_IC__O__T Te_g:hn'rcal Memorandom: TM-1125

TM-1125

Implementing Streams on Parallel
Machines with Distributed Memory

by

K. Konishi, T. Maruyama, A. Konagaya (NEC),
K.Yoshida & T. Chikavama

October, 199]

€ 1991, ICOT

Mita Kokusai Blde. 21F (033456-3191 -5

" :D I 4.28 Mita I-Chome Telex ICOT 132964
Minato-ku Tokyo {08 Japan

Institute for New Generation Computer Technology

Implementing Streams on Parallel Machines with
Distributed Memory

Koichi Komishi Tsutomu Maruvama Akihiko Konagaya
NEC Carporation
4-1-1. Mivazaki, Mivamae-ku, Kawasaki, Kanagawa 216, Japan
{konishi, maruyama, konagaya}@cesl.cl.nec.co jp

Kaoru Yoshida Takashi Chikavama
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, Japan
{yushida, chikayama}@icot.orjp

Abstract

Stream-based concurrent object-oriented programming languages

(8COOL) to date have heen typically implemented in concurrent logic program-
ming languages {CLL). However, CLLs have two drawbacks when used to im-
plement message streams on parallel machines with distributed memory. One
is the lack of restriction on the number of readers of a shared variable. The
uiher is a cascaded buffer representation of streams, These require many inter-
processot communications, which can be avaided by lunguage systems designed
specially for SCO0Ls. The authors have been developing such a language system
named A'TUM-90 for A'UM, a SCOOIL with highly abstract stream commuunica-
tion. This paper presents the optimized method used in A'UM-80 to implement
streams on distributed memory, A stream s represented by o message queue,
wlhich migrates to its reader’s processor after the processor becomes known, The
improvement from using this method is estimated in terms of the number of re-
quired interprocessor communicalion, and is demonstrated by the result of a
preliminary evaluation,

1 Introduction

(One natural use of concurrent logic programming languages{ CLLs) is to implement
the Actor or object-oricnted programming models. In a CLL, it is easy to specily
objects running concurrently, communicating with one another by messages sent in
streams|5). Message streamns in CLLs are especially useful, as they provide flexibility
and modularity, and facilitates the exploitation of parallelism; they allow dynamic
re-conliguration of communication channels, while each object knows little about the

partners with whom it is communicating.

To support this style of programming, a number of languages have been proposcd
(1] (2] [7] [4]). We call these langnages stream-based concurrent object-oriented lan-
guages{SCOOL).

Most research on SCOOLs to date has been focused on providing excellent ex-
pressibility. While SCOOLs have heen implemented in CLLs, to our knowledge, no
language system dedicated for SCOOLs has been implemented.

A dedicated system for SCOOL can be much more efficient than those implemented
in CLLs when the abstraction and other information in programs are [ully exploited.
The authors have heen developing such a dedicated system for a kind of SCOOL,
A'UM. The system is named A'UM-90, and is targeted for multiprocessor systems
with distributed memory.

In this paper, some drawbacks of CLLs as implementation languages for stream
conununications are discussed, then it is shown how A'UM’s well-regulated abstract
streatns can be efficiently implemented. A brief description of such an implementation
15 given, its improvement over a CLL implementation is estimated, and the results of
a preliminary evaluation are given.

The next section describes the implementation of objects and stream communi-
cation in CLLs. Seclion 3 introduces SCOOLs as natural descendants of CLLs. Sec-
tion 4 explains why CLLs are inadequate for implementing streams. Seetion 5 describes
A'UM and A’UM-90 briefly. Section 6 describes the implementation of stream com-
munication in A'UM-90 and its costs. Section 7 shows some results of evaluation. The

last section gives conclusion.

2 Objects in CLL

Stream-based concurrent object-oriented programming languages have evolved from
efforts to embody the Actor or object-oriented programming models in CLLs[5]. This
style of programming has the virtues of object-oriented programming such as modular-
ity and nalural parallelism in an extended way[3]. For example, an object implemented
i & CLL may have multiple input ports, and communication ports can be transferred
between processes. Moreover, it can send messages before the destination is deter-

mined. In this chapter, an implementation of object-oriented programming in a CLL

object([message(Arguments) | In], State) :-
true |
method (Arguments, State, NewState),

object(In, NewState).

Figure 1: A clause representing an object

is bricfly described.

Many CLLs (FCP, FGHC, Fleng, Oc, Strand, etc.] have been proposed to date.
We use PFGHC[6] in the following explanation.

Figure 1 shows a typical example of representing an object in FGHC. The behavior
of an object is defined by a number of clauses similar to the one above. Given these
clauses, a goal named object represents the state of an object at a certain moment.
The first argument is a shared variable used as a communication port, from which the
object receives messages. 'I'he second argument is the internal state of the object.

When another goal sharing the vanable with the first goal assigns a term
[message(Actuals) | Rest] to the variable, the above clause can be selected, and
Rest becomes shared by the two goals. Actuals are bound to Arguments, and the
hody of the clanse is executed.

A goal named methed performs mast of the actual work, creating new states and
assigning it to NewState. A new object goal is created with Rest as the first argument
and NewState the second. Thus, an ohject, or a process, is represented by the recarring
creation of goals with altered states.

Communication ports are represented by variables shared by two goals. One goal
emits a message by assigning a structure containing a message and a new variable.
When the other goal receives the message by successfully matching itselfl with a head
ol a clause, the new variable becomes shared, to be used as a new port. By repeating
this procedure, these goals can conununicale as many messages as required, one after
another. The connection is closed when a structure containing no variable is assigned.
Communication in this style is called stream communication.

Basically, stream communication is one-to-one as described above. However, several

streams of messages can easily be merged into one by a simple process. A merger should

have several ports representing the input streams to be merged and one more for the
oulput. It receives a message from one of its input ports and forwards it to the output
port,

Many types of mergers with varyving policies can be devised. A merger of one
type might receive from an arbitrary port, utilizing the non-determinism in clause
selection of the CLL. A merger of another type might concentrate on one port until
the connection through it is closed, then it might move on to another port. We call
the former type a merger, and the latter an appender, because it effectively appends

streams one after another.

3 SCOOL

Programming objects in a CLL has several obvious drawbacks.

First of all, the implementation of stream communication is explicitly described
in the program. Streams are explicitly formed using messages and a variable, and
many to one communications are implemented with merger processes. Programmers
st make sure that the same conventions are used thronghont their programs. Sec-
ondly, contentions are apt to happen, due to the lack of restriction on multiple writers
to a variable. Lastly, the verbesity, in particular manipulation of internal states, is
cxcessive, It 1s cumbersome to provide all the details of communication.

Many SCOOLs have been proposed to remove these drawbacks ([1] [2] [7] [4]).
These languages have a form for class definition, introduced to make a concise de-
scription of object behavior possible. Stream communication is denoted by dedicated
cxpressions, with its implementation removed from programs.

To our knowledge, all SCOOLs have been implemented in CLLs. It is natural and
efficient to use CLLs for this purpose, but is problematic with respect to the resulting
system’s performance. CLL systems can not provide a thoroughly object-oriented view
efficiently, such as integers operated on by messages. Another problem is implementing
stream communication on a multiprocessor system with distributed memory. We focus

on the latter problem, and explain the inadequacies of CLLs in the next section.

4 Problems in implementing streams in CLLs

Stream communication, and more generally asynchronous commmnication, uses mes-
sage buffers Lo store pending messages. 1n distributed memory multiprocessor systems,
accessing a message bufler requires inler-processor communications{1PC), unless both
the accessing process and the buller are un the same processor.

While a single [PC suffices to write a message into a buffer on a remote processor,
reading a message requires two: a request and a reply. Placing the buffer on the
reader’s processor, one IPC can be.saved for cach message communicated through the
bufler.

However, it"s dillicult for CLL systems to place the buffer on the reader’s processor.
(CLL systems use a shared variable as a message buffer, and they can’t tell the readers
of a variable from the writers. In addition, there may be multiple readers for a variable.
In that case, there is a relatively small advantage in saving II'Cs for only one reader
ATNONE THATY.

Morcover, the number of IPC's required would not be reduced even if the buffer
is placed on the reader’s processor. In a CLL, streams are represcnted as a sequence
of message buffers, and the writer only knows the last one. When it becomes full, a
new buffer is appended to the sequence, and if it is created on the reader’s processor,
the address must he propagated to the writer. This costs an additional TPC for every
message sent.

Since CLL systems may not place shared variables on the reader’s processor, im-
plementing these streams in CLLs resnlts in costly remote reads, repeated for every
buffer.

. The argument so far prompts the development. of a dedicated system for SCOQOLs.
AUM-90 is such a system for A'UM, a SCOOL that thoroughly integrates streams into
its specification. The next section describes A'UM and gives an overview of A'UM-90.

(4]
I

5 A’UM and A’UM-90

5.1 Behavior of Objects

All A'UM objects run concurrent]y. They keep internal states called slots, and cxecute
methods according to the messages they receive.

The class an object belongs to defines its behavior. A class definition has the
following form, which includes the declaration of the class name, the classes it inherits

from, slot names (local state) and definitions of its methods.

class class_name.
super_class_dec]
slot_deel
method_defs

end.

An object reccives messages from only one stream, called its inlerface. An ohject
is referenced by connecting a stream to its interface, Streams connected (o Lhe object
later on will be merged into the interface.

A method is defined by the following form.

seleetor =3 actions.

where selector is the method's name, and actions specify the operations it performs.
The only operations methods are allowed to perform are connecting a stream to

another, creating an object, and sending a message to a stream.

5.2 Stireams in A'UM

Stream commmunication in A'UM is highly abstract, providing safe communications
and the notion of channels, Directed variables prevent conlentions for a stream. The
semantics of variables are enhanced so that they denote a sel of confluent streams
called a channel, a morc general concept than a stream.

All variables in A'UM have a stream as their value. The role of streams in A*UM

is similar to pointers in Lisp; streams are the sole way of referenciug objects.

5.2.1 Operations on Streams

A stream is a sequence of messages. directed to a cortain receiver. A message sent to a
stream is placed at the end of the stream. Sending is expressed simply by juxtaposing

a slreamn and a message. as follows.
stream message
Connection of two streams are denoted by the [ollowing syntax.
receiver = slream

This means that all messages sent to stream low uto receiver.

(Closing a stream indicates that no more messages will be sent through it. Clozing
is always performed automatically, when a stream is discarded.

T addition, messages arriving at an object’s interface stream are consumed exclu-

sively by that object. This operation is also performed antomatically.

5.2.2 Directed Streams

Stream connection is asymmetric; a stream may only be connected to another stream
once, but any other streams may be connected to it. In order to assure at compile-
time that streams are connecled only once, references to a stream are classified into
two types, called directions. An inlet is a reference to a stream from which messages
flow: an outlet is another kind of reference in which messages are sent!. The single
connection of a stream is assured by the restrictions requiring that a stream has only
one inlet and that the right hand value of a conneef expression be an inlet.

Inlets and outlets are distinguished syntactically. Variables referencing inlets are
denoted with a variable name with = prepended to it, e.g. ~“X. Slots holding inlets and
outlets are written as slot names preceded by @ and by !, respectively, Expressions
have a value whose direction is determined according to their kind. Messages are
distinguished by the directions of their arguments as well as their number, and the

message's name.,

They are named from an object’s point of view.

class account.
out balance.
tinit => 0 = 'balance.
:deposit (" Amount) -> 'balance + Amount = 'balance.
:withdraw(" Amount, “Ack) ->
(Amount < 'balance) 7 (

:ftrne -> 'balance - Amount = !balance.
:'falge -> Ack :overdrawn('balance).
1.

:balance('balance) -» .

end.

Figure 2: Bank account

5.2.3 Channel Abstraction

Two types of stream confluence, namely mergers and appenders have special support
in the language. As mentioned earlier, a merger performs nou-deterministic meTging,
and an appender connects streams one after another in a specified order.

A channel is a tree formed of these confluences of streams. Variables represent a
channel of a particular form, consisting of an appender and an arbitrary number of
mergers. All outputs of the mergers are connected to inputs of the appender.

For a variable named Foo, "Feo is an inlet of the root streamn of the channel.
Fool, Foo2, Foo$3, and so on. are leal streams. Foo is equivalent to Foo$1. They are
appended into the root in the order of their number. When there are Imany expressions
having the same number, the streams they denote are merged before being appended.

Using channels reduces the description of mergers and appenders in programs,
which would be indecipherable otherwise.

5.3 An Example Program

Figure 2 is an example A’UM program defining a class for a bank account.
Arguments in a message are connected with valnes of the expressions in the selector

corresponding to the message. For cxample, :depesit receives an outlet and connects

“Amount to it. :balance reccives an inlet and connects it to the value of 'balance.

A hinary expression is a macro form. It expands into a send expression, which
sends to the left hand value a message with two arguments, the right hand value and
an inlet of a new stream. The name of the message is determined according to the
operator. A macro form evalunates into an outlet of the new stream. Thus, !balance
+ Amount are expanded into 'balance :add(Amount, "Result), with Result as its
value,

exp 7 (...) is an anonymous class definition, which is used to represent a
conditional behavior. Either of the methods : “true or :‘false is executed by the

instance of the anonymous class, according to the result of Amount < 'balance.

5.4 An outline of A'UM-90

ANUM-90 is an A'UM language system, independent of any CLL. It provides cfli-
cient stream communication on a distributed memory multiprocessor system. Moving
stream data structures to their reader’s processor saves many IPCs, which are other-
wise required in stream conmunicalion.

A'UM-90 manages coarse-grained processes. Specifically, a process execules an
instance of a user-defined class.

An A'UM-90 system consists of a compiler and an emulator. The compiler generates
code for an abstract-machine designed for the system, and the emulator executes the
Eﬂdﬂ.

Two different types of platform have heen used. One i1s a Sequent Symmetry with
16 processors, and the other iz a number of Sun Sparc Stations communicating by Lth-
ernet. Although a Symmetry has shared memory, we nsed it as a distributed memory
machine. We nsed a small part of the memory to implement message communication,

and divided the rest among processors.

6 Implementation of Streams in A’UM-90

The mmplementation described here fully utilizes information on stream abstraction
and message flow direclion available in A"UM programs. Although the delivery of
the first message is somewhat delayed, the number of IPCs required 1s significantly

reduced, when many messages are sent through a long cascade of streams. Moreover,

the delay is eliminatced in many cases by various subtle optimization methods.

6.1 Streams

A stream is represented by a structure consisting of a message quene, a pointer to its
receiver, and a reference count. The reference count is necessary for detecting closed
streams and for implementing the appenders correctly. The structure is named M node,
where M stands for merging. A merger is simply represented as an M node having more
than one pointer referring to it. An appender is represented by a structure consisting
of an M node and a pointer to the following strcam. The structure is named A node.

With these structures, implementing operations on streams within a processor is
straightforward. Sending a message is simply queuning it. Connecting a stream to
a receiver is making the pointer in the stream point to the receiver and increasing
the reference count of the receiver. When a streamn is closed, its reference count is

decreased. Receiving a message is just dequeuing il.

6.2 Location of Streams

As argued in a previous section, a stream should be placed on its receiver’s processor in
order to decrease the number of IPCs. However, when a. stream is created, its receiver
is still unknown. So we place it on the processor local to its creater at its creation,
and let it migrate later to the receiver’s processor.

Since it is always an object that ultimately receives messages sent to a stream, the
stream migrates Lo the object’s processor. When the stream is directly connected to
the object, it migrales immediately. If it is connected to an intermediate stream, il
waits until the intermediate stream migrates.

Suppose that an address of a stream in a proccssor is announced to an object
in another processor and that the stream has not yet migrated. If the object sends
messages to the stream, two series of IPCs occur, one for gending them to the stream,
and another for the migration process of the stream. We eliminate the former series by
putting the messages into a new stream created on the same processor as the sending
object and connecting the new stream to the original.

With the strategy described so far, and assuming that objects don’t migrate, all
messages, except those used for implementing the strategy, are transferred between

10

processors at most once. In the next section, a more detailed description of the stream

migration is given.

6.3 Migration Procedure

I the following description, all streams are supposed to reside in different processors
until they move. Operations within a processor are trivial, and are assumed to cost
much less than ones involving IPCs. It is also supposed that streams are connected in a
processor other than that of the receiving object. Otherwise, the migration procedure

is so simple to become identical with an ordinary sending without migration.

1. A stream is placed on the same processor as ils creator object.

2. When the stream is connected, a control message named where is sent to the
specified receiver. The control message has a pointer to the stream and a tag
showing the type of the stream. i.e., either an M node or an A node.

3. The where canses the following actions according to the type of the receiver:

a stream before its migration handles the control message as if it is an or
dinary message. That is, it is put into the receiver’s queue. It will be
transferred again when the receiver eventually migrates, and will be for-

warded to another receiver, which should cause the following case.

an object or a stream after its migration creates a new node of the type
indicated by the tag in the control message, and reports the address of the
new node by a control message named here to the stream waiting for the
replv. When the tyvpe of the immigrant and the receiver is the same, the

receiver creates no new node, and reports its own address.

4. When the stream reccives the here, it migrates to the specified new residence, in

one of the following manners according to its type:

M node Tt sends all messages in its queue to the new residence. If it hasn’t
heen closed vet, it leaves in the former residence a pointer forwarding to

the new location. The original residence will be reclaimed when it is closed.

—11 =

A node In addition to the procedure for the M node, the stream to be appended
to the migrating one is connected to the same receiver at the moment when

this A node is closed. That is, a new where with a pointer to the stream is

sent to the receiver.

6.4 Migration Cost

Each stream creates a where. It is transferred between processors twice, once when the
stream is connected, and once when its receiver migrates. The second transfor doesn’t
happen if the receiver is an already moved stream or an object. Suppose a channel
connecled to an object consists of n streams, and of which ny are connected directly
to the object, then the number of IPCs [or where is n + (n — ny).

A here is created in correspondence with a where, and is transferred between pro-
cessors once. For all here's | n IPC’s occur.

Migration brings about no transfer of control messages, so the number of IPCs

required for migration is:
n+(n—ng)4n=3n-ny

Closing a stream requires another kind of control message, We call it close. lach
stream sends its reader one close when closed. This adds up to n close’s requiring n
[PC's.

Ordinary messages are transferred between processors always once. If there are m

ordinary messages to be sent, then, in total,

[Sfa—ﬂd}+m-§-n

transfers between processors oceur.

How many [PCs occur for stream communication if streams don’t move? Neither
of where and here are created. A close is still created for a stream. The number of
times ordinary messages and close’s are transferred depends on the structure of the
channel.

A channel is a tree having streams as its nodes. Supposc the i-th node receives m;
messages, and its depth is d;, where a depth of a node is number of streams in the

-0 —

patl from the leaf to the root. For example, the depth of a leaf directly connected Lo
an object is 2. Then messages sent to the i-th leaf is transferred d; — 1 times, and the
total number of transfers will be;
Ti
> (di— 1)(m; + 1)
=1
The condition when it requires less IPCs to implement stream communication with

migrating streams than withont them is:
L
Z'[ffi —1}mi+ 1) > (3n —ng)+m+n
=1

This an be rewritten as:
m
> (d = 2)(m; + 1) > 3n - ny
i=1

Since d; can not be smaller than 2, d; — 2 never becomes negative. The next term
m; + 1 is the number of messages sent from a node, including a close. The last term
3n — ny is the number of control messages used to move all streams.

The above condition says that if the channel has some intermediate nodes between
the root and leaves, and more than a certain number of messages are sent through
them, then stream migration is beneficial. Conversely, if all streams in a channel are
directly connected to an object, or loo few messages are sent, streams should not be

moved. The next section discusses some oplimization based on detecting those cases.

6.5 Further Optitﬁizatiun

T'he left-hand side of the ahave condition becomes zero when all streams are directly
connected to an ohject. When connecting a stream, it is detected at run-time that the
receiver iz an object; pointers are tagged to indicate the type of the pointed structure.
By not moving those streams, the right-hand side is also decreased to zero when the
left-hand becomes zero.

When less than two messages arc sent through a stream, the stream does not
migrate, i.e. it does not send out a where. More detailed analysis shows that two is
the least number to make stream migration beneficial. The current emulator in A'UUM-

90 determines at run-time whether a stream receives less than two messages. Finding

13

create | here | ordinary | close

303 | 303 47572 | 303

Table 1: numbers of messages sent in PRIMES

all such streams 1s difficult for a compiler because it requires global analysis. Local
analysis within a method, however, may be able to catch most of them. For example,
for a stream created and closed within a method, the number of messages sent to it is
easy to count. '

In addition, varions minor optimization methods are applicd Lo reduce the delay
of the first message’s delivery. For example, the first message is scut with a where,
packed together in one IPC, if it is available when the where is sent out. When a where
is received by a stream that only bridges two other streams, receiving no ordinary
messages, it immediately forwards this where instead of sending out a new one. Such

a stream can be distinguished by checking its reference count when it reccives a where.

7 Ewvaluation

Table 1 shows the numbers of various messages sent in a execution of a program
generating prime numbers under 2000 by Eratosthenes’s sieving(PRIMES). 303 objects
are created, and the same number of streams are created and are directly connected
to these abjects respectively. No where is scnt, since every connection in this program
takes place in its receiver's processor.

If this program is executed on the system implemented in a CLL, there would occur
almost twice as many IPC’s as the above, i.e. more than forty thousand extra TPC's.

The number of IPC’s used in a CLL implementation can be decreased hy sending
many messages at a time using a large buffer. Of course, the size of the buffer must
be adjusted appropriately, as too large a buffer degrades efficiency of memory nsage.
Such adjustments are practical only after you acquire some knowledge about actual
number of messages sent in a program by executing it. Our implementation does not
need such an elaboration.

Figure 3 is a graph presenting speedups in accordance with numbers of processors

Spamdap
"
B

igure 3: speedups of PRIMES

utilized. The result was measured on a Symmetry. A speedup of eight times is attained
using fifteen processors.

The speedups presented in the graph are relative to the performance of a system
made specifically for sequent execution, which is free from any parallel processing
overhead. The current emulator employs a simple-minded load distribution method of
always placing a newly created object on a different processor than that of its parent.

Considering these conditions, this result can be considered fairly good.

8 Conclusion
Streams in CLLs are difficull to implement efliciently for two reasons:

1. Message buffers are not always placed on their readers’ processor, because an
arbitrary number of readers are allowed for a buffer. 'herefore, interprocessor

reading from the buffer takes place with two IPCs, instead of one required for

writing mlo il.

2. A stream is represented by cascaded message buffers, which CLLs don't trcat as
a single body. Consequently, even if these buffers are placed on their reader’s

processor, their address has to be repeatedly sent to their writer.

This is not the case for A'UM. A'UM has abstract stream communication, whose
implementation 1s left as the language syslems’ responsibility. In addition, every
stream is restricted to have only one reader. So streams in A'TUUM can be more ef-
ficiently implemented than ones in CLLs. Moving a stream to its reader’s processor
saves about half of the IPC’s required in CLLs, and, in spite of the migration, the first
message through the stream is delivered without delay for most of the cases.

While the optinization method given in this paper tries to reduce the number of
IP(s for a given distribution of objects, it is also important to find the best distribution
of objects. Of course, those melhods have to balance the amount of IPC’s and the

parallelism exploitation.

A cknowledgments

We thank Shinji Yanagida and Toshio Tange of NEC Seientific Information System
Development for developing the A’'UM-90 abstract-machine emulator.

References

(1} K. Furukawa, A. Takeuchi, S, Kunifuji, H. Yasukawa, M. Ohki, K. Ueda, Mandala: A
Logic Based Knowledge Programming System, Proc. FGUS'34, November 1984,

[2] K. Kahn, E. D. Tribble, M. §. Miller, D. G. Bobrow, Objects in Concurrent Logic Pro-
gramming Languages, Proc. O0OPSLAE6, September, 1986,

[3] K. Kahn, Objects - a fresh look, Proc. Third European Conf. on Object-Oriented Pro-
gramming, Cambridge University Press, July 1989,

(4] V. A, Saraswat, K. Kahn, J. Levy, Junus: A step towards distributed consiraint program-
ming, North American Logic Programming Conference, October 1990,

[5] E. Shapiro, A. Takeuchi, Object-oriented Programming in Concurrent Prolog, New Gen-
eration Computing, 1, 1983.

[6] K. Ueda, Guarded Horn Clauses, Technical Report TR-104, ICOT, June 1085,

[7] K. Yoshida, T. Chikayama, A'UM: A Stream-Based Object-Oriented Language, Proc.
FGUS'88, November 1988,

