ICOT Technical Memurandum: TM-1052

Th-1052

A Paralle! Cooperative Problem-Solving

System with Intelligent Blackhoard

by
T. Yokoyama, M. Ono,
M. Wada & H. Ohsaki

My, 194

E 19wl 100"

Mita Kokusal Bldg, 21F (03)3456-3191 -5

“ :D I 4-78 Mita |-Chome Telex ICOT J32964

Minato-ku Tokyo TOE Tapan

Institute for New Generation Computer Technology

A Parallel Cooperative Problem-Solving System

with Intelligent Blackboard

Takanori Yokoyama*, Masayuki Ono*¥,

Masahiro Wada**, Hiroshi Qhsaki***

*Hitachi Rescarch Laboratory, Hitachi Lid.
426 Kuji-cho, Hitachi-shi, Ibaraki-ken, 319-12 Japan

e-mail: yokoyama@hrl.hitachi.co.jp

**Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan

e-mail: {mono, mwadal@icot.or.jp

#**Japan Information Processing Development Center
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan

c-mail: j-ohsaki@icot.or.jp

Abstract

This paper presents a parallel cooperative problem solving system which consists
of the intelligent blackboard and agents. The intelligent blackboard is not shared
memory but a set of active objects which has functions for constraint satisfaction and
multiple context managemeit, An agent solves a subproblem accessing data on the
intelligent blackboard, Coopcration between agents are supporied by constraint
propagalion via the intelligent blackboard. To exploit parallclism, multiple context
management is realized by a node neiwork which deals with combinations of multiple
values of slots of objects. The system is cffcctive for design problems in which there is
dependency between subproblems and there are many candidatcs for partial solutions.
The system is based on daa flow architecture. A prototype of cooperative design sysiem

has been developed on distributed multiprocessors Multi-PSI using concurrent logic

programming language KLI.

1. Introduction

To solve a large-scale or complex problem, the problem should be divided into
subproblems. The subproblems are solved and obtained partial solutions are integrated
into a solution of the whole problem. Design is an interesting and important domain of
knowledge engincering. Design is a problem 1o generate a solution that satisfies
requirements and is rcgarded as a constraint satisfaction problem. In actual design by
human designers, a large-scale or camﬁ]cx design problem is divided into subproblems
which can be solved by one designer. This method is applied to knowledge-based design
sysicms [Tong87].

For example, to design a microprocessor, we divide it inte paris such as ALU,
register, bus, and so on, then design the parts independently, and integrate them. But, il
is not always possible to divide a problem into independent subproblems. Considering
functional design of microprocessor, the problem can be divided into subproblems such
as behavioral design, structural design, timing design, and so on. But, there are heavy
dependencies between subproblems. This is caused by the structure of the
microprocessor has not been defined and the design dara must be shared by all the
subproblems. S0 designers must cooperate each other to get a consistent selution in
actual design. Cooperative problem solving technique must be applied 1w a design
system for this type of problem [Klein89].

Cooperative problem solving systems have been developed in the domain called
distributed artificial inielligence or distributed cooperative problem solving [Bond88].
There are many iypes of problem solving models such as blackboard model [Hayes-
Roth853, NiiB6], contract net model [Smith81], actor model [Hewitt77], and so on. The
blackboard model is suitable for functional design because dependencies exist among
subproblems,

Several cooperative design sysiems based on the blackboard model have been
developed [Rehak85, Bushnell87, Temme88]. A Blackboard system consists of a
blackboard and knowledge sources. Each knowledge source has knowledge to solve a

given subproblem. The knowledge is represented as a set of rules in most of the systems.

— 2

A knowledge source reads data from the blackboard and writes data 1o the blackboard.
The data on a blackboard arc integrated into a design solution. A knowledge source may
be called an agent.

Knowledge sources can be executed in parallel in principle. But, there are
problems to realize a parallel blackboard system. Maost of the systems are buill on
sequential machines and cannot executed in parallel. One of thc major problems is
scheduling. A scheduler of the system controls execution of knowledge sources and
supports cooperation among agents. To parallelize a blackboard system, the scheduler
must schedule parallel execution of knowledge source. Bul, it is dilflicull to realize
efficient parallel scheduling. Another major problem is implementation of the
blackboard. As the blackboard is shared by knowledge sources, access to the blackboard
may be a bottlencck of the system. Furthermore, to implement the blackboard on the
multiprocessors without shared memory is difficult.

Many candidates for partial solutions arc generated and a combinatorial explosion
may be caused in the domain such as design. The mechanism to prune nodes or a search
tree is required. And an architecture is also required in which diffcrent types of
knowledge and reasoning mechanism can be used because the characteristics of the
subproblems are different cach other. 50 a new approach to cooperative problem
solving is needed.

The goal of our research is to develop a parallel cooperative problem solving
system for design problems in which there are heavy dependencies between the
subproblems, Parallel cooperative problem solving architecture (hat consists of an
inielligent blackboard and agents is presented in this paper. Multiple-context objects
which have constraint satisfaction mechanism represent a design object model on the
intelligent blackboard. The problem solving architecture is applied to a simple design

system,

2. Parallel Cooperative Problem Solving

2.1 Problem Solving Model

Cooperation among agenils is important for solving functional design problems
because of dependencies between subproblems. Tt is difficult to get a consistent solution
by simply merging partial solutions after solving the subproblems. If a consistent
solution is not obtained, agents must backitrack and generate another partial solutions.
It is too ineflicient. Therefore concurrent cooperative design by agents exchanging
information, such as intermediate solutions and constraints, is required.

We propose a parallel cooperative problem solving model which composed of the
intelligent blackboard and several agents. Figure 1 shows the structure of the model. A
design solution is gencrated on the intelligent blackboard.

Cooperative problem solving requires modularity of knowledge, Design
knowledge is classified into knowledge about design objects and knowledge about design
methods [MNagai§8]. Knowledge about design method is divided and modularized by
agenis. Each agent has different knowledge which is needed w solve each subproblem.
Knowledge about design objects is stored on the intelligent blackboard and shared by all
agents. agents have to generate onc solution that is an instance of design object that
satisfies design reguirements. Knowledge about dcsigﬁ ohject is represented as a design
object model in a design system [Ohsuga85]. Dependencies between subproblems are
caused by sharing a design object model.

The intelligenl blackboard provides facilities to suppeort cooperation among
agents. A design object model is represented in the way of object-based representation.
The intelligent blackboard is not mere shared memory but a set ol active objects.
Constraints on objects can be defined in the declarative form |[Yokoyama90].
Cooperation among agents is based on consistency maintenance and constraint
propagation by the active objects. General knowledge about design objects swch as basic
structure of design objects, constraints between parts to be salisfied, available parts, ete.
is represented as class declarations. A design solution is generared as a set of instances
on the intelligent blackboard in design process,

Each agent solves a subproblem wusing the knowledge about design method
including heuristics, All agents share a design object model, but ecach agent accesses

only part of the design ohject model. An agemt reads data of the design object model and

4

moedifies it autenomously. To put it concretely, an agent reads values of slots (instance
variables) of objects on the imelligent blackboard, generates partial solutions, and put
them as mew values of another slots of (he objects,

Various types of rcasoning can be applied to agents im this system. A system can
contains different types of agems if the interfaces of those agents and the intelligent

blackboard are the same one. In functional design, subproblems may require different

types of reasoning.

2.2 Approach

It is difficult to parallelize a system for artificial intelligence. Architectural
support is required for realizing an efficient parallel Al system becausc the paths to a
solution is cannot be predefined and the control flow is nondeterministic. Though
several parallel blackboard systems have been developed, the efficiency is not so good.

In our system, 1o exploit parallelism, an agent can be built with many fine-
grained processes which can be cxccuted in parallel. The objects can be executed in
parallel too. Furthermore, an object is implemented as a set of processes and those
processes can execute in parallel. Both agemis and an intclligent blackboard can be
distributed to wmultiprocessors,

Muny data should be processed to realize an efficient parallel system. Plural
candidates for a partial solution can be dealt within the system and those candidates are
generated and processcd in the way of pipeline processing. The interface between an
agent and the intelligent blackboard is based on data-flow architecture using streams.
The effect of pipeline parallelism can be oblained by processing dara in succession by
processes connected by streams.

We have implemented the system using KL1 language on a Mulii-PSI machine
[UchidaB8]l. KL1 is a concurrent logic programming language based on GHC language
[Ueda85]. Multi-PSI is distributed memory multiprocessors. KL1 fits for process-based
concurrent programming. Fine-grained processes can be realized with little overhcad

in KL1. A stream is a chain represented as a list in KLI.

- 5 —

3. Intelligent Blackboard

3.1 Object Definition

A design object model on the intelligent blackboard is represented in the way of
object-based representation, General knowledge about gencral design objects s
represented as class definitions. Instances are created and design data are set in their
slots.

Slot names and constraints on the slots arc declared in a class definition. A
Constraint on slots can be represented as a predicale, an equation, or an inequality. A
part of slots of an object can be accessed by agents. But, generally, different agenis
access different objects or different slots according to the viewpoinis of agents. Figure 2
shows an example of class definition for a microprocessor. In this example, the
constraint of prohibition on a combination is represented using nogood predicaie and
the constraint on the slot performance. average number of steps and machine cvcle is
represented as an equation. The former constraint forbids the combination of one bus
structure as an internal bus structure and imstruction prefetch as a control method.

Class definitions are translated to KLl programs by ithe translator. Each object is
implemented as a set of processes. Messages to an object are interpreted and executed
concurrcntly. A design object model is accessed by agents in parallel except for the

access 10 the same slot of the same object.

3.3 Constraint Satisfaction

An object in our system has constraint satisfaction mechanism and keep its state
satisfying given constraints. When a value is set in slot by an agent, a constraint on the
slot is evaluated. There are two types of constraint evaluation. One is to evaluate a
constraint passively and the other actively,

Passive constraint evalvation is o test whether a constraint is satisfied or not
when all values of slots of the constraint are given. For example, the values of x,y and z
of constraint x>y +z are given, whether the set of wvalues satisfies the constraint or not

is tested. Passive constraint evaluation is a basic facility to obtain a consistent solution.

— § -

Consistency maintenance of intermediate solutions is imporiani in cooperalive problem
solving and parallel processing. Consistency maintenance is to evaluate constraints
passively and keep the siate of an object satisfying constraints. When agents set values
to slots, constraints on the slots are evalualed and contexis (combinations of wvalucs of
slo1s) that wiolate the constraints are rejected.

Active constraint evaluation is to caleulate a value of a slot when the wvalues of
another slots are given. For example, when the values of x and y of constraint x=y +z
arc given, the value of zis obtained. Active constraint evaluation is applied for the type
of constraint that a unique value of a slot can be determined.

Constraint propagation among agenls via a design object model is realized by
active constraint evaluation without direct communication, An agent can influences
ancther agents indircctly by constraint propagation and this effect can be used for
cooperation among agents. Figure 3 shows an example of constraint propagation. The
value of slot ¢ can be calculated by evaluating the constraints with the wvalue of slot a,
and the value is propagated to another agents. This is an example using a constraint on
slots of one ohject, but constraints between plural objects can be used [lor propagation.

Cooperation between agents which don't share data can be realized by constraint
propagation wvia intelligent blackboard without direct communication, Cooperation is
not affected by cxccution sequence because the direction of propagation is determined

dynamically in run time.

3.2 Muliiple Contexts

Te exploit parallelism and get high elficiency, plural candidates for a partial
solution should be dealt with simullancously. The mechanism 1o deal with multiple
values of a slot is realized by multiple-context objects in our system. Context means state
of an object that is represemted as a combination of values of slots.

In conventional systems, multiple contexts are represented as a context tree
[WaltersB8]. An example of context tree is shown in Figure 4. The tree structure grows
as new wvalues are set to slots. But, consistent contexts don't increase monotonously

because inconsistent conlexts must be rejected. Inconsistent branches of a context tree

";l'.

should be pruned as early as possible for cfficiency. Plural contexts may beccome the
same state as shown in Figure 4, because execution sequence is nondeterministic and
agenis execule in parallel and asynchronously in the system, Those contexts should be
unified immediately to remove redundant processing. The multiple context management
with functions for pruning and unification is required.

We present a multiple-context object with a node network for context
management,. A combination of slots is managed by a node. An example of node network
is shown in Figure 5. The node network forms a lattice. The head of node network is the
body of an object. Each slot of the body points a node which deal with values for the slot.
A [ollowing node deal with a superset of the set of slots dealt by the precedent nodes.
The tail is a node for all the slots of an object. Constraints on slots are stored in the node
which deal with the slots. A node receives data from the precedent nodes and combine
the data. A node has functions for constraint evaluation. Only the combinations of
valucs that satisfy constraints are stored in the node. Combinations that wviolale
constraints are rejected. The combinations of values of all the slots that satisfy all the
constraint is stored in the tail node in Figure 5.

IT nodes for all combinations of siots were generaled, a large number of nodes
would be generated for an object. To reduce the number of nodes, the system provides a
facility to generate only the nodes for essential combinations. Two kinds of
combinations are essential: the combinations referred to by constraints given (o the
object and the combinations referred to by agents. The translator analyze class
definitions and agent definitions and optimize node networks.

A node nciwork is generated when an object is created. Each node is implemented
as a process. An object is a set of processes that can be exccuted in parallel. Node
processes are connected by streams. Demons for sending referred combination data 1o

agents are attached to the node processes.

4. Agents and Cooperation

4.1 Agent Definition

Various kinds of reasoning which fit subproblems can be applied to agents in our
model. But, knowledge is to be represented as a set of rules and agenits cxecute as
forward chaining production systems in the implemented system. This is because of
representability of knowledge and casingss of implementation.

Figure 6 shows an example of agent definition., Rules are defined in the if-then
form. A rule is fired when its condition part is matched to the data from the intelligent
blackboard. All maiched rules can be fired simultancously without conflict resolution to
exploit purallelism. Consistency is maintained in the way that the diflerent siates after
diffcrcnt rules are fired are treated as differem contexts. This is realized by facilities of
the intelligent blackboard for multiple-context management and consistency
mainlenance.

An agent cxecutes inference according to the changes on the intelligent
blackboard. To put it concretely, an agent reccives changed data from objects on the
intelligent blackboard, gencratc ncw data, and set the data to objects. Intermediate
solutions are integrated and tested by constraint evaluation every time a rule is
executed. Inconsistent contexts are pruned by this mechanism.

Rules are translated 10 KL1 programs by the translator. When an agent seis data to
slots of an object, the context must be specified 10 maintain consistency. Bur, this is
realized by the translation not by a user. For example, consider the rule shown below.

if
class (Ch), microprocessor),
slet (Obj, (sler 1, X)), X =1
then
set_slot (Obj, (slet_2, 21);
This rule means that if the value of slot slot 7 of an object belonging o class
microprocesser is I, sel value 2 to the slot slor 2 of the object. The execution part of this
rule is translated to the form shown helow.
set_slot {Ob7j, [is.‘lnt_:l, 1},
{slet 2, 2}1);:

Thus, not only the value of sfor_2 but also the value of slot / should be set in run time.

- 0 —

This translation is needed for consistency maintenance.
One rule is translated to one clause of KL1 and is executed as a process. Rules of an

agent can be distributed to plural processors and the rules that matches data from the

intelligent blackboard can be fired and executed in parallel.

4.3 Cooperative Behavior

The paraltel cooperative problem solving system in this paper is based on the data
flow architecture, Agents and the intelligent blackboard are connected by silreams,
Cooperation between agents is supported by constraint propagation and consistency
mainienance by multiple-context objects on the intelligent blackboard.

Figure 7 shows a simple example of the system which is composed of four agents
and the intelligent blackboard. The nede network of the object on the intelligent
blackboard i1s optimized. The representation form of a rule is simplified in the figure.

First, when the design requirement is given, rules in agent | and agent 2 arc fired
in parallel without conflict resolution and the vulues [and 2 arc sct to slor @ and the
values 3 and 4 are set to slor b of the object. Those dala are sent to node aand node b,
stored at the nodes, and propagated to the node (a, b). Here, node a means the node
which deals with the values of slot a and node (4, b) mcans thc nodc which deals with
combinations of values of slor @ and slor b, The combination data that satisfy the
constraints given to thc node are generated, stored at the node, and propagated to the
node fa, b, c¢). At the node, the constraints on slos a, slot b and slot ¢is evaluated actively
and the values of slot ¢ arc obtaincd, the combination data are stored, and obtained
values of slot ¢ are sent to rede c.

Then the rules of agemt 3 which refers to slot ¢ are fired and the combination of
values of slot cand slor dare set 1o node (¢, d). The reason the combination data are set to
the nede is to maintain consistency as mentioned at the previous subsection. Only (he
combinations that satisfly the constraints on slot ¢ and slor d arc stored. Both the
combination data of node (a, b, ¢) and node (¢, d) are propagated to node (a, b, ¢, d) and
the combinations of values of slor a,slot b, slot ¢ and slot d are generated. Note that only

consisicnt combinations can be generated. When plural precedent nodes deal with the

same slot as an element of slot combinations, the only combinations are generated that
the walue of the slot of one precedent node and the value of the slot of another precedent
node are equal. Only the combinations (1, 4, 5, 6) and (2, 3, 5, 6) are generated as

consistent data at the node (a, b, ¢ d). Finally, agent 4 outputs the data as solutions,

5. A Prototype of Parallel Cooperative Design System

5.1 System Structure

We developed a prototype system for simple functional design. The target of the
design is microprocessor. The system inputs design requirements such as instruction
set and performance reguirement and outputs design solutions such as behavior
description and data path at the register transfer level as shown in Figure 8. But, the
problem is simplified to realize the system with a few rules and objects. We analyzed the
functional design of microprocessor and divided the problem into five subproblems:
architectural planning, behavior design, block design, data path design, and timing
design.

The prototype system consists of the intelligent blackboard and six agenis: five
agents for subproblems shown above and an agent to output the design solutions. Class
definitions for design object model are represented in the form as shown in Figure 2 and
rule definitions of each agent are represented in the form as shown in Figure 6. There
are aboul 60 rules and most of them are for generating candidaies for intermediate
solutions.

The system has been implemented on Multi-PSL. Static load balancing to allocate

all the tasks beforc starting the job is used. Agents and nodes of objects are distributed

to multiprocessors,

5.2 Results
There are many candidates for intermediate solutions in this problem. If all the
candidates were combined simply, about thousands of candidates for solutions would be

generated though there are only a few solutions that satisfy constraints. In our system,

— 11

design is execuied cooperatively pruning the candidates that wviolate constraints. The
number of combinations of candidates dealt with at & node is below about (wenly because
only consistent combinations are generated. Therefore, the parallel cooperative
problem solving system in this paper is effective for problems in which there are many
candidates for solutions though a few of them are consistent.

Speedups of 2 times with 4 processors and 2.7 times with 8 processors are obtained.
The resull is not as good as we expected. Active processors decreases for execution
process. All the processors are active at the first stage but only one or two processors
arc active at the last stage. The system should be applied to a large-scale problem and
efficient load balancing must be used to get more speedup against the number of

processors. We are studying on dynamic load balancing stratcgy.

6. Related Work

The rescarch on parallel svsiems for Al have been done in various domains. Bur,
to develop an efficient parallel or distributed cooperative problem solving system is
difficult because of dependency among subproblems and nondeterminism of reasoning.
A Dblackboard sysiem fits for problems with dependency between subproblems because
agents (knowledge sources) can share data on the blackboard. Several parallel or
distributed blackboard systems have been developed [Engelmore88, Jagannathan89].
But, it 15 not so casy 1o parallelize a blackboard system, particularly a system with a
scheduler for control

There are several approaches 1o exploit parallelism in a blackboard system:
blackboard intecraction operations, concurrent execution of agents, internal execution
of an agent, and so on [Corkill89]. But, to get high efficiency is difficult by only these
approaches., It is important to exploit knowledge parallelism, pipeline parallelism, and
data parallelism [Nii88]. There is a report that o deal with many data is effective for
efficicncy [Rice89).

Poligon [Nii88, Rice89] is an interesting approach 1o a parallel blackboard system.

No scheduler exists in the system and rules can bc invoked in parallel. Rules are

— 12 —

associated directly with the nodes on the blackboard. The associated nodes and the rules
are distributed in multiprocessor. The association is executed at compile-time. Poligon
has bcen developed for applications such as real-time signal understanding and data
fusion in mind. Pligon's approach is effective in these domains. But, in design
problems, our target domain, many candidates for partial solutions are generated and a
combinatorial explosion may be caused. Our system provides facilities 10 reject
candidates that violate constraints on a design object and 1o maintain consistency for
pruning of a search tree and avoiding combinatorial explosion,

Our system provides [acilities to manage consistent multiple conlexts for efficient
parallel cooperative problem solving. This is realized by a node network of a multiple
context ohject. ATMS [deKleerf6] provides a facility for maintenance of consistent
multiple context. Multiple-context management without redundancy can be rcalized by
applying ATMS 1o the intelligent blackboard rcgurding values of slots as assumptions.
But, the number of nodes would be enormous if regarding a wvalue of a slot as an
assumption, Thuugﬂ the form of the node network of our system is like the
environment lattice of ATMS, the node of our system deal with a combination of slots not
a combination of values. [Each node manages plural combinations of values, namely
multiple contexts. Furthermore, the node network is optimized by the translator. The
number of nodes is minimal in our system for efficiency. Another problem to apply
ATMS 10 node networks is that many nogoods must be declarcd to reject both the
combinations that violate constraints and meaningless combinations (for example, the
combination of slot @ = 1 and slor a = 2). ATMS is a powerful system [or hypothetical
rcasoning but is not suvited for our goal

The node network of our system has a [unction to get da!a that match condition
parts of rules of agents. The node network has part of functions of RETE network
{Forgy82]. But, the node of our system has functions for constraini satisfaction. Though
our sysicm is not proper to a production system in principle, if the system is optimized

for a production system, an efficient parallel production system may be realized.

_]3__

7. Conclusion

A Parallel cooperative problem solving system for problems in which there is
dependency among subproblems is presented. The sysiem consists of the intelligent
blackboard and agents which solve subproblems. The intclligent blackboard contains
multiple-context object which has functions for constraint satisfaction and consistency
maintenance. Multiple context management is realized by a node network whose nodes
deal with combinations of wvalues of slots of objects. Coopcration bctween agents are
supporied by constraint propagation wvia the intelligent blackboard without direct
communication or explicil shared data.

The system is based on data flow architecture. Rules of agents and nodes of node
networks of objects are implemented as processes and they are connected by streams.
The processes can be distributed 1o multiprocessors and execuled in parallel. This system
is implemented using concurrent logic programming language KL1 on distributed
memory multiprocessors Multi-PSL.

According to the experience of applying the system Lo a simple [unctional design
of microprocessor, we think the sysiem is effective for problems such as design io
which there are many candidates for partial solutions. But, the system should be
improved to get high efficiency. Particularly efficient load balancing strategy is

necessury .,

Acknowledgements

This research has been done in Institute for New Generation Computer Technology
(1COoT). l would like to thank Dr. Katsumi Nitta, the chief of the Seventh Research
Laboratory at ICOT. and all members of the Seventh Research Laboratory for their
helpful comments, I would also like to thank Dr. Kazuhire Fuchi, the director of 1COT
Rescarch Center, Dr. Koichi Furukawa, the deputy director of ICOT Research Center, Mr.
Kenji Ikoma at NTT Data Communications System Corp. for their support and

cncouragement,

— 14

References

[Bond88] Bond, A. H. and Gasser, L. (eds.), "Readings in Distributed Artificial
[nielligence”, Morgan Kaufmann (1988).

(Bushnell87] Bushnell, M. L. and Director, 8. W., "ULYSSES - a Knowledge-Based VLSI
Design Environment", Aruficial Intelligence in Engineering, vol.2, No.l, pp.33-41
(1987).

[CorkillB9] Corkill, D, D., "Design Alternatives for Parallel and Distributed Blackboard
Systems”, in [Jagannathan89], pp.99-136 (1989).

[deKlcerf6] de Kleer, 1., "An Assumption-basced TMS", Artificial Inrelligence, Vol.28,
pp.127-162 (1986).

[Engelmore38] Engelmore, K. and Morgan, T. (eds.), "Blackboard Sysiems”, Addison
Wesley (1958).

[Forgy82] Forgy, C. L., "RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”, Arrificial Intelligence, vol 19, pp.17-38 (1982).

[Hayes-Roith85] Hayes-Roth, B., "A Blackboard Architccture for Control®, Arrificial
fnrelligence, vol. 26, pp.251-321 (1985).

[Hewitt77] Hewitt, €., "Viewing Control Structures as Patterns of Passing Messages”,
Artificial Intelligence, vol.B, pp.323-364 (1977),

[Jagannathan89] Jagannathan, V. et al. (eds.), "Blackboard Architectures and
Applications”, Academic Press (1989).

[Klein89] Klein, M. and Lu, Stephen C.-Y., "Conflict Rcsolution in Cooperative Design”,
Artificial Intelligence in Engineering, vold, nod, pp.168-180 (1989).

[MagaiB8] Nagai Y. et al, "Expert System Architecture for Design Tasks”, Proceedings of
the Fifth Generation Computer Sysrems, pp.296-317 (1988).

[Niig6] Nii, H. P., "Blackboard Systems : The Blackboard Model of Problem Solving and the
Evolution of Blackboard Architectures”, The Al Magazine, vol.7, no.2, pp.38-53 (1986).

[Nii88] Nii, H. P. el al. , "Frameworks for Concurrent Problem Solving: A Repont on CAGE
and POLIGON", in [Engelmore88], pp.475-501 (1988).

[Ohsuga85) Ohsuga, S., "Conceptual Design of Chﬁ Systemms Involving Knowledge Base",

in Gero, 1. (ed.), "Knowledge Engincering in Computer Aided Design”, pp.29-88, North-
Holland (1985),

[Rehak85]) Rchak, D. R. et al., "Architecture of an Integrated Knowledge Based
Environment for Structural Engineering Applications”, in Gero, J. (ed.), "Knowledge
Engineering in Computer Aided Design"., pp.89-117, North-Holland (1985).

[Ricc89] Rice, J. et al, "See How They Run... The Architeciure and Performance of Two
Concurrent Blackboard Systems”, in [Jagannathanl¥], pp.153-178 (1984),

[Smith81] Smith, R. G. and Davis, R. "Frameworks for Cooperation in Distributed Problem
Solving", IEEE Trans. on Systems, Man and Cybernetics, SMC-11-1, pp.61-70 (1981).
[TemmeR®] Temme, K-H. and Niische, A., "Chip-Architeciure Planning: an Expert Sysiem
Approach”, in Gero, J. 5., "Arificial Imtelligence in Enginecring: Design", pp.137-161,

Elsevior (1988).

[Tong87] Tong. C.. "Toward an Engineering Science of Knowledge-Based Design”,
Artificial Intelligence in Engineering,vol2, no3, pp.133-166 (1987}

[Uchida88] Uchida, S. et al.. "Research and Development of the Parallel Inlerence Sysiem
in the Intermediate Stage of the FGCS Project", Proceedings of the Fifth Generation
Computer Systems, pp.16-36 (1988),

[UedaB3] Ueda, K., "Guarded Horn Clauses”, ICOT Technical Report, TR-103 (1985).

[Walters88] Walters, J. R. and Nielsen N. R., "Crafting Knowledge-Based Systems”, Chapter
15 "Knowledge Crafting with Multiple Contexts”, John Wiley & Sons (1988).

[Yokoyama90] Yokoyama T., "An Object-Oriented and Constraint-Based Knowledge
Representation System for Design Object Modeling”, FProceedings of the Sixth

Conference on Artificial Intelligence Applications, pp.146-152 (1990},

= 16

Agant 1 Agant 2

X ¥ /4

Intalligent Blackboard
Datign Object Model

Muliipte conlaxis
Consiraint Salisfaction

/A \\\
Agant 3 Agent 4

Figure 1. Parallel cooperative problem solving model

class microprocessor has
slof
alu, imtarnal_bus, behavior,
control, data path, performanca,
machine_gcycle,
average_number_of step,
canstraint
nogood([internal_bus, control],
["1-Bus', ‘instruction Prefatch’] §,
performance
= 1/ (average_number_of step
" maching_cycla),

and.

Figure 2. Example of Class Definition

Object Model
g=1 Agant 2
Object /
a Cad
referred by Agent 1
siot b
[+
rafarred by Agant 3
d C= 2

constraint |a+c=3 \
Agent 3

Figure 3. Constraint propagation among agents

- 17 —

} referred by Agent 2

Object

X

Slot | Y
z
Constraint |[x+2 =<6
Context 1 Context 2
X X 2
Slot| y Slot| y
z z
Context 3 Context 4 et Contex1 8
¥ |1 x| 1 iE x| 2
Slot] v | 3 Sl y | 4 Sloty v™, Set) v | 3
z z z z
/ \ \\ Elinination +
-
\C,nnta:-: Contaxt 8 Context 9 \Comem
g P ™ F
1 » 1 x 1 >‘< 2
Slep vy Slot| v | 3 | [Slet] vy 3 sl yy 3
z z | 4 | 4 BN
o
Elinination iy Elinination
Unification
Figure 4. An example of context tree
% ¥ &
T ol t X {1 v 3}
e bady of an objec 1 (2,3
Ob
Ject f 2 o
(1,4)
slot -y s
3 -
b
constraint | x+z<B K+Z<6B elimination
Z o 1 by
4 {y. 2) consiraint
3 (3, 4] vaislation
{3, 5)

Figure 5. Node network for managgement of multiple contexts

agent data path_designer has
ule
if class(Ob], microprocessor),
slot{Obj, {behavior, B})
then generata_data_path(B, D},

sat_slot{Obj, [data_path, D});

and.

b

Figure &, Example of rule definition of an agent

1L

Regquiremernt

1

r_ Agant 1 _\} ~ Agent 3
i] i é Intelkgent Blackboard h
if .I?';.];u;m;::m Is givian te=4than d=5
= @ a, b} i (a,bc] i
if Reguirerment is givan 1 {1 3: {1 34; it c=5than d=6
h - Ll J
thema = 2 Object {1, 43| 01,4.58
5 a ¥ 2, 3|] 235) a—l
-
& -, = : {1.4,58)
. L d \ {2,3,5,6) J e
s ™ A r’
Agent 2 con- arhe §]) {cd) Agent 4
- - i i starint | 8*b=C e
if]:I‘:qm:-ni:m is given cedsi0 | d | 5, 61 if vailues offa,b,c.d}
en o= H - is given
if Requiremant is given \ g | [e+d>10 Y, then output them
\ thenb=4 J - A

Figure 7. Behavior of agents and the intellipent blackboard

Deasign Regquirement Dosign Solution
Dasign System
) Pariarmance
Requimsd Perlam Number of Gales
’ c;“:ﬁ""”;ﬂ Architectural Planring ALU
ne on f F Inlamal B
bstrction | Beahavior Defl.ugn “I,I'.l.a;a Pa;il
Address Space Block D‘“'ﬂ'j' Canirel
Register Set Data Path Design Excculion Sequence
Addressing Mods Timing Design Block

Fig. & Inputs and Quiputs of Prolotype Lesign Sysiem

19 —

