| ICOT Technical Memorandom: Tlﬁ.ﬂ|-115?_rr

TM-1 157

Constraint Analysis and Plan Generation of

Constraint Compiler for Design Problems

by
Y. Nagai (Toshiba) & 5. Terasaki

February, 1992

© 1992, 1COT

Mita Kokusai Bldg. Z21F (0333456-3191 5

ICOT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Constraint Analysis and Plan Generation of Constraint
Compiler for Design Problems

Yasuo Nagai
Information Systems Engineering Lab., Toshiba Corp.
70, Yanagi-cho, Saiwai-ku, Kawasaki, 210, Japan

Satoshi Terasaki
Research Center, Institute for New Generation Computer Technology
Mita Kokusai Building, 21F
1-4-28, Mita, Minato ku, Tokyo, 108, Japan

SUMMARY This paper deals with constraint analy-
sis and plan generation of a consirainl compiler for design
problems. ' Knowledge compilation is & technique by which
knowledge about a domain [facts and theories) is stored in
declarative form and 15 applied using problem solving mech-
anisms. We introduce constraint compilation 2s a knowledge
compilation technigue that focuses on the concept of con-
straint. ar constraint compilation for design problems is
:iﬂiign ed Lo Ltransform the input design specifications into the
design plan, assuming that the structure of the design object
has been determined. First, we describe the basic concepts
of knowledge compilation, knowledge compilation for design
problems, and design plan generation through this method,
assuming the target architectore of the design expert system,
Next, we describe an actual constraint compiler that applies
the concept of constraint compilation to mechanical design,
MECHANICOT. In particular, we describe an overall flow of
the constraint compiler, concentrating on algerithms that an-
alyze constraints and generate a design plan, and describe the
process of design plan gencration through constraint compila-
tion, Finaily, we give details of design plan generation using
this compiler, giving as an example the problem of gear unt
design.

1 Introduction

A large quantity of knowledge that depends on specific
design objects is required to develop knowledge-based
systems for design problems. Therefore, knowledge rep-
resentation specific to the design problem and efficient
problem solving method that uses this knowledge are key
points for research on a tool for building design expert
systems (141

In this case, we want to avoid describing design knowl-
edge as existing procedural programs and avoid forcing
system huilders to describe design knowledge in a form
which is dependent on the specific problem solver. In
most design knowledge, relations between objects may
be represented using symbaolic descriptions such as math-

{This paper describes research done mainly at the Filth Fe-
aearch Laboratory (Intermediate stage fram 1985 to 1989) of the
Inatitute for Mew Seperation LTnmput.r.r Tl'.-r‘hhr‘ﬂng"" -I:IGDT].

ematical formulas. When we compare declarative and
procedural representation of design knowledge, the for-
mer provides a higher-level and more natural deseription
than the latter. In short, prnceduml prrﬂﬁPnLaLiml must
be given explicitly, and declarative deseriptions need not
be.

Here, relations between objects are represented as
consbrainks Lo cnnw:uin:ut.]}' hiandle df.‘ﬁllg_ll klmwln.-dgt: LT
& declarative representation. Accordingly, declarative
knowledge representation is a more sophisticated repre-
sentation than existing procedural knowledge represen-
tations and is effcetive for building knowledge-based sys-
tems for design problems.

Therefore we can expect to reduce the time spent
in unnecessary searching and to improve the efficiency
of cur problem solver because the solution space to be
searched can be resiricled by means of the effective uti-
lization of constraints.

We will focus on this advanlage of constraints and con-
sider the realization of constraint-based problem solving
for design problems, while regarding knowledge compi-
lation as the most important technical issoe,

We shall realize knowledge compilation by focusing
on the concept of constraint; we define this technique as
constraint compilation. In design problems, constraint
conpilation can generate an efficient design plan auto-
matically, using design knowledge represented declara
tively. Before discussing knowledge compilation in de
tail, we describe a formalization of knowledge-based sys-
tems [or design problems and the architecture of design
expert systems in Section 2.

Section 3 gives an overview of knowledge compilation
and the knowledge compiler, with emphasis on design
problems.

Seetion 4 deseribes constraint analysis and design plan
generation of a constraint compiler. We deseribe the
characteristics of the mechanical design problems which
have guided us in analyzing the problem. Then we define

in detail the process of design plan generation through
constraint compilation and describe the constraint com-
piler. Next we describe an actual constraint compiler
that applies the concept of knowledge compilation to
mechanical design, MECHANICOT. We give the details
of constraint analysis and design plan generation using
MECHANICOT, giving as an example the problem of
gear unit design.

Finally, related works are provided in Section 3 and
current research and future regearch are deseribed in See-
tion B,

2 Target Architecture of Design Expert System

2.1 Formalization of Knowledge-Based Systems
for Design Problems

Tong {%%) presents a process for developing knowledge-
based systems that can be reconstructed. This is based
on factoring the space of detailed problem solving sys-
tem specifications into three levels of specification: the
knowledge level, the function level, and the program
level. Newell ('8 describes and distinguishes the knowl-
edge level and the syinbol or program level. He views
these as levels for deseribing computer systems.

According to their formalization, we will divide a for-
malization of knowledge-based system for design prob
lemns into three levels: the knowledge level, the problem
solving level, and the implementation level, as shown in
Fig. 1. Our problem solving level corresponds te Tong's
function level.

AL the knowledge level, after the type of design prob-
lem is determined., the corresponding solution space, de-
sign theory, and design specification are formalized. At
the problem solving level, the constraint-based problem
solving mechanism is determined according to the de-
sign process. This problem solving mechanism can be
realized by applying various solution methods such as
problem decomposition, constraint propagation, failure
recovery, (hicrarchical) generate & test, least commit-
ment, and (linear) approximation method (11, At the
implementation level, knowledge-based systems are re-
alized using expert shells composed of knowledge rep-
resentations, such as rule and frame descriptions, and
programming languages, such as logic programming and
constramt logic programming languages, according to
the fixed architecture of these systems.

Furthermore, consideration of a modeling of the design
process is required to realize a problem solving mecha-
nism for design problems using a constraint satisfaction
process 130 (141 Fig 2 shows a model of the design
process for routine mechanical design. This routine me-
chanical design problem consists of editing pre-existing
designs, and is based on this design process model 151,
The structure of the design object is determined by com-
bining the components or is according to predefined de-

sign styles of the design object. In this case, the struc-
tures are determined by retrieving the appropriate de-
sign style from the knowledge base. The components
are implemented using standard parts found in catalogs
or non-standard parts from the design.

2.2 Architecture of a Design Expert System

Research has been conducted on architectures consist-
ing of primitive tasks for routine design, called generic
tasks for design 4 . 07} These architectures provide
the ability to structure knowledge for the varicus design
descriptions and provide problem solving for the design
to reduce the gaps hetween the functions for the design
process at the knowledge level and the functions sup-
ported by expert system building tools at the program
level. Howewver, it seems that they are insufficient to han-
dle the constraint representation (300 for this generic
task. Therefore, we investigate the architecture of an
expert system for routine design using the constraint-
based problem solving mechanism (19, The architecture
of design expert systerns which use the constraint-based
problem solving mechanism is composed of the following
primitives: the generator, the propagator, the tester, and
the failure recovery module, as shown in Fig. 3. This
problem solving mechanism is extended based an a gen-
erate & test method.

3 Knowledge Compilation
3.1 Knowledge Compilation

Knowledge compilation is a commeon term in artificial in-
telligence research on problem solving, model-based rea-
soning (MBR), machine learning, software engineering,
and automatie programming (2 - (9 . (11 In Ref.
{9). “knowledge compilation™ takes on a broader mean-
ing and can be classified into al least four alternatives:

* The process of shifting from a declarative to a pro-
cedural form of knowledge representation.

The process of automatically transforming explicit
but inefficient knowledge representations into itn-
plicit but mare efficient form.

» The process of producing knowledge based systems
from higher level specifications.

¢ The process of automatically restructuring existing
software systems to produce new systerns thal ex-
hubit an increase in efficiency or usability, a change
in representation level, and a reduction of reasoning,

4.2 Kopowledge Compilation for Design Frob-
lems

In this section we define knowledge compilation for de-
sign problems (14) . (15

In mechanical engineering there are many cases when
design systems or tools arg provided for each design ob-
ject. In fact, the mdividuality of the design object makes
it difficult to abstract, arrange, and utilize the design
systems or tools because the corresponding model and
analysis method for the object often change when the
structure of the design object changes.

At present the individualized design systems or tools
for mechanical design implemented using a typical pro-
cedural language such as Fortran are inconvenient to use
and inefficient for designers.

To reduce the inconvenience and inefficiency of exist-
ing design environments, we need to provide an envi-
ronment in which the designer can apply the approach
used in the existing compiler (1) Lo perform mechanical
design and Lo construct design systems or tools easily.

By dividing design knowledge into knowledge about
the design object and knowledge about problem solving
we may handle both types of knowledge effectively and
improve the efficiency of the problem solving mechanism
of the whole system, Viewing knowledge and require-
ments as constratnts, we can regard design problems as
constraint satisfaction problem 5, Knowledge transfor-
mation 15 a very important technique for handling thess
independent kinds of knowledge uniformly, to generate
design plans according Lo primitives of constraint-based
problem solving, and to improve the efficiency of prob-
lem solving.

We will consider two methods for transformations.
The first method is knewledge compilation, which gen-
erates design plans by analyzing and compiling knowl-
edge about design objects and about problem solving
and which builds design systems. It is suitable for para-
imetric design where the structure of the design object
is fixed, and an efficient problem solving mechanism can
be pealized (111, (15) . (235

The second method is to translate knowledge about
object models and knowledge about problem solving into
intermediate descriptions and to interpret these interme-
diate descriptions. This is an interpretation approach.
which corresponds to the interpretation of a design plan.
Furthermore, 1t is possible to interprel a design plan
generated during problem solving efficiently. This is
done by reusing knowledge derived beforehand through
knowledge Lransformation techniques {including the de-
sign plan and its intermediate description).

At fiest, we focus a design problem where the struc-
Lure of the design object and knowledge about problem
solving are fixed. Therefore, we adopt knowledge com-
pilation as a knowledge transformation technique. In
our research, knowledge compilation means to transform
knowledge representation {problem specifications) at an
abstract level to representation at a more concrete jevel;
from knowledge level to problem solving level and from
knowledge level to implementation level (1. (151 The

purpose of this method is to improve the efficiency of the
utilization of various kinds of knowledge and the problem
solving mechanism.

We consider knowledge compilation a technique by
which knowledge in declarative form, such as facts and
theories, about the domain is stored and by which knowl-
edge linked to an efficient problem solving task is gen-
erated. This stored or generated knowledge is applied
and utilized by interpretive procedures for performing
a task in that domain. Therefore, more efficient proce-
dures specific to the task domain can be generated using
the knowledge compilation technique. Furthermore, in
our opinion, knowledge compilation can help knowledge
acquisition to the extent that it helps users to construet
new knowledge-based systems easily ("9 and can facili-
tate knowledge reuse,

4 Constraint Compiler for Design Problems

We define knowledge compilation techniques that focus
on the concept of constraint as constraint compilation
and describie an actual constraint compiler that applies
this concept., In this case. we represent a set of con-
straints in terms of a constraint network. Constraint
networks involve a set of n variables or parameters and
their domains of finite or infinite values (.

4.1 Overview of Constraint Compiler

In Ref. (8]}, a constraint compiler is intended to op-
tinuze constraint propagation and to improve the ef-
ficiency of constraint propagation for large constraint
neiworks by performing a dependency analysis of con-
straints. In other words, it makes existing paths of con-
straint processing (constraint propagation) more efficient
rather than r.':uilhling new pnths_

Our constraint compiler transforms the input design
specifications into the design plan by compiling de-
sign knowledge and problemesolving heuristics, assuming
that the structure of the design cbject has been deter-
mined 18,

Since the constraint compiler can generate a design
plan by analyzing dependencies among constraints, de-
sign knowledge can also be represented declaratively,
The general low of the constraint compiler is shown in
Fig. 4. The compiler contains four main procedures:
lezical and synlar analysis, mheritance relations analy-
sts {by gencralion of class definition lables), constraini
analysis (by both genernlion and wpdaic of tables and
delermunalion of a constrami analysis sequence), and de-
sign plan generation.

Inputs to this constraint comnpiler are the design re-
quirements, object models, and knowledge about prob-
lem solving. ‘The output is a design plan. Reference to
the results of previous designs and the designers' heuris-
tics about searching for alternatives are also represented

as knowledge about problem solving,

In comstraint analysis sequence determinatlion, rela-
tions between components are analyzed and a directed-
acyclic graph { DAG) that represents part-whole relations
and abstract-concrete relations is generated using the
results of analysis, The constrain! analysis sequence is
determined according to this graph. In consiraint anal-
yais, dependencies among constraints inside components
and functional blocks are analyzed according to this de-
termined sequence. Inheritance relations between funec-
tional blocks and between components are analyzed in
inheritance analysis.

In design plan gemnernfion, a design plan that enables
efficient problem solving mechanisms is generated ac-
cording to the dependencies between constraints assum-
ing the architecture of the destgn expert svstem men-
tioned in Section 2.

4.2 Constraint Analysis and Design Plan Gen-
eration

{a) Constraint Analysis

Handling the constraint network in constraint analy-
sis is difficult, because the structure of the network is
quite complicated for complex systems. Therefore it is
necessary to structure Lhe network with this hierarchi-
cal level of abstraction and to combine subnetworks, in-
stead of handling the whale network as a flat structure.
Thus, an effective utilization of this structural informa-
tiom of the problem space extracted using the constraint
analysis will lead to improvements in constraint-based
problem solving. In the process of constraint propaga-
tion, local and non-local (global) propagations must be
taken care of 1% In local propagation, known values
are propagated along the ares of the constraint network
by using local information te nodes (209 Op the other
hand, when there is a cyclic dependency in the constraint
network using a local propagation, the problem can not
solved by local constraint propagation only. In this non-
local {global} propagation, global information such as an
equation solving techmicue, s required to deduce values
of variables.

Therefore, to improve the constraint-based problem
solving mechanism, especially constraint propagation, it
15 necessary to separate the constraint network descrip-
tion of the design plan into parts that can be processed
by local propagation (tree description) and parts that re-
quire non-local propagation {cyclic description), in con-
straint analysis. Consequently, each description should
be dealt with using the appropriate solver for consiraint
handling by splitting up the constraint network. In order
to deal with constraint analysis for structured networks
with hierarchical levels, the analysis phase is divided into
two phases. Fig. 5 shows the whole algorithm of con-

straint analysis. In this algorithm, only analysis for the
constraint-based problem solving mechanism based on
lucal propagation is realized. The analysis is executed
according io the tree description composed of part-whole
relations and is-a relations of the system. This constraint
analysis executes the same procedure as the dataflow
analysis in optimization phase of the compiler (1. In
other words, phase one eorresponds to the local opti-
mization, i.e. optimization of a basic block and phase
two corresponds to the global optimization, i.e. global
rearrangement of the dataflow graph generated during
phase cne.

Phase one proceeds from the bottom up; it performs
dataflow analysis (1 - 18 and reduction (merging) for
cach component (line 3-5) and functional block (line 6-
7).

Phase two instead starts from the root and proceeds
from the top down towards the leaves: the dependencies
of the constraint network (7' are determined by reana-
lyzing constraint dependencies among functional blocks,
and between functional blocks and components. Finally
the dependencies among the constraints of the whole ¥
tem are determined (line 8-9).

Concretely, constraint analysis begins at the lowest
level of the class hierarchy and proceeds towards the
highest level class. If there are inheritance relations.
lhe constraints are not processed along the class hier-
archy between parent classes and children classes, but
are treated as a flat set of constraints included in both
parent classes and their children classes,

(b} Dezign Plan Generation

After dependencies among constraints inside compo-
nents and functional blocks are obtained by constraint
analysis, design plan generation proceeds towards the
higher levels of the hierarchy of the design object s
ing the results of the analysis. Thus, a design plan is
generated by grouping the blocks analyzed above and
reanalyzing them.

4.3 MECHANICOT

As stated above, we divide design knowledge into ob-
Ject models and knowledge about problem solving. This
enables us Lo maintain knowledge and to modify knowl-
edge flexibly. By regarding kuowledge and design re-
quirements as constraints, we employ constraint-hased
problem solving. To help designers build an expert sys-
tem suitable for & design problem, we propose a building
ool that regards design knowledge as constraints, £en-
crates design plans by analyzing their dependencies, and
provides an interface between the design knowledge and
the constraint solver. We used a constrainl compiler to
obtain facilities for this building tool. The expert sys-
tern, which is the output of the tool, can efficiently obtain
solutions that satisfy the design requirements, arcording

to the design plan generated by the tool. Fig. § shows
the architecture of the building tool. An expert system
building tool, MECHANICOT, is being developed ‘141
(15, MECHANICOT is a tool for mechanical parametric
design. It analyzes dependencies between structures of
a design object and parameters, produces a design plan,
and builds a specialized design expert system. In this
ease, the main spindle head of a lathe is selected as the

design object,

4.4 Example of Constraint Analysis and Design
Plan Generation Using MECHANICOT

First, we will explain the design object of MECHANI-
COT, the main spindle head of a lathe. Next, we will
deseribe in detail the constraint analysis and design plan
generation process, using a gear unit as an example.

4.4.1 Design Problem of Main Spindle Head

The design object of MECHANICOT is the main spin-
dle head of a lathe, shown in Fig. 7. It consists of a
matn spindle to grip and rotate a workpiece, a motor as
a power source, V-helts and a pair of pulleys to trans-
mit power from the motor to a pulley-shaft, bearings to
support both the main spindle and the pulley-shaft, and
two pairs of gears to change the main spindle speed.

This design is a typical example of parametric design.
It can be considered as the problem of determining the
output {design) parameters so that the design require
ment and input parameters are satisfied when the stroe-
ture of the design ohject is assumed to be fixed (100

In Table 1, there are two types of input parameters
{design requirements): eutling eapacity requirements
and evaluation eriterion. Their default values are shown
at the right side of Table 1. Table 2 shows examples of
outpul {design} parameters.

4.4.2 Example of MECHANICOT

in this case, we give an example of constraint analy-
sis and design plan generation using a gear unit as an
explanation of MECHANICOT. Fig. & is a schematic
description of a gear unit used in the reduction system
of a main spindle unit. Fig % shows an example of
MECHANICOT system appearing in PSI windows; (a)
shows a compilation process of a gear unit design prob-
lem, (b) shows a hierarchy of design knowledge {design
object), and (c) shows a class definition of design knowl-
edge.

Fig. 10 shows a constraint network for this design
problem formalized [rom the viewpeint of the concept of
a ronstraint, especially an algebraic constraint. Forms
of many constraints consist of equalities and inequalities.
There are some alternatives when generating the values
for the variables. Since there are several possible solution
methods (strategies), solving the problem can be efficient

or inefficient according to the solution method used for
a problem. Although the problem can be formalized as
a constraint network, the available strategies may not
lead to an efficient solution. Types of problem-solving
primitives to insure efficient problem solving must be
provided to deal with practical problems.

Therefore, each constraint is assigned a type such as
genemator, lester, design_method, filler, and constrainl.
For example, design_method shows the functions and
search methods from catalogs and tables which have no
alternatives, and generalor expresses the functions and
seareh methods from catalogs or tables which have al-
ternatives. Tester represents equalities and imequalities
used for testing solutions from generator or for evaluat-
ing solutions. Filter is used for adjusting solutions to
standard values. For example, a generator m.gen gener-
ates m from the standard values set, a generator Pd_gen
generates Pd from the minimum and maximum values,
and fester tests the gear ratio R,. In the middle we show
the dataflow description of the design method for caleu-
lating an input shaft diameter. In this design methad,
a twisting moment T, .a shearing strength Oy, , and a
torsion angle f;, are input. Input shaft diameter D, is
the cutput.

In MECHANICOT, constraint analysis consists of two
phases. In phase one, dataflow analysis (11 is executed
for the inpui shafl, output shafi, and pair of gears that
corteapond to leal parts of the tree description {Fig. 8).
In this dataflow analysis, each constraint is interpreted
as a function or relation according to ass'tgned types.
Next, traversing toward the root of the tree, dataflow
analysis proceeds in the functional block (gear unit) in
the upper part of the tree description. After that, we
perform dataflow analysis for the gear wnil and its com-
ponents, including the mpui shafl, oulput shaft, and pair
of gears. The constraint analysis terminates when the
root of the tree is reached,

In phase two, the analysis is executed from the root
of the tree to the leaves, In this phase, dependencies be-
tween the functional block (shaft) and the components
{input shaft, oulpul shafi, and pair of gears), and depen-
dencies between the components themselves, are reana-
Iyzed; finally the dependencies of the whole system are
analyzed.

In design plan generation, subgoals are assigned to
constramnt, gemeralor, lester, filter, and design_method,
50 that the name of each subgoal is unique. Subgoals
are integrated into goals based on the inpul-output de-
pendencies of parameters generated by dataflow analy-
sis. Names are assigned Lo goals in exactly the same way
as they are assigned to subgoals. Finally, an execution
sequence for goals is determined based on their input-
output dependencies. This sequence s managed in a
g{:al Lhat 15 cne level higher than the included 3'-"-'-'5‘:"“'!5-

Fig. 11 shows a design plan generaled according te

this analyzed result. This figure consists of dataflow de-
scriptions for each gear and for the pair of gears. We
assume that the relationships among the goals and sub-
goals correspond to the hierarchical relationships of the
design object shown in Fig. 9 (b); the relationships be-
tween the components and subcomponents and the de-
sign method for the components and subcomponents are
formalized and given in advance as the model descrip-
tion of the design object in the knowledge base. From
the input design specifications including the design re-
quirements, object models, and knowledge about prob-
lem solving shown in Fig. 12 (a), we generate a design
plan using constraint compilation and finally obtain a
plan written in ESP code, shown in Fig. 12 (b}, Fig. 13
shows the hierarchical relationships between goals and
subgoals of this generated design plan. Table J shows
the number of constraints used in the plan generation.

5 HRelated Works

Araya & Mittal 1 present a method by which the de-
sign plans can be automatically generated by compiling
knowledge about artifacis, problem solving heuristics,
and characteristics of specific problems. Design plans
tailored to particular problems are generated and the
potential benefits of maintaining a knowledge Lase are
provided, by reusing the same knowledge for different
purposes and by providing a framework for more sys-
tematic knowledge acquisition. They propese a methad
for design plan generation, while our approach concerns
a design plan generation environment and its implemen-
tation by focusing on a constraint compilation,

Keller (110 gshows the compiler that compiles re-
design rules from a device model thraugh several levels
of abstraction, including the structure/behaviour device
model, Lhe qualitative equation model, the causal depen-
dency structure, the redesign goal tree, and the abstraci,
redesign plan. His approach aims to improve efficiency
by moditying the general but inefficient model used on
MBR. In our approach, we focus on assisting knowledge
acquisition and knowledge reuse facilities.

Serrano & Gossard 119 present methods for maintain-
Ing consistency in systems of constraints. These provide
designers with assistance during the early stages of de-
sign and help to close the gap between novice and experi-
enced designers. Effective constraint handling is very im-
portant for the development of a knowledge-based con-
ceptual design. They have implemented a constraint-
based environient for mechanical computer aided de-
sign and their aim is similar to our aim of constraint
(knowledge) compilation. However, the problem solv-
ing mechanism is not focused on as much as in our ap-
proach, from the points of view of constraint solving and
constraint-hased problem solving.

6 Current State and Future Research

The first implementation of the design plan generation
environment, MECHANICOT, including the constraint
compiler, is being carried out using the Extended Self-
contained Prolog (ESP) language (%) op the personal
sequential inference (PS1) machine (21,

MECHANICOT is an automated system with no user
interaction. It receives design requirements and design
object representations written in an ESP-like language
as input, and generates the design plan written in ESP
as output. The execution mechanism of the generated
design plan is realized using the inference mechanisms in
the ESP language, such as unification and backtracking
mechanisms. As a result, a design calculation is per-
formed and the figure of the main spindle head with
dimensions is shown on the graphic display.

Sao far, we only handle static and obligatory (hard)
constraints 14} For example, the interpretation of
a constraint is fixed, because the role of a constraint
such as a generator and tester on a constraint-handling
mechanism & predetermined. The handling of sugges-
tive (soft) constraints (" and of dynamic consiraints
sich as the addition, deletion and modification of con-
straints during design process has not yet been investi-
gated. Both static and dynamic analysis for constraints,
including constraint relaxation (14 are required to re-
alize dynamic constraint handling, when we consider a
current constraint compiler,

Next, we will consider the following extensions of con-
straint analysis to utilize the structure of the problem
space effectively and to improve constraint-based prob-
lem solving, We need Lo properly treat the different pri-
orities of the constraints and to interpret the direction
of an information flow of constraints dynamically. Fur-
thermore, design plan generation requires the scheduling
of goals and subgoals according to a rough prediction of
the necessary cost of problem selving gained during con-
straint analysis.

When a constraint compiler is used as a building toal,
the designer needs Lo be able to generate design plans
automatically, recognizing underconstrained and over-
canstrained states in the constraint network. However
dataflow analysis seems to be unsuitable for a constraint
analysis that checks this state. To detect overconstrained
and underconstrained states (involving cyclic deserip-
tion in a consteaint network), we must consider a strue-
tural analysis method that analyzes dependencies be-
tween variables of constraints (Lopology information of
the constraint network) by considering the constraint
network as a biparlite graph (161

7T Conclusion

This paper has considered a method of constraint analy-
sis and design plan generation of the constraint compiler

ftir dEﬁiEn thIEIIH, a fﬂrm ﬁf hl.lﬂlel,{EE' IZUIIIFII].I!I. [t
has been conducted while assuming the architecture of
expert systems based on constraint-based problem solv-
ng.

We have demonstrated the effectiveness of the con-
straint cornpilation technigue on a mechanical compo-
nent, & main spindle head of a lathe, by developing an
expert system building tool MECHANICOT. Currently,
MECHANICOT does not provide a friendly user inter-
face, te. one where the designer can give knowledge
about design requirements and the design object in the
form of a schematic description as an input, and also
interact with the system.

Our future plan 1s 1o provide such an environment in
which designers can acquire design knowledge by arrang-
ing and coordinating their knowledge and in which they
can construct design systems or tools easily by repre-
senting design knowledge in a natural form and by rec-
ognizing underconstrained and overconstrained states of
the systems.

Acknowledgments

[would like to express thanks to Mr. Yuiti Fujii (NTT
Corp.), Mr. Kenji Thoma (NTT Data Corp.) and the
other members of the Fifth Research laboratory {loter-
inediate stage) Mr. Takanori Yokoyama {Hitachi Corp.},
Mr. Ratsumi Inoue, Mr. FEiti Horiuchi (Mechanical
Engineering Lab.) and Dr. Hirokazu Taki {Mitsubishi
Corp.) for their helpful comments. | would also like to
thank Mr. Masahiro Hoshi, JIPDEC, for implementa-
tion of the MECHANICOT system and Prof. lsac Na-
gasawa, Kyusyu Institute of Technology, for useful sug-
gestions and comments on the needs of knowledge com-
pilation [or mechanical design. 1 would like to thank Dr,
Ryuzo Hasegawa, Chiel of the Fourth and Fifth Labo-
ratories and Dr. Kouichi Furukawa, Deputy Director of
the ICOT Mescarch Laboratories for helpful conunents
and suggestions. Finally, | would like to express spe-
cial thanks Lo Dr. Kaguhire Fuchi, Director of 1COT
Kescarch Center, who has given me the opportunity to
carry omt research in the Fifth Generation Computer
Svsterms Project.,

References

(1) Ahe A V. and Ullman 4. [} “Principles of Compiler
Design” . Addison-Wesley Publishing Company {1977).

[?) Andeeson J. K. : “linowledge Compilation: The
General Learning Mechanizm {Chapter 11)", Ma-
chine Learning. An Artificial Intelligence Approach, 2,
Michalski T, 5., Carbonell J. G. and Mitchell T. M.
fed.), pp-2853-310, Morgan Kanfmann Publisher, Ine.
{1986].

(3} Araya A and Mittal 5. “Compiling Design Plans from
Diescriptions of Artifacts and Problem Solving Heuris-
tics”, Prac. of [JUAL-BT, pp.552-358 {1987).

(1} Chandrasckaran B. : “Generic Tasks in Knowledge-
based Heasoning: High-Level Building Blocks for Ex-

116}

)

pert Syatem Design™, IEEE EXPERT, 1, 3, pp.23-30
[1084),

{5) Chandrasekaran B. : “Design Problem Solving: A
Task Analysis™, Al Magazine, 11, 4, pp.5%-71, Win-
ter {1990).

(6] Chikayama T.: “Unigue Features of ESP", Proc. of In-
ternational Conference on Fifth Generation Computer
Systems, pp.292-298 (1984).

{7} Dechter B. and Pearl J. : “Network-based Heuristics
for Constraint Satisfaction Problems™, Artificial [ntel-
ligence, 34, pp.1-38 {1987).

{&8) Feldman K. : “Design of a Dependency-Directed Com-

piler for Constraint Propagation”, Proc. of Lst Inter-

national Conference on Industrial and Enginesring Ap-
plication of Artificial Intelligence and Expert Systems

([EAJAIE-8R), 1, pp.141-146 {1988)

Cosl AK. (ed): “Knowledge Compilation @ A Sympo-

sium”, [EEE EXPERT, pp.T1-93, April (1991).

Inoue B, Nagai Y., Fujii Y., Imamura 5., and Ko

jima T. : “Analysis of the Design Process of Machine

Tuaols, - Example of & Machine Unit for Lathes - 7, (in

Japaness), [COT-Technical Memorandom (10988].

Keller H.M. et al. : *Compiling Kedesign Flaps and

Mhagnosis HRules from a StructurefBehavior Device

Moedel™, Technical Report K5L8%-50, Knowledge Sys-

tems Laboratory, Stanford Univ, (1989).

Leler W, : *Constraint Programming Languages”,

Addison-Wesley Publishing Company {1588,

Mizoguchi R., Yamaguchi T., and Kakusye O, : “To-

warils Establishment ol a Methodology for Buikling

Expert Systems™ (in Japanese}, Technical Beport of

Japanese Society for Artificial Intelligence, SIG-KBS-

BEOL-2 (1088).

Maga Y., Taki H., Terasaki 5., Yokoyama T, and Tnone

K. : *A Tool Acchitecture for Design Expert Systems®,

Jonrnal of Japaness Society for Arlificial Intelligence

{in Japanese), 4, 3, pp. 297-303 {1989).

MNagai ¥, and Terasaki 5. @ “Towards Constraint Anal-

vsis and Plan Generation of Constraint Compiler for

Design Problems™, (in Japanese), Procs. of the 3rd An-

nual Conl. of JSAL 11-43, pp.693-696 [1989).

Magai Y. and fkoma K. : “Constraint Analysis

and Plan Generation Based on Graph Theory™, {in

Japanese), Proes. of the 40th Annval Convention of

IPS], 10-4, pp.218-219 {1990).

Magasawa |. : “Design Expert System”, (in Japanese),

IPEI, 28, 2, pp. 187-196 {1987).

Newell AL : “The Knowledge Level™, Artificial [ntelli-

gence, 18, pp. 87-127 {1982).

Zertano D, and Gossard [; “Constraint management

m MOUAE", Artificial Intelligence in Engineering: De-

siga, [Jero, 15, (ed.]), pp.217-240, Elsevier (1550).

Sussman G, J. and Steel Jr. G. L. : “*CONSTRAINT

- A Language for Expressing Almost-Hierarchical De-

scriptions”, Artificial Intelligence, 14, pp.1-39 [1980],

(21) Taki K., Yokota M., Yamamoto A.. Nishikawa H_,

LUechida 5., Makajima N., and Mitsui M. : *Hardware

Desige and [mplementation of the Personal Sequen-

tial Inference Machine (PSI)", Proc. of International

Conference on Fifth Generation Computer Systems,

pp-398-409 {1984).

Tong C. : “Towards an Engineering Science of

Kowledge-based Design™, Artificial Tntelligence in En-

gineening, 2, 3. pp.133-166 (1987).

(23) Tomg C. : “The Nature and Sigmhbcance of Rnowledge

(9}

(10]

(11}

(12)

(13)

(14)

(15)

(7
(18)

{19}

{20

Compilation”. [n Knowledge Compilation: A Sympo-
sium {Goel, ALK, ef al), [EEE EXPERT, Pp.BE-91,
April (1991).

Knowled ic!el

Trean of Dailgn — Royllng Dealgn
& Bolulion Bpace
Daalgn Theory
* Bpecdlleation
O Dealgn Requiremast
+ © Design Goal Satution and interence methods far
gongtrsint-based probitm gohing
Prahl v »
{0 Pyl Drppsmpod e
OHonrmarsied, Propegation.
FProblem Sobving Mschaniens bused on s v {0 Fullure Reowry
Duslgn Procam) (erarchical] Ganersw & Ten
hd O Leen Commmivmant
10 Apprasimation
Implementation Level
Expart Shall {ruls, frume, wic)

Logle Programming Language (prolog, E5P, vic)
Condtraint Logic Programening (CUF, CAL, &t}
Equality Salvar & bnagquality Sobear

Fig.l Formalization of Knowledge-Based Systems

Dasign nq;ﬂnm
- e ke Frepauier e
T_-. Iilﬂl-l Ut Dl i Tastar
1 l - = - Contepes
Eruluatisn Bralusiien Campement 1 ¥
[]
Dasigs sluatisn Pig.2 Deslgn Process Modsl Fig.3 Problem Solving Mechanism for Constraint Reasoning
[Seurca Inpui E Wlsar dafinitben amd srury
........ e eenaom ! procedure constraint_analysia
: 2
J_ Lexical u:l:rnl.uli:ll-nnl_nh—l H begin
: 3 while (component = “Lerminal’)
""""""" = 4 datsSfow analysisand.merge ;
[Inheritanes analysis I 4:=:J'-=—A| 5 end:
---------- Table of clasa delinitions *
~ T & for V € a list of erdered functional blocks do
Delerminslion &l esnsirshnl t . .
1 wnelysks saguands . T d.ill_lﬂ_lnll_ﬂﬂ_'dlm ['!'} H
[Constratat smatyee]{""H 8 for V € delermined lrox description of tbe design bject do
------ 1‘r""|'|'|'rlllilllllllld.l.l.lidid.--T g h”".MdJﬁtvi;
I Tlan Generallon I 10 ek
I .
[Source ouipwt] Pt 4 Genuenllow o consicaiot compller Fig. 5 General algorithm of constraint analysia

MECHANICOT (oo & PSl machine)

Detiggmar Libruries
Knarrleigy P———L x| L
h— IR N e et et I BT Outline of Deslign Cbject
i st bl e =Muin spindle besd of Laths =
[Fr—— efesssananaf oe] onislege inbles
St
Coagtrulni semplar ——
el rrma——"ts ro———r L, Posr it b
Tmpuit i::::-unulh ~ e
Unferance migisa Ty it
1
Cuiput
Duilgs supsrt systsm W i
Felivm
(=]
Fig. 6 Overview of MECHANICOT
Whole - part relations =—
P E i
Gear unlt Pd_whesl
Chrlput shaft Dot] | +]rm
Gears - 1
Input shaft I I
-7 v s I B Lo
L] !

Paramatars
Input
Tin, Gin, By Rin, Towt, Gout, By
Output
Ag, Pd_wheel, Pd_pinlen, Din, Dett, Aout

Fig. 8 Schemat description of & gear unit

el L Tl Smsmrsssasiad. daf
dad AfSE NS mass onsss i, daf ... FFF
i A TS ot gy ., i
AL TTUND ot o o b L
A LTI oy var iy
At AT b bt .,
A WALTTIRE gl D i L o oo R
T it SRATIIN radt e vy, b

bl ARBLTTIE |t wha
e ARALTTIAE Tl _wha it .
e AL TENNE snrta_shaif ;. WeE

e MULTTINY s e laarlag o0 bE

At GDMRAT NG et lnasert . Wi “Dslgh Knowiedid * Examale ol class -
| Dovprmiveodumnrsnibil 0095 Krieibded ¥ Eudii-aLeati YotMes
Fo4 BURAAT IR o _oar_sps <0 B30 sl
ot BT [ki b TN .oy BED |u-.r|l.=:-“'“'"| H
ol GEMIAATIND gl Dy _ahafl .o #B3 . l:a-.l_u-n. F
el BMUAATINS radat bas_sred oo0 FOB Sesalil s 1
Froml bwardig In gl Dir_ihadd_bensell :
ot BURERAT I wohacttka sl e F WFE pin B Tand baaplag Jn "lll.l"lu;l_luﬂ'-:r e
00 BIRURATLNG. stk _sha il .00 365 Hirien :
W BETRATING | l_salf oo Do et bmardan ipe oo wid, 'r
0L SOMURAT I | bl o b Iw“"'“""-""'I"'-'“'":'“ " h":
L LLLT [
irmat bsailagitpps 1= Pest_baariag tres,
. . . '
J—l-_ml-' .
raad bid ln Ereh Fiimd_Sear D aseb]_ippa « = +
I:hlrlu_u-u[nnrhlln.h anen el Lip_sisfu), L H
L} "
s

Fig. 8 Example of MECHANICOT systam sppaaring In P51 window

P o suE el
E,.,_..........q_ | Tia Taus Rin Qiz fiz Gewl dour
ag1 | gt | sad g gt apd | m=g?

Mi=n

Ry Rt
| !
a0 | wght| syldfagid b
e e ———
el | [iTie)
et | Tis Gis #a R

Ceaus Pt

poal e vk goal
—— [& Teut Riz Cia #in Gauc teun
i -:[url s | el | st
j LELY L l i
iy Tin Teut Rin
wl ¥ — ¥ ¥
apt [R
By Rarat
L
gl |wghl| wgid|ugid glé

Dén i
LT (TRl
-] |
Din Ris Bg Dou Rarst
st [= gom |
A -
wis [Dimstm]| wn [2o00ielin | wit [DosttTm] wia |200nicfout i 1
it | bl o= | Pigen | we [Diz+im] wa [000iafa wa [Deat+im] wm [ZooaleRout]
] -]N"'H a_pales Fmas_plales ,i.!hln.-h-l Pramgn,_ sl
s | T =Pd_wheslPd_piios | uH | FE_ptn 1] s | P_ges
| ln_.-u- - Pl
Pd_plakn Pd_whae] e [e =Fi mbesli pinion]
t 1
Fig. 10 Censtraiant Metwsrk Description H':“n H"':'"
Fig. 11 Genernted Design Plas
A - P Wy felul_dri_dudedt AFLEA AL —
-y L
-“ -
| iR —— ﬂu;dlaf:v.- ok _greaar
caral_paar = et T R, by ey,
covarard r

Fig. 12 (2] Input design specification

wgna_shak, fu_whall_sa.

i _wan el |], Sy =
kAN sebgeal 1EECN, MR,
Imaby_shafl_swbgaal i fCn SraL

Lt

Fig. 12 (8 Design plan wiiten n ESP code

Fig. 11 Hiararciecsl ralarionsnin beteen gaais and mitgoals of e genersias datign plan

Tahle | Es ters of & main spindle head diigy

ple of input par

Tablbr Example of ouiput {design) paranscters of a main apanade beesal devign

[npul |pirafiricee E:.l.rllplr al vubure

Untpul [devign) paramesers

]

l?' n ﬂu'lrmmi |

‘ulling eapacity Workpiece materal SHaC

Toal material Special bardaess
Workpirrr diameter [mas.) | 1630 [mm]
Mainapiode apeed (max.) | G000 [rpm]
Cuiting depeh [max.) 2.0 [mum)

Determined by caboulstion

Main spindle digmeter
h-lnl}'.ﬂ-lﬂ. ‘-lIITliﬂ
Geary L pulleys ratia
Number of gear teelh
Gears plitch diameten

|

| Fewalt of previcus design

Bﬂ.zi.u.‘ MeiiBl Ly e
Bearin

Feeding speed {mas.) 0.3 |oumpe]
[l diwmeter {mas. 40.0 [men]
Drill speed [max.) 30.0 [mpm]
Evaluation Lite of bearing 0000 Thowrs]
Note
g el pns Iuir per minnie,

mmpr: midlimelers per reselulion. mam: mrlers per minale.

Tabbe 3 The munsber of comirainig used ia the plan geueration

[Coastradel CION[G T[F
Problem | Gearunit| 5| 28] 3] 2]2
Spindle bead | 152 | 108 111 | 9} 2

Naote
C: conatraind, DM v‘nn'l’-.mrM G gracraler,
T: leater, Fr ﬂ'llf-

Search from caialogs or Lable

Bearing part number

Motor part numbes
V. balt part mumber
Pulleys past sumnber

-2 =

