ICQ] Technical Memorandom: TM-1130

Thi-1130

Strategy Management Shell on a
Parallel Machine

by
Y. Kohda & M. Maeda (Fujitsu)

Movember, 1499]

19, o

Mita Kokusai Bldg. 2IF (0313456-3191 -5

I C DT 4-28 Mita I-Chome Telex LOOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



Strategy Management Shell on a Parallel Machine

Youji Kohda, Munenori Maeda
International Institute for Advanced Study

of Social Information Scicnce
FUJITSU LABORATORIES LTD.

1-17-25 Shinkamata, Ota-ku
Tokyo 144, Japan

{kohda,m-maecda }@iias.flab.fujitsu.co.jp

Extended Abstract

Parallel processing has great potentiality, and it looks for the places where it can show the
maximum strength. Multi-tasking capability is desirable in parallel processing as in sequential
processing. In single-tasking, it is necessary to rebuild parallel programs for cach parallel
machine to extract the maximum power of the parallel machine. Tt is even more difficult to
design a suitable load-balancing strategy in multi-tasking environment. Static scheduling will
fail in mulii-tasking environment, since jobs are entered at any time and interfere with each
other. Moreover a parallel machine is a dynamically vperating electronic complex rather than
a simple automaton, and this also makes static scheduling incompetent. We use the power of
multi-tasking to tune up parallel programs for a specified parallel machine. For the purpose of
tuning up, we can plan a series of experiments to find suitable strategies. Ilowever we have to
confront a vast search space of possible strategies, if we plan a straightforward search.

Strategy Managemen! Shell is a specially designed multi-tasking shell to make the search
feasible. A parallel machine has lots of PEs (Processing Elements) and they have wasteful idle
time. The shell utilizes the idle time to make the search in parallel and repeatedly. It also
ntilizes a well-chosen “representation” for describing load-balancing strategies, since search
space is considerably reduced by choosing the appropriate representation conforming to the
target.

We have prototyped a Strategy Management Shell in KL1 on multiPSI. KL1 is 2 concurrent
logic programming langnage. The concurrent nature is suitable to describe the task manage-
ment, and the logic feature is suitable to describe the strategy management. The process of
KL1 is a goal, and a goal conveys all the necessary environments explicitly. The program of
KT.1 is a set of clauses, and clauses are highly independent of each other. Hence both processes
and programs are easily migrated in KL1, and the shell makes the most use of the fact.

A task is really a job but running under a different load-balancing strategy. The shell may

1



create several lasks for a job, The shell manages a database which records the load-balancing
performance of strategies tried in the past for every job. It can pick up the best strategy among
the strategies recorded in the database, and a task with the strategy is executed as the leading
task. Similarly, it can suggest several experimental strategies and several tasks are executed
as erperiments under the strategies. When these tasks end, the performance of each strategy
is recorded in the database, which will be consulted later. A list of strategies can be given
by users, and then the shell picks up the best strategy among them. Otherwise some learning
algorithm is used to extract a “success rule” from the set of superior strategies. Experimental
strategies will be generated using the success rule with low cost. Another candidate is genetic
algorithm, which can produce an experimental strategy by gathering locally optimized decisions
from a pair of strategics. The shell works as follows:

o When a job is entered by a user and the parallel machine is not overloaded, the shell
starts the leading task and several experimental tasks of the job. The result of the job is
the one that is returned first from one of the tasks.

¢ When a job is entered by a user and the parallel machine is overloaded, the experimental
tasks already cnicred are canceled by the shell, and then the leading task of the job gets
started. This avoids unnecessary wait cansed by the shell’s experiments,

¢ When the parallel machine is not overloaded and can afford more tasks, the shell volun-
tarily picks up a job in turn from the database and starts several experimental tasks of
the job. It makes use of the idle time of PEs for further experiments.

The representation of a load-balancing strategy is separated from program text, to make
1t easy to try various strategies without inspecting the text. It consists of two descriptions:
how to partition a program into segments and how to assign PEs to a task. A program is
partitioned into several segments and a segment is a unit of program transfer. (Duplication
between segments may occur.) A subset of PEs 1s assigned to each task. (A PE may be assigned
to different tasks at the same time.) The subset gives the load-boundary of a task: segments
can be transferred only to the PEs in the subset. This avoids PE's wasteful possession of
local memory with unused segments. In general, PE offers a “meeting spot” to processes and
their program. In sequential processing, the only solution is to move necessary segments to the
central PE where processes wait. In parallel processing, processes may be moved to other PEs
instead of segments when they fail to meet.

PEs in an assigned subset are numbered and the numbering makes a “forwarding route” in
the subset. Segments are forwarded by Lhe shell along the route, and processes are forwarded
by underlying mechanism along the same route. With the cooperation of the shell and the
underlying mechanism, processes are load-balanced, following the necessary segments:

® When a PE is overloaded with lots of processes, the shell forwards a segment from the
PE to the successor PE, expecting to distribute the processes.

* When a PE is not overloaded and can afford more processes, the shell forwards a segment
from the predecessor PE to the PE, expecting to gather processes in one PE.



¢ When a necessary segment is not found for a process on a PE, underlying mechanism
forwards the process to the suecessor PE of the PE.

We rely on the fact that programs in KL1 can be partitioned into so small pieces that we cau
expect the transfer cost is not expensive. Otherwise all the segments can be delivered to all the
PIs alang the forwarding route before the execution, and the action of forwarding segments can
be simulated by enabling or disabling segments with masks. Program transfer should be a part
of task execution, while program transfer is often out of consideration in batch environment.



