ICOT Technical Memorandom: TM-1042

Thi-1042

An Analysis of Parallcl Program
by Uhilizing High-level Nets

by
T. Fukuzawa & H. Hasegawa (Oki)

Mav, 1991

E 199, 10T

Mity Kokosa Bldg. 21F (0313456-319] ~35

I G DT 4-28 Mt 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

AN ANALYSIS OF PARALLEL PROGRAM BY UTILIZING HIGH-LEVEL NETS

Toshivukl Fukuzawa

Haruo Hasegawa

Oki Electric Industry Co., Litd.
11-22 Shibaura 4 chome Minate-ku,Tokyo 108 Japan

==y

Abstracl This poper presents procedural analysis meth-
ods of a program described in Flot Guarded Horn
Clouses{ FGHC), FGHC is a porallel programming lan-
guage based on horn logic. The pragrem processes erecule
in parallel, so ils debug is very difficult. The analysas
methods feature that FGHC program is modeled by means
of Hi-nets{High-Level nels), a kind of Petri nel model.
Tha mc.lr.fl:f:'::g iz based on the compubalion rules of FGHC
fo analyze behavinr of the progrom. [n the modeling rules,
“reduction” of FGHC progriin r:rJr'r'ﬂpEndJ {a "firing” of
o transition, Therefors, the analysis methods calculate
firing sequences fo delect program deodlock, computle pui

allelism and esvaluale success or failure of the program

1 Introduction

Recent advances in computer technology have developed
parallel processing compulers; accordingly a number of
parallel programming languages have been developed in
order to utilize the full performance of the computers. The
programming languages feature thal muliipie processes
execule in concert with each other, and ihat execution
time can be shorted casily, But, it is difficult to verify
programs described in the programming language for the
follewing two reasons:

1. The execution order of processes is net delermined,
sa that hugﬁ may not reappea:.

2. Each process exscutes independently, so that other
processes condinue executing even if one process

stops,

Petri nets are designed to model complex asynchronous
and concurrent systems. Petri nets have heen applied to
verifying programuming languages [1][2][3].

HI-nets are a kind of Petri nets model where inlorma-
tion is attached to each token. This paper discusses how

E-mail: fukuzawa@sot.telcom.oki.cojp

to apply HI-nets methods in order to verify parallel pro-
gram described in a logic progremming lenguage. The
modeling language is FGHC.

2 FGHC
2.1 Format of TGHC

FGHEC is a programming lenguage based on horn logis,
and added syntactic construct guard(4]. An FGHC proe-
grem 15 defined as a Anite set of guarded horn clauses, in
the following format:

H:_Gln"'an]Bll"'lsm' ':l:]

Where, H, G; and 5, are alomic predicaies. &) are
resiricted to primitive predicates. ¥, G and B; are called
head gool, guard goal, and body goal, respeciively. The
operator “|" is called commit operator. Commit operator
has a role in the contrel of the progzam. The left part
ol eommil operator is called guord, and the right part is
called hody. Also, as a convention, variables are written
in ezpital letiers and constants in lower letters.

A goal clause has the following form:

H:-Bi....,Bm. {2}

B; are called goal. A goal clause is called emply when m
equals 0.

2.2 Procedural Semantics

Infermally, an FGHC program execulion reduces a given
goal clause to the emply clause by means of inpul res-
olutiarn. This mechanism is called reduction. Reduction
featuzes two conditions as [ollows:

1. Usnification in guatd can not bind calier-side wari-
ables, This unification is called passive unification,

2, Unification in body may bind caller-side variables.
But, enly ene clause may bind the variables. This
unification is called active unification,

[n passive unifieation, il a goal attempts to bind 2 caller-
side variable, the goal suspend unti! another gaal binds
the variahle. '

In FGHC, each reduction of goal executes in paralle]
The execution is called AND porallel, And, if & goal has
multiple unifiable clauses, all the clavses are examined
in paralle]l unifiable or not. The exezution is called OR
paraliel,

An FGHC program reduces goals recursively, When no
reducible clause remains, the program stops, At this time,
the program is called success, if the goal sel is empty. And
the program is called foilure, if the goal set includes any
clause(s).

2.3 Interprocess Communication

In FGHC, a goal can be regarded as an independent pro-
cess. Interprocess communication between the proceises
is mediated by a common vatiable as follows: A message-
sending process binds a variable. And a message-receiving
process reads the varizble,

An example of interprocess communicatisn is shown in
Figure 1. In this program process g{X) send 2 message
to process +[X).

PLX) t = true | (X)), 7{X).
glA) c=true [X =0
1‘{',,:{'} : = X=ﬂ.|1'ru.!_

Figure 1: An example of interprocess communication

2.4 Normal Farm

FGHC program clauses can be converted into a format
called “normal farm” es fellowss): .

H =D 0|0, 0. 8, .. EB. {3)

Here, the components 4 (head),fs [input guard), O
(outpul guard) and B; (body) must satisfy the following
conditions.

1. All arguments in head must be variables.
I. Iy must be a primitive predicate,

3. O musl be & primitive predicate binding parameters
in head.

4. B; must be a primitive predicate binding patameters
in other bodies, or user-defined predicates.

3 High-Level nets

HL-nets are a kind of Petri nets model where information
is attached to each token (). The information can be in-
specled and modified when a transition fires. An enabling
condition is represented as an incidence function.

This section defines an incidence matrix of HL-nets
without token colors. The matrix has only integer el.
ements. In this paper, the incidence matrix is used to
calculate firing sequences,

Definition: Incidence matrix

The elements of a matrix 4% are defined by ihe
multiplicity of each input arc. Similarly, a ma
trix A” is defined by the multiplicity of each
oulput arc. An incidence matrix 4 is defined
A = AY — A~ where row elements repre-
gent transitions and column elements represent
piaces. Let n be the number of transitions and
m places, and the matrix has dimensions i x m_

4 Modeling Rules

4.1 FGHC Program Limitations

A pregram subject Lo the modeling s assumed to satigfy
the following constraints:

1. The program is converted into a normal form.

b

Mo recursive call is allowed.

3. Mo user-defined predicates is called by different pred-
iceles,

4. Mo-more than one predicales binds a common vagi-
able.

However, the thizd constraint is dissolved by changing
the symbols of predicate called by multiple clauses. The
fourth constraint is dissolved by regarding the program as
predicates and removing redundant expressions.

4.2 Modeling in HL-nets

Modeling rules consist of twa modeling rules.

4.2.1 The First Modeling Rule

In the first modeling rule, the program clauses parts are
converted inte HL-nets pacts. The correspondences be-
tween progeam partts and HL-nets parts are shown in Ta-

ble 1.

Table 1: Correspondences between FOHC and HL-nets

[FGHC Hi-nets
Clause = Transition
Head = Inputl place
Body — Ourput place
Primitive predicate — [reidence function
Atgument — Range of color-lunction

Clause, head and body Clauses corzespond 1o Lran-
sitions, heads correspond to input places and bodies com
posed of user-defined predicates r_m:-l:sptlmu' lo cutput
places. The correspondences are decided by e compu-
tation rules of FGHG. Thetefore, the flow of the process
controls corresponds to the direction of arc, that is, the
reduction in FGHC corresponds to firing in HL-nets.

The two types of parallel execution, AND perallel and
(R parallel are modeled as shown in Figure 2, Figure 3,
respeclively,

p UL o= tews |og il
AT - e o lal

Figure 3: HL-nets graph correspanding to OR parallel

Primitive predicate Primitive predicates don't corres
spond Lo transitions or places, but corzsspond to inci-
dence funciions, because the primitive predicates contrel
the flow of the program execution for evaluating true of
falee.

Argument Arguments correspond Lo range of color
function. The color expresses the symbol of variables
and constants. In particular, goal clause arguments cor
respend to an initial marking.

4.2.2 The Second Modeling Rule

ln the second medeling rele, common variables, function-
ing a5 communicatisn channels in inlerprocess comumuni-
cation, are converted into places. The place is added o
the HL-nets genesated by the first modeling rule. And twe
linds of incidence [unctions are added. One 15 2 posilive
incidence function defined on the place and the transition
corresponding Lo the clause wiich reads the commen vati-
ahle. The other is a negative incidence function defined on
the place and the transition corresponding to ihe clause
which binds the common varizble,

5 Analysis Dy IIL-nets

5.1 Program success and {zilure

This section explains how te analyze program suezess or
failure by means of the incidence matrix, The analysis is
divided into Lhree steps.

The First Step In the first step are calenlated frnng
caguences of HL-nets modeled by the first modeling ruls,
However, Lhe firing sequences den’t censider colored Lo-
ken, For the pu:_..sm.:f of it, solve & matrix equalion as
follows:

M = My + - CM, (4)
where O] Is an incidence matrin, My is an initial mark-
ing which EB:I.'ESFIL:I:'II.']‘- to the paramsters in the g_ﬂi‘-t
clagse, M is an end marking which corresponds to an
end geal of the program, and variable = is 2 firing vector.

A fuing sequence y s derived [rom the z, if it exists.
Existence of a firing vector is a necessary condition for
exdsience of firing sequence. Therelors, none exstence of
firing sequence salisfying the equation (4) means that the
program doesn's reduce to the end goal.

The firing sequences don't consider colored token and
ssynchronous interprocess communication. They repee.
st 211 possible reduction sequences in which the program
rmizht exesute,

The Second Step In the second step are derived firing
sequences of HL-nets modeled by the second modeling
rule. For the purpese of iE, verily that the firing vector ',
which hias the firing sequence of the HL-nets of the first
step, satisfies a malilx eguetion as fallow:

M= My + z'-CM, (5)

where Oy 1s tncidence matrioe, M s an initial marking
and M is an end marking.

A firing sequence » is derived {rom the firing vector z'.
The fiting sequence z diffeis froue the firing sequence y
in that z recognizes the execution order caused by asyn-
chrenous interprocess commurnication,

The Third Step Inthe thied step is detived o complete
firing sequence. For the purpose of it, verily that the fir-
ing sequence satisfies the conditions for colored tokens to
simulale the HL-nets graph. Reduction sequences, which
ca:respcnd to the ﬁr]ng sequences salis(ying Lhe condi-
ticns, suzceed. ‘Uhe other sequences cawse deadlock or
failure.

5.2 Deadlock Detection

Deadlocks is detected by firing sequences salislying the
equation (4] and unsatisfying the equation (3). The fir-
ing sequences causing deadlock of the Hl-pets still cavses
deadlocks as the reduction sequences [ar pregram. There.
[ore, the causes of the program deadlock are examined by
analyzing Lie causes of firing sequences deadlock.

5.3 Computing Parallelism

A paralleliam in the FGHC program can be defined by a
firing vector and a firing sequence as [ollows:
Sum of firings (6)
Length of a foriny seguence
Maz parallelizgm = Mazimum number of COET, (7)

Parallelism

where CFET = concurren{ engbled (ransifigns

6 Example

In this section 15 explained analysis of an exmmple. A
program and the Hl-nets graph are shown in Figure 4.
And the incidence matgix is shown in Table 2.

gLt = tewe |og (X, o 0¥l, s 050 K
afi = trwe | X=a !
g i1} = e | I=h %1
e [l = fiwe | oY= ki
[D= froe | lree. we
s Yl o= T=a, v=¢ | ltuwe 1]
s {61l = X=b, Y=d] fros R
- p i, v,
-
cary, 21
ASE/ 415 g ginlieh
T 20y
Ly | oer @.-ﬁ}—"l_ﬂui.:""
—-___*_l

Do, Yug |41 7%
o, Ty @”5'
‘-_-_h-

T=y, T=d i< T

Figure 4: A program and the Hl-nets graph

Table 2: The ineidence mairix of the HL-nets model

- p q ¢ =2 %1__& LY
BEL -1 1 1 1] o o
2P0 -1 0 0 1 o
Al o .10 0 1 i
pat a 90 =1 0 o] 1
el 0 © -1 0 o) 1]
WwE| 0 o o0 -1 -1 -1
Tl o o0 0 - | al

First, solve the equation {4), The initial marking My =
(1,0,0,0), an end marking is M = {0,0,0,0). Then, the
following & wectors are sclutions of the equalion. Each
vevior generates a firing sequence.

a; =1(1,1,01,0,1,0),87 =(1,1,0,1,0,0,1),

ey =(1,1,0,0,1,1,0%a; =(1,1,0,0,1,0,1),

ey = (1,0,1,1,0,1,0),as = (1,0,1,1,0,0,1),

ey =(1,0,1,0,1,1,0),e5 = (1,0,1,0,1,0,1}

Next, verily that each vector satisfies the equation { 5 }.
The HL-nets model is added to two places correspanding
to communication channels. The initial marking A =
(1,0,0,0,0,0), the end matking M’ = {0,0,0,0,0,0).

Then, the following four solutions, ay, @a, @5 and o., zat-
isfy the equaiion,

Finally, verily each sequence saiishes the conditions of
the colored tokens. Let = = (%1,%2,%3, %4, %3, %8, %7)
, where %i means that trensition number. The fizing se-
quences corresponding to these solutions are the following, -
MNote that clauses in parentheses () have no sequential re-
lationship.

by o= T = (T2, 4] — WE],

by = {Tol = (%2, %od) — W7},

by = {0l =~ {503, $54) — e},

by = [Tl — (W, Ted) — BT}

The only ane sequence by satisfies the conditions of col-
ored token. Sequences by, by 2nd b are unable to fire the
last transition %6 or %7. And, the firing sequences 4y, 8,,
by and by cause deadlock.

‘['he following conclusion is derived. This program is
capable of eighl diffecent execution sequences, Hewever,
the only one sequence &, succeeds. Sequences by, by, and
bg {ail, because a transition do nol fize. Sequences by, b,
by and by ceuse deadlock because a common variable 5_¥
is not bound. The number of fitings equals 4 and the
lengih ol the firing sequence equals 3. Thus, the paral-
lelistn equals 1.3 = 4/ end maximum parallelism equals
q

=

7 Conclusion

This paper has discussed the rule for modeling a program
described in FGEC on Hl-nets, and procedural analysis
methods of the program, The modeling features that the
FCGHC prnimitive predicates corcespond to HL-nets inci-
dence functions, and contrels over asynchronous interpro-
cess communication are represented, Future topics of re-
search will include the expansion of program applications,
such as stream communication, recursion, and large scale

program.

Acknowledgements This work was researched as a
part of the Fifth Generation Computer Systems Project
in Japan. We would like to thank our project members
for very useful discussions. We alse would like Lo express
out gratitude to Dr.Ryuzo Hasegawa, Depuly Manager of
ICOT Research Department, for giving us many helpful
suggestions.

References

[L| II.Huq-‘-rL et aloda Amalpiis of Paralled Logic Program by wlilyzing Petri
Metr, IEICE, CAS Rarvizawe Warkshap, pp 199708, (090 ([n Japanese)

17] SALShatn, W.K.Cheng: A Palrd Framowork for dalomaled Staliz Analpme ‘
af Ads fesking Behasiar, Journal of Syvieru amd Saftware, 8, pp.d42259,
Leas,

.IJ-rI'I’t-rnT.MuM.I.l: A "lf'hh-d Pelri Nel _fnr a Subacl af FGHGI
SEKE'D0, pp.260-154, 1990,

fa

|'.|.| K. Ueda: Gurded Mora Clamses, Teeh. Repert TR-103, [ICOT, 1045

K Ueda K Furnbawa: Trangformalion Relor for GHC programs, Prac. of
FGCS'ES, pp. 82591, 1COT, L84,

3

'd-] G.Coos] Harimanis: Adwancer in Peird Maie, Parid, Leciuwre Wotes in
Cemputer Soange, pp 307337

