ICOT Tec_:hnfcal Memorandom: TM-1141

TM-1141

LICAI-91 1COT EXHIBITION BOOKLET

by
8. Uchida, K. Hirpta & §. Taba

December, 1991
© 1991, ICOT
Mira Kokuosai Bldg. 21F (U3)3456-319]1 ~ 5
" : CJ I 4.28 Mita 1-Chome Telex 1COT 132964

Minato-kue Tokvo 108 Japan

Institute for New Generation Computer Technology

IJCAI-91
Aug. 26 ~ 29, 1991

ICOT
EXHIBITION

th

Icor

Logic Knowledge

»;

Parallel Machine

Institute for New Generation Computer Technology

R e o L L e o o o o o . o . . s s s s s o o o o o o T e I ———

This booklet 1s edited by
Dr. Shunichi Uchida, Dr. Keiji Hirata and Mr. Susumu Taba.

Please address queries on this publication to
Dr. Shunichi Uchida, uchida@icot.or.jp,

Dr. Keiji Hirata, hirata@icot.or.jp or
International Relations Department, ICOT.

Copyright (1991

Institute for New Generation Computer Technology, ICOT
Mita Kokusai Bldg. 21F

4-28 Mita 1-chome, Minatoku-ku, Tokyo 108, Japan

Phone: +81-33456-3195

fax: +81-3-3456-1618

telex: ICOTJ32046

Contents

Introduction to Fifth Generation Computer Systems 1
Outline of Parallel Inference Machine: PIM 3
Outlineof PO X 88IESt iineenieiierrinrenannnasnnrnnennn 5
ICOT Demonstration Lineupccoviiriiiiniiininacnnnananns 6
1 Logic-based Parallel VLSI-CAD Systemc000vinnvenn 7
2 HELIC-II (A Parallel Legal Reasoning System) 13
3 GoGenerabionevevererererrrionsaesroresstsiasasssans 17
4 Genome AnalysisProgramscciiiiiiiinnainnn. 21
5 MOGTP (Parallel Model Generation Theorem Prover) 29

6 EUODHILOS (A General Reasoning System
for a Varietyof Logics) 33

7T CAL (Constraint Logic Programming Languages) 37

8 Kappa with Molecular Biological Data 41

Fifth Generation Computer
Systems Project

A Japanese national project
aimed at new computer technology for
knowledge and symbol processing supercomputers.

Since 1982, the Institute for New Generation Computer
Technology, ICOT, has been developing a prototype
FGCS. It consists of a Elarallel OS, a parallel KBMS and a
parallel inference machine with about 1,000 processing
elements.

After 10 years of R&D, the machine is now ready for
large-scale Al applications !

e ™
Knowledge and Symbol)
Processing Applications
and
Parallel Evaluation and
Benchmark Programs)

Kernel of FGCS

Logizal Inlerance 4
using the mmy | Parallel OS and KBMS
Knowlsdgsbase BIMOS Kappa-p

Logic Programming
Language [KL1i

Parallel Processing

Parallel Inference Machine.

®IM 1,000 PEs intotal
(Multi-PSI System, 64 PEs)
_ e

Technical Framework Prototype System of FGCS

Developing the FGCS prototype system

Starting with Sequential Inference Machines, and then, smoothly
jumping to Parallel Inference Machines......

Parallel Logic Programming is the key to successful development of
Parallel OS and Parallel Application Software,

Personal Sequential Paralle! Inference Machine

Inference Machine P3] Pl and its OS PIMOS
and its OS SIMPOS

1982

esign of Sequential Logic
Programming Languages
Design of Parallel Logic

and E8P
LD Programming Languages

PSI-1 and SIMPOS -V1 @HE and LY
1984 ASKLIPS far KLOD I

1985
PSI-2 and SIMPOS-V2
SIDXLIPS dor LILD Multi-PSI V2 and Prmas-uﬂ
64 PEs SMILIPS flor (L1
1988 I
1983 1"'pg1-3,UX and SIMPOS-V7 L
T.AMLIPS fer KLO Prototype of FGCS PIM and
PIMOS-V2 + Kappa-P-V1
1000 PEs total
1992 200MILIPS / 512PEs for KL1

" 1LIPS (Logical Inferences Per Second) = 30 - 50 IPS (Instructions Per Second)

The prototype system will be accessible via a worldwide computer
network and will work as a powerful inference server or large -scale
KB server for researchers the world over.

«==== provisional 0

Parallel Inference Machine: PIM

A parallel inference system can realize a prototype FGCS that can

provide the largest symbolic & knowledge computing capability and

which, moreover, can be easily programmed by users. The FGCS
kernel language K11 supports these remarkable features.

KL1 is a concurrent logic programming language. The advantages of KL1 are:
* KL1 provides capable parallel programming facilities, e.g. almost-infinite-level
priority, pragma for location where process is to be executed, distributed
execution control.

* Implicit dataflow synchronization with logical variables eliminates the possibility

of synchronization & communication bugs.
* The descriptive power is high enough to write a real parallel operating system.
* The flexibility allows us to implement various programming paradigms.

Outling of FGTSE Protolyps Syslem

A

Parallel Application Programs

Parallel Operating System (PIMOS) + KBMS

L — \
= T
PIM =
K.L1 Engine
Parallel Hardware (PIM/p, PIM/m, Multi-PS], etc)

L Vo
p

—

FGCS Kernel L&nguage:ﬁ}

KL1 Language Processor (Compiler, Runtime System)

Knowledge & System
Programming in KL1

-\

KLY Paralis] Implemenitation

'\\
KL1 Program .) :
Compilation into an intermediate languge,
KL1-B (similar to WAM of Prolog).
There are many transformation methods
KL1-B Code corresponding to hardware architectures.
Huntime Libraries, Specification
M""‘_-'mpfﬂgmm?-; or -{I RN FEENEEER of KL1-B
Object Codes Transformation Abstract Machine
Real Hardware ““Virtusl Hardware
(PIM/p, PIM/m, PIM/c, PIM/i, (Shared-memory Multiprocessors
\h PIM/k, Multi-PSI) + Loosely-coupled Network) y

P Hardware

PIM yields huge computing power

One processing element (PE) of PIM/p and PIM/m achieves 600 ~ 700 KRPS
(KPS = Reduction Per Second). The 512-PE PIM/p system can reach 350 MRPS
(=7 GIPS approximately), and the 256-PE PIM/m 175 MRPS (= 3.5 GIPS).

PIM - a general-purpose parallel inference machine

All PIM models adopt MIMD and a tagged architecture, and carry specialized
hardware for efficient KL1 parallel implementation newly invented.

ICOT is developing five PIM models

This enables us to compare and evaluate the performance of several different
architectures. Their names are (by manufacturer): PIM/p (Fujitsu), PIM/m
(Mitsubishi), PIM/c (Hitachi), PIM/i (Oki), and PIM/k (Toshiba),

/{F[I.'J‘@pr N

" 6-dimensional doubled hypercube network {inter-cluster).
* High-speed communication & synchronization by KL1-oriented coherent cache.
" Macro-call instruction for lightweight subroutine call.

- Total PEs: 512 (64 clusters)
- 1 Cluster:
>

Multiple Ilyp etgube Network 8 PEs + Shared bus
i | + Shared memory (256MB)
A o U

| ¥E, |..| PE, | ¢ RISC + Macro-call
L i ' Cycle time = 60 ns

§ - : . 4-stage pipcline

- __ Bus . i - Coherent cache protocol:

' Sharerd Mcmnr}j) P : Invalidation, 4 states

tClustere ——r——— ! . PClustery Clustery Inter-cluster network:
_ Throughput = 20MB/s J
A Pl N

* 2-dimensional mesh network (16 x 16) (inter-cluster).
" KL1-oriented horizontal microprogram.
" Five-stage pipelined processor controlled by microprogram.

N - Total PEs: 256
@ @ @ - 1 Cluster (Node):
. . FEP 1 PE + Memory (R0MB
foesioe Lo e H B - 2H S| ooy (BOMB)
oru_|r{hul=- L : Microprogram
Momay] LS [I I Cycle time = 65 ns
= *n‘ PEI={PELIPEL. ... —f PE 5-stage pipelin
NS b L — - M“%hg%m%mj
FEP - e —
Metwaik E}Z ool o] 1P;u s oy _]‘_rl;t r_llﬂ E.Er;: work:
— 581 Throughput = 4MB/s
S 8 O)

Al Workstation
PSI/UX series

Model 350 « Model 400‘;#

-

World standard
operating system UNIX

' Knowledge-information
processing system (KIPS)
operating system SIMPOS

- High Inference Ferformance

+ Object-Oriented Programming
Language ESP

KIPS development environment

+ User interface (X Window) & SUUX
I 1,400KLIFS
» Network facilities = KLIP
+ Standard software repertoires =
£ 2
E
<
r 7
g 4300 @.—*‘" 430KLIPS
& 0 PSII
= 330KLIPS
= Psl LIPS: Logical Inference Per Second
30k 37KLIPS 1 1 1
86 87 ‘88 '89 50 91

The World 's Highest Interence Performance

The inference unit employs VL5Is developed in the
Fifth-Generation Computer System Project to achieve the
world's highest inference performance, a burst rate of
1 4MLIPS (million logical inference per second).

Integration of Knowledge-Information Processing
and Conventional-information Processing

Users can cperale the PSIFUX as a PSI or as a UNIX
warksialion, bul the real value of the PSIUX lies in its
ability to integrate ihe two. Developers can build
praclical knowledge-information processing syslems
using a distributed approach in which the Al functions
ara performed on the PS| maching, conventional
processing is performed under UNIX, and resulls
integrated,

Remote Procedure Call {RPC) function provides for
communicalion paths betwean the SIMPOS and UNIX
applicalion programs. The RPCs are used 1o call UNIX
funclion from within a SIMPOS application program, or
to call SIMPQS funclions from within UNIX applications.

* HELCDM P31, P51 0L PSLATY are producas of MITSUBISHI Eleruma Corp. whiboh vollins el
= UNTX. Oporling 5yviom is developsd and lioemeod by UNIX Syuborry L buierm i, e

Highly Flexlble Experi System Development
Support Tools and Languages

MELPLAN, the domain specific expert system development
shell for manufacluring processes, EXTEKERNEL Ii, the
general purpose expert system development tool and Acekir,
the intelligent spread sheet offer many convenient
[unctions (o develop practical expert systems.,

ESP (Extended Self-contained Frolog) is a sophisticated
sysiem-development language. It allows both objeci-
oriented and predicale expressions, enabling the user 1o
describe complex and varied system types. SIMPOS,
MELCOM PSI/UXs operating system, is [ully written in
ESF, Conventional projog (PS1-Prolog) is also available,

Applications

MELCOM PSIUX allows the wser o conligore
user-friendly high-level Al sysiems, such as R&D
application systems, intelligent document retrieval systems,
scheduling expent systems, and machine translation servers,

ol wha Flih Groeratbon Cormgrmer Syman prapsm promaced by MITL

ICOT Demonstration Lineup

The keywords behind our demonstrations are: logic, parallel, and inference engine,
Demo programs (1) to (5), running on parallel inference machines (set up in Japan),
are all written in KL1 logic programming language. Programs (6) to (8) are working
on a sequential inference machine (here in the ICOT booth, ATE-91).

(?1} Logic-based Parallel VESI-CAD System:
Logic simulation and routing for VLSI design.
Benchmark for large-scale symbolic parallel
computation.

(2) HELIC-II:

E;é}crimcmaj legal reasoning system for penal
code.

Cooperative reasoning with statutory rules and
past cases.

Parallel search for past cases based on similarity.

(3) Go Generation:

Go-playing system utilizing human tactics.
Modeling of complicated thinking process.

New frontiers of profound knowledge processing.

{4) Genome Analysis Programs:

High-quality multiple-sequence aligners.

Two methods examined: 3-dimensional
DP-matching, and parallel simulated annealing.
\ PIM brings innovation to biological science.

High performance achieved by ggral]t:l processing.

(5) MGTPF (Farallel Model Generation Theorem
Prover):

One of the fastest paralle! first-order theorem provers.
KL1 compiling technique for efficient
implementation.

Flexible representation enables wide-ranging
applications,

(6) EUODHILOS:

(ieneral reasoning sysiem for a variety of logics.
Human-oriented proving methodology.

Visual human-computer interface for reasoning,

(7) CAL:

MNew programming paradigm: from “how" to
"whﬂlll.

The most powerful CLP language in field of
algebraic constraints,

(8) Kappa with Molecular Biological Data:
High-performance knowledgebase engine.
Powerful capability of nested relational modeling.
MNew framework for molecular biological databases.

vy

Organizetion of R&D Themes in FGCS Final Stage

Expert System

VLSI-CAD

Legal Reasoning System @
Go Playing System ™

Genetic Information Processing 4|

Parallel Appllcatmns

Gﬂnetlc DB

1

Natural Language Und-:rstandmg

Knowledge Representation Language

~§v Deductwe: Ghjﬂﬂl-ﬂnﬁﬂlﬂd Datahase

e e R

Basic Software System
PIMOS, KBMS ®

Prototype Hardware System
Parallel Inference Machine (PIM, Multi-PSI)

TITLE
A Parallel Logic Simulation System for VLST Design

PURPOSE

e To construct a logic simulator in a concurrent logic language KL1

e To evaluate the Time Warp mechanism

OUTLINE & FEATURES

1. Event simulation

e Tosimulate the gate behavior only when its input signal changes

e Simulation is executed by passing messages between gate ob-

jects.
2. Distributed time keeping mechanism — Time Warp mechanism

¢ History is recorded for each gate.

e Rollback will happen when a message arrives out of order,

3. Load distribution — static load distribution by preprocessing

e To attain high quality load balancing
¢ To reduce inter-processor communications

e To exploit high parallelism

SYS URAT

B . ot N
(Target circuit) —————3»-(Partitioning the circuit)-»(Several subcircuits)
Simulai - carallel ,

i) ——,

(Input signal sequences)=7

(Simulation engine)——(Output signal sequences)

DEMONSTRATION

We simulate a sequential circuit which consists of about 12,000 gates,

Input signal sequences are generated randomly except on clock lines.

As the result of the simulation, besides the output signal sequences,
we get several data for performance evaluation. We can evaluate the
execution time, and to compare the total number of messages with the
number of rollback occurrences.

SPEEDUP
Good speedup of 48-fold is attained using 64 processors.

Speedup

%071 |—— Actual Speedup L
-------- Ideal Speedup

0 20 40 80
Num of PEs

Title

Parallel LSI-CAD demonstration program
LSI router

Purpose

A VLSI layout problem consists of several different problems that require massive
computational power. Routing is one of those problems. Our aim is to study
concurrent algorithms and load-balancing methodologies through design and

development of parallel routing programs.

Qutline
&

Features

[Abstract] This program executes routing between modules on an L5I chip, after
the placement of each module has been fixed. It determines the connection paths
between terminals of each module.

[Concurrent algorithm] The Basic algorithm is a sequential line search, the
lovk-ahead line search algorithm. It is expanded for parallel execution. Major
parallelism is extracted from concurrent routing between nets.

[Implementation] As this program is based on a kind of line search algorithm,
processes are assigned to each line segment on each grid line as concurrent
cxecution primitives. Intermediate results of routing are kept as inner statuses
of each line process. Routing is executed by communication between these line
processes. The master line processes stand for grid lines, and manage line
processes on a corresponding grid, and relay those communication messages. Line

drawing and rip-up correspond to dynamic split and joint of these line processes.

System
Configu-

ration

master_line process
-

T

x‘bh\:h
NN
R

T
5
o
=
&
e
i
o
m

-
same line orthogonal line

rtmster_]ITlE process master_ lme pt'm:EH

messnge from message to
crossing line crossing line

message from adjacent line

-0 =

D e t 8 i I s ('#/'3}

[Routing problem)]

Routing is one of the VLSI layout problems which determines connection paths
between terminals of modules on an LSI chip. Routing is executed after placement
of modules has been determined in an LSI design of gate arrays, standard cells,
or building blocks. There are several well known algorithms for the problem
such as maze routing, line search and channel routing. We assume two routing
layers, one for vertical and the other for horizontal paths. We also assume that
each connection must be routed on a virtual grid on a chip surface. The block
and through hole inhibition conditions-are also dealt with.

[Basic algorithm]

This program is based on a kind of line search algorithm, look-ahead line search.
This algorithm calculates positions that are expected to lead to a good solution
before routing each line segment. Figure 1 shows this process. Start point §
and a target T are given. If a line drawn downward from S turns at A, then the
reachable point that is closest to point T is point a. Similarly, if the line

turns at point C,D then corresponding points are ¢ and d for each. These points
(a, ¢, d) are called expectation points for 5. Note that as the through hole

is inhibited at point B, so point b cannot be an expectation point for 5. Of all
these expectation points, point ¢ is the closest one to point T, so point § and
point C will be connected in this search step. Similar processes are followed

and thus point S and point T will be connected. In addition to the above
processes, this algorithm includes two more functions. One is to get out of
local optimal point in expectation points calculation. The other is backtrack

for escaping from a dead-end by removing the last-connected line and returning
to the point visited last. Thus this algorithm guarantees the wireability
between two terminals, if connection paths exist,

D d LW
Fal)
H Sl E| F| G|..
Fal™ J
A ' a M Fany . a1 > pass through inhibition
e A b T £ through hole inhibiti
5 S pan? ugh hole inhibition
I e
g . 3¢
hf X e x XX
paL fihy
X X *J ! }{F:i
X % X
A
Sy sl i- W H-
e o A 3¢ - A Fig.1
¥ [[T

(2.)

D e t a i] & 3

[Concurrent algarithm]

This program uses a parallelized version of the line search algorithm shown
above. The program is designed to extract a parallelism of computation mainly
from the concurrent search of multiple nets. On KL1 programing, the minimum
execution unit is called process. We usually adopt an execution model in which
the computation is executed by exchange of messages between these processes.
This program also adopts this execution model. As our algorithm is based on the
line search algorithm, so processes correspond to each lines on grid. Each line
process maintains the corresponding line’s status and at the same time the
execution entity of search. As figure 2 shows, each process corresponds to each
grid line and line segment on it. In this program, search and routing proceeds

by the exchange of messages between these line processes. The routing process of
one net is almost the same as that of the basic algorithm, but the computation
of the expectation point, mentioned before, is parallelized. The computation of
the best expectation point is executed in this program as follows. Request
messages for calculation of expectation point are distributed from the line
process now being searched to the line processes that cross it. Thus computation
of expectation point is executed concurrently on each line process that received
a calculation request message. Later, the result of each calculation will be
returned from these line processes to the searching line process, then this line
process aggregates these results and determines which is the best expectation
point. When the best expectation point is found, the searching line is connected
(fixed) to the crossing line that includes the best expectation point.

(Figure 3{a)-(d))

T T T T
',. Iq master.line process

v Y
yir

P Orrr

Y7

o
b3
o

Fig.2

- 11 -

D e t a i 1 3 (»3/3}

s e:q.:pec;,atlon points e EI‘PEE{&tiD;'l pl:;ints
i ;é; ? —e—— r . P
SR e e VYA
ey i
M1 F I
e’ sl
) ,Y:\Jﬁxﬁif’/’/fﬁ’fi 7377 (A
% 1 | searching line process A
cleulating e:lcpec;taticin pc:rint
Fig.3(a) Fig.3(b}
F_.xpgctnt':nn pﬂi:ﬁfs r
Wil 77 T
(o) L} 7 Sk %} AL, 37
afdki .
= B -7
ol 77/ ol
;/'f/% 4“4’// /:‘::: :'f: \ ’{:;:; 2 s
v expectation points il complete
[T R T |
= tat'ge'i pl:li:lt
Fig.3(d)

Fig.3(c)

Note again that the concurrency of computation is extracted mainly from routing
of multiple nets, in other words, from parallel search for multiple nets. In

this program, routing is scheduled to route nets in increasing order of their

size, shortest net first and longest net last.

[demostration)

The parallel routing program, written in KL1 on the Multi-PSI, executes routing
of LSI chips of a practical size. Execution results will be shown on a display

in real time.
[Kitazawa,H. and Ueda,K., "A LOOK-AHEAD LINE SEARCH ALGORITHM WITH

HIGH WIREABILITY FOR CUSTOM VLSI DESIGN", proc. of ISCAS 85, pp1035]

- 12—

Title

HELIC-II - A Parallel Legal Reasoning System

Purpose

» Development of a large scale parallel intelligent system
+ Research into a legal reasoning model

Outline

&

Features

[Outline]
HELIC-II is an experimental parallel legal reasoning system for

Penal Code. It draws legal conclusions for a given case, given

statutory rules and legal precedents.

[Features]
e HELIC-II consists of a rule-based engine and a case-based
engine.
o The rule-based engine logically calculates all possible crimes
based on the statutory rules.
o The case-based engine retrieves similar cases from a case base,
and caleulates legal interpretation.

System
Conf igu-

ration

Inference System

old cases case rules

v

case-based engine

_ output
inpuf explanation [I
New case)——t——u CWM) — | et Judgements a

reasons

[rule-based engine

extract fe_)
il

D e t a i 1 s (1.73)

1 Architecture of HELIC-]II

HELIC-II is a legal reasoning system which draws legal conclusions for a given case. It consists
of two inference engines - a rule based engine and a case based engine. The rule-based engine
handles statutory rules and the case-based engine handles cases. The target domain of HELIC-
Il system is the Penal Code of Japan. When a new case is input as a set of facts, the system
lists up all possible crimes together with their explanations by referring {0 both the Penal Code
and precedent cases. This system is implemented on the Multi-PSI and draws conclusions in

parallel.

5D|d Cases
g

input ! output

Sequence of Crimes and
Events —| HELIC-II ‘ Explanations
+

Eﬂnal Code

HELIC-II

2 Reasoning based on statutory rules

The legal rules of the Penal Code are interpreted and represented as clauses. The rule-based
engine is an extension of the MGTP (Model Generation Therem Prover). The MGTP solves
range-restricted non-Horn problems by generating models. In the MGTP, each branch of this
proof tree is distributed to other PEs and is executed in parallel. Therefore, this engine is
useful when the given problem generates lots of branches. In HELIC-II, the different theories

of interpreting legal rules generate different branches.

3 Reasoning based on similar cases

Each precedent case is represented as a situation and case rules. A situation is a sequence
of actions and related information such as agents and objects. A case rule represents the
arguments of both parties. The LHS (left hand side) of a case rule is part of a situation, and
the RHS (right hand side) is the legal concepts insisted on by one of parties. Case rules differ
from production rules because they don't contain variables and are not fired by strict matching

but by similarity matching.

- 14 —

D e t a i | s (2./3)

The reasoning of the case-based engine consists of two stages. When a new case is given as a
form of case situation, as the first stage, the case-based engine searches for similar situations
in a case base.

The sccond stage is an extension of a production system. At first, case rules of selected cases
are distributed to different PEs. Then, the engine compares the situation of a new case with
the LHSes of case rules in parallel. If similar LHSes are found, their RHSes are executed. The
case-based engine repeats this cycle of matching and firing.

New Case : e
[——
[[—Tam hits Mary } - -»(Injury)
L causality 7
Farallel searching
Gasm
Time ase.’_i

Searching similar cases

I -
((Jim kicks Bill) |J_\ injury I 1ststaga.

.............................

E5Q L0

2nd stage:
I_'_ — _P_ Applying case rules
A |

OJUTPUT

Legal Concepts

Case-based Reasoner

15

D e t a i | g (3.3)

4 Demonstration

The following is an example of a problem that can be handled by HELIC-II.

On a cold winter’s day, Mary abandoned her son Tom on the street, because she
was very poor. Tom was just 4 months old. Bill found Tom crying on the street,
and started to drive Tom to the police station. However, Bill had an accident on
the way to the police station, and Tom was injured. Bill thought that Tom had
died in the accident, so left Tom on the street. Then, Tom froze to death.

The problem is judging the crimes of Mary and Bill. The hard issues are the following two

points.

1. Is there causality between Mary’s action (abandonment) and Tom’s death?
2. Is there causality between the traffic accident and Tom’s death?

HELIC-TT searches for similar cases, and enumerates the crimes of Mary and Hill.

5 Performance

The following shows the parallel inference performance.

number of PEs || 1 2 4 8 16 | 32 | 64
time{sec} 271 | 268 | 163 | 127 | 109 | 97 | 82
speed up 1.0 (1.0) 1.7 |21 |25 [28]33

Table 1: Speed up by rule-based engine

numberof PEs | 1 |214] 8 16 | 32 | 64
time(sec) - |- [- 1182 | 516 | 309 | 170
speed up =|-|-| LO |23 |38 |69

Table 2: Speed up by case-based engine (large data)

numberof PEs || 1 | 2 [4 [8 [16 |32 | 64
time(sec) || 805|731 | 264 [206 | 115 - | -
speedup [10113039 70 - |-

Table 3: Speed up by case-based engine (small data)

Title

Go Generation: Experimental Game-playing System for

Future Knowledge Processing

Purpase

(Go has been a difficult game for the computer to play. We are trying
to build a strong Go program using the computer power of the parallel

inference machines.

Cutline

&

Features

{Outline]

e The intermediate results of parallel Go playing system "GOG”

on parallel inference machine,

¢ This research is being jointly developed with ETL.

[Feature]
1. It simulates thinking mechanism of human player.

2. The large tasks are performed in parallel using a dynamic load

balancing technigue.

3. We propose a new technique “frying corps” to make a game
playing program stronger without losing the real-time property.

System
Configu-

ration

@&nager of idle 1-']:.‘.) Cnanagcr of idle PE

for main corps for flying corps_
BCTVET W]

{E.’E'/._Qf main c@:‘ of ﬂ;?ﬁ;tg:'mps

A

main corps processes flying corps processes

D e t a i 1 g (1./3)

Developing a computer Go playing system

Unlike checker and chess playing computer programs which have attained or are approach-
ing the highest human skills, there have been no Go-playing programs that match average
human Go-player’s skills.

The difficulty of constructing a Go-playing program comes mainly [rom the fact that (1)
the fanout of an average game tree is too large for brute force search to be feasible —
the board of Go is 19 x 19 as compared to the chess hoard of 8 x 8, and the player
can put the next stone on almost any vacant board position, and (2} a simple and good
board evaluation function does not exist — evaluation of a board configuration needs
understanding of relative strengths of groups of stones, which involves pattern recognition.
We have been developing a sequential computer Go playing system called "GOG" on the
sequential inference machine since 1985. Currently, the system is stronger than an entry
level human Go player, but considerably weaker than an average-level player.

There are a number of improvements (such as move knowledge of set moves, tactics,
better board evaluation, etc) that could make the system stronger, but it would take
much more processing time to incorporate them, Thus we started the development of
a parallel Go-playing system which will be stronger than the sequential system but will
retain the tolcrable response time to make real-time play with humans possible.

It is a intermediate result of computer Go system "GOG" of parallel inference machine.

Move Making in the GOG System

The outline of the process in which the sequential GOG system determines its next moves
comprises three stages.

Board Recognition

When human looks ai the “Go” board, he does not see only the arrangement of stones on
the board, he also sees their strategic meaning. We have abstracted five forms of stones
which are thought to be recognized by human (F igure 1).

Candidate Move Generation

Based on board recognition, the system lists up plausible next moves together with heuris-
tic value of those moves. Candidate moves include moves to enlarge a friendly territory,
moves to limit an opponent territory, moves to capture an opponent string, moves to avoid
capturce of a friendly string, etc.

Next Move Decision

Finally, based on the proposed values of the candidate moves, the system decides on the
next move, and plays it.

- 18 =

D e t a i 1 5 (2.7°3)

reécognize the stoned's co-ordinates

3
J<<\3
\J

o

capture concept such as '"ATARI® and 'SHICHD'

L1
-+
b
=
Liu]

a unit of existence as a whole

s

a unit of influential territory

line between two stones of the same celor
or between a stone and board-edoe

Nath

Figure 1. Data Structure

r.
-

T e 23

ABCDEFGHJKLMNOPGRST ABCDEFGHJKLMNOPGRST

analyze (GOG V5.@1)
19 ; 1T - 19 T

18 . - 18| b—

17| A4 4%: . m 17| ot 3 '
16| et} ‘ 16| HOH

15 b 1N S 1 15| -7 u_g,l B

14 . . -+ 14 :Eﬂsig 7

13 S : 13 ()31

12 12| —1-+F=

11 t T 1 11| -9 W 10

lﬂ et IR 1 & i l.ﬂ . - 18

o| 1/ e ; 9] — !?

g {1 4 . 50 % | 210 lnm T

& —»—0%_@ t 6| 17 - 14

5/ - + T ?:% 5 —r%t—n—’

4] 4| 0314

3 3

2 2

1 1

Explanation

Explanation

date
candldate candidate

Figure 2. Linkage Data and Score Table

- 19 —

D e t a i 1 s (3.73)

The Parallel GOG System

In the parallel system, one of the processors of the Multi-PSI serves as a Manager proces-
sor, and the rest are worker processors.

After the system gets enemy’s move, manager processor dispatches the tasks of recognition
and candidate generation tasks to the worker processors. The results are sent to the master
processor. Then manager processor decides the next move.

Flying Corps

To make the system considerably stronger while retaining the real-time response of the
system, we proposed the concept of flying corps. The idea is Lo find out the possibilities
of potentially large gain (such as capturing a large opponent group, invasion of a large
opponent territory) or loss, and assign the investigation of those possibilities to flytng
COTPS Processes.

The system which incorporates flying corps idea is consist of main corps processes and
flying corps processes. Main corps treats necessary tasks to play Go and to keep strength
standard level we can permit. A flying corps does the investigation independently from
the immediate next move decision process, and it notifies the main corps when the inves-
tigation task is completed (that might be several moves from the initiation of the task).
Note that flying corps keep on running, while the opponent is thinking of the next move.
A llying corps may be aborted if it has become irrelevant or ummportant in the overall
situation, or the local situation that motivated it has changed by some later move, Main
corps processes have higher priority than Hlying corps processes, The time to decide next
move depends only on main corps.

Appendix: Basics of Go

Go is a board game, and is popular in China, Korea and Japan. The board is a 19 x 19
grid. The two players are named black and white. The black and the white place a
stone on a vacant intersection in turn (the black and the white place black and white
stones, respectively). Each player tries to gain as much territory as possible (a black’s
(white) territory is a vacant area surrounded by black (white) stones). A group of solidly
connected stones of the same color is captured when all adjacent positions are occupied
by the opponent’s stoncs. The adjacent positions that are vacant are called dames. When
stones are captured, they are removed from the board and are added to the opponent’s
territory count. Thus, a player places stones as efficiently as possible to surround vacant
area to maximize his/her territory. Inevitably, the black and white stones clash, which
leads to compromise or fight for capturing the opponent’s stones.

— M =

Title

Genetic Information Processing (1):

Multiple Sequence Alignment by 3-Dimensional DP-matching

¢ Parallel programming on a large-scale problem in KL1.

Purpose . .
¢ The first step to genome analysis.
[Outline]
The svstemn solves three-sequence alignment problems by 3-
dimensional DP-matching. The DP-matching is executed by a
Outling prism network of KL1 processes. The network works as a parallel
npeline.
& M}
Features _
[Feature]
¢ Lfficient DI’-inatching by parallel pipeline processing.
o Unality improverent in three-sequence alignments.
[
. J s P
e ,,f""
{ [~
Systen 3 sequences r_,,,.—""
Configu- = -
1
[\
ration | [,.-"'""f.
I |~
Aligned f,x
3 sequences ~
3D DP matcher made of

K11 process-network

-7] -

D e t a i l s (53)

1 What is multiple sequence alignment?

Biologists often align DNA and protein sequences in order to determine how similar they
are. DNA is a chain of four kinds of nucleic acids and a protein is a chain of twent, v kinds of
amino acids, which are trauslated from a chain of nucleic acids. Strong similarities between
sequences may result fronn a commeon evolutionary relationship, and these sequences may
have almost same function.

Figure | shows a typical mulliple sequence alignment. Twelve fractions of enzyime
proteins are aligned. Fach letter stands for an amino acid: T is aspartic acid, R is
argimne, H is histidine, and P is proline. A good alignment has same or similar amino
acids in each column, To make an alignment good, each sequence is shifted or gaps (dash

characters] arc inserted into the sequence.

~==DORHP-IPHMDEILGKLGRC-NYFTTIDLAKGFHO | EMOPESYSKTAFS—mme-m—
— = DAYN-LPHKDELLTLIRGK-KIFSS5FDCRSGFWOVLLOQESRPLTAFTmrmmem-
~==DIHPTYPNPYNLLSGLPPSHQWYTYLOLKDAFFCLALHPTSOPLFAFEW=ROPEM
“m-L-FGPYQRGLPLLSALPOOWKL =1 IDIKDCFFSIPLYPRORPRFAFTIPSLNHN
~--P-FGAVQQGAPYLSALPRGWPLM-VLDLKDCFFSIPLAEQOREAFAFTLPSYNND
~==DLSS5SPGPPOL-SSLPTTLAHLOQTIDLROAFFQIPLPKQFQPYFAFTYPOOCHY
=== TLTSPSPGPPOL=TSLPTALPHLQTIDLTOAFFQIPLPROYQPFYFAFTIPQPCNTY
~=~PIPALSPGPPOL~TAIPTHFPHI| ICLOLKDAFFQIPVEDRFRSYLSFTLPSPEEL
~~-D-FWEVQLGIPHPAGLKKKKSEVT~VLOVGDAYFSYPLOEDFREYTAFTIPSINNE
Y HW P F -~ AYPNLOTLANLLSTOLOQWL=S5LDYSAAFYHIP ISPAAVPHLLYGo——mm—=
¥ WP EF—AYPNL O SLTHLLSSHLSWL=SLOVSAAFYHIPLHPAAMPHLLYG-———===
MRFPRY-WSPNLSTLRRILPYGMPRI-5LOLSQAFYHLPLNPASSSRLAVS—————=—

Figure 1 Multiple sequence alignment

2 Dynamic programming on sequence matching

Dynamie programming (D] is a basic method to find an vplimal alignment. The method
15 regarded as the hest path search in the N-dimensional network. In the method, for
example, if two sequences, ADIIE and AHIE are given, we form a 2-dimenszional network
that has 25 nodes connected by arrows. A cost is assigned Lo cach arrow. We search a
path from the top left node to the boltom right node, minimizing the total cost of arrows.
In this case, the set of arrows that conuect while circle nodes is the best path, This best

path corresponds to the optimal alignment, ADH E and A-HIE (Figure 2.1).

- 22 —

D e t a i 1 5(3’3}

Costs on arrows should reflect simalarity between compared characlers. In the case
of protein sequence aligument, Dayhoff’s odds matrix (Figure 2.2) is the most popular
way of oblaining the costs. The matrix was ohtained by statistical analysis ol mutation
probability of amino acids.

Thaugh DP-matching is an optimal method for alignment, it takes a lot of caleulation
time. DP-matching with more than three dimensions is too time-wasteful to be used for
practical alignment. So DP-matching has been used for partial matching, when several
sequences need to be aligned. For iustance, we can produce all pairwise alignments of
given sequences with 2-dimensional DP, then merge the alignments one by one.

ADHE > H
AHIE

Figure 2.1 DP-matching method

L R BPDCQEGSHEILEMNMTPFPSTWYVEII

i-2

R 2-2

¥ O 0-=-2

b o 1-2-4

C 2 4 4 F12

0 0=-1=t=2 E-=&

E @ 1=1=3 5= -4

E=1 3 ¢=1 3 1 o5

B 1=-2=2=1 3=-3=] 2 =4

I » 2 2 2 22 2 3 2-6

L 23 348 2 314 2-2-4 1

K i-3=1 0 B=1 0 320 % 3-5 Flgurc 2.2
n10o32T 3B 1T I T-2T-% 0-€ . .
F444845662-1250-9 Dayhoft’s odds matrix
F=iL 01 4 30 1 102 31 2 65-4

=1 0=1 0 0 1 0-1L 1 1 3 & 2 8-=]-2

T-1t 1 00 2 1 001020 1 3 0=1-3

W 4= 4 T B E T T 3 B8 2 3 40 4 2 17

Y3 47 40 4 4 F 011 4 2=T F Y 3 &1

vo 33T TTLTITI1IIN-T I L LLOBEZTHA

B & 1-3-3 A4-1-2 ¢-1 2 3-1 2 6 1 0 0 6 3 2-2

I 0 0=-1-3 B=3-32 1<} 2 30 2 50018 4§ 2-2-3

I o101 31 3111311121094 21011

D e t a i 1 5 (3,«-:;)

3 Parallel pipeline processing of 3-dimensional DP

If 3-dimensional DP can be executed rapidly, it is useful for partial matching because it
tolerates noise better than 2-dimensional DP does. We have implemented 3-dimensional
DP on the parallel machine, Multi-PSI, and improved the speed of three-sequence match-
ing.

Our system constructs a 3-dimensional prism network with KLI processes (Figure
3). The prism network is divided into 64 subprisms of equal volume and is mapped to
B4 process elements (PEs). The KL is suitable for constructing such mesh-like process
networks and the network can be used as-data-flow pipeline easily.

If many different combinations of three-sequence alignments are available, we expect Lo
merge whole sequences adequately for multiple alignment. This system provides optimal

three-sequence alignments by parallel pipeline processing.

4 Demonstration

The demonstration system solves three-sequence alignment problems continuously by par-
allel pipeline processing. Aficr several initial alignment data are fed to PED, their optimal
alignments come out from PE63 and are displayed at short intervals. DNuring processing,
the performance meter window shows that several wavefrouts pack and propagate from
PED to PF63 clearly.

1]

Figure 3 3-dimensional DP-matching

— 24 —

Title

Genetic Information Processing (2):

Multiple Sequence Alignment by Parallel Simulated Anncaling

e Application of a parallel simulated anncaling to a practical

problem.

Purpose
e The first step to genome analysis.
{Outline]
The system solves a mmltiple sequence alignment problem by
scheduleless parallel simulated annealing. Each PE has a con-
outiime | Stant temperature and exchanges solutions with neighbor PEs
2 in some probabilistic way.
Features
[Feature]
¢ Simulated annealing without designing a cooling schedule.
e GGenerating various alignments in different local minima.
| Initial Sequences l
Systen LA 7 7 t on PE1
Cont Tz s T 0 ~ t on PE2
& Ts S == [on PE3
ration Ts I T I T '"i“: - { on PE4
Ts —==%w ¢ on PE5

[Aligned Sequences |

1
D e t a i l 5 {/’3)

1 Simulated annealing algorithm

In many important practical problems, a solution is an arrangement of a set of discrete
objects accurding to a given set of consiraints. Such problems are typically known as
combinatorial problems. The set of all solutions is referred to as the solution space and
an energy function is defined for all solutions. To solve a combinatorial problem is to [ind
a minimurn-energy spot in the solution space.

A general strategy to search in the space is the method of ‘iterative improvement .
The method requires a set of moves that can be used to modify a solution. One starts
with an initial solution and cxamines its moves until a neighboring solution with a lower
encrgy is discovered. The neighbor becomes the new solution and the process is continued
to examine the neighbors of the new solution. This itcration terminates when it arrives
al a spot that has locally minimum energy.

Simulated anncaling algorithm is an extension of the method of iterative improvement
based on an analogy between a combinatorial problem and the problem of determining
Lhe ground state of a physical system. To bring & fluid to a highly ordered state like a
single crystal, a process called ‘annealing’ can be employed. We first melt the system by
heating it to a high temperature, then cool it slowly, spending a long time at temperatures
in the vicinity of the freezing point. Kirkpatrick et al suggested that better results to
combinatorial problems can bhe obtained by simulating the annealing process of physical
systems (Figure 1),

begin
Xa = Inital solution :
[Ta}awp...n-1 := Temperature (Cooling schedule);

for n:=0 toN-1do
begin
‘n 1= Some random neighboring solution of Xn |
AE = E{xin} - E{.‘:-};
if AE< (@ then
Kael 1= X'n
else
if exp(-AE/T») = random(0,1) then
Xn+J' = X'u
else
XAH =Xn
end:
Quepur X,
end:

Figure 1 Simulated annealing algorithm

2 Multiple alignment as a combinatorial problem

There may be some ways to formulate multiple sequence alignment as a combinatorial
problem. Kanehisa, a professor al Kyoto university, developed an ingenious formulation in
order to solve multiple alignment problems by simulated annealing algorithm. We adopt
his formmulation.

- 26 —

D e t a i 1 5 (2,.-5}

Kanehisa's idea is as follows, First, we make an initial alignment by adding a number
of gaps ta both head and tail of each sequence {Figure 2.1). To modify the alignment,
we focus on one sequence in the alignment and select a gap and an amino acid randornly
in that sequence. Moving the gap to the other side of the selected amino acid gives the
modified alignment (Figure 2.2},

The energy of an alignment is calculated by summing up each correlation value of pairs
of characters located in the same colurnn. The correlation value comes from Dayhoft’s
odds matrix. If the energy of the modified alignment is lower than that of the previous
one, the moditied alignment is always regarded as a new alignment. Il not, whether the
modified one is regarded as a new alignment or not depends on the probability derived by
temperature. The temperature is decided according to a cooling schedule. This annealing
operation often brings good alignment (Figure 2.3),

Figure 2.2 An alipnment after the first move

"ee====NAPATFQ--RCM-NDIL--RPLLNKHCLVFSTSLD---"
Me——=LKQAPSIF(-=-RHM--DEA-FRVF-RKFCCVFSNHE----"

"===--MANSPTICQLYV-QEA-LEPIR-KQFTSLIVIH------= "
"-—-—-TCSPTICQLVVGG-V-LEPLRLKH-PSLCMLHA-~---- "
We—=—==-SPTLF-EMOLAHI-LQPIRQA-FPQCTILQASP-=~-"

Figure 2.3 A good aligniment

3 Scheduleless parallel simulated annealing

Designing a cooling schedule is troublesome because the optimal cooling schedule depends’
on the type and the scale of combinatorial problems. Without careful temperature reduc-
Lion, a solution is trapped in a local minimum which has relatively high energy. Kimunra,
a member of [COT, developed the method of parallel simulated annealing that makes it

possible Lo avoid designming the couling schedule.

D e t a i I 5(1"3}

In Kimura's method, each process clement (PE) maintains one solution and performs
the anncaling operation concurrently under a constant temperature that differs from I'E
to PE. The solutions obtained by the PEs are accasionally exchanged between PEs that.
hold neighbor temperatures {Figure 3). This exchange of solutions is controlled in some
probabilistic way. Kimura propused a scheme of the probabilistic exchange, and justified
it [rom the viewpoint of the probability theory. He applied his method to a graph-
partitioning problem, one of the representative combinatorial problem. That proved his
method to be efficient.

T (temperature
i (tempe) a cooling schedule for the

K .
T+ I; K sequential simulated annealing
TQ n : 2 K
TS‘ - r z i

T4- =t
Ts. i Ks

=~ 1t (time)

— ; _ —— { on PE1
To f—the 1 T T tonPE
To _ leoeeoo: mmmey ~ t on PE3
. \ _ R ~ t on PE4
n ~==24 + 5n PE5

I : aprobabilistic exchange of solutions

-

PN
>
'tl
;

>

Figure 3 Scheduleless parallel similated annealing

4 Demonstration

The demanstration system solves multiple sequence alignment problems by the parallel
simulated annealing method. The multiple alignment problem is forimulated as a combi-
nalorial problem by Kanehisa's idea, and the simulated annealing vperation is processed
by Kimura's method,

Generally, it takes hundreds of hours for optimization by simulated annealing. The
demonstration is a brief version of multiple alignment. 1t shows you gradual improvernent
of the alignment of some small protein sequences,

MGTP: Model Generation Theorem Prover
- Advanced Inference Engine for Al Systems -

AIMS:

The goal of our research is to build a parallel automared reasoning system on a parallel inference
machine, PIM, using KL1 and PIMOS technologies. The MGTP prover, currently being developed,
adopts a model generation method. In developing MGTP, we aim to achieve the following:

(a) Combine logic programming and automated reasoning to investigate an efficient first-order
theorem prover.

{by Offer an advanced inference engine that can be applied to fields such as natural language
processing, intelligent database systems, automated programming, expert systems.

APPROACH:

-Development of clause compiling techniques and meta-programming utlities to implement an
efficient prover in KL1.

-Development of a support environment to make it easy to use and develop MGTP.

-Development of an automated programming system to demonstrate how programs can be derived
automatically using MGTP.

Problem Solwving Systems

I Automated Proqrmind

MGTP

Farallel Theorem Prover
(Advanced Inference Engine}

Load balanso

r" 1

FParallal O (PIMOS)

/t(ruauu LF Language KL

KLl Language Procassor

L9 Prototype Hardware (FIM,Multi-F3I))

MGTP Relative to Fifth Generation Computing Systems

- 929 —

Two Versions of MGTP

-Efficient coding
using head unification

Ground MGTP Non-Ground MGTP
Application Ex. Database problems Ex. Mathematical theorems
Variable Direct use of KL] 1
Representation | variables Ground term representation
Programmin -Translating given clauses -Interpreting a given set of
Tecllg'lniques g to KLI clauses clauses

-Using "meta-library"
Ex.Unification with occurs
check

Other Implementation Techniques

- Avoiding redundancy in conjunclive maiching using RAMS{Ramified
Stack) and MER C(Multi-Entry Repeated Combination)

- Term indexing

- OR-parallclization for Non-Homn problems

- AND-parallelization for Horn problems

Examples:

(a) Party Problem (Ground MGTP)
-Non-Horn and finite domain problem

not familiar with each other, from 6 persons who meet at a party.

[We can always choose 3 persons who are either familiar with each other or

\J

true --> dom({1},dom(2),dom(3),dom(4),dom(5),dom(6).

dom(X),dom(Y),X>Y --> f(X,Y);nf(X,Y).

f(X1,X2),f(X2,X3),f(X3,X1) --> false.
nf(X1,X2),nf(X2,X3),nf(X3,X1) --> false.

(b) Overbeek's Problems (Non-Ground MGTP)

-Horn and infinite domain problem

-Group theory, ring theory, implicational logic

e.g. ple(X,Y),pX) --> p(Y).
ple(e(e(a.e(b,c)),c),e(b.a))) --> false.

true —> ple(A,e(e(B.e(C,A)).e(C,B)))).

)

Demonstration (1) -MGTP and its utilities-

(a)

METF Control pansi

Proof tree viewer

1COT SLab.

ran

show legfile

make graph

'“ll'"

ransey diagras

(b)

GTP Comtrol panal

I

ICOT SLah.

.
]
e e
—— e, T T
i P A # LA A
= T AN A AN Ao A AN A
eV 1A 1A TA LA T8 1A AT N A
(I T 1A HorA A I A A
& 1 | | L

Statistics analyzer for load balancing

Whan x Whera

v T § 2 B 1 ¥ [13 ih i 1] it

dam (1)
dam 4
dom (5
dam (&)
rf {6 1}
nf (6,2}
nf (6.3}
nt (6, 4)
Fi6.5}
nf (5,13
nf {5.,2}
nf (5,3
nfiS.4)
£14,1
nf (4.2
falas

Lina (msas)

|
1)
aeTade i
|

I -
-]
. ﬂ‘f b
' SIS |

b ﬂ ﬁ —l] ﬂ El 1-1@g.lpe.mlog
- . -r 1

: 1 2.18u_Zwn.mlog
| H __L& S 3_10q._4
| iff -18g_4pe. nigg
. I3 b 4_18q_Bpa.mlag
! E_10g_15pa.mlag
" F k ﬂ— 6_19q.3%pa. nlog
! J T=1ldg_&4pe.mlog
i [1] L TTTT

== =1

Histaryl, ealt

Demonstration (2) -Application Systems-

(a) PAPYRUS + MGTP = Automated Programming System

I .
/ Y
Theorem Generating Proof

(Specification) Proof 3"(roof) R MGTP

Extracting -
Program

_5\
papyRUs —>{_Froprm)
1

Automated Prugram Synthesis System

| User !-(—

y
\ MGTP +
11'":":“'_‘"'" i Tnduwction Proof
(Specification) Equatien -
Extracting
Frogram
— Pragram }

* MGTP generates the proef setomatically

(b) Specification Description Language for Telecommunication
Protocol :Ack

n i I . ’
L hook(on) |,

e
Q Ack Specification) Sl = ;
.-.r-mtum_,,-{_;_’n?v;‘ﬁ

translate ianetdn
(MGTP Formula)
Y prove(using MGTP)

b heakisin
{ heomeretyy
, achookian)
"l.'rgnm,u;l!l

K ahookia b
(Poss 1blE World Hﬂde_l) {adonelrbi) ir'b“::{:?rll‘
+ behoak(an)) | I:H-ml.[nl'ﬂ}
“hitone(rgl) "5 b /
Y construct - =

e

@tate Transition Diaqra.a

I:h.c.i-o-iruﬂ'_ll .
fatometh) % pepsh r'{l:hm:licl:clrﬁ'l
h::l‘!mkl_o[l’” _'-li. i b)

Eutane(a)” oy

- 32 =

EUODHILOS:
A General Reasoning System for a Variety of Logics

Purpose

EUODHILOS (Every Universe Of Discourse Has Jts LOgical Structure) is a general-purpose
reasoning assistant system that allows users to interactively define the syntax and inference
rules of a formal system and to construct proofs in the defined system.

Basic Features

(1) Formal system description language

(a) Language system (symbols, terms, formulas, etc.)

¢ Definite clause grammar formalism angmented with special constructs to handle variable
binding, scope, etc.

¢ Automatic generation of a bottom-up parser, an unparser and internal structures of
eXpressions

(b) Derivadon system (axioms, inference rules, etc.)

¢ Axioms: a list of formulas

¢ Inference rules: natural deduction style presentation, and automatic method to check the
side conditions

¢ Derived rules: definable if they are justfied for validity

¢ Rewriting rules: definition by a pair of forms before and after rewriting, and applicable up
1o the given number of rewriting

(2) Proof construction facilities

+ Sheets of thought: a field of thought where we are allowed to compose a proof from its
fragments, 1o separate a proof, etc.

+ Proving methodology based on several sheets of thought: forward reasoning,
backward reasoning, reasoning in a mixture of them, reasoning by lemma/derived rules,
schematic proof, etc.

¢ Tree-form proof with justifications indicated in the right margin

¢ Interface with antomated theorem provers/term rewriting systems

(3) Visual human-computer interface for reasoning and utilitics

+ Formula editor, font editor, software keyboard, debugger for defined syntax, stationery
for reasoning

- 33 -

System Configuration

Input
— Logic - F~ SUPpOrt ™
—Language—\f arser
(Syhtax)(ﬁymbar—")-} unparser

enerato
— Derivatio \C
T

Inference rulfewriting raf Formula
Theory | L parser
data- + areer
base coheet of thought=y Reasoner
N Mx=xx |

[s a-s || fe—=
B H
X&Y =

,{ =T
Input/output
“ / “~support—’

Logical Systems and Proof Examples Implemented in EUODHILOS

(a) First-order logic (NK): various pure logical formulas, the unsolvability of the halting
problem, an inductive proof, hardware verification (see Fig.2) and category theory

(b) Second-order logic: the equivalence between the principle of mathematical induction and
the principle of complete induction

(c) Propositional modal logic: modal reasoning about programs

(d) Intensional logic: the reflective proof of 1 metatheorem and Montague's semantics of
natural language

(e) Martin-L&f's intuitionistic type theory: constructive proofs

(f) Hoare logic and dynamic logic: reasoning about program properties (see Fig.1)

(g) General logic (see Fig.4),

(h) Relevant logic

(i) A logic of knowledge (see Fig.3).

- 34 —

T NFDFRMAT] 0N i

SOFT _KEYROARD] rimma: rapsth s don
EYNTAX \

INFERENCE _RULY FAGIAIT [aba A B 8, b e G W A (8500)

REWRIT RULY CARR [H1 Y 1
ITING Fowhi Eeldaned) Fael PAE=S)sbgal agod ley blaged (o,) Dioe sk d wbgnspod (a b o ged Duy yhie- nsnd |
AiOn - CAER (§}) ————{aEP)
PROYER " Widk TN W {0 b At i dawdabedh absn b Aped (o bimgad [gl

#i Dallra &9 — iAERib S 1Y
DFRIVED.RULE e S e, b ieged ix, 4k
THEOQREM GALEIRY
(sl amil)} aged Cn, Bispedin, gl

_— LELRR]
£ {msAled | Absal Aged {ng blagod (g @)) deamin (ar@ALS0 HAREd (8 bISPEd Ly ?

VI MFERENTCE _RIULE ¢

|

E g F FaaPE

ma e Baged (5,)

E{r.ir-u.l.iml IF} FapP e B ke B g

#E Side condiion &4
% Dafime &
ik

B B D AR Ly B TR0 (5,4 A S0 Sns SaasDagod (8, B} -gad i, u}

BaGARR0AG0H (8, I SgaRE, AR (ki s

AWy g D87 ma-ml a0k 0Aged L, BITged iR b
tzonaeal i b

wedinheGagod la, vl sgod {u, ghAsnrs iuhi |

ELTEENT
lrapsfditianill
Pmgeddx; 4l s-asb

ArBARFAAEHA LR, Boged (N, ghasnre b L

Ew=pandl) ; (bl | apradon: anennd b arlshsdahgnagrd (A, nisgedimayb

ardabrlapodim;mlmgad (a9 iregy

mrage D m: W ; irepent sei leesodos ! as~bod) | (whi | ehradob! sk-sodbw=11 | edbi | aedanrisasnahzgod fu, g

Fig. 1 Program verification in Hoare logic

e]

I MEROGE # (1 L, 88, b AMOT S (g]

MG e EL L, P, w AT e (5 saatp] |
aFP R})

CARGIED)

MRS (1], R, wh
— (G e e 2])
= LAl T
= Vhmp 12} 3
sk plee {1 180 2D
e R

P e sy i L B
(M T b e B (2})
BUTpEaE

aufpRidal®
il - da 10 02})

ALy, 12,8
—
e E L, L, sl Bl

—_— Ll b i d 16D
R BN U8 D0 Ly B, W] AMOTOSE S (x, saalpl i

{AC ik b

G Ol 2]
—— ——— L L)}

AT o TP, L2 outp) SAMDGETS (1L, 58, GUEE

Fig. 2 Hardware verification in first-order logic

e —

L s o

K g B 3 U B S
—_— il] progis aniemd
B B £ b (e B] B B Do S B e I D o) T g b b
16 51 b
Wit (e o | B S
= O 13 1 (L LR
ot R P | Lo TR o e)
— eewirapEEi i IER il mrager aeism,d Desnyesseniiieail |
LR PR T) o AR | 3 - Ly M- Ke~p] FR§-Esplal
e =] N 1 1]
Kw-dan Hafag e [T E -
- o
W e Ll

wraper _wwism 3

Wl £ B 2 1T O B S |
- e e (W]

i}

Fig. 3 Simple puzzle in a logic of knowledge

— 35 -

ﬂ.“-

IRFORMAT [ON : a6 mew @ == new ¥m
S0FT_KEYBOARD i :; it am ::.::i ' i ,
necene aue [| - [e LT CII'_IIEJIIE EEE L) @i
REMRITINGRULE [] ¢ 5811 k3 E|I_" e : E”E.‘._'—_l:l (Bl sl aln|

oy josonl mrrr Onon Jl_l_ﬂ

PROVER 1 ar LA
CERIVED REE [] o SAI_1] |_|L.LI _{%
THEOREM [O wa.z s (I Erl_ll"
-] owE e Tt
PRODF g j I
= EX]T zx £E 1 [it T
1 HEC

save mahs teal slructure print

P isaE 1ERgusps
aaguEnt ssn meak, ® %) dorEmilas

bunsk ==@ bunch, ", %, bBunckl] esekl;
unckl == munckl "; %, wUfdR? | sk
EANGRE ——3 drmm]

Bungha <or "% emehy *h5p

B Fem w9
A Emit w@

B {Emalll =20 I [T T I ————

Pl ne (2) c}{pﬂﬁﬂa 1 B E T L L Tt

P e B {Pibema £ 1 Ieput §dm mymisx

AR (] B —] L ur

wmd AP, orms e

g e el T T T Fil]l:m'H:EI- SAgUEAE ... MUESCANS.

FBIF U on e

Thi F'!J'r""'uh IJhI Inpmi &0 sopressyen

ThE 1 ®s %i0s comditon &8 r

1hd ‘| W edine we

Trund = Ak~ 1 & 48 ner fres an @

Truss B, Of fub = g il & UE Rl fees AR B Ll

tamaﬁaﬁm

sali
-r3|.| Aplylert, g a Lk, Dbl g i) b
—— oo T3 i i
“dae Al -k, @l 30Dy, SO (e])
LLIE) Hreszmpdf})
=3y gyl =atin. gimdp b =00y, {8 Db -mln. g rud b b -u::u. Loy i, giul i Wy, (g dgd B dBn, pimb i)
fou Bmp b i ¥ e — (E D
L' 11411-:!-'&!-1.|1r:|:ll-‘b!.|.=1-|.-u|-:-|.lu FIETE] =iy :?‘l':-‘bl|‘:-r’?"||¢?"\-th.l1‘11
—_— fargrmiel~ £} 3 — o (RE] el
-8y, (gl -nimw, :I!-:l'H-u Aadygbl~ e, giabyy oy, (g iy -rite W gl) =g labi—pic}
- -l fotrmn 3) 3 LEL {3 ¥
=g, gdgl-swx. gi=d) ARl E-dbx. gdui =g (gl =P g Tl b Tma g dmd ~@Le) s, g i
B — — GNE_ =55 AEE {hi ¥
ELE N |||!ul-:-lh mimbpirgded =By Cp U -, @ D 0E o, g (W
— — Ui e LR
=i li;wJ . giw) P gled i3y (g dd =wife, @Ead b D= [t g iud)
LCRR Y]
= {3 i@ =W @0 1 by O T Db =t i 302 o, bl i g L)
LU]
Lt "R RR L R lh':lﬂ h:..l!:u-{lu.-uu
CBRG, ())
LEETE AT T 'I'itui—wl-rlu:lnlh.“ﬂl-tb. mEEd}
e § W 1})

bR e . l:ww.l-w-w.- minbhh
— — (W {) ¥

Lla + AR b - g =1)

QOO RgEw
salb amid wald
P g e i i o,
ol — (G EE BE] e {MTT 5 ¥
rir B-hfa BoRrips>g g RS F el
L LT ———a (PF]] —- < (NP L)) S [} ¥
Faple Ap=-rq, p-mriipig iy psriipir speagiegip
TH] T _ [T
Pt plg [p=may p—uw } gy (p=2q, p=nr}; kr Sl =] =
=l I riQl) ———e—— - (ERA_1 (b} AR
A¥YFleYr gy g plgvr g E plgvr Cp=wd pesr b g VP] =g =
LT 40P {3 ¥ L]
Ps AR pllgvr Berg, p-ri peirghe IFus (p=rql=paug-pp

e e

Fig. 4 Some proofs in general logic

- 36 —

Constraint Logic Programming Languages

CAIL waepee

Institute for New Generation Computer Technology

¢ Constraint Logic Programming will change Programming:

How to solve it What to be solved

LIsers have to find out and .
- lLanguage Processor finds out

t::ﬁfiﬂl‘ibe | D> the method
everything to solve to solve a problem
a problem

+ Problem solving using conventional Programming Languages:

Finding an algorithm Language

TR

f‘;;,D how to salve it 'fing’,"inl/-" Program Processor
-

o e 3,]

Analyze - f—

a problem

Conventional Cnmpumr),;g

: AT CAL
* Problem solving using CAL. Language

Processor
Writing Constraints Program NN
\ as a Progr ~The Method
O

‘H\
)
to solve =
)
=

Problems
"\.\\\\.\'\\'\\

'I,‘
R
N
N

Analyze ; f
a problem i I

GDCC
+ Parallel Problem solving using GDCC: Language

Program Processor

Writing Constraints

e Fethed
> toselve <)
R N

[jﬁ,}, as a Program
N\
D
Analyze .
a probhlem | '

- 37 —

(1) Heron's Formula (Algebraic Constraints-1)

+ Solving non-linear equations
- Producing a new relation from known relations
- Finding real roots of uni-variate equation

- public triangle/3.

surface(H, L, 5) :-alg:L.*H =2*5,

pythagoras{X, Y, Z) ;- alg: X*2+Y"2 = Z*2,

triangle(A, B, C, 5) :- A
alg:C = CA+CB,
pythagoras(CA, H, A),
prthagoras(CB, H, B), -
surface(H, C, S). CA CB

7- alg:pre(s,10), heron:triangle(3, 4, 5, 5),
alg:get result(eq, |, nonlin, R), alg:find(R Sol).

R=[s"2=36].

Sol=[s=real(-, [5121, 7921, 1030], (9184, 7986, 171])]
=[s=-6.000000099].

§"2 = 3.6el

7

R-[s"2=36].

Sol=[s=real(+, [5121, 7921, 1030], [9184, 7986, 171])]
=[s=6.000000099].

52 = 3.6el

7
O983imsec

yes

._38_

(2) Handling Robot Kinematics (Algebraic Constraints-2)

* Rotation angle of each joint
+ Length of each arm

¢ Direct Kincmatics: @,

- Position and Orientation of
End Effecter

+ Paosition and Orientation of

z
End Effecter
4 [nverse Kinematics: —@-—
x2
-~ + Rotation angle of each joint
ﬂfc") - Length of each arm
NG
z3 zl
‘ 63
-y
X Rotation angle for !iength of | | Rotation
joint 3 each arm Axis

ﬁ/ » .ﬁ'
robot:robot([|| cos3, sin3 [0, 0, 23, }|0, 0, 1{].

Rotation angle for x2, 0, 0, |{1,0, 0},
joint 2

Rotation angle for cost. Slﬂl.ll}, 0. 2L J|0.0. 15, Initial orientation
£ 50,0 | |1, 0,0 010 of the End Effecter

joint 1
PX, PY, PZ, ax, ay, a4z, cx, cy, cz |}

Initial position A ~—
of the End Effecter Desired position of Desired orientation
the End Effecter of the End Effecter

This computes necessary rotation angle of each joint and
necessary length of each arm to move the end effecter

to the position (px, py. pz) with the aorientation represented
by two unit vectors (ax, ay, az), and (cx, ¢y, cz), which are
perpendicular each other,

.._39_

(3) Count one's (Boolean Constraints)

X1

X2

X3

X4

X5

- Salving Boolean constraints
 Showing no input-output restrictions
* Producing general relationship among parameters

:D——?g,

(4) Summary

¢ By using CAL/GDCC,
+ Programming will change from "How" 1o "What"

<=3 All users have to da is describing the problem by stating
relations (constraints) which are hold among components
of a problem

* The language processor applies the method to solve the problem
automatically

+ We are now

* developing Parallel “Handling Robot Design Support System"
* developing various parallel systems to solve various constraints
Non-linear equations (done)
Boolean equations
Linear equations/inequalities

o Building very high-level programming system for
paralle] Al-language based on Constraint Logic Programming

— 40 -

Kappa with Molecular Biological Data
Nested Relational DBMS as a Knowledge Base Iingine

Summary

Purpose

kappa 15 an advanced database management system on PSI and PIM. It
plays the role of an engine of our knowledge base management systems for
various knowledge information systems such as genetic information process
systems with molecular bivlogical databases, legal reasoning systems with
legal databases, and natural language processing systems. We show the
Kappa svstem with a protein database: PIR and some of its tools.

Outline
kappa is a DBMS with the following features:
(1) Powerful modeling capability of a nested relational model
(2} Efficient processing as a knowledge base engine
(3) Flexible data structurce: list, bag, variable length string and term
(41 A user interface tuned for Lhe nested relational model

(5) Two level program interfaces: primitive commands and extended relational
algebra

() Customizable program interface

System Configuration

khnowledge

User Administrator Applications
I i I |
Metadata Program
Tools User Interface Manipulator Interface
Kappa
LUBMS Kernel

Demonstration

We implement GenBank and PIR in Kappa. We show the Kappa system with PIR

and some of its tools.

(1} Metadata Manipulator
PIR database consisis of three tables: pir_gen, pirref, and pir_fea. We show
schema of each table with the metadata manipulator,

(2) Kappa User Interface

Kappa provide a terminal interface like a spread sheet to manipulate nested
relations interactively. We show three tables: pir_gen, pir_ref, and pir fea, and
retrieve some records from them.

Primuitive Commands

(3]

Primitive commands are one kind of program interface. We retrieve records
whose reference Dr. Matsubara wrote, by primitive comunands.

ﬂifi_rndf(ﬂ_aut hors-r"!'uiat51|_|:-a,ra*"([-1'i1"—r‘:'-f) } il Pir-EEH

(4) Feature Expression

Feature cxpression is one of the tools for PIR in Kappa. The tool works on
X/UNIX, retrieves records from PIR in Kappa. and shows features of regions.

1 Kappa

Rappa' is oue of the ICOT KBMS projects, and aims to provide DBMS for Knowl-
edge Information Processing Systems (KIPS). Kappa is the DBMS on PSI-11/SIMPOS,
while Kappa-P, which we are now developing, is the parallel version of Kappa, on
PIM/PIMOS.

happa is a DBMS with the following featurcs:

{1) Nested relational model is emploved.

{2) Large amounts of data are effectively processed.

(4] A user interface tuned for the nested relational model is provided.
(4) ESP program interface and extended relational algebra are provided.

{5) Program interface can be customized for cach application.

2 Nested Relational Model

The definition of the nested rclational model (which is employed by Kappa) is intu-
itively as follows:

NRCE, x...xE,
Fy == D; | 2NR

where 1), is a domain, and NR is a nested relation, while a relation R is defined as:

"Knowledge APPlication-oriented Advanced database management system

— 42 —

RCDy=...xD,

Relation:
Gruu;_:
Tour Schedule | Name | Member
| Date [To | Group __| 'L Setting-G | Sugino
6.4.90 | ANL | Setting (& || Lecture_G | Lchiyoshi
6.25.90 | ANL | Lecture (G | Lecture_(i | Kondo
Lecture.G | Susaki |

Nested Helation:

Tour Schedule

DNate To Group

| _ | Name Member

[6.4.90 [ANL [Setting G [Sugino

6.25.90 | ANL | Lecture G | Ichivashi
kondo
Susik

3 Molecular Biological Databases

3.1 GenBank

(renBank? is a public database which has manv fragments of nucleic acid sequences
(DNA and RNA). GenBank, EMBL? and DDBJ* have been created by agreements
on dividillg tasks of data collection and exrhanging collected data.

Fach fragment {or lorus) in GenHank consists of the definition, the related biblio-
graphic information, features of the regions in it and their positions, and DNA/RNA
RFL'II:J.F]_'ICE'.'.

3.2 PIR

PIR? is the representative public database of amino acid sequences of proteins.
Each entry in PIR consists of the definition, the related bibliographic information,
features, and amino acid sequence.

4 Molecular Biological Databases in Kappa

We implement GenBank and PIR in happa. These data has complex structure, and
contains large sequence data. [0 s difficult to implement these data in a relational

databasze.

Advantages of Kappa are followings:

¢ Reducing the nnmber of relations
Becanse an nested relation can expresses multivalued dependencies into itself,

Y (lenetic Sequence Nata Bank, InielliGenetics Inc. and Los Alamos Maiional Laboratory, US
M ucleatide Sequence Data Library, European Maleoular Biclogy Laboratory, EC

1DNA Date Base of Japan

“Protein Informative Resource, Nativasl Bivinedical Ressarch Foundation, US

- 43 -

a designer can reduce the number of relations. From a processing point of
view, the number of join operation, which needs many Processing power, can
be reduced. From a user’s point of view, it is easy to understand the overall
schemna because the schema is not partitioned unnaturally.

¢ Variable length string
It is possible to reduce storage size by suporting variable length string.

4.1 GenBank

{1) Schema
We design four tables to implement GenBank in Kappa.

gene : main lable, each record of which has a locus name, the defi-
nition, accessions, keywords, identifiers to the other tables. and so
on.

reference : table with references, each of which has authors, a titles,
a journal in which the paper was published, and so on.

feature : table with regions of a sequence and those features.
seqdata : table with sequence data represented in string form.

(2) Storage Size
GenBank released 60.0 (6.15.89},26323 entries, 32 M hases.

T Flat file - Kappa
(in F'S1) Record Index Total
143M bytes | 130M bytes | 15M bytes | 175M bytes
| {1%indexes) |
4.2 PIR
(1) Schema

We design three tables to implement PIR in Kappa.

pir-gen : main table, each record of which includes a name, a place-
ment, sources and sequence data.

pir.ref ; table with references, each of which has a author, a title, a
journal.

pir_fea : table with regions of a sequence and those features,

(2) Storage Size

PIR released 25.0 (6.30.90),17731 entries. 5.0 M residues.
Flat file | Kappa
{in PSI) Record | Index Total fi
44M bytes | 34M bytes | I6M bytes | 50M bytes
{3dindexes) |

=44 =

International Conference on
Fifth Generation Computer Systems
Date: June 1-5, 1992
Venue: Tokyo Prince Hotel, Tokyo, Japan
Secretariat: Institute for New Generation Computer
Technology (ICOT)
Mita Kokusai Bldg. 21F
4-28 Mita 1-chome, Minato-ku
Tokyo 108, Japan
phone: +81-3-3456-3195
fax: +B81-3-3456-1618
e-mail: fges92@icot.or.jp
telex: ICOT J32964

ICOT

Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F
4-28 Mita 1-chome, Minato-ku, Tokyo 108, Japan
phone: +81-3-3456-3195
fax: +81-3-3456-1618
telex: ICOT J32964

