and J is called the group
identifier of the ageut. Coustraint agents correspond to local storages of groups of agenrs. The set of
configurations (on the language L} is denoted by &

2.2 Meta-level representation of object-level objects

T the computationsl reflection framework, it i required that the repredent g tion 2vstein in weta-level can
describe the object-level compuiational state. sieh that programs and coustraints. We assume that soume

3

special predicate (function} symbols ave prepaved to speeify some tenes as representations of object-level
STALES,

Sorts (or types) represewating seimantic uotions are following vescrved function svmbols, 1w upped
predicite syimbaols;

id. geoal, clause, prog. cnsir. agents. cvar.

Here, these sorts correspond to identifiers, goals. clanses. progratis, constraints, ageuts, connnnication
variables. respectively, Commmuication variables are nsed in weta-interpreters to commmuicate with its
parent agent. For oue of the above reserved function syuhol foand & tevm ¢, FiF) s called o typed tera and
this means that s a weta-level representation of rype f. For instanee, goal (] is & tvped terme However,
if we take a term arbitrary, it canuat always compose a intuitively meanivgfl typed term Acceptable
tvped term shoukl be alle to nuify the wetaslevel represeutation of the corresponding typee.

Frograms are represented as a list of elause reproseutation. Clanse representations are given as follows:
foraclansecl = H: - G.....Gn | Byee-o e B,,.. its represeutation of is a tovi clawse(gH. [5G, -
lgBr. oo gBal, where g4 is a quored form of ay atoe A Thas, o peogram P o= {ofy, ... ol b is vepresented
Ly a list [ely.....eln], where cl; is the meta-level representation of & clanse of;,

Next, we consider the meta-level representation of ronstraints. Since a constraint is a set of constraint
atoms, meta-level reprosentation of constraints can be given as lists of quoted constraint atows. For in-
stance, a constraint {X = f{}'),1 = £. 2 =] can be represented by alist [#(X=2{Y)) ,#{¥=2) ,#{Z=a)]
in metadlevel, However, we cannot naturally represent coustraint ageuts and the conuunnication using
constraints in meta-level i this wmaueer. Thus, we adopt {he represeuation with two compomouts, one
is & definite mmount of constraints awl the other is candidates for defiuire coustraints hefore cousisteney
check. The former has a form of [C,..... Cu]. where C, = [41.. r] s corresponding repuesentation
of coustraints in constraint agents of the identifier . The latter has the form of [Y,,..... X,] where
e en i are identifiers of children agents.

Finallv, we briefly describe meta-agents and mweta-confignrations, Here we use the notion of the meta-
interpreter of CCM. though we do not give its precise definition here. We assume that every constraint
agent in a confipuration has its own meta-agent with the meta-iuterprever mi, Thus, [or & constradul agent
Al = {,;11_.';13_ BV, {:'J- with its elildren agents ,4!.'_:',{1 s sl G s assned fo have 1ts own L1lt‘|H-f,H:-I]

DI S DAl £ N 1.k Oal

oy

where Og is a variable for constraint publication called communication varable to its parent agent. And
for an active agent AG; — {ap 4. A;) with its parent agent 4G, AG; is assuwmed to have its own meta-goal

miglan Pudi Co X,)

where X, | is a varables common with its parent. Group ideutifiers do not appear in Lhose wieta-imterpret ers
hecanse the parent relation is implicitely represeated by counnnnication varialbes, Meta-agents lave their
own envitonments, such that identifiers. group klewtifiers. programs and constraints. and nsnally they
are determined by their object-level counterparis. By using this meta-interpreter, we can get meta-
copfipuration of a comfiguration of CCR. For a coufiguration o the meta-confignration of o, e is defined
as & new configuration buile by veplacing all ageuts by their seta-agents. The haportant vequivement ou
meta-interpreter of COR s faithfuluess of irs beliavior, which menns cand T e belaves exnetly sane, We
will discuss the meta-interpreter matters i other papers,

3 Reflective computation in CCR

3.1 RBeflective definition clauses

We now describe what i refleetive compuration in CCR. Refleetion Bbegius at the poiue when o vefleerive
goal {agent) is execured, wineh is defined and declared by reflect definition elaase wentioned below. Active
agents with wser-defined arom which is defined by veflect defivision clanse are called reflectine agents, When
a reflective agent AG, = (o, B with a parent coustraint agent AG, = (0.4 P10 C) B executed,
the wdentifier, the grong wlentifier, the Jragri P oand the constraint O are reified and treated o daca
the reflective computation, AU the save thoe, following the grouping informstion specified fu the reflect
definition clavse, data of other agears of the same groap are colleeted,

Reflect defintiton clouses deseribe aoveflective computation mometa level, Ity head st ave o speoial
form

ﬁ'rf!r:‘f{rr_“rt:t_ynuf.. rerrr'J'Jwﬁp.fu!'r.. -nHrr'r,_uge':rhf:l .

where Rleflect is a reserved predicate symbel, re fledt _gool specifies the form of this reflect goal iu objeet
level. reflect templute is a list whose cleoments ave typed terms, and sther _ngents is & varialle at irst, For
example, a list [id(Id). gid{Gid). prag(P), enste(C)] is a refiective template. When a refleetive agent B4 =
(Id;. Gidi, R(T), F;) in a configuration e is executed, the meta-configuration | o of the subconfipuration
beginning at the parent of 1A, and the reflecitve meta-level agent is composed according ro the refleetive
template. Then, the meta-level compmtation procceds in a meta-configuration 7 o', and other agents out
of ¢ are executed in object level.

We give the formal definition of the operational semantics on reflective computation in the next sub-
section.

3.2 The operational semantics of CCH

The set of configurations of CCH is written Cy. Metasbevel representations defined 1o the provions section
15 modified according to this extension.
Now we define the operational semantics of OCI as a transition system on Cg.

Definition. 3.1 A hinavy relation R on the set of configuration Of is defined as follows., Lot
¥.1" € Ch.
TR

" e= one of the following couditions holds;

1. Foran active agent AG = {0, 3. A} € ¢ whose parent consteaint agent is AGo = (1. 4. .17 C). where
A is a user-defined atom and a clavse of € P ol = (H : = G| By..... B,.) (each occurrence of vari-
ables are ones which does pot appear in o}, such that (a) O = Calud; = e H)AG i3 consistent, and
(1O Ferag 35{_[wdi = a H)AG) " = [(WAG AGHW{{E P PV O nl, 3. By, oo 3. B }
where ¥ = F17(¢l.

2, Yor an active agent AG = (n, d, 4) € e where 4 is a constraint atony such that, if C is the constraint
i the constraint agent AGe = (LA P V.0 C' = O A A is consistent, v = (\{AG AG} U
{{a, 3. B,V,C")).

3. For an annotated active agent AG = {n.3.&4) € ¢ whose parent constraiut agent is 4G =
AL PV A = (N AGH U {0, 1 POV ol 0, AV} where V7 = FT70A)

4. For a constraint agent AG = (o, J. P.VIC) € e with its parent constraint agent AG' = (4.3 PV D),
if there exists a constraint atom O sueh that © Ferar Cu. D Feray Co and FTC,IUT £ 6, then
= (P ACTT U {{a, 3,V D A C)) Similarly, if there exists a comstraiut atow €, soch that
C W erar Ca. D hpray Cp aud FUIC UV £ 0, then 7" = (N AGH U i 370 A O)

5. For a reflective agent AG = {a, 2 H{T}} with its parent ageut AG' = {F. 2% PV aml the list
of its sibling agents AGa 7" is coustructed as follows, According to the reflective templare of its
reflect definirion claunse. reflective form HA = Hefleet{gR{T),. Template, AGeM) is constructed, and
meta-devel agent A4 = (31,3, BA) and MA = (4.8 PY V8 OV s composed. Thew 77 is

defined as [\ (AG")) U {M AL A} Here, 4G s a list of meta-agents of 4G (AG") is a set of
all agents with identifier grearer than 167

{Cr.Fr}is a transition system sepresenting the operational semantics of CCI.
Let A be an active agent with user-defined atom in a configuration 5. AG is said to be in faslure if

there is no <lause in P satistying the condition (a) of 1, in the albove definition. AG is said to be suspernded
if (a) of 1. in the above definition is satisfied. e {b) of 1. can nat be satisfiod for any clanses satisfring

{a).

Definition. 3.2 For a transition system {Og. Ry} for CCR. a conlignration 5 € Og is called fermemal
nude if there exists na 4" snell that 5 — =", Terminal podes can be devided lnta following three groups.

1. A terminal node with ne active agents is callod o sweeess node,

3

- A rerwinal node snch that seime agents ave in failure is cadled a foilure node,

3. A renuival node such thar all agents are snspended is called a deadlock node,

o

Before concluding this paper. we will show oue example of veflection. We intrduesd the gronping
vperator B in Section 4.2, By wsing veflection, this operator can be resdefined in our frmmework. The fol-
lowing definition for the refiective predicate new=group define the same beliavior as the groupiug operator
k.

Rgflggt(ngu-grgup{_ﬂ_} ,id(Id) ,Eid[ﬂid} ,PIDE{PJ ,onstr () ,Cl'al'{ﬂ)] AREIN
mi_c(Id, B, ¥1, C,[¥], 0},
mi_a(ldl, P, &, C, ¥,
econcas(Id, 1, 1di),
varlist(a, V17,
map_mi{Z).

Here, the predicate varlist returns the lst of vadables in o1 to V9o and mapomi applies weta-interpreter
mi to each elements of 2.

4 Conclusion

In tlis paper, we proposed a reflective concurrent constraint language with the capability of grouy refiee-
tion. In our framework, grouping is specified by weans of grouping operator given it program clause, Thns,
it naturally has & clear structure based on the computational tree of logic progranming, whicl makes us fo
analyze the bebavior of reflective computation. T is still insnfiicient, however, hecanse dyuamic grouping
is uot wodeled currently. This alse models & kind of non-atowie publication of constraines This makes
us to formalize the trely distribated enviranment on which group reflection is realized.

1t is expected that further research based on this framework can be continued in the varions directions.
Oune of them is a divection to several matters on semantics. Although we only give an aperalioual serantios
of CCR in this paper. ather kinds of seivantics fromw different viewpolutes are worthy to be considered. {or
example. reactive behavior semantics and denntarional semantics [4). Auother mteresting diveceion s
exploriug useful applications of group reflection. We are now examining several examples of CCI in weeful
application areas.

Acknowledgments

This research was carted out as a part of Fifth Genevation Computer Systemn project of Japan. 1 wish
te thank Jire Tanaka, T W Shin, Vanii Kelda and Munenor? Maeda for their fruitinl disenssions sl
helpful comments,

References

1 CAbroson ancd AL . orers, editors, sbi-ro TETRIATLY 1 Ledafrd NPT TTETTRATLY, . s,
H. Ab 1 M. H. Rogers. editors. Meta- Prog ing in Logic Pr mg. The MIT P
1080,

[2] M. Bruynooghe, editor. Proceedings of the Second Workshop on Meta-programming in Logic {META
90). 1990,

i3 ECOQP/OOPSLA. ECOOQFP/OOPSLA'SG Werkshop., Reflectron and Mefulevel Areltectures in
Cbject- Oriented Progromening, 1990,

{4} H. Gaifman, M. 1. Maher. and E. Shapiro. Reartive behaviar semantics for concurrent constraint
logic prograous, In Legie Programmang, Proc, of the North Ameriean Conference 80 pp. 333 - 3000
1989,

13] P. AL Hill and J. W, Llovd. Aualvsis of weta-programs, In Procendings of the Workshop on Meta-
Pr:.-ywmr.miny i Lnyic Pﬂ'ugru'rn.rru:'rr.y fMETA B8). [0 2742, 1088,

6] T. Maes and D. Nardi. ecitors. Meta-level Architectures ond Reflection. North-Holland, 1958,

7] V. A. Saraswat, Concurrent Constraint Programming Languages. PRI thesis, Carnegie-Mellon Uni-
versity, 1988,

[8] H. Sugano. Semantic Considerations on Refiective Logic Prograwms. In Proc. of the Logic Programming
Conference 20, pp. 95-104. 1COT, 1994,

[9] J. Tanaka. Meta-interpreters and veflective operations in GHC. In FGCS 88, pp. 774 7583, 1088,

[10] T. Watanabe and A. Yonezawa. Reflection in an object-oriented comenrvent langnage. Iu Proc. of
ACM Conf. on OOQPSLA, Septomler 1988,

