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1 Introduction

The objective of this paper is to apply a final coalgebra theorem given in Aczel[l] and Aczel and
Mendler[2] on the category of classes of hypersets to several standard structured objects such
as infinite and rational trees[3). finite automata, feature (=record) structures. Barwise[3] gives
a unification theorem for the mixed constraints consisting of bisimulations and subsumptions
on the class V' of hypersets with urelements. His proof is based on Aczel's Solution Lemmall].
V is the final coalgebra for pew the class functor and Solution Lemma is a special case of the
final coalgebra theorem, though the former is a foundation of the whole hvperset theory, This
paper generalizes the unification theorem from the one based on the solution lemma to the
one based on the final coalgebra theorem. By doing so, we can treat uniformly infinite tree
unification and feature unification as an instance of Barwise's unification theory, which was
implicit in Barwise{3].

The generalized unification theorem holds for a large class of set-based functors. In fact
we prove the theorem for a class of natural functors called pure and subterm-closed. Thus
Barwise’ unification theorem for the power class functor is generalized for the functors which
are set-based, pure, and sublerm closed.

In particular, we treats in this paper the following functor pow, pow’, H*, map( A, —). where
A iz a class of urelements as a signature, and

o HA(M)is the class of terms ¢ such that prime function symbols of ¢ is in 4 and arguments
of t are in M.

o pow'( M) s the class of finile sets of M.
o map( [}, 1"} is the class of partial maps from [} into 1Y,

[# is used as a Herbrand universe forming operator. map{A.—) is used as a common form-
ing operator for domainz of records, finite automata, rational trees, with a slight modification
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for each class of domains. Az a (deterministic) antomata is simply a coalgebra for map(A4, —),
from this view based on the final coalgebra theorem, a relationship is given between automata,
rational trees, and regular languages.

A kind of record merge operations 15 defined as a coalgebra for map(A, —). The class of
extensional subsumption constraint satisfaction problems is solved through this coalgebra. This
problem was first solved recently in Dérre[6| by reducing to a well-known standard method in
finite automata theory. As automata can not be an initial algebra in general, this resnlt shows
an advantage for final coalgebra to initial algebras,

In this paper constraints are formalized as binary relations on initial algebras of these class
functors. In particular, the notion of solutions in final coalgebra are defined through the Aczel's
final coalgebra theorem.

Although details remains to be written down, the results of this paper seem to be straight-
forward consequences of the final coalgebra theorem. I am writing this report with a surprise
seeing that the final coalgebra theorem gives an integrated and unified view on those familiar
structured objects. This unified view seems to have been long implicit so far.

Basic tools of this paper is the final coalgebra theorem{l, 2] and the unification theorem
in Barwise[3]. This work is a continuation of Mukai[8], which applies the solution lemma to
the constraint logic programming schermme. Barwise and Etchemendy[4] gives an introductory
description to the final coalgebra theorem as a part of introduction of the hyperset theory.

It seems to be very interesting to use Hagino's categorical programming language CPL[7
for implementing the final coalgebra theorem. Roughly speaking, CPL works on a cartesian
closed category. Initial and final objects are introduced by dialgebras, that are a generalization
of a T-algebra. Note that the final coalgebra theorem is formalized in a language of T-algebra,
Thus, this work will continue to have a foundation for a new progranuning language for both
initial (left, well-founded) or final {right. non-well-founded) structured objects. This kind of
research in the near future seems to be strongly necessary for implementing situation theory
hecanse of complex structured objects.

2 Basic Definitions

We assume a universe Vool hypersets with urelements for our metatheory. A denotes the
class of urelements i V: A © V. Urelements will be called atoms or parameters depending
vn the context. Elements of V' that are not urelements are called sets. The emptyset § is a
sel bul not an urelement. If r is an urelement then there is no y € V such that y € . A
cluss funclor is an endo-functor on the superlarge category of classes on V. Let T be a class
functor. J(T) denotes the minimum fixpoint of T. J(T) denotes the maximum fixpoint of T
If T is set-based then [{T') and J{T') exist[l]. By T we mean the functor defined from 7" by
TelM) = UT(M). The notation T; is fundamental in this paper. Then V is the maximum
fixpoint of a funcltor pow,, where pow is the power class functor, i.e., pow{ M) is the class of
subsels of M. A n-ary relation is a subclass of V*. The carrier of a n-ary relation r is the class
{ee eV |r(ey, o 2o 1) 1 <1 < n}. carri(r) denotes the carrier of r. A class ¢ is called
transitive it t © pow(t). Given a class u € V| trans(n) denotes the minimum transitive class
[ €V such that uw C {. trans{u) is called the fransitive closure of u. For a relation r on V', we =
define [ld(r) = lrans{carri(r)).

Example 1
Ad({(x.a), (u. {b e})}) = {x,a,p, {b e}, b,c}

where x, y, @, b, and ¢ are not set terms. O



Vels) ¥ X n trans({s}), where s € V', X € A. A pow' is the functor such that pow'{M) is
the class of finite subsets of M.

Elements of V' are called terms. Sets in J(pow), ) are called hereditarily finite. If A 15 a set,
J(pou'y) forms a set. For any = € [(pow),), trans(z) is finite. So we call terms in I{pow’,)
finitary. In fact, finitary set terms are hereditarily finite and well-founded.

Example 2 Let N be the set of natural numbers. Then the set {N} is finite and wellfounded,
but not fimitary since trans{{N}) is infinite. ]

Definition 1 Let A € A, and assume that cach « € A is assigned a non-negative integer.
Then H* is defined by HA(M) = {{a,0) |a € A.o:{1,- - .n,} — M} with n, being the arity
of a, where M C V. O

Elements of J(H4) and, in particular, J(H*) are called Herbrand terms and Herbrand trees,
respectively. In this translation we have identified each atom a of arity 0 with (a. ).

It is clear that J(H¢) is a proper subset of J{pow', ). There is a natural bijection ¥
from the the standard first-order term notations onto the finitary Herbrand terms such that

Yl flrr,.... ro) = (f {{2,0(x)) | 1 <0 < n}),

Definition 2 Let X C A be a class. A family (by).ey 15 called a system of equations (for X)
if b, € V'V X for each r € X. u

Theorem 1 (Solution Lemma [1]) Every system of equations for a class X has a unique
solution in J(pow,, x ).

Definition 3 {[2]} Au cndo-functor T on the superlarge category of classes is called set-based
if for each class A and each @ € T(A) there 1s a set Ay € A and ag € T({Ay) such that
a=1,, (og), where 1y, 4 is the inclusion map Ay — A a

Theorem 2 (Final Coalgebra Theorem [1, 2]) Lvery sef-based functor has a final coalge-
bra,

Note that the solution lemma is a special case of the tinal coalgebra theorem.

3 Constraints

Definition 4 A constramt (on D] is an ordered pair {r, X}, where r is a binary relation on
DCVand X C A O

We often write r for (v, X'} with X being implicit and call it an X -constraint. A constraint
{r, X} is an ertension of a constraint {s,Y) if s Cr, Y C X, Vx(r) = Vy(s). An assignment is
a partial function from A into V. Let f be an assignment. Then it follows [rom the solution
lemma that there is a function f from V to S Pow oy gomi s ) Such that

(1) fz) = f(z)if z € dom(f).
(2) fla)=ailac A\ dom(f).
(3) fle)={f(u)|ues}ifsisaset.



An function f is called an assignment for a constraint {r, X) if dem(f) = X and ran(f) C
J{pow g x ).

Definition 5 An assignment f for a constraint ¢ is called a selutionof ¢cin D C Vif ran(f) C D
O

-

and f(u) = f(v) whenever cfu,v).

Definition 6 Let X' C A, A bisimulation is a constraint {r, X}, where r is an equivalence
relation on some [ C V osuch that if r{u, ») then the following hold.

e fue A\ X and v & X then u=1.
e If u and v are sets then

Vreudyevriry) & Yyevdreur(zy)
O

Definition 7 Let X C A, r € A is bound in a constraint {c, X)if r € X and e{z.b) for some
h& X. A constraint (¢, X} is bound if each z € X is bound in {¢, X'). O

Clearly it follows from the solution lemma that a bound constraint (r, X) has al most one
solution. We say a constraint (s.Y) is a bisimulation of a constraint {r, X} il {s,Y) is a
bisimulation and an extension of (r, X'). Also we say a constraint r has a bisimulation s when
s is a bisimulation of r. We say that a constraint (s, X'} is a small bisimulation of a constraint
(m ¥ f X =Y and (s,Y) is a bisimulation of {r, X) and fid(r) C fld(s), i.e., only terms
appearing in s appear in r. Constraints ¢ are called finitury il ¢ is finitary as terms.

Proposition 3 For every finitary constraint ¢, the following hold.
(1) The set of small bisimulations of ¢ is finite.
(2) If there exists a bisimulation of ¢, then there exists also a small bisimulation of c.

Proof Let Q = {{z,y) | trans({z,y}) C fld(c}}. As cis finitary, fld(c) is finite. So Q must
be finite. As every small bisimulation of ¢ is a subset of ¢}, we get (1).

We prove (2], Let p be a bisimulation of . By definition, we get ¢  p. As  is finite,
p @ is finite. 1t is a routine to check that the constraint p N @) satislies all defining clauses of
a bisimulation. As e C Q. we get ¢ € p1 Q. Therefore p1 Q) is a small bisimulation of e. O

Proposition 4 For every finitary constraint ¢, the emstence of a bistmulation of ¢ is decidable.

Proof Iu general, for a given finite set B, the existence of a bisimulation p such that fld(p) € B
is decidable by an exhaustive search method.

Clearly, for all constraints p it follows that pis a small bisimulation of ¢ il p is a bisimulation
and fld(p) € fld(c). Since c is finitary, fld(c} is finite. So it follows from the above general
remark that the cxistence of a small bisimulation of ¢ is decidable. Hence, by Proposition 3,
the existence of a bisimulation of ¢ is decidable. 0

Definition 8 A functor T is called pure if, for all classes X C Aand M C V, XNitrans(M) =
unplies X' N trans(T(M)) = 0. pow is pure. o

pow 4 is pure, where 4 © A. The unification theorem is a straightforward generalization of
Barwise's unification theorem[3].



Theorem 5 {Unification Theorem) Let T be a pure and sef-based functor, and X C A.
Then for every constraint {p, X) on [(Tx) with X N trans(J(T)) = 0, the following are equiva-
lent.

(1) {p, XY is solvable in J(T).
(2) (p, X} extends to some bound constraint (q.Y) on I{Ty) that has a hsimulation,

Proof (2)==-(1): Suppose (2) is true. Let (g, X) be a bound constraint on J(7y) that is an
extension of (p. X') and has a bisimulation (r,}). We assume, without loss of generality, that
(r,Y) is bound. Define a family (b, ),ey of terms so that gz, b;) and b, € I{Tx) " X for each
x € X. By the final coalgebra theorem(l, 2|, there is a solution [ of y = b, for all y € ¥ in
J(T). Let v = {(f(u). f(r)) | qiu,v)}. Clearly » C J(T) x J{T'). Moreover, as r is a bound
bisimulation. it follows that r is a §-bisimulation relation on J(T'). As it follows from [1] that
U-bisimulation on J(pow 5,y ) is an identical relation[1], we get r C=. Hence we get f{u) = f(v)
for all u, v such that g{u.v). So f is a solution of g. As p C ¢, f is a solution of p.

(1)==>(2): Suppose (1} is true. Let f be a solution of p. For each z € X, let E. = (b7).ex.
be a system of equations such that b] € /{1y, ) for all z € K,, where K, CTA, K, N X = {2},
KynK, =0tor = # y, and f{r) = 7(bI) € J(T), where 1. a solution of E. for z € X. Define
g=pUflzb])| 2 e X.ze .}, and Y =K, | z € X}. Then clearly (.Y is a bound
constraint on J{1y) and an extension of (p, X'). Moreover, as (¢, Y} has a solution, say g, ¢
has a bisimulation {({{u,v) | w.v € fld{g), ¢{u) = §(v)},¥). Therefore weget {2). o

Definition 9 A class functor T 15 subterm-closed if the following are equivalent for anv X € A
and X-constraint pon 7(T4).

(1} p has a small X-bisimulation, i.e., one on fId(p).

(2) p has a small X-bisimulation ¢ such that for each x,y € X, gz, y) implies y € T(Ta).
O

Example 3 H*, pow. pow' and II are subterm-closed, where I1 is a record constructing functor
deseribed below. J

Definition 10 Given a functor ', a T-unification problem is to decide whether given con-
straints (¢, X} on [{1,] are solvable in J{Ta\x). a

Let g be a bisimulation extension ¢ of an X-constraint p on 1{Tx). Then ¢N(fld{p) = fAd(p))
15 an X bisimulation on fld(p) that is an extension of p. So, if X and fld{p) are finite, we can
enumerate all X-bisimulation extensions of p on fld(p). S0 we have the theorem.

Theorem 6 If T' be sublerm-closed, pure. and set-based then any finitary T-unification problem
are decidable.

Hence, when T s subterm-closed, p is solvable iff p extends to a X-bisimulation r on fld(p).
Therefore the solvability of p in J(T) 15 decidable provided that X and fid(p) are finite.

Colmerauer’s unification theory[5] on infinite trees (without unequations) falls into this
class with T'= H*. Furthermore, in fact, the infinite tree unification with unequations can be
treated without much difficulty by a straghtforward modification of the notion of a constraint
and a solution. However it is outside of the scope of the paper and will appear elsewhere.

i



4 Functors H4, pow/, T

Recall the functor H?. We identify J{H") with the domain of infinite trees in Colmerauer|[3]
over A. Let A € A and let H4 be the set of u € J(pow'y) that has a finite transitive closures.
Elements of Ry are called rational scts. Then, for any given finite constraint ¢ on I(pow',),
we can know by an effective method whether ¢ is solvable in B4 or not by. The functor H4 is
EUIJLEI'[I]'I.ZI(JEHKJ. S{? Wer hﬂ.‘l"ﬁ‘ Lhﬁ t-hf.'ﬂ'l't‘"l.

Theorem T For any X -constraint ¢ on J(H{), the following are equivalent:
(1) ¢ is solvable in J{H").
(2) ¢ is solvable in J{pow'y).

Let £ 4 € A be disjoint two sets. Elements F' are called features. A special atom L €
AN (F U A) means an undefined values of algebras. Define a class functor

I = map( F. =).

Clearly Ilg is pure, set-based and subterm-closed for any B C A. Flements of J(TI ;) are called
records over [ F) A).
We define a merge operation on records as a coalgebra (pow(J(T14)). p) for Ty 04 by

& u(u) = L if there are x,y € u such that & # y and either # € A or y € A.
o pluj=aifae ANu.

o ulu) = f, il v is a set, where dom(f,) = U{dom{g) | g € u}. fuv)={flv)! feurve
dom(f)}.

p is well-defined. By the final coalgebra theorem. there is a function = pow(J(T4)) —
J{W (1)) such that 7{u) = Mygyoalm){plu)), for u € pow(J(I;1,4)). The operation g is
a record merge operations, Define u® = Ty 0 (%) (p(u)).

Example 4
Hlesa) ) {ien )} = L, wherea £ be Al

{{{"“'11{1}}*“”!1'!’:'}}- “3""1-“}-{5’21&}}1 where vy # 1 € F.
|

We use T 4 for the maximuin @-subsumption relation on J(I14). The notion of a solution of
X-subsumption constraint on f{I14,x) in J{I14) is defined in a similar way to the bisimulation

vonstraint.
Proposition 8 The following are equivalent.
(1} Forallwe v, wC u.
(2] u™ L w.
The following definition is a slight modification of Barwise [3].

Definition 11 Let B = J{[l4,x) for disjoint A, X € A\ F. A constraint {p, X} is called
a (X-Jsubsumption on R if p is reflexive and symmetric binary relation on R satisfying the
following.



(Y Hze Ay X, plz,y) then z =y.
(2) Ifzed yg X, ply,z)thenz=y.

(3) If .y & A, plz,y) then dom(z) € dom(y) and plx(v),y(v)) for all ¥ € dom(x).
O

We define an binary operation on records for merging parametric records. Let b = (b ) ex
be a system ol cquations such that b, € f{Illy,x) % X. Then:

Definition 12 uy(u) S p(u’'), where ' = {feu | feu\ XU {b |z€unX}. o

Definition 13 Given a X-bisimulation -p and X-subsumption on I{Il4,x). A record compati-
bility relation r is a binary relation on J{1l 4.y ) defined w.r.t. p, ¢ satisfying the following.

(1) pCr.
(2) If for some z, g(x,z) and ¢ly, z), then vz, y).

(3) If r{x,y), then for all v € dom{z) N dom(y), riz(r), y(r)).
o

Given p,g,r as the above, for each unbound € X in p, define R, = {y | rlz,y).v € X}
By the final coalgebra theovem, o(x) € J(IT; 1,40, Moreover, as each equivalence class of r
has no eonflict, by the final algebra theorem, L & frans(m{z)). This method contains decision
procedure for subsumption problem, which recently Dorre6] first solved by using a well-known
method for transforming non-deterministic finite automata into deterministic ones. Our work
gives an account to the solution from the final coalgebra theorem|l, 2].

4.1 Finite Automata

Automata are coalgebras for a class functor £ = map(A, —) = pow({A}), where 4 C A and
A€ A is a distinguished urelement for indicating ‘aceept’ states of the automata, and also the
empty string of regular language. LEquivalently,

S(M)={uUv|uC{A},uc map(A, M)}

Those sets in J(X) that have finite transitive closures arc called rational frces. Rational
trees are sets of Lthe form v = w U w, where u © [A}, v € map(A.J(E)). Il » is a rational
trees then L{r} is a regular language over A, where L{r) = L'(u)U L"(v), L'(z) = z, L"[u) =
U{al{ula)) | a € dom(u)}.

Let (¥, &) be a finite coalgebra for T and 7 is a mediating arrow to the final coalgebra of
E. Then w(z) is a rational trees for all # € ¥, These results are obtained straightforwardly
without much difficulty.
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