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Abstract

This paper describes an adaptive model-nased diagnostic mechanism.
Although model-based svstems are more robust than heuristic-based
expert svstems, they generally require more computation time. Time
consumption can be significantly reduced by using a hierarchical model
scheme, which presents views of the device at severazl different levels
of derail. We argue that in order to employ hierarchical models effec-
tively, it is necessary to make economically rational choices concerning
the trade-off between the cost of a diagnosis and its pre-:isi;:'-n. The
mechanism presented here makes these choices using a model diagnos-
ability criterion which estimates how much information could be gained
by using a candidate model. 1t takes into account several important
parameters, including the level of diagnesis precision required by the
user. the computational resources available, the cost of observations,
and the phase of the diagnosis. Experimental results demonstrate the

effecriveness of the proposed mechanism.
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1 Introduction

Model-based diagnosis is an approach that uses a behavioral specification of
a device [1, 3, 3, 9]. Although model-based systems are more robust than
heuristic-hased expert systems, they require more computation time. In gen-
eral, the computaticnal complexity of model-based diagnosis grows rapidly
with the complexity of the device model. This paper proposes an efficient
diagnostic mechanisim using a hierarchical model scheme.

Other researchers have investigated several approaches for model-based de-
vice diagnesis. Ope successful approach is to use probabilistic information,
e.g.. the minimum entropy technique (GDE [3], Sherlock [4]) or the focus-
ing technique [2]. However, in order to deal with large scale problems, it
is umportant to use not only those technigues but also a hierarchical model
scheme (XDE[6]). A hierarchical model scheme can reason about the target
device at multiple levels of abstraction: early in the diagnosis, an abstract
level model can be used to eliminate parts of the device {rom consideration,
while later a more detailed model can be uzed. Since diagnostic computation
at more detailed levels is generally more complex and expensive, the selec-
tion of an appropriate level involves making trade-offs between diagnosis cost
and diagnosis precision. In order to solve this problem, XDE uses a simple
heuristic algorithm that tries to keep the level of the model as high as possible.
This may not always be the most efficient strategy, 25 shown in the empirical
comparison with this paper's more adaptive mechanism.

Consider as an example the problem of diagnesing an electronic device com-
posed of several boards, each of which is composed of several chips. Sometimes
z field service engineer may only want to know which board to replace, while
at other times the faulty chip must be pinpeinted. Diagnostic systems should
be flexible enough to adapt to the required diagnosis precision.

[hzgnostic systems should also minimize the total diagnosis cost, which we
measure here in terms of time as the sum of the observation cost and the
computation cost. The observation cost depends on the instruments being
used. For example, the manual method of using 2 logic analyzer to capture a
digital signal from a device is expensive, whereas an electron-beam tester can
easily observe a signal anywhere within an LSI chip. In the manual case the
number of observations taken will greatly affect the total diagnosis cost, while
in the latter case the total cost will mainly be determined by the computation



cost. Thus a diagnostic system should respond to both the observation cost
and the computation cost.

This paper presents a diagnosis mechanism that takes into account four pa-
rameters: the phase of diagnosis, the computational environment, the cost of
ohserving the target device, and the required diagnosis precision. Section 2
gives an illustrative example of a hierarchical model, and shows how infor-
mation gain can be measured at various levels. Section 3 proposes a model
diagnosability criterion for estimating how much infermation could be gained
from the various models. Section 4 proposes an adaptive diagnosis algorithm
based on that criterion. Section 3 concludes with suggestions for several gen-
eralizations and exteasions of the algorithm.

2 Diagnosis with Hierarchical Models

In most conventional hierarchical model-based approaches {1, 6], the structure
of a device is represented both as a physical hierarchy and as a logical (func-
tional) hierarchy. The required diagnosis precision is usually represented as
a level in the physical hierarchy. Taking the example of the device shown in
Figure 2-1, if the required diagnosis precision is the chip level, then a diagnos-
tic system tries to find the faulty chip(s) among the three chips €y, C3, and
Ca.
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Figure 2-1 Hierarchical structure

In general, physical hierarchies and logical hierarchies have different struc-
tures [1]. To simplify discussion, this paper assumes that they have the same
structure, and also assumes that there is only a single fault in the target de-
vice. However, the proposed techniques can easily be extended to remove these
assurnptions.



Consider the hierarchical model scheme shown in Figure 2-2. A full adder
(a) is composed of five subcomponents, and an 8-bit ripple carry adder (h)
comprises cight full adders.
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{a) Full Adder (b) &-bit Ripple Carry Adder

Figure 2-2 Example of Hierarchical Model Scheme

There are 236 distinct models for device (b); of the three shown in
Figure 2-3, model X is the most abstract, model Z is the most detailed, and
model Y lies between the two. In general, diagnosis from a more detailed
model is more expensive, but it is also more specific. The selection of an ap-
propriate level for a given diagnostic situation should take into account how
much information can be gained at each different level of model detail. The
next section presents a method of estimating this information gain.
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2.1 Required Diagnosis Precisien and Entropy

Several existing systems [3. 4, 6. 7] use the entropy of a set of suspected com-
poenents in order to estimate the expected information needed to complete a
dizgnosis. However, the expected infermation generally depends on the re-
quired diagnosis precision, as illustrated by the faulty 2-bit ripple carry adder
shown in Figure 2-4. Changes of diagnostic status arc shown at two different
levels: (a) the function-level, and (b) the gate-level. The suspected compo-
nents are thown hatched; white components are no longer suspected. The fault
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probability P(C) for each suspected component ' is also shown. The figure
gives the initial diagnostic status, and the status after each of two different
sets of observations, A and B.
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Figure 2—4 Changes of Diagnostic Status

Figure 2-4{a) illustrates the case where the required precision is the function-
level, If we get observation A, showing that F) is normal. then the diagnosis is
over. But even if we get chservation B, both Fy and Fy are still suspected. At
this level. chservation 4 seems to be more informative than observation B. But
in Figure 2-4{b), where the required precision is the gate-level, cbservation A
reduces the the number of suspected compenents to four, whereas ohservation
B reduces it to three, At this level observation B is more informative than
A. This contrast illustrates the importance of taking into account the desired
diagnosis precision when measuring the information gain.

I order to measure the information gain according te the given precision,
we calculate the entropy for each level in the physical hierarchy. For instance,
in the above example, the entropy lor the function-level (Efr} and lor the
cate-level (Eg) are defined as follows. and are expressed in terms of bits.

Ep=—)_ P(F)log P(F)) Ec = =33 P(Gy)log P(Gy)

Figure 2-3 sumnarizes the recuction of entropy achieved by the ohservations,
in both levels of the above example.

1.0 Ere 0.0 a3z Ec 0.0

—1 Reduction ':Heducticm
Obs. A =3 1,00 Ohs, A i 11.32
Cbs. B P~ 1008 Obs. B [—— 11,74

Figure 2-5 Changes of Entropy

.



The entropy al a given level is regarded as the remaining information re-
quired to complete a diagnosis at that leve] of precision; when it has been
reduced to zero no further information from observations is required. The
algorithm proposed here chooses the appropriate figure for entropy according
to the level of precisien required. For example, if the required precision is the
function-level, it tries to reduce Ex, whereas if gate-level precision is required,
it will usze the gate-level entropy, Fe.

3 Model Diagnosability Criterion

This section introduces a model diagnosahility criterion that provides an es-
timate (in terms of entropy) of the most detailed diagnosis that is achievable
using a given model, .

Consider the three models for 2 2-bit ripple carry adder shown in Figure 3-1.
Assume that the required diagnosis precision is the gate-level and that each
of the ten gates has the same fault probability of 0.1, (Thus under the single
fault assumption the probability failure for each funciion-level component, F},
is 0.5.) This section works through the calculation of the minimal entropy
achievable by models A, B and C.
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Figure 3-1 Models for a 2-bit Ripple Carry Adder

Using model A, if enough ohservations are given, it is possible to find a bro-
ken function(Fy or Fa), but the faulty gate in the function can never be pin-
pointed. I for instance the fault component is Gy, the svstem can only con-
clude that the faulty component is Gy, Gia, Gig. Gyy, or Gy with probability
0.2 each. With model A the gate-level entropy can never be reduced below
3-(—0.210g 0.2) = 2.32. No matter how many further observations are given,
the svstem still cannot obtain the additional 2.32 bits information needed.
Using model B the system can (given enough observations) find the faulty
gate provided it is one of the five gates, Go; (i = 1,2,3,4,5). If not, the
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entropy can not be reduced to less than 5-(~0.2log0.2) = 2.32. Thus the
expected lower bound for the entropy reduction is:

.5.2.32 + 0.5-0 = 1.16

Using model C, the faulty gate can always be found (given enough observa-
tions), so the expected lower bound for the entropy reduction is 0.

As an estimate of the completeness of the diagnosis achievable by a model,
we define the model diagnosability D{A} for a medel Af. The maximum value
of 1.0 indicates that complete diagnosis always achievable.

current entropy — expected lower bound for the entropy reduction with model M
current entropy

D(A) =

The ‘current entropy’ expresses the expected information needed to complete
a diagnosis. The numerator indicates how much information is expected to be
gained by using model M.

In the example above, current entropy is 10-( — 0.1log 0.1} = 3.32 at
the initial stage of a diagnosis (Figure 3-2(2)). Therefore, the D(A) for each
model is calculated as follows:

D{modcld) = (3.32 - 2.32)/3.32

0.30

D(medelB) = (3.32 — 1.16)/3.32 = 0.63
D(medelC) = (3.32—0.00)/3.32 = 1.00

. Figure 3-2{h) summarizes these results. Tt shows that a diagnosis with model
A can gain at most 30% of necessary information, but model C is powerful
encugh to gain all the necessary information.
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Figure 3-2 Model Diagnoesability in the Initial Stage



Next assume that the set of suspected components has been narrowed down
by some ohservations to those hatched in Figure 3-3{a). Then the values for
D(M) change to those shown in Figure 3-3(b). Now no information can be
gained if model A is used, model B and C have the ability to gain the all
information needed to pinpoint a faulty gate.
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Figure 3-3 Model Diagnosability in the Later Stage

4 Adaptive Diagnosis Mechanism

4.1 DModel] Selecting Criterion

The previous section introduced the model diagnosability criterion; this sec-
tion presents an adaptive diagnostic algorithm called HIMA that uses that
criterion to select an appropriate model at cach stage of a diagnosis.

Let D{M) be the diagnosability for model Af, and let € be the average cost
of an ohservation (in terms of the time required to make it). The diagnostic
process consists of several observation/computation cycles {also called phases),
so T(M) + C is the expected cost for a cycle, where T'(M) is the expected
time to calculate the suspecis (given an observation) under model M. We
assume that T(M) can be estimated empirically or analvtically, and that C is
a model-independent constant. To choese an appropriate model, we evaluate
each model by using the following eriterion:

E(M) = D(M)}(T(M)+C)

At each diagnostic cycle the model with the greatest valuc for E(M) is selected
as the best one.

This diagnostic mechanism adapts its choice of level according to several
factors: the phase of the diagnosis, the given diagnosis precision, and the costs
of observation and computation. The remainder of this section is a worked



example illustrating the algorithm’s behavior under two different economie sit-
vations: first where the cost of observations is very low rclative to computation
time, and then when it is relatively high.

Returning to the three models of 8-bit ripple carry adder of Figure 2-3,
assumne that the required diagnosis precision is the gate-level and that the
expected computation time for each model iz as follows. (These values are
derived empirically using our diagnostic engine[7).)

T(model X) = 0.30 (sec), T(model ¥)=0.39, T{meodel Z) = 1.22
First consider the case where the cost of observations is relatively low, le.

C <« T(M) for each model A. Then E(M) can be a,pproumated as:
E{M}) = D(M)/T(M).

e e e

{a} Initial Stage
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Figure 4-1 Examples of Diagnostic Stages

Figure 4-1(a) shows the initial stage of the diagnosis, when
ail =

gates are suspected with the same probability (1/40). At this stage model
X is selected because it has the largest figure for E{Af), as shown in Table
4-1{a). Model X can gain about 36% of the necessary information at a lew cost.

Latc_r_ftave Suppose that after some observations, the diagnosis has pro-
ceeded fo the state shown in Tigure 4-1(b). The values for E{M) in Table
4-1{b) show that model Y should now be selected. Model X can gain at most

30% of necessarv information, and model Z is relatively costly.

Table 4-1 E(M) for each model (C< T(M})

[ Model | D{A{) | Cost | E(M] Model | D(Af) | Cost | E(M)
X 0.36 | 0.30 | |1.86] % 0.30 | 0.30 | 1.00
Y| 062 [o089 ] 138 Y | 0.63 | 0.39 | [3.42]
Z 1.00 | 1.22 | 0.82 Z 1.00 | 1.22 | 0.82

{a} Initial Stage (b) Later Stage
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This example shows the HIMA algorithm's ability to change the level of the
model appropriately at each cycle.

Now consider the opposite case, where the cost of observations is high rel-
ative to the computation cost, ie. T(M) < C for cach model A1, In this
case the diagnosis cost is barely affected by the computation cost T(M). For
example, if C = 100.0 sec in the above example, then the diagnosis cost (the
sum of the observation cost and the computation cost) for models X, Y and 2
are 100.30, 100.39 and 101.22, respectively. Table 4-2 shows that model Z will
be selected in both stages of the diagnosis. Intuitively this shows that when
observations are expensive, it is worth maintaining a very detailed model at
all times, whereas if observations arc cheap, this detail is needed only in the
later stages,

Table 4—2 E(M) for each model (T(M)< C)

Model | D(M) | Cost | E(M) Model | D(AM) | Cost | E(M)
X | 036 |100.3| 0.0036 X | 0.30 |100.3 | 0.0030
Y | 0.62 |100.4 | 0.0061 Y | 0.65 | 1004 | 0.0065
z 1.00 | 101.2 |10.0099] Z | 1.00 |101.2 | [0.0098]

(a) Initial Stage (b) Later Stage

This contrast illnstrates the HIMA algorithm’s ability to adapt to the dy-
namic economics of the observation and commputation. Computation cost ob-
viously depends on the computing machinery available; a 1-MIPS computer
will require far more time than a 100-MIPS machine, so it is important that
this factor is specified as an input to the algorithm,

Finally, suppose that the required diagnosis precision were changed from
the gate level to the function-level in each of the two examples above. All of
the three models have enough diagnosability, so, model X would be selected
because it has the least expected cost among the three. This illustrates the
adaptability of the HIMA algorithm to the required diagnosis precision.

4.2 Model Selecting Algorithm

In general, there are huge number of possible models for a given hierarchical
model scheme and target device, and this number grows exponentially with
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the number of components in the device. Since it is impracticable to test all
possible models, we attempt reduce the number of medels considered. The fol-
lowing pseudocode for the HIMA algorithm uses the model selecting criterion
to achieve this end.

M +— Most abstract level model;
while (there is an expandable component ¢; in M and E(ezpand(M, c)) > E(M))
M — exrpand(M.e);

Expandable components are those that have models at a more detailed level,
and expand(M,¢) is a2 model obtained from model M by replacing compo-
nent ¢; with the components that comprise ¢ at the pext level below. For
example, in Figure 2-3, model Y = expand(Model X, fz) (fr is the seventh
full-adder from the left). No compenent of model Z is expandable. The algo-
rithm requires time linearly proportional to the number of components in the
model.

4.3 Experimental Results

We evaluated the performance of the HIMA algorithm on a 16-bit adder
represented by a three-level hierarchical model scheme. The nwmber of com-
ponents at successive levels was 2, 32 and 160. The required diagnosis precision
was set to the most detailed level.

‘['ne performance of the HIMA algorithm was compared to the two obvious
“strawman” algorithms that could be used in two extremely different diagnos-
tic environments. Results show that the HIMA algorithm outperforms bath
strawmar algorithms, even under the conditions most faverable to each.

The first strawman, FIX, uses a fixed model throughout the diagnostic pro-
cess, deterrnined by the required precision (so in this case, the most detailed
level model is always used). The other strawman algorithm, AHAP, keeps the
level of the model to use as high as possible: it changes to 2 more detailed level
only if there 15 no possibility of zaining information using the current model.

Single faults were generaled randomly, znd the average cost (the sum of
computation cost and observation cost) of pinpointing tze faulty component
were measured. The experiments were performed with three different expected
observation costs (Imsee, lsee and 100sec). The results shown in Table 4-3
show that the HIMA algorithm performs best in either case.

10



Table 4-3 Average Diagnosis Cost (sec)

Algorithm || Expected Observation Cost
1 msec 1 sec [ 100 sec

FIX || 401 11.3] 734.0)|
AHAP 1.3 21.7| 2041.3
HIMA | 0.8 8.1 730.8

5 Discussion

The technique described in this paper adapts to several factors: the required
precision, the given computation power, the observation cost, and the phase of
diagnosis. Although some simplifying assumptions were made to the diagnosis
problem, the proposed mechanism can naturally be extended to more general
cases, which have natural justifications in the real-werld diagnosis tasks. First,
the diagnosis precision need not be restricted to a fixed level in the physical
hierarchy. For example, according to the availability of spare parts, chip-level
precision may be required for some parts of the target device. and board-level
precision may be required for the others. Second, the physical hierarchy and
.the logical hierarchy need not be identical. Third, whereas we assumed that
the observation cost is model independent, this need not be the case: the
output signal of a whole board may be cheaper to observe than the output
signal of an intermediate chip.

The HIMA algorithm can be extended in several other ways. First, in some
dornains it may be preferable to modify the model diagnosability criterien,
becanse it does not estimate the number of required observations. For example,
even if D(M) = 0.8 for a certain model M, a diagnosis with the model may
" require dozens of observations to gain this 90% of the necessary information. so
the criterion does not always estimate the diagnosability exactly. Second, the
algorithm requires estimates of the computation cost and the fault probability
for each compenent. Inductive learning techniques i8] or analytical methods
can provide this.
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